at v4.8 23 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#include <linux/bug.h> 10#include <linux/mmdebug.h> 11#ifndef __GENERATING_BOUNDS_H 12#include <linux/mm_types.h> 13#include <generated/bounds.h> 14#endif /* !__GENERATING_BOUNDS_H */ 15 16/* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58/* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89 PG_head, /* A head page */ 90 PG_swapcache, /* Swap page: swp_entry_t in private */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95#ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97#endif 98#ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100#endif 101#ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103#endif 104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107#endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* Two page bits are conscripted by FS-Cache to maintain local caching 114 * state. These bits are set on pages belonging to the netfs's inodes 115 * when those inodes are being locally cached. 116 */ 117 PG_fscache = PG_private_2, /* page backed by cache */ 118 119 /* XEN */ 120 /* Pinned in Xen as a read-only pagetable page. */ 121 PG_pinned = PG_owner_priv_1, 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 123 PG_savepinned = PG_dirty, 124 /* Has a grant mapping of another (foreign) domain's page. */ 125 PG_foreign = PG_owner_priv_1, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129 130 /* Compound pages. Stored in first tail page's flags */ 131 PG_double_map = PG_private_2, 132 133 /* non-lru isolated movable page */ 134 PG_isolated = PG_reclaim, 135}; 136 137#ifndef __GENERATING_BOUNDS_H 138 139struct page; /* forward declaration */ 140 141static inline struct page *compound_head(struct page *page) 142{ 143 unsigned long head = READ_ONCE(page->compound_head); 144 145 if (unlikely(head & 1)) 146 return (struct page *) (head - 1); 147 return page; 148} 149 150static __always_inline int PageTail(struct page *page) 151{ 152 return READ_ONCE(page->compound_head) & 1; 153} 154 155static __always_inline int PageCompound(struct page *page) 156{ 157 return test_bit(PG_head, &page->flags) || PageTail(page); 158} 159 160/* 161 * Page flags policies wrt compound pages 162 * 163 * PF_ANY: 164 * the page flag is relevant for small, head and tail pages. 165 * 166 * PF_HEAD: 167 * for compound page all operations related to the page flag applied to 168 * head page. 169 * 170 * PF_NO_TAIL: 171 * modifications of the page flag must be done on small or head pages, 172 * checks can be done on tail pages too. 173 * 174 * PF_NO_COMPOUND: 175 * the page flag is not relevant for compound pages. 176 */ 177#define PF_ANY(page, enforce) page 178#define PF_HEAD(page, enforce) compound_head(page) 179#define PF_NO_TAIL(page, enforce) ({ \ 180 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 181 compound_head(page);}) 182#define PF_NO_COMPOUND(page, enforce) ({ \ 183 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 184 page;}) 185 186/* 187 * Macros to create function definitions for page flags 188 */ 189#define TESTPAGEFLAG(uname, lname, policy) \ 190static __always_inline int Page##uname(struct page *page) \ 191 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 192 193#define SETPAGEFLAG(uname, lname, policy) \ 194static __always_inline void SetPage##uname(struct page *page) \ 195 { set_bit(PG_##lname, &policy(page, 1)->flags); } 196 197#define CLEARPAGEFLAG(uname, lname, policy) \ 198static __always_inline void ClearPage##uname(struct page *page) \ 199 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 200 201#define __SETPAGEFLAG(uname, lname, policy) \ 202static __always_inline void __SetPage##uname(struct page *page) \ 203 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 204 205#define __CLEARPAGEFLAG(uname, lname, policy) \ 206static __always_inline void __ClearPage##uname(struct page *page) \ 207 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 208 209#define TESTSETFLAG(uname, lname, policy) \ 210static __always_inline int TestSetPage##uname(struct page *page) \ 211 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 212 213#define TESTCLEARFLAG(uname, lname, policy) \ 214static __always_inline int TestClearPage##uname(struct page *page) \ 215 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 216 217#define PAGEFLAG(uname, lname, policy) \ 218 TESTPAGEFLAG(uname, lname, policy) \ 219 SETPAGEFLAG(uname, lname, policy) \ 220 CLEARPAGEFLAG(uname, lname, policy) 221 222#define __PAGEFLAG(uname, lname, policy) \ 223 TESTPAGEFLAG(uname, lname, policy) \ 224 __SETPAGEFLAG(uname, lname, policy) \ 225 __CLEARPAGEFLAG(uname, lname, policy) 226 227#define TESTSCFLAG(uname, lname, policy) \ 228 TESTSETFLAG(uname, lname, policy) \ 229 TESTCLEARFLAG(uname, lname, policy) 230 231#define TESTPAGEFLAG_FALSE(uname) \ 232static inline int Page##uname(const struct page *page) { return 0; } 233 234#define SETPAGEFLAG_NOOP(uname) \ 235static inline void SetPage##uname(struct page *page) { } 236 237#define CLEARPAGEFLAG_NOOP(uname) \ 238static inline void ClearPage##uname(struct page *page) { } 239 240#define __CLEARPAGEFLAG_NOOP(uname) \ 241static inline void __ClearPage##uname(struct page *page) { } 242 243#define TESTSETFLAG_FALSE(uname) \ 244static inline int TestSetPage##uname(struct page *page) { return 0; } 245 246#define TESTCLEARFLAG_FALSE(uname) \ 247static inline int TestClearPage##uname(struct page *page) { return 0; } 248 249#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 250 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 251 252#define TESTSCFLAG_FALSE(uname) \ 253 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 254 255__PAGEFLAG(Locked, locked, PF_NO_TAIL) 256PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 257PAGEFLAG(Referenced, referenced, PF_HEAD) 258 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 259 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 260PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 261 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 262PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 263PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 264 TESTCLEARFLAG(Active, active, PF_HEAD) 265__PAGEFLAG(Slab, slab, PF_NO_TAIL) 266__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 267PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 268 269/* Xen */ 270PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 271 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 272PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 273PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 274 275PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 276 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 277PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 278 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 279 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 280 281/* 282 * Private page markings that may be used by the filesystem that owns the page 283 * for its own purposes. 284 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 285 */ 286PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 287 __CLEARPAGEFLAG(Private, private, PF_ANY) 288PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 289PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 290 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 291 292/* 293 * Only test-and-set exist for PG_writeback. The unconditional operators are 294 * risky: they bypass page accounting. 295 */ 296TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 297 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 298PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 299 300/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 301PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 302 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 303PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 304 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 305 306#ifdef CONFIG_HIGHMEM 307/* 308 * Must use a macro here due to header dependency issues. page_zone() is not 309 * available at this point. 310 */ 311#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 312#else 313PAGEFLAG_FALSE(HighMem) 314#endif 315 316#ifdef CONFIG_SWAP 317PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 318#else 319PAGEFLAG_FALSE(SwapCache) 320#endif 321 322PAGEFLAG(Unevictable, unevictable, PF_HEAD) 323 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 324 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 325 326#ifdef CONFIG_MMU 327PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 328 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 329 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 330#else 331PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 332 TESTSCFLAG_FALSE(Mlocked) 333#endif 334 335#ifdef CONFIG_ARCH_USES_PG_UNCACHED 336PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 337#else 338PAGEFLAG_FALSE(Uncached) 339#endif 340 341#ifdef CONFIG_MEMORY_FAILURE 342PAGEFLAG(HWPoison, hwpoison, PF_ANY) 343TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 344#define __PG_HWPOISON (1UL << PG_hwpoison) 345#else 346PAGEFLAG_FALSE(HWPoison) 347#define __PG_HWPOISON 0 348#endif 349 350#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 351TESTPAGEFLAG(Young, young, PF_ANY) 352SETPAGEFLAG(Young, young, PF_ANY) 353TESTCLEARFLAG(Young, young, PF_ANY) 354PAGEFLAG(Idle, idle, PF_ANY) 355#endif 356 357/* 358 * On an anonymous page mapped into a user virtual memory area, 359 * page->mapping points to its anon_vma, not to a struct address_space; 360 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 361 * 362 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 363 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 364 * bit; and then page->mapping points, not to an anon_vma, but to a private 365 * structure which KSM associates with that merged page. See ksm.h. 366 * 367 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 368 * page and then page->mapping points a struct address_space. 369 * 370 * Please note that, confusingly, "page_mapping" refers to the inode 371 * address_space which maps the page from disk; whereas "page_mapped" 372 * refers to user virtual address space into which the page is mapped. 373 */ 374#define PAGE_MAPPING_ANON 0x1 375#define PAGE_MAPPING_MOVABLE 0x2 376#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 377#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 378 379static __always_inline int PageMappingFlags(struct page *page) 380{ 381 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 382} 383 384static __always_inline int PageAnon(struct page *page) 385{ 386 page = compound_head(page); 387 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 388} 389 390static __always_inline int __PageMovable(struct page *page) 391{ 392 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 393 PAGE_MAPPING_MOVABLE; 394} 395 396#ifdef CONFIG_KSM 397/* 398 * A KSM page is one of those write-protected "shared pages" or "merged pages" 399 * which KSM maps into multiple mms, wherever identical anonymous page content 400 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 401 * anon_vma, but to that page's node of the stable tree. 402 */ 403static __always_inline int PageKsm(struct page *page) 404{ 405 page = compound_head(page); 406 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 407 PAGE_MAPPING_KSM; 408} 409#else 410TESTPAGEFLAG_FALSE(Ksm) 411#endif 412 413u64 stable_page_flags(struct page *page); 414 415static inline int PageUptodate(struct page *page) 416{ 417 int ret; 418 page = compound_head(page); 419 ret = test_bit(PG_uptodate, &(page)->flags); 420 /* 421 * Must ensure that the data we read out of the page is loaded 422 * _after_ we've loaded page->flags to check for PageUptodate. 423 * We can skip the barrier if the page is not uptodate, because 424 * we wouldn't be reading anything from it. 425 * 426 * See SetPageUptodate() for the other side of the story. 427 */ 428 if (ret) 429 smp_rmb(); 430 431 return ret; 432} 433 434static __always_inline void __SetPageUptodate(struct page *page) 435{ 436 VM_BUG_ON_PAGE(PageTail(page), page); 437 smp_wmb(); 438 __set_bit(PG_uptodate, &page->flags); 439} 440 441static __always_inline void SetPageUptodate(struct page *page) 442{ 443 VM_BUG_ON_PAGE(PageTail(page), page); 444 /* 445 * Memory barrier must be issued before setting the PG_uptodate bit, 446 * so that all previous stores issued in order to bring the page 447 * uptodate are actually visible before PageUptodate becomes true. 448 */ 449 smp_wmb(); 450 set_bit(PG_uptodate, &page->flags); 451} 452 453CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 454 455int test_clear_page_writeback(struct page *page); 456int __test_set_page_writeback(struct page *page, bool keep_write); 457 458#define test_set_page_writeback(page) \ 459 __test_set_page_writeback(page, false) 460#define test_set_page_writeback_keepwrite(page) \ 461 __test_set_page_writeback(page, true) 462 463static inline void set_page_writeback(struct page *page) 464{ 465 test_set_page_writeback(page); 466} 467 468static inline void set_page_writeback_keepwrite(struct page *page) 469{ 470 test_set_page_writeback_keepwrite(page); 471} 472 473__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 474 475static __always_inline void set_compound_head(struct page *page, struct page *head) 476{ 477 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 478} 479 480static __always_inline void clear_compound_head(struct page *page) 481{ 482 WRITE_ONCE(page->compound_head, 0); 483} 484 485#ifdef CONFIG_TRANSPARENT_HUGEPAGE 486static inline void ClearPageCompound(struct page *page) 487{ 488 BUG_ON(!PageHead(page)); 489 ClearPageHead(page); 490} 491#endif 492 493#define PG_head_mask ((1UL << PG_head)) 494 495#ifdef CONFIG_HUGETLB_PAGE 496int PageHuge(struct page *page); 497int PageHeadHuge(struct page *page); 498bool page_huge_active(struct page *page); 499#else 500TESTPAGEFLAG_FALSE(Huge) 501TESTPAGEFLAG_FALSE(HeadHuge) 502 503static inline bool page_huge_active(struct page *page) 504{ 505 return 0; 506} 507#endif 508 509 510#ifdef CONFIG_TRANSPARENT_HUGEPAGE 511/* 512 * PageHuge() only returns true for hugetlbfs pages, but not for 513 * normal or transparent huge pages. 514 * 515 * PageTransHuge() returns true for both transparent huge and 516 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 517 * called only in the core VM paths where hugetlbfs pages can't exist. 518 */ 519static inline int PageTransHuge(struct page *page) 520{ 521 VM_BUG_ON_PAGE(PageTail(page), page); 522 return PageHead(page); 523} 524 525/* 526 * PageTransCompound returns true for both transparent huge pages 527 * and hugetlbfs pages, so it should only be called when it's known 528 * that hugetlbfs pages aren't involved. 529 */ 530static inline int PageTransCompound(struct page *page) 531{ 532 return PageCompound(page); 533} 534 535/* 536 * PageTransCompoundMap is the same as PageTransCompound, but it also 537 * guarantees the primary MMU has the entire compound page mapped 538 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 539 * can also map the entire compound page. This allows the secondary 540 * MMUs to call get_user_pages() only once for each compound page and 541 * to immediately map the entire compound page with a single secondary 542 * MMU fault. If there will be a pmd split later, the secondary MMUs 543 * will get an update through the MMU notifier invalidation through 544 * split_huge_pmd(). 545 * 546 * Unlike PageTransCompound, this is safe to be called only while 547 * split_huge_pmd() cannot run from under us, like if protected by the 548 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 549 * positives. 550 */ 551static inline int PageTransCompoundMap(struct page *page) 552{ 553 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 554} 555 556/* 557 * PageTransTail returns true for both transparent huge pages 558 * and hugetlbfs pages, so it should only be called when it's known 559 * that hugetlbfs pages aren't involved. 560 */ 561static inline int PageTransTail(struct page *page) 562{ 563 return PageTail(page); 564} 565 566/* 567 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 568 * as PMDs. 569 * 570 * This is required for optimization of rmap operations for THP: we can postpone 571 * per small page mapcount accounting (and its overhead from atomic operations) 572 * until the first PMD split. 573 * 574 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 575 * by one. This reference will go away with last compound_mapcount. 576 * 577 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 578 */ 579static inline int PageDoubleMap(struct page *page) 580{ 581 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 582} 583 584static inline void SetPageDoubleMap(struct page *page) 585{ 586 VM_BUG_ON_PAGE(!PageHead(page), page); 587 set_bit(PG_double_map, &page[1].flags); 588} 589 590static inline void ClearPageDoubleMap(struct page *page) 591{ 592 VM_BUG_ON_PAGE(!PageHead(page), page); 593 clear_bit(PG_double_map, &page[1].flags); 594} 595static inline int TestSetPageDoubleMap(struct page *page) 596{ 597 VM_BUG_ON_PAGE(!PageHead(page), page); 598 return test_and_set_bit(PG_double_map, &page[1].flags); 599} 600 601static inline int TestClearPageDoubleMap(struct page *page) 602{ 603 VM_BUG_ON_PAGE(!PageHead(page), page); 604 return test_and_clear_bit(PG_double_map, &page[1].flags); 605} 606 607#else 608TESTPAGEFLAG_FALSE(TransHuge) 609TESTPAGEFLAG_FALSE(TransCompound) 610TESTPAGEFLAG_FALSE(TransCompoundMap) 611TESTPAGEFLAG_FALSE(TransTail) 612PAGEFLAG_FALSE(DoubleMap) 613 TESTSETFLAG_FALSE(DoubleMap) 614 TESTCLEARFLAG_FALSE(DoubleMap) 615#endif 616 617/* 618 * For pages that are never mapped to userspace, page->mapcount may be 619 * used for storing extra information about page type. Any value used 620 * for this purpose must be <= -2, but it's better start not too close 621 * to -2 so that an underflow of the page_mapcount() won't be mistaken 622 * for a special page. 623 */ 624#define PAGE_MAPCOUNT_OPS(uname, lname) \ 625static __always_inline int Page##uname(struct page *page) \ 626{ \ 627 return atomic_read(&page->_mapcount) == \ 628 PAGE_##lname##_MAPCOUNT_VALUE; \ 629} \ 630static __always_inline void __SetPage##uname(struct page *page) \ 631{ \ 632 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \ 633 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \ 634} \ 635static __always_inline void __ClearPage##uname(struct page *page) \ 636{ \ 637 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 638 atomic_set(&page->_mapcount, -1); \ 639} 640 641/* 642 * PageBuddy() indicate that the page is free and in the buddy system 643 * (see mm/page_alloc.c). 644 */ 645#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 646PAGE_MAPCOUNT_OPS(Buddy, BUDDY) 647 648/* 649 * PageBalloon() is set on pages that are on the balloon page list 650 * (see mm/balloon_compaction.c). 651 */ 652#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 653PAGE_MAPCOUNT_OPS(Balloon, BALLOON) 654 655/* 656 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 657 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 658 */ 659#define PAGE_KMEMCG_MAPCOUNT_VALUE (-512) 660PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG) 661 662extern bool is_free_buddy_page(struct page *page); 663 664__PAGEFLAG(Isolated, isolated, PF_ANY); 665 666/* 667 * If network-based swap is enabled, sl*b must keep track of whether pages 668 * were allocated from pfmemalloc reserves. 669 */ 670static inline int PageSlabPfmemalloc(struct page *page) 671{ 672 VM_BUG_ON_PAGE(!PageSlab(page), page); 673 return PageActive(page); 674} 675 676static inline void SetPageSlabPfmemalloc(struct page *page) 677{ 678 VM_BUG_ON_PAGE(!PageSlab(page), page); 679 SetPageActive(page); 680} 681 682static inline void __ClearPageSlabPfmemalloc(struct page *page) 683{ 684 VM_BUG_ON_PAGE(!PageSlab(page), page); 685 __ClearPageActive(page); 686} 687 688static inline void ClearPageSlabPfmemalloc(struct page *page) 689{ 690 VM_BUG_ON_PAGE(!PageSlab(page), page); 691 ClearPageActive(page); 692} 693 694#ifdef CONFIG_MMU 695#define __PG_MLOCKED (1UL << PG_mlocked) 696#else 697#define __PG_MLOCKED 0 698#endif 699 700/* 701 * Flags checked when a page is freed. Pages being freed should not have 702 * these flags set. It they are, there is a problem. 703 */ 704#define PAGE_FLAGS_CHECK_AT_FREE \ 705 (1UL << PG_lru | 1UL << PG_locked | \ 706 1UL << PG_private | 1UL << PG_private_2 | \ 707 1UL << PG_writeback | 1UL << PG_reserved | \ 708 1UL << PG_slab | 1UL << PG_swapcache | 1UL << PG_active | \ 709 1UL << PG_unevictable | __PG_MLOCKED) 710 711/* 712 * Flags checked when a page is prepped for return by the page allocator. 713 * Pages being prepped should not have these flags set. It they are set, 714 * there has been a kernel bug or struct page corruption. 715 * 716 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 717 * alloc-free cycle to prevent from reusing the page. 718 */ 719#define PAGE_FLAGS_CHECK_AT_PREP \ 720 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 721 722#define PAGE_FLAGS_PRIVATE \ 723 (1UL << PG_private | 1UL << PG_private_2) 724/** 725 * page_has_private - Determine if page has private stuff 726 * @page: The page to be checked 727 * 728 * Determine if a page has private stuff, indicating that release routines 729 * should be invoked upon it. 730 */ 731static inline int page_has_private(struct page *page) 732{ 733 return !!(page->flags & PAGE_FLAGS_PRIVATE); 734} 735 736#undef PF_ANY 737#undef PF_HEAD 738#undef PF_NO_TAIL 739#undef PF_NO_COMPOUND 740#endif /* !__GENERATING_BOUNDS_H */ 741 742#endif /* PAGE_FLAGS_H */