at v4.8 138 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54#include <uapi/linux/pkt_cls.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59/* 802.11 specific */ 60struct wireless_dev; 61/* 802.15.4 specific */ 62struct wpan_dev; 63struct mpls_dev; 64/* UDP Tunnel offloads */ 65struct udp_tunnel_info; 66struct bpf_prog; 67 68void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71/* Backlog congestion levels */ 72#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73#define NET_RX_DROP 1 /* packet dropped */ 74 75/* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92/* qdisc ->enqueue() return codes. */ 93#define NET_XMIT_SUCCESS 0x00 94#define NET_XMIT_DROP 0x01 /* skb dropped */ 95#define NET_XMIT_CN 0x02 /* congestion notification */ 96#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104/* Driver transmit return codes */ 105#define NETDEV_TX_MASK 0xf0 106 107enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111}; 112typedef enum netdev_tx netdev_tx_t; 113 114/* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118static inline bool dev_xmit_complete(int rc) 119{ 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130} 131 132/* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137#if defined(CONFIG_HYPERV_NET) 138# define LL_MAX_HEADER 128 139#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140# if defined(CONFIG_MAC80211_MESH) 141# define LL_MAX_HEADER 128 142# else 143# define LL_MAX_HEADER 96 144# endif 145#else 146# define LL_MAX_HEADER 32 147#endif 148 149#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151#define MAX_HEADER LL_MAX_HEADER 152#else 153#define MAX_HEADER (LL_MAX_HEADER + 48) 154#endif 155 156/* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185}; 186 187 188#include <linux/cache.h> 189#include <linux/skbuff.h> 190 191#ifdef CONFIG_RPS 192#include <linux/static_key.h> 193extern struct static_key rps_needed; 194#endif 195 196struct neighbour; 197struct neigh_parms; 198struct sk_buff; 199 200struct netdev_hw_addr { 201 struct list_head list; 202 unsigned char addr[MAX_ADDR_LEN]; 203 unsigned char type; 204#define NETDEV_HW_ADDR_T_LAN 1 205#define NETDEV_HW_ADDR_T_SAN 2 206#define NETDEV_HW_ADDR_T_SLAVE 3 207#define NETDEV_HW_ADDR_T_UNICAST 4 208#define NETDEV_HW_ADDR_T_MULTICAST 5 209 bool global_use; 210 int sync_cnt; 211 int refcount; 212 int synced; 213 struct rcu_head rcu_head; 214}; 215 216struct netdev_hw_addr_list { 217 struct list_head list; 218 int count; 219}; 220 221#define netdev_hw_addr_list_count(l) ((l)->count) 222#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 223#define netdev_hw_addr_list_for_each(ha, l) \ 224 list_for_each_entry(ha, &(l)->list, list) 225 226#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 227#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 228#define netdev_for_each_uc_addr(ha, dev) \ 229 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 230 231#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 232#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 233#define netdev_for_each_mc_addr(ha, dev) \ 234 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 235 236struct hh_cache { 237 u16 hh_len; 238 u16 __pad; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242#define HH_DATA_MOD 16 243#define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245#define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248}; 249 250/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258#define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273}; 274 275/* These flag bits are private to the generic network queueing 276 * layer; they may not be explicitly referenced by any other 277 * code. 278 */ 279 280enum netdev_state_t { 281 __LINK_STATE_START, 282 __LINK_STATE_PRESENT, 283 __LINK_STATE_NOCARRIER, 284 __LINK_STATE_LINKWATCH_PENDING, 285 __LINK_STATE_DORMANT, 286}; 287 288 289/* 290 * This structure holds boot-time configured netdevice settings. They 291 * are then used in the device probing. 292 */ 293struct netdev_boot_setup { 294 char name[IFNAMSIZ]; 295 struct ifmap map; 296}; 297#define NETDEV_BOOT_SETUP_MAX 8 298 299int __init netdev_boot_setup(char *str); 300 301/* 302 * Structure for NAPI scheduling similar to tasklet but with weighting 303 */ 304struct napi_struct { 305 /* The poll_list must only be managed by the entity which 306 * changes the state of the NAPI_STATE_SCHED bit. This means 307 * whoever atomically sets that bit can add this napi_struct 308 * to the per-CPU poll_list, and whoever clears that bit 309 * can remove from the list right before clearing the bit. 310 */ 311 struct list_head poll_list; 312 313 unsigned long state; 314 int weight; 315 unsigned int gro_count; 316 int (*poll)(struct napi_struct *, int); 317#ifdef CONFIG_NETPOLL 318 spinlock_t poll_lock; 319 int poll_owner; 320#endif 321 struct net_device *dev; 322 struct sk_buff *gro_list; 323 struct sk_buff *skb; 324 struct hrtimer timer; 325 struct list_head dev_list; 326 struct hlist_node napi_hash_node; 327 unsigned int napi_id; 328}; 329 330enum { 331 NAPI_STATE_SCHED, /* Poll is scheduled */ 332 NAPI_STATE_DISABLE, /* Disable pending */ 333 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 334 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 335 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 336}; 337 338enum gro_result { 339 GRO_MERGED, 340 GRO_MERGED_FREE, 341 GRO_HELD, 342 GRO_NORMAL, 343 GRO_DROP, 344}; 345typedef enum gro_result gro_result_t; 346 347/* 348 * enum rx_handler_result - Possible return values for rx_handlers. 349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 350 * further. 351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 352 * case skb->dev was changed by rx_handler. 353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 354 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 355 * 356 * rx_handlers are functions called from inside __netif_receive_skb(), to do 357 * special processing of the skb, prior to delivery to protocol handlers. 358 * 359 * Currently, a net_device can only have a single rx_handler registered. Trying 360 * to register a second rx_handler will return -EBUSY. 361 * 362 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 363 * To unregister a rx_handler on a net_device, use 364 * netdev_rx_handler_unregister(). 365 * 366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 367 * do with the skb. 368 * 369 * If the rx_handler consumed the skb in some way, it should return 370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 371 * the skb to be delivered in some other way. 372 * 373 * If the rx_handler changed skb->dev, to divert the skb to another 374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 375 * new device will be called if it exists. 376 * 377 * If the rx_handler decides the skb should be ignored, it should return 378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 379 * are registered on exact device (ptype->dev == skb->dev). 380 * 381 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 382 * delivered, it should return RX_HANDLER_PASS. 383 * 384 * A device without a registered rx_handler will behave as if rx_handler 385 * returned RX_HANDLER_PASS. 386 */ 387 388enum rx_handler_result { 389 RX_HANDLER_CONSUMED, 390 RX_HANDLER_ANOTHER, 391 RX_HANDLER_EXACT, 392 RX_HANDLER_PASS, 393}; 394typedef enum rx_handler_result rx_handler_result_t; 395typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 396 397void __napi_schedule(struct napi_struct *n); 398void __napi_schedule_irqoff(struct napi_struct *n); 399 400static inline bool napi_disable_pending(struct napi_struct *n) 401{ 402 return test_bit(NAPI_STATE_DISABLE, &n->state); 403} 404 405/** 406 * napi_schedule_prep - check if NAPI can be scheduled 407 * @n: NAPI context 408 * 409 * Test if NAPI routine is already running, and if not mark 410 * it as running. This is used as a condition variable to 411 * insure only one NAPI poll instance runs. We also make 412 * sure there is no pending NAPI disable. 413 */ 414static inline bool napi_schedule_prep(struct napi_struct *n) 415{ 416 return !napi_disable_pending(n) && 417 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 418} 419 420/** 421 * napi_schedule - schedule NAPI poll 422 * @n: NAPI context 423 * 424 * Schedule NAPI poll routine to be called if it is not already 425 * running. 426 */ 427static inline void napi_schedule(struct napi_struct *n) 428{ 429 if (napi_schedule_prep(n)) 430 __napi_schedule(n); 431} 432 433/** 434 * napi_schedule_irqoff - schedule NAPI poll 435 * @n: NAPI context 436 * 437 * Variant of napi_schedule(), assuming hard irqs are masked. 438 */ 439static inline void napi_schedule_irqoff(struct napi_struct *n) 440{ 441 if (napi_schedule_prep(n)) 442 __napi_schedule_irqoff(n); 443} 444 445/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 446static inline bool napi_reschedule(struct napi_struct *napi) 447{ 448 if (napi_schedule_prep(napi)) { 449 __napi_schedule(napi); 450 return true; 451 } 452 return false; 453} 454 455void __napi_complete(struct napi_struct *n); 456void napi_complete_done(struct napi_struct *n, int work_done); 457/** 458 * napi_complete - NAPI processing complete 459 * @n: NAPI context 460 * 461 * Mark NAPI processing as complete. 462 * Consider using napi_complete_done() instead. 463 */ 464static inline void napi_complete(struct napi_struct *n) 465{ 466 return napi_complete_done(n, 0); 467} 468 469/** 470 * napi_hash_add - add a NAPI to global hashtable 471 * @napi: NAPI context 472 * 473 * Generate a new napi_id and store a @napi under it in napi_hash. 474 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL). 475 * Note: This is normally automatically done from netif_napi_add(), 476 * so might disappear in a future Linux version. 477 */ 478void napi_hash_add(struct napi_struct *napi); 479 480/** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: NAPI context 483 * 484 * Warning: caller must observe RCU grace period 485 * before freeing memory containing @napi, if 486 * this function returns true. 487 * Note: core networking stack automatically calls it 488 * from netif_napi_del(). 489 * Drivers might want to call this helper to combine all 490 * the needed RCU grace periods into a single one. 491 */ 492bool napi_hash_del(struct napi_struct *napi); 493 494/** 495 * napi_disable - prevent NAPI from scheduling 496 * @n: NAPI context 497 * 498 * Stop NAPI from being scheduled on this context. 499 * Waits till any outstanding processing completes. 500 */ 501void napi_disable(struct napi_struct *n); 502 503/** 504 * napi_enable - enable NAPI scheduling 505 * @n: NAPI context 506 * 507 * Resume NAPI from being scheduled on this context. 508 * Must be paired with napi_disable. 509 */ 510static inline void napi_enable(struct napi_struct *n) 511{ 512 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 513 smp_mb__before_atomic(); 514 clear_bit(NAPI_STATE_SCHED, &n->state); 515 clear_bit(NAPI_STATE_NPSVC, &n->state); 516} 517 518/** 519 * napi_synchronize - wait until NAPI is not running 520 * @n: NAPI context 521 * 522 * Wait until NAPI is done being scheduled on this context. 523 * Waits till any outstanding processing completes but 524 * does not disable future activations. 525 */ 526static inline void napi_synchronize(const struct napi_struct *n) 527{ 528 if (IS_ENABLED(CONFIG_SMP)) 529 while (test_bit(NAPI_STATE_SCHED, &n->state)) 530 msleep(1); 531 else 532 barrier(); 533} 534 535enum netdev_queue_state_t { 536 __QUEUE_STATE_DRV_XOFF, 537 __QUEUE_STATE_STACK_XOFF, 538 __QUEUE_STATE_FROZEN, 539}; 540 541#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 542#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 543#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 544 545#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 546#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 547 QUEUE_STATE_FROZEN) 548#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 549 QUEUE_STATE_FROZEN) 550 551/* 552 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 553 * netif_tx_* functions below are used to manipulate this flag. The 554 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 555 * queue independently. The netif_xmit_*stopped functions below are called 556 * to check if the queue has been stopped by the driver or stack (either 557 * of the XOFF bits are set in the state). Drivers should not need to call 558 * netif_xmit*stopped functions, they should only be using netif_tx_*. 559 */ 560 561struct netdev_queue { 562/* 563 * read-mostly part 564 */ 565 struct net_device *dev; 566 struct Qdisc __rcu *qdisc; 567 struct Qdisc *qdisc_sleeping; 568#ifdef CONFIG_SYSFS 569 struct kobject kobj; 570#endif 571#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 572 int numa_node; 573#endif 574 unsigned long tx_maxrate; 575 /* 576 * Number of TX timeouts for this queue 577 * (/sys/class/net/DEV/Q/trans_timeout) 578 */ 579 unsigned long trans_timeout; 580/* 581 * write-mostly part 582 */ 583 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 584 int xmit_lock_owner; 585 /* 586 * Time (in jiffies) of last Tx 587 */ 588 unsigned long trans_start; 589 590 unsigned long state; 591 592#ifdef CONFIG_BQL 593 struct dql dql; 594#endif 595} ____cacheline_aligned_in_smp; 596 597static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 598{ 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 return q->numa_node; 601#else 602 return NUMA_NO_NODE; 603#endif 604} 605 606static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 607{ 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 609 q->numa_node = node; 610#endif 611} 612 613#ifdef CONFIG_RPS 614/* 615 * This structure holds an RPS map which can be of variable length. The 616 * map is an array of CPUs. 617 */ 618struct rps_map { 619 unsigned int len; 620 struct rcu_head rcu; 621 u16 cpus[0]; 622}; 623#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 624 625/* 626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 627 * tail pointer for that CPU's input queue at the time of last enqueue, and 628 * a hardware filter index. 629 */ 630struct rps_dev_flow { 631 u16 cpu; 632 u16 filter; 633 unsigned int last_qtail; 634}; 635#define RPS_NO_FILTER 0xffff 636 637/* 638 * The rps_dev_flow_table structure contains a table of flow mappings. 639 */ 640struct rps_dev_flow_table { 641 unsigned int mask; 642 struct rcu_head rcu; 643 struct rps_dev_flow flows[0]; 644}; 645#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 646 ((_num) * sizeof(struct rps_dev_flow))) 647 648/* 649 * The rps_sock_flow_table contains mappings of flows to the last CPU 650 * on which they were processed by the application (set in recvmsg). 651 * Each entry is a 32bit value. Upper part is the high-order bits 652 * of flow hash, lower part is CPU number. 653 * rps_cpu_mask is used to partition the space, depending on number of 654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 656 * meaning we use 32-6=26 bits for the hash. 657 */ 658struct rps_sock_flow_table { 659 u32 mask; 660 661 u32 ents[0] ____cacheline_aligned_in_smp; 662}; 663#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 664 665#define RPS_NO_CPU 0xffff 666 667extern u32 rps_cpu_mask; 668extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 669 670static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 671 u32 hash) 672{ 673 if (table && hash) { 674 unsigned int index = hash & table->mask; 675 u32 val = hash & ~rps_cpu_mask; 676 677 /* We only give a hint, preemption can change CPU under us */ 678 val |= raw_smp_processor_id(); 679 680 if (table->ents[index] != val) 681 table->ents[index] = val; 682 } 683} 684 685#ifdef CONFIG_RFS_ACCEL 686bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 687 u16 filter_id); 688#endif 689#endif /* CONFIG_RPS */ 690 691/* This structure contains an instance of an RX queue. */ 692struct netdev_rx_queue { 693#ifdef CONFIG_RPS 694 struct rps_map __rcu *rps_map; 695 struct rps_dev_flow_table __rcu *rps_flow_table; 696#endif 697 struct kobject kobj; 698 struct net_device *dev; 699} ____cacheline_aligned_in_smp; 700 701/* 702 * RX queue sysfs structures and functions. 703 */ 704struct rx_queue_attribute { 705 struct attribute attr; 706 ssize_t (*show)(struct netdev_rx_queue *queue, 707 struct rx_queue_attribute *attr, char *buf); 708 ssize_t (*store)(struct netdev_rx_queue *queue, 709 struct rx_queue_attribute *attr, const char *buf, size_t len); 710}; 711 712#ifdef CONFIG_XPS 713/* 714 * This structure holds an XPS map which can be of variable length. The 715 * map is an array of queues. 716 */ 717struct xps_map { 718 unsigned int len; 719 unsigned int alloc_len; 720 struct rcu_head rcu; 721 u16 queues[0]; 722}; 723#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 724#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 725 - sizeof(struct xps_map)) / sizeof(u16)) 726 727/* 728 * This structure holds all XPS maps for device. Maps are indexed by CPU. 729 */ 730struct xps_dev_maps { 731 struct rcu_head rcu; 732 struct xps_map __rcu *cpu_map[0]; 733}; 734#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 735 (nr_cpu_ids * sizeof(struct xps_map *))) 736#endif /* CONFIG_XPS */ 737 738#define TC_MAX_QUEUE 16 739#define TC_BITMASK 15 740/* HW offloaded queuing disciplines txq count and offset maps */ 741struct netdev_tc_txq { 742 u16 count; 743 u16 offset; 744}; 745 746#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 747/* 748 * This structure is to hold information about the device 749 * configured to run FCoE protocol stack. 750 */ 751struct netdev_fcoe_hbainfo { 752 char manufacturer[64]; 753 char serial_number[64]; 754 char hardware_version[64]; 755 char driver_version[64]; 756 char optionrom_version[64]; 757 char firmware_version[64]; 758 char model[256]; 759 char model_description[256]; 760}; 761#endif 762 763#define MAX_PHYS_ITEM_ID_LEN 32 764 765/* This structure holds a unique identifier to identify some 766 * physical item (port for example) used by a netdevice. 767 */ 768struct netdev_phys_item_id { 769 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 770 unsigned char id_len; 771}; 772 773static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 774 struct netdev_phys_item_id *b) 775{ 776 return a->id_len == b->id_len && 777 memcmp(a->id, b->id, a->id_len) == 0; 778} 779 780typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 781 struct sk_buff *skb); 782 783/* These structures hold the attributes of qdisc and classifiers 784 * that are being passed to the netdevice through the setup_tc op. 785 */ 786enum { 787 TC_SETUP_MQPRIO, 788 TC_SETUP_CLSU32, 789 TC_SETUP_CLSFLOWER, 790 TC_SETUP_MATCHALL, 791}; 792 793struct tc_cls_u32_offload; 794 795struct tc_to_netdev { 796 unsigned int type; 797 union { 798 u8 tc; 799 struct tc_cls_u32_offload *cls_u32; 800 struct tc_cls_flower_offload *cls_flower; 801 struct tc_cls_matchall_offload *cls_mall; 802 }; 803}; 804 805/* These structures hold the attributes of xdp state that are being passed 806 * to the netdevice through the xdp op. 807 */ 808enum xdp_netdev_command { 809 /* Set or clear a bpf program used in the earliest stages of packet 810 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 811 * is responsible for calling bpf_prog_put on any old progs that are 812 * stored. In case of error, the callee need not release the new prog 813 * reference, but on success it takes ownership and must bpf_prog_put 814 * when it is no longer used. 815 */ 816 XDP_SETUP_PROG, 817 /* Check if a bpf program is set on the device. The callee should 818 * return true if a program is currently attached and running. 819 */ 820 XDP_QUERY_PROG, 821}; 822 823struct netdev_xdp { 824 enum xdp_netdev_command command; 825 union { 826 /* XDP_SETUP_PROG */ 827 struct bpf_prog *prog; 828 /* XDP_QUERY_PROG */ 829 bool prog_attached; 830 }; 831}; 832 833/* 834 * This structure defines the management hooks for network devices. 835 * The following hooks can be defined; unless noted otherwise, they are 836 * optional and can be filled with a null pointer. 837 * 838 * int (*ndo_init)(struct net_device *dev); 839 * This function is called once when a network device is registered. 840 * The network device can use this for any late stage initialization 841 * or semantic validation. It can fail with an error code which will 842 * be propagated back to register_netdev. 843 * 844 * void (*ndo_uninit)(struct net_device *dev); 845 * This function is called when device is unregistered or when registration 846 * fails. It is not called if init fails. 847 * 848 * int (*ndo_open)(struct net_device *dev); 849 * This function is called when a network device transitions to the up 850 * state. 851 * 852 * int (*ndo_stop)(struct net_device *dev); 853 * This function is called when a network device transitions to the down 854 * state. 855 * 856 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 857 * struct net_device *dev); 858 * Called when a packet needs to be transmitted. 859 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 860 * the queue before that can happen; it's for obsolete devices and weird 861 * corner cases, but the stack really does a non-trivial amount 862 * of useless work if you return NETDEV_TX_BUSY. 863 * Required; cannot be NULL. 864 * 865 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 866 * netdev_features_t features); 867 * Adjusts the requested feature flags according to device-specific 868 * constraints, and returns the resulting flags. Must not modify 869 * the device state. 870 * 871 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 872 * void *accel_priv, select_queue_fallback_t fallback); 873 * Called to decide which queue to use when device supports multiple 874 * transmit queues. 875 * 876 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 877 * This function is called to allow device receiver to make 878 * changes to configuration when multicast or promiscuous is enabled. 879 * 880 * void (*ndo_set_rx_mode)(struct net_device *dev); 881 * This function is called device changes address list filtering. 882 * If driver handles unicast address filtering, it should set 883 * IFF_UNICAST_FLT in its priv_flags. 884 * 885 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 886 * This function is called when the Media Access Control address 887 * needs to be changed. If this interface is not defined, the 888 * MAC address can not be changed. 889 * 890 * int (*ndo_validate_addr)(struct net_device *dev); 891 * Test if Media Access Control address is valid for the device. 892 * 893 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 894 * Called when a user requests an ioctl which can't be handled by 895 * the generic interface code. If not defined ioctls return 896 * not supported error code. 897 * 898 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 899 * Used to set network devices bus interface parameters. This interface 900 * is retained for legacy reasons; new devices should use the bus 901 * interface (PCI) for low level management. 902 * 903 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 904 * Called when a user wants to change the Maximum Transfer Unit 905 * of a device. If not defined, any request to change MTU will 906 * will return an error. 907 * 908 * void (*ndo_tx_timeout)(struct net_device *dev); 909 * Callback used when the transmitter has not made any progress 910 * for dev->watchdog ticks. 911 * 912 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 913 * struct rtnl_link_stats64 *storage); 914 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 915 * Called when a user wants to get the network device usage 916 * statistics. Drivers must do one of the following: 917 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 918 * rtnl_link_stats64 structure passed by the caller. 919 * 2. Define @ndo_get_stats to update a net_device_stats structure 920 * (which should normally be dev->stats) and return a pointer to 921 * it. The structure may be changed asynchronously only if each 922 * field is written atomically. 923 * 3. Update dev->stats asynchronously and atomically, and define 924 * neither operation. 925 * 926 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 927 * If device supports VLAN filtering this function is called when a 928 * VLAN id is registered. 929 * 930 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 931 * If device supports VLAN filtering this function is called when a 932 * VLAN id is unregistered. 933 * 934 * void (*ndo_poll_controller)(struct net_device *dev); 935 * 936 * SR-IOV management functions. 937 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 938 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 939 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 940 * int max_tx_rate); 941 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 942 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 943 * int (*ndo_get_vf_config)(struct net_device *dev, 944 * int vf, struct ifla_vf_info *ivf); 945 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 946 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 947 * struct nlattr *port[]); 948 * 949 * Enable or disable the VF ability to query its RSS Redirection Table and 950 * Hash Key. This is needed since on some devices VF share this information 951 * with PF and querying it may introduce a theoretical security risk. 952 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 953 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 954 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 955 * Called to setup 'tc' number of traffic classes in the net device. This 956 * is always called from the stack with the rtnl lock held and netif tx 957 * queues stopped. This allows the netdevice to perform queue management 958 * safely. 959 * 960 * Fiber Channel over Ethernet (FCoE) offload functions. 961 * int (*ndo_fcoe_enable)(struct net_device *dev); 962 * Called when the FCoE protocol stack wants to start using LLD for FCoE 963 * so the underlying device can perform whatever needed configuration or 964 * initialization to support acceleration of FCoE traffic. 965 * 966 * int (*ndo_fcoe_disable)(struct net_device *dev); 967 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 968 * so the underlying device can perform whatever needed clean-ups to 969 * stop supporting acceleration of FCoE traffic. 970 * 971 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 972 * struct scatterlist *sgl, unsigned int sgc); 973 * Called when the FCoE Initiator wants to initialize an I/O that 974 * is a possible candidate for Direct Data Placement (DDP). The LLD can 975 * perform necessary setup and returns 1 to indicate the device is set up 976 * successfully to perform DDP on this I/O, otherwise this returns 0. 977 * 978 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 979 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 980 * indicated by the FC exchange id 'xid', so the underlying device can 981 * clean up and reuse resources for later DDP requests. 982 * 983 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 984 * struct scatterlist *sgl, unsigned int sgc); 985 * Called when the FCoE Target wants to initialize an I/O that 986 * is a possible candidate for Direct Data Placement (DDP). The LLD can 987 * perform necessary setup and returns 1 to indicate the device is set up 988 * successfully to perform DDP on this I/O, otherwise this returns 0. 989 * 990 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 991 * struct netdev_fcoe_hbainfo *hbainfo); 992 * Called when the FCoE Protocol stack wants information on the underlying 993 * device. This information is utilized by the FCoE protocol stack to 994 * register attributes with Fiber Channel management service as per the 995 * FC-GS Fabric Device Management Information(FDMI) specification. 996 * 997 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 998 * Called when the underlying device wants to override default World Wide 999 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1000 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1001 * protocol stack to use. 1002 * 1003 * RFS acceleration. 1004 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1005 * u16 rxq_index, u32 flow_id); 1006 * Set hardware filter for RFS. rxq_index is the target queue index; 1007 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1008 * Return the filter ID on success, or a negative error code. 1009 * 1010 * Slave management functions (for bridge, bonding, etc). 1011 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1012 * Called to make another netdev an underling. 1013 * 1014 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1015 * Called to release previously enslaved netdev. 1016 * 1017 * Feature/offload setting functions. 1018 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1019 * Called to update device configuration to new features. Passed 1020 * feature set might be less than what was returned by ndo_fix_features()). 1021 * Must return >0 or -errno if it changed dev->features itself. 1022 * 1023 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1024 * struct net_device *dev, 1025 * const unsigned char *addr, u16 vid, u16 flags) 1026 * Adds an FDB entry to dev for addr. 1027 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1028 * struct net_device *dev, 1029 * const unsigned char *addr, u16 vid) 1030 * Deletes the FDB entry from dev coresponding to addr. 1031 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1032 * struct net_device *dev, struct net_device *filter_dev, 1033 * int idx) 1034 * Used to add FDB entries to dump requests. Implementers should add 1035 * entries to skb and update idx with the number of entries. 1036 * 1037 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1038 * u16 flags) 1039 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1040 * struct net_device *dev, u32 filter_mask, 1041 * int nlflags) 1042 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1043 * u16 flags); 1044 * 1045 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1046 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1047 * which do not represent real hardware may define this to allow their 1048 * userspace components to manage their virtual carrier state. Devices 1049 * that determine carrier state from physical hardware properties (eg 1050 * network cables) or protocol-dependent mechanisms (eg 1051 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1052 * 1053 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1054 * struct netdev_phys_item_id *ppid); 1055 * Called to get ID of physical port of this device. If driver does 1056 * not implement this, it is assumed that the hw is not able to have 1057 * multiple net devices on single physical port. 1058 * 1059 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1060 * struct udp_tunnel_info *ti); 1061 * Called by UDP tunnel to notify a driver about the UDP port and socket 1062 * address family that a UDP tunnel is listnening to. It is called only 1063 * when a new port starts listening. The operation is protected by the 1064 * RTNL. 1065 * 1066 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1067 * struct udp_tunnel_info *ti); 1068 * Called by UDP tunnel to notify the driver about a UDP port and socket 1069 * address family that the UDP tunnel is not listening to anymore. The 1070 * operation is protected by the RTNL. 1071 * 1072 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1073 * struct net_device *dev) 1074 * Called by upper layer devices to accelerate switching or other 1075 * station functionality into hardware. 'pdev is the lowerdev 1076 * to use for the offload and 'dev' is the net device that will 1077 * back the offload. Returns a pointer to the private structure 1078 * the upper layer will maintain. 1079 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1080 * Called by upper layer device to delete the station created 1081 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1082 * the station and priv is the structure returned by the add 1083 * operation. 1084 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1085 * struct net_device *dev, 1086 * void *priv); 1087 * Callback to use for xmit over the accelerated station. This 1088 * is used in place of ndo_start_xmit on accelerated net 1089 * devices. 1090 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1091 * struct net_device *dev 1092 * netdev_features_t features); 1093 * Called by core transmit path to determine if device is capable of 1094 * performing offload operations on a given packet. This is to give 1095 * the device an opportunity to implement any restrictions that cannot 1096 * be otherwise expressed by feature flags. The check is called with 1097 * the set of features that the stack has calculated and it returns 1098 * those the driver believes to be appropriate. 1099 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1100 * int queue_index, u32 maxrate); 1101 * Called when a user wants to set a max-rate limitation of specific 1102 * TX queue. 1103 * int (*ndo_get_iflink)(const struct net_device *dev); 1104 * Called to get the iflink value of this device. 1105 * void (*ndo_change_proto_down)(struct net_device *dev, 1106 * bool proto_down); 1107 * This function is used to pass protocol port error state information 1108 * to the switch driver. The switch driver can react to the proto_down 1109 * by doing a phys down on the associated switch port. 1110 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1111 * This function is used to get egress tunnel information for given skb. 1112 * This is useful for retrieving outer tunnel header parameters while 1113 * sampling packet. 1114 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1115 * This function is used to specify the headroom that the skb must 1116 * consider when allocation skb during packet reception. Setting 1117 * appropriate rx headroom value allows avoiding skb head copy on 1118 * forward. Setting a negative value resets the rx headroom to the 1119 * default value. 1120 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1121 * This function is used to set or query state related to XDP on the 1122 * netdevice. See definition of enum xdp_netdev_command for details. 1123 * 1124 */ 1125struct net_device_ops { 1126 int (*ndo_init)(struct net_device *dev); 1127 void (*ndo_uninit)(struct net_device *dev); 1128 int (*ndo_open)(struct net_device *dev); 1129 int (*ndo_stop)(struct net_device *dev); 1130 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1131 struct net_device *dev); 1132 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1133 struct net_device *dev, 1134 netdev_features_t features); 1135 u16 (*ndo_select_queue)(struct net_device *dev, 1136 struct sk_buff *skb, 1137 void *accel_priv, 1138 select_queue_fallback_t fallback); 1139 void (*ndo_change_rx_flags)(struct net_device *dev, 1140 int flags); 1141 void (*ndo_set_rx_mode)(struct net_device *dev); 1142 int (*ndo_set_mac_address)(struct net_device *dev, 1143 void *addr); 1144 int (*ndo_validate_addr)(struct net_device *dev); 1145 int (*ndo_do_ioctl)(struct net_device *dev, 1146 struct ifreq *ifr, int cmd); 1147 int (*ndo_set_config)(struct net_device *dev, 1148 struct ifmap *map); 1149 int (*ndo_change_mtu)(struct net_device *dev, 1150 int new_mtu); 1151 int (*ndo_neigh_setup)(struct net_device *dev, 1152 struct neigh_parms *); 1153 void (*ndo_tx_timeout) (struct net_device *dev); 1154 1155 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1156 struct rtnl_link_stats64 *storage); 1157 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1158 1159 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1160 __be16 proto, u16 vid); 1161 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1162 __be16 proto, u16 vid); 1163#ifdef CONFIG_NET_POLL_CONTROLLER 1164 void (*ndo_poll_controller)(struct net_device *dev); 1165 int (*ndo_netpoll_setup)(struct net_device *dev, 1166 struct netpoll_info *info); 1167 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1168#endif 1169#ifdef CONFIG_NET_RX_BUSY_POLL 1170 int (*ndo_busy_poll)(struct napi_struct *dev); 1171#endif 1172 int (*ndo_set_vf_mac)(struct net_device *dev, 1173 int queue, u8 *mac); 1174 int (*ndo_set_vf_vlan)(struct net_device *dev, 1175 int queue, u16 vlan, u8 qos); 1176 int (*ndo_set_vf_rate)(struct net_device *dev, 1177 int vf, int min_tx_rate, 1178 int max_tx_rate); 1179 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1180 int vf, bool setting); 1181 int (*ndo_set_vf_trust)(struct net_device *dev, 1182 int vf, bool setting); 1183 int (*ndo_get_vf_config)(struct net_device *dev, 1184 int vf, 1185 struct ifla_vf_info *ivf); 1186 int (*ndo_set_vf_link_state)(struct net_device *dev, 1187 int vf, int link_state); 1188 int (*ndo_get_vf_stats)(struct net_device *dev, 1189 int vf, 1190 struct ifla_vf_stats 1191 *vf_stats); 1192 int (*ndo_set_vf_port)(struct net_device *dev, 1193 int vf, 1194 struct nlattr *port[]); 1195 int (*ndo_get_vf_port)(struct net_device *dev, 1196 int vf, struct sk_buff *skb); 1197 int (*ndo_set_vf_guid)(struct net_device *dev, 1198 int vf, u64 guid, 1199 int guid_type); 1200 int (*ndo_set_vf_rss_query_en)( 1201 struct net_device *dev, 1202 int vf, bool setting); 1203 int (*ndo_setup_tc)(struct net_device *dev, 1204 u32 handle, 1205 __be16 protocol, 1206 struct tc_to_netdev *tc); 1207#if IS_ENABLED(CONFIG_FCOE) 1208 int (*ndo_fcoe_enable)(struct net_device *dev); 1209 int (*ndo_fcoe_disable)(struct net_device *dev); 1210 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1211 u16 xid, 1212 struct scatterlist *sgl, 1213 unsigned int sgc); 1214 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1215 u16 xid); 1216 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1217 u16 xid, 1218 struct scatterlist *sgl, 1219 unsigned int sgc); 1220 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1221 struct netdev_fcoe_hbainfo *hbainfo); 1222#endif 1223 1224#if IS_ENABLED(CONFIG_LIBFCOE) 1225#define NETDEV_FCOE_WWNN 0 1226#define NETDEV_FCOE_WWPN 1 1227 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1228 u64 *wwn, int type); 1229#endif 1230 1231#ifdef CONFIG_RFS_ACCEL 1232 int (*ndo_rx_flow_steer)(struct net_device *dev, 1233 const struct sk_buff *skb, 1234 u16 rxq_index, 1235 u32 flow_id); 1236#endif 1237 int (*ndo_add_slave)(struct net_device *dev, 1238 struct net_device *slave_dev); 1239 int (*ndo_del_slave)(struct net_device *dev, 1240 struct net_device *slave_dev); 1241 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1242 netdev_features_t features); 1243 int (*ndo_set_features)(struct net_device *dev, 1244 netdev_features_t features); 1245 int (*ndo_neigh_construct)(struct net_device *dev, 1246 struct neighbour *n); 1247 void (*ndo_neigh_destroy)(struct net_device *dev, 1248 struct neighbour *n); 1249 1250 int (*ndo_fdb_add)(struct ndmsg *ndm, 1251 struct nlattr *tb[], 1252 struct net_device *dev, 1253 const unsigned char *addr, 1254 u16 vid, 1255 u16 flags); 1256 int (*ndo_fdb_del)(struct ndmsg *ndm, 1257 struct nlattr *tb[], 1258 struct net_device *dev, 1259 const unsigned char *addr, 1260 u16 vid); 1261 int (*ndo_fdb_dump)(struct sk_buff *skb, 1262 struct netlink_callback *cb, 1263 struct net_device *dev, 1264 struct net_device *filter_dev, 1265 int idx); 1266 1267 int (*ndo_bridge_setlink)(struct net_device *dev, 1268 struct nlmsghdr *nlh, 1269 u16 flags); 1270 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1271 u32 pid, u32 seq, 1272 struct net_device *dev, 1273 u32 filter_mask, 1274 int nlflags); 1275 int (*ndo_bridge_dellink)(struct net_device *dev, 1276 struct nlmsghdr *nlh, 1277 u16 flags); 1278 int (*ndo_change_carrier)(struct net_device *dev, 1279 bool new_carrier); 1280 int (*ndo_get_phys_port_id)(struct net_device *dev, 1281 struct netdev_phys_item_id *ppid); 1282 int (*ndo_get_phys_port_name)(struct net_device *dev, 1283 char *name, size_t len); 1284 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1285 struct udp_tunnel_info *ti); 1286 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1287 struct udp_tunnel_info *ti); 1288 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1289 struct net_device *dev); 1290 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1291 void *priv); 1292 1293 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1294 struct net_device *dev, 1295 void *priv); 1296 int (*ndo_get_lock_subclass)(struct net_device *dev); 1297 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1298 int queue_index, 1299 u32 maxrate); 1300 int (*ndo_get_iflink)(const struct net_device *dev); 1301 int (*ndo_change_proto_down)(struct net_device *dev, 1302 bool proto_down); 1303 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1304 struct sk_buff *skb); 1305 void (*ndo_set_rx_headroom)(struct net_device *dev, 1306 int needed_headroom); 1307 int (*ndo_xdp)(struct net_device *dev, 1308 struct netdev_xdp *xdp); 1309}; 1310 1311/** 1312 * enum net_device_priv_flags - &struct net_device priv_flags 1313 * 1314 * These are the &struct net_device, they are only set internally 1315 * by drivers and used in the kernel. These flags are invisible to 1316 * userspace; this means that the order of these flags can change 1317 * during any kernel release. 1318 * 1319 * You should have a pretty good reason to be extending these flags. 1320 * 1321 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1322 * @IFF_EBRIDGE: Ethernet bridging device 1323 * @IFF_BONDING: bonding master or slave 1324 * @IFF_ISATAP: ISATAP interface (RFC4214) 1325 * @IFF_WAN_HDLC: WAN HDLC device 1326 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1327 * release skb->dst 1328 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1329 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1330 * @IFF_MACVLAN_PORT: device used as macvlan port 1331 * @IFF_BRIDGE_PORT: device used as bridge port 1332 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1333 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1334 * @IFF_UNICAST_FLT: Supports unicast filtering 1335 * @IFF_TEAM_PORT: device used as team port 1336 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1337 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1338 * change when it's running 1339 * @IFF_MACVLAN: Macvlan device 1340 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1341 * underlying stacked devices 1342 * @IFF_IPVLAN_MASTER: IPvlan master device 1343 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1344 * @IFF_L3MDEV_MASTER: device is an L3 master device 1345 * @IFF_NO_QUEUE: device can run without qdisc attached 1346 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1347 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1348 * @IFF_TEAM: device is a team device 1349 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1350 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1351 * entity (i.e. the master device for bridged veth) 1352 * @IFF_MACSEC: device is a MACsec device 1353 */ 1354enum netdev_priv_flags { 1355 IFF_802_1Q_VLAN = 1<<0, 1356 IFF_EBRIDGE = 1<<1, 1357 IFF_BONDING = 1<<2, 1358 IFF_ISATAP = 1<<3, 1359 IFF_WAN_HDLC = 1<<4, 1360 IFF_XMIT_DST_RELEASE = 1<<5, 1361 IFF_DONT_BRIDGE = 1<<6, 1362 IFF_DISABLE_NETPOLL = 1<<7, 1363 IFF_MACVLAN_PORT = 1<<8, 1364 IFF_BRIDGE_PORT = 1<<9, 1365 IFF_OVS_DATAPATH = 1<<10, 1366 IFF_TX_SKB_SHARING = 1<<11, 1367 IFF_UNICAST_FLT = 1<<12, 1368 IFF_TEAM_PORT = 1<<13, 1369 IFF_SUPP_NOFCS = 1<<14, 1370 IFF_LIVE_ADDR_CHANGE = 1<<15, 1371 IFF_MACVLAN = 1<<16, 1372 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1373 IFF_IPVLAN_MASTER = 1<<18, 1374 IFF_IPVLAN_SLAVE = 1<<19, 1375 IFF_L3MDEV_MASTER = 1<<20, 1376 IFF_NO_QUEUE = 1<<21, 1377 IFF_OPENVSWITCH = 1<<22, 1378 IFF_L3MDEV_SLAVE = 1<<23, 1379 IFF_TEAM = 1<<24, 1380 IFF_RXFH_CONFIGURED = 1<<25, 1381 IFF_PHONY_HEADROOM = 1<<26, 1382 IFF_MACSEC = 1<<27, 1383}; 1384 1385#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1386#define IFF_EBRIDGE IFF_EBRIDGE 1387#define IFF_BONDING IFF_BONDING 1388#define IFF_ISATAP IFF_ISATAP 1389#define IFF_WAN_HDLC IFF_WAN_HDLC 1390#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1391#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1392#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1393#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1394#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1395#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1396#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1397#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1398#define IFF_TEAM_PORT IFF_TEAM_PORT 1399#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1400#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1401#define IFF_MACVLAN IFF_MACVLAN 1402#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1403#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1404#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1405#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1406#define IFF_NO_QUEUE IFF_NO_QUEUE 1407#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1408#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1409#define IFF_TEAM IFF_TEAM 1410#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1411#define IFF_MACSEC IFF_MACSEC 1412 1413/** 1414 * struct net_device - The DEVICE structure. 1415 * Actually, this whole structure is a big mistake. It mixes I/O 1416 * data with strictly "high-level" data, and it has to know about 1417 * almost every data structure used in the INET module. 1418 * 1419 * @name: This is the first field of the "visible" part of this structure 1420 * (i.e. as seen by users in the "Space.c" file). It is the name 1421 * of the interface. 1422 * 1423 * @name_hlist: Device name hash chain, please keep it close to name[] 1424 * @ifalias: SNMP alias 1425 * @mem_end: Shared memory end 1426 * @mem_start: Shared memory start 1427 * @base_addr: Device I/O address 1428 * @irq: Device IRQ number 1429 * 1430 * @carrier_changes: Stats to monitor carrier on<->off transitions 1431 * 1432 * @state: Generic network queuing layer state, see netdev_state_t 1433 * @dev_list: The global list of network devices 1434 * @napi_list: List entry used for polling NAPI devices 1435 * @unreg_list: List entry when we are unregistering the 1436 * device; see the function unregister_netdev 1437 * @close_list: List entry used when we are closing the device 1438 * @ptype_all: Device-specific packet handlers for all protocols 1439 * @ptype_specific: Device-specific, protocol-specific packet handlers 1440 * 1441 * @adj_list: Directly linked devices, like slaves for bonding 1442 * @all_adj_list: All linked devices, *including* neighbours 1443 * @features: Currently active device features 1444 * @hw_features: User-changeable features 1445 * 1446 * @wanted_features: User-requested features 1447 * @vlan_features: Mask of features inheritable by VLAN devices 1448 * 1449 * @hw_enc_features: Mask of features inherited by encapsulating devices 1450 * This field indicates what encapsulation 1451 * offloads the hardware is capable of doing, 1452 * and drivers will need to set them appropriately. 1453 * 1454 * @mpls_features: Mask of features inheritable by MPLS 1455 * 1456 * @ifindex: interface index 1457 * @group: The group the device belongs to 1458 * 1459 * @stats: Statistics struct, which was left as a legacy, use 1460 * rtnl_link_stats64 instead 1461 * 1462 * @rx_dropped: Dropped packets by core network, 1463 * do not use this in drivers 1464 * @tx_dropped: Dropped packets by core network, 1465 * do not use this in drivers 1466 * @rx_nohandler: nohandler dropped packets by core network on 1467 * inactive devices, do not use this in drivers 1468 * 1469 * @wireless_handlers: List of functions to handle Wireless Extensions, 1470 * instead of ioctl, 1471 * see <net/iw_handler.h> for details. 1472 * @wireless_data: Instance data managed by the core of wireless extensions 1473 * 1474 * @netdev_ops: Includes several pointers to callbacks, 1475 * if one wants to override the ndo_*() functions 1476 * @ethtool_ops: Management operations 1477 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1478 * discovery handling. Necessary for e.g. 6LoWPAN. 1479 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1480 * of Layer 2 headers. 1481 * 1482 * @flags: Interface flags (a la BSD) 1483 * @priv_flags: Like 'flags' but invisible to userspace, 1484 * see if.h for the definitions 1485 * @gflags: Global flags ( kept as legacy ) 1486 * @padded: How much padding added by alloc_netdev() 1487 * @operstate: RFC2863 operstate 1488 * @link_mode: Mapping policy to operstate 1489 * @if_port: Selectable AUI, TP, ... 1490 * @dma: DMA channel 1491 * @mtu: Interface MTU value 1492 * @type: Interface hardware type 1493 * @hard_header_len: Maximum hardware header length. 1494 * 1495 * @needed_headroom: Extra headroom the hardware may need, but not in all 1496 * cases can this be guaranteed 1497 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1498 * cases can this be guaranteed. Some cases also use 1499 * LL_MAX_HEADER instead to allocate the skb 1500 * 1501 * interface address info: 1502 * 1503 * @perm_addr: Permanent hw address 1504 * @addr_assign_type: Hw address assignment type 1505 * @addr_len: Hardware address length 1506 * @neigh_priv_len: Used in neigh_alloc() 1507 * @dev_id: Used to differentiate devices that share 1508 * the same link layer address 1509 * @dev_port: Used to differentiate devices that share 1510 * the same function 1511 * @addr_list_lock: XXX: need comments on this one 1512 * @uc_promisc: Counter that indicates promiscuous mode 1513 * has been enabled due to the need to listen to 1514 * additional unicast addresses in a device that 1515 * does not implement ndo_set_rx_mode() 1516 * @uc: unicast mac addresses 1517 * @mc: multicast mac addresses 1518 * @dev_addrs: list of device hw addresses 1519 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1520 * @promiscuity: Number of times the NIC is told to work in 1521 * promiscuous mode; if it becomes 0 the NIC will 1522 * exit promiscuous mode 1523 * @allmulti: Counter, enables or disables allmulticast mode 1524 * 1525 * @vlan_info: VLAN info 1526 * @dsa_ptr: dsa specific data 1527 * @tipc_ptr: TIPC specific data 1528 * @atalk_ptr: AppleTalk link 1529 * @ip_ptr: IPv4 specific data 1530 * @dn_ptr: DECnet specific data 1531 * @ip6_ptr: IPv6 specific data 1532 * @ax25_ptr: AX.25 specific data 1533 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1534 * 1535 * @last_rx: Time of last Rx 1536 * @dev_addr: Hw address (before bcast, 1537 * because most packets are unicast) 1538 * 1539 * @_rx: Array of RX queues 1540 * @num_rx_queues: Number of RX queues 1541 * allocated at register_netdev() time 1542 * @real_num_rx_queues: Number of RX queues currently active in device 1543 * 1544 * @rx_handler: handler for received packets 1545 * @rx_handler_data: XXX: need comments on this one 1546 * @ingress_queue: XXX: need comments on this one 1547 * @broadcast: hw bcast address 1548 * 1549 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1550 * indexed by RX queue number. Assigned by driver. 1551 * This must only be set if the ndo_rx_flow_steer 1552 * operation is defined 1553 * @index_hlist: Device index hash chain 1554 * 1555 * @_tx: Array of TX queues 1556 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1557 * @real_num_tx_queues: Number of TX queues currently active in device 1558 * @qdisc: Root qdisc from userspace point of view 1559 * @tx_queue_len: Max frames per queue allowed 1560 * @tx_global_lock: XXX: need comments on this one 1561 * 1562 * @xps_maps: XXX: need comments on this one 1563 * 1564 * @offload_fwd_mark: Offload device fwding mark 1565 * 1566 * @watchdog_timeo: Represents the timeout that is used by 1567 * the watchdog (see dev_watchdog()) 1568 * @watchdog_timer: List of timers 1569 * 1570 * @pcpu_refcnt: Number of references to this device 1571 * @todo_list: Delayed register/unregister 1572 * @link_watch_list: XXX: need comments on this one 1573 * 1574 * @reg_state: Register/unregister state machine 1575 * @dismantle: Device is going to be freed 1576 * @rtnl_link_state: This enum represents the phases of creating 1577 * a new link 1578 * 1579 * @destructor: Called from unregister, 1580 * can be used to call free_netdev 1581 * @npinfo: XXX: need comments on this one 1582 * @nd_net: Network namespace this network device is inside 1583 * 1584 * @ml_priv: Mid-layer private 1585 * @lstats: Loopback statistics 1586 * @tstats: Tunnel statistics 1587 * @dstats: Dummy statistics 1588 * @vstats: Virtual ethernet statistics 1589 * 1590 * @garp_port: GARP 1591 * @mrp_port: MRP 1592 * 1593 * @dev: Class/net/name entry 1594 * @sysfs_groups: Space for optional device, statistics and wireless 1595 * sysfs groups 1596 * 1597 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1598 * @rtnl_link_ops: Rtnl_link_ops 1599 * 1600 * @gso_max_size: Maximum size of generic segmentation offload 1601 * @gso_max_segs: Maximum number of segments that can be passed to the 1602 * NIC for GSO 1603 * 1604 * @dcbnl_ops: Data Center Bridging netlink ops 1605 * @num_tc: Number of traffic classes in the net device 1606 * @tc_to_txq: XXX: need comments on this one 1607 * @prio_tc_map XXX: need comments on this one 1608 * 1609 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1610 * 1611 * @priomap: XXX: need comments on this one 1612 * @phydev: Physical device may attach itself 1613 * for hardware timestamping 1614 * 1615 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1616 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1617 * 1618 * @proto_down: protocol port state information can be sent to the 1619 * switch driver and used to set the phys state of the 1620 * switch port. 1621 * 1622 * FIXME: cleanup struct net_device such that network protocol info 1623 * moves out. 1624 */ 1625 1626struct net_device { 1627 char name[IFNAMSIZ]; 1628 struct hlist_node name_hlist; 1629 char *ifalias; 1630 /* 1631 * I/O specific fields 1632 * FIXME: Merge these and struct ifmap into one 1633 */ 1634 unsigned long mem_end; 1635 unsigned long mem_start; 1636 unsigned long base_addr; 1637 int irq; 1638 1639 atomic_t carrier_changes; 1640 1641 /* 1642 * Some hardware also needs these fields (state,dev_list, 1643 * napi_list,unreg_list,close_list) but they are not 1644 * part of the usual set specified in Space.c. 1645 */ 1646 1647 unsigned long state; 1648 1649 struct list_head dev_list; 1650 struct list_head napi_list; 1651 struct list_head unreg_list; 1652 struct list_head close_list; 1653 struct list_head ptype_all; 1654 struct list_head ptype_specific; 1655 1656 struct { 1657 struct list_head upper; 1658 struct list_head lower; 1659 } adj_list; 1660 1661 struct { 1662 struct list_head upper; 1663 struct list_head lower; 1664 } all_adj_list; 1665 1666 netdev_features_t features; 1667 netdev_features_t hw_features; 1668 netdev_features_t wanted_features; 1669 netdev_features_t vlan_features; 1670 netdev_features_t hw_enc_features; 1671 netdev_features_t mpls_features; 1672 netdev_features_t gso_partial_features; 1673 1674 int ifindex; 1675 int group; 1676 1677 struct net_device_stats stats; 1678 1679 atomic_long_t rx_dropped; 1680 atomic_long_t tx_dropped; 1681 atomic_long_t rx_nohandler; 1682 1683#ifdef CONFIG_WIRELESS_EXT 1684 const struct iw_handler_def *wireless_handlers; 1685 struct iw_public_data *wireless_data; 1686#endif 1687 const struct net_device_ops *netdev_ops; 1688 const struct ethtool_ops *ethtool_ops; 1689#ifdef CONFIG_NET_SWITCHDEV 1690 const struct switchdev_ops *switchdev_ops; 1691#endif 1692#ifdef CONFIG_NET_L3_MASTER_DEV 1693 const struct l3mdev_ops *l3mdev_ops; 1694#endif 1695#if IS_ENABLED(CONFIG_IPV6) 1696 const struct ndisc_ops *ndisc_ops; 1697#endif 1698 1699 const struct header_ops *header_ops; 1700 1701 unsigned int flags; 1702 unsigned int priv_flags; 1703 1704 unsigned short gflags; 1705 unsigned short padded; 1706 1707 unsigned char operstate; 1708 unsigned char link_mode; 1709 1710 unsigned char if_port; 1711 unsigned char dma; 1712 1713 unsigned int mtu; 1714 unsigned short type; 1715 unsigned short hard_header_len; 1716 1717 unsigned short needed_headroom; 1718 unsigned short needed_tailroom; 1719 1720 /* Interface address info. */ 1721 unsigned char perm_addr[MAX_ADDR_LEN]; 1722 unsigned char addr_assign_type; 1723 unsigned char addr_len; 1724 unsigned short neigh_priv_len; 1725 unsigned short dev_id; 1726 unsigned short dev_port; 1727 spinlock_t addr_list_lock; 1728 unsigned char name_assign_type; 1729 bool uc_promisc; 1730 struct netdev_hw_addr_list uc; 1731 struct netdev_hw_addr_list mc; 1732 struct netdev_hw_addr_list dev_addrs; 1733 1734#ifdef CONFIG_SYSFS 1735 struct kset *queues_kset; 1736#endif 1737 unsigned int promiscuity; 1738 unsigned int allmulti; 1739 1740 1741 /* Protocol-specific pointers */ 1742 1743#if IS_ENABLED(CONFIG_VLAN_8021Q) 1744 struct vlan_info __rcu *vlan_info; 1745#endif 1746#if IS_ENABLED(CONFIG_NET_DSA) 1747 struct dsa_switch_tree *dsa_ptr; 1748#endif 1749#if IS_ENABLED(CONFIG_TIPC) 1750 struct tipc_bearer __rcu *tipc_ptr; 1751#endif 1752 void *atalk_ptr; 1753 struct in_device __rcu *ip_ptr; 1754 struct dn_dev __rcu *dn_ptr; 1755 struct inet6_dev __rcu *ip6_ptr; 1756 void *ax25_ptr; 1757 struct wireless_dev *ieee80211_ptr; 1758 struct wpan_dev *ieee802154_ptr; 1759#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1760 struct mpls_dev __rcu *mpls_ptr; 1761#endif 1762 1763/* 1764 * Cache lines mostly used on receive path (including eth_type_trans()) 1765 */ 1766 unsigned long last_rx; 1767 1768 /* Interface address info used in eth_type_trans() */ 1769 unsigned char *dev_addr; 1770 1771#ifdef CONFIG_SYSFS 1772 struct netdev_rx_queue *_rx; 1773 1774 unsigned int num_rx_queues; 1775 unsigned int real_num_rx_queues; 1776#endif 1777 1778 unsigned long gro_flush_timeout; 1779 rx_handler_func_t __rcu *rx_handler; 1780 void __rcu *rx_handler_data; 1781 1782#ifdef CONFIG_NET_CLS_ACT 1783 struct tcf_proto __rcu *ingress_cl_list; 1784#endif 1785 struct netdev_queue __rcu *ingress_queue; 1786#ifdef CONFIG_NETFILTER_INGRESS 1787 struct list_head nf_hooks_ingress; 1788#endif 1789 1790 unsigned char broadcast[MAX_ADDR_LEN]; 1791#ifdef CONFIG_RFS_ACCEL 1792 struct cpu_rmap *rx_cpu_rmap; 1793#endif 1794 struct hlist_node index_hlist; 1795 1796/* 1797 * Cache lines mostly used on transmit path 1798 */ 1799 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1800 unsigned int num_tx_queues; 1801 unsigned int real_num_tx_queues; 1802 struct Qdisc *qdisc; 1803 unsigned long tx_queue_len; 1804 spinlock_t tx_global_lock; 1805 int watchdog_timeo; 1806 1807#ifdef CONFIG_XPS 1808 struct xps_dev_maps __rcu *xps_maps; 1809#endif 1810#ifdef CONFIG_NET_CLS_ACT 1811 struct tcf_proto __rcu *egress_cl_list; 1812#endif 1813#ifdef CONFIG_NET_SWITCHDEV 1814 u32 offload_fwd_mark; 1815#endif 1816 1817 /* These may be needed for future network-power-down code. */ 1818 struct timer_list watchdog_timer; 1819 1820 int __percpu *pcpu_refcnt; 1821 struct list_head todo_list; 1822 1823 struct list_head link_watch_list; 1824 1825 enum { NETREG_UNINITIALIZED=0, 1826 NETREG_REGISTERED, /* completed register_netdevice */ 1827 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1828 NETREG_UNREGISTERED, /* completed unregister todo */ 1829 NETREG_RELEASED, /* called free_netdev */ 1830 NETREG_DUMMY, /* dummy device for NAPI poll */ 1831 } reg_state:8; 1832 1833 bool dismantle; 1834 1835 enum { 1836 RTNL_LINK_INITIALIZED, 1837 RTNL_LINK_INITIALIZING, 1838 } rtnl_link_state:16; 1839 1840 void (*destructor)(struct net_device *dev); 1841 1842#ifdef CONFIG_NETPOLL 1843 struct netpoll_info __rcu *npinfo; 1844#endif 1845 1846 possible_net_t nd_net; 1847 1848 /* mid-layer private */ 1849 union { 1850 void *ml_priv; 1851 struct pcpu_lstats __percpu *lstats; 1852 struct pcpu_sw_netstats __percpu *tstats; 1853 struct pcpu_dstats __percpu *dstats; 1854 struct pcpu_vstats __percpu *vstats; 1855 }; 1856 1857 struct garp_port __rcu *garp_port; 1858 struct mrp_port __rcu *mrp_port; 1859 1860 struct device dev; 1861 const struct attribute_group *sysfs_groups[4]; 1862 const struct attribute_group *sysfs_rx_queue_group; 1863 1864 const struct rtnl_link_ops *rtnl_link_ops; 1865 1866 /* for setting kernel sock attribute on TCP connection setup */ 1867#define GSO_MAX_SIZE 65536 1868 unsigned int gso_max_size; 1869#define GSO_MAX_SEGS 65535 1870 u16 gso_max_segs; 1871 1872#ifdef CONFIG_DCB 1873 const struct dcbnl_rtnl_ops *dcbnl_ops; 1874#endif 1875 u8 num_tc; 1876 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1877 u8 prio_tc_map[TC_BITMASK + 1]; 1878 1879#if IS_ENABLED(CONFIG_FCOE) 1880 unsigned int fcoe_ddp_xid; 1881#endif 1882#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1883 struct netprio_map __rcu *priomap; 1884#endif 1885 struct phy_device *phydev; 1886 struct lock_class_key *qdisc_tx_busylock; 1887 struct lock_class_key *qdisc_running_key; 1888 bool proto_down; 1889}; 1890#define to_net_dev(d) container_of(d, struct net_device, dev) 1891 1892#define NETDEV_ALIGN 32 1893 1894static inline 1895int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1896{ 1897 return dev->prio_tc_map[prio & TC_BITMASK]; 1898} 1899 1900static inline 1901int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1902{ 1903 if (tc >= dev->num_tc) 1904 return -EINVAL; 1905 1906 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1907 return 0; 1908} 1909 1910static inline 1911void netdev_reset_tc(struct net_device *dev) 1912{ 1913 dev->num_tc = 0; 1914 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1915 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1916} 1917 1918static inline 1919int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1920{ 1921 if (tc >= dev->num_tc) 1922 return -EINVAL; 1923 1924 dev->tc_to_txq[tc].count = count; 1925 dev->tc_to_txq[tc].offset = offset; 1926 return 0; 1927} 1928 1929static inline 1930int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1931{ 1932 if (num_tc > TC_MAX_QUEUE) 1933 return -EINVAL; 1934 1935 dev->num_tc = num_tc; 1936 return 0; 1937} 1938 1939static inline 1940int netdev_get_num_tc(struct net_device *dev) 1941{ 1942 return dev->num_tc; 1943} 1944 1945static inline 1946struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1947 unsigned int index) 1948{ 1949 return &dev->_tx[index]; 1950} 1951 1952static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1953 const struct sk_buff *skb) 1954{ 1955 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1956} 1957 1958static inline void netdev_for_each_tx_queue(struct net_device *dev, 1959 void (*f)(struct net_device *, 1960 struct netdev_queue *, 1961 void *), 1962 void *arg) 1963{ 1964 unsigned int i; 1965 1966 for (i = 0; i < dev->num_tx_queues; i++) 1967 f(dev, &dev->_tx[i], arg); 1968} 1969 1970#define netdev_lockdep_set_classes(dev) \ 1971{ \ 1972 static struct lock_class_key qdisc_tx_busylock_key; \ 1973 static struct lock_class_key qdisc_running_key; \ 1974 static struct lock_class_key qdisc_xmit_lock_key; \ 1975 static struct lock_class_key dev_addr_list_lock_key; \ 1976 unsigned int i; \ 1977 \ 1978 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1979 (dev)->qdisc_running_key = &qdisc_running_key; \ 1980 lockdep_set_class(&(dev)->addr_list_lock, \ 1981 &dev_addr_list_lock_key); \ 1982 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1983 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1984 &qdisc_xmit_lock_key); \ 1985} 1986 1987struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1988 struct sk_buff *skb, 1989 void *accel_priv); 1990 1991/* returns the headroom that the master device needs to take in account 1992 * when forwarding to this dev 1993 */ 1994static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1995{ 1996 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1997} 1998 1999static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2000{ 2001 if (dev->netdev_ops->ndo_set_rx_headroom) 2002 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2003} 2004 2005/* set the device rx headroom to the dev's default */ 2006static inline void netdev_reset_rx_headroom(struct net_device *dev) 2007{ 2008 netdev_set_rx_headroom(dev, -1); 2009} 2010 2011/* 2012 * Net namespace inlines 2013 */ 2014static inline 2015struct net *dev_net(const struct net_device *dev) 2016{ 2017 return read_pnet(&dev->nd_net); 2018} 2019 2020static inline 2021void dev_net_set(struct net_device *dev, struct net *net) 2022{ 2023 write_pnet(&dev->nd_net, net); 2024} 2025 2026static inline bool netdev_uses_dsa(struct net_device *dev) 2027{ 2028#if IS_ENABLED(CONFIG_NET_DSA) 2029 if (dev->dsa_ptr != NULL) 2030 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2031#endif 2032 return false; 2033} 2034 2035/** 2036 * netdev_priv - access network device private data 2037 * @dev: network device 2038 * 2039 * Get network device private data 2040 */ 2041static inline void *netdev_priv(const struct net_device *dev) 2042{ 2043 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2044} 2045 2046/* Set the sysfs physical device reference for the network logical device 2047 * if set prior to registration will cause a symlink during initialization. 2048 */ 2049#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2050 2051/* Set the sysfs device type for the network logical device to allow 2052 * fine-grained identification of different network device types. For 2053 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2054 */ 2055#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2056 2057/* Default NAPI poll() weight 2058 * Device drivers are strongly advised to not use bigger value 2059 */ 2060#define NAPI_POLL_WEIGHT 64 2061 2062/** 2063 * netif_napi_add - initialize a NAPI context 2064 * @dev: network device 2065 * @napi: NAPI context 2066 * @poll: polling function 2067 * @weight: default weight 2068 * 2069 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2070 * *any* of the other NAPI-related functions. 2071 */ 2072void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2073 int (*poll)(struct napi_struct *, int), int weight); 2074 2075/** 2076 * netif_tx_napi_add - initialize a NAPI context 2077 * @dev: network device 2078 * @napi: NAPI context 2079 * @poll: polling function 2080 * @weight: default weight 2081 * 2082 * This variant of netif_napi_add() should be used from drivers using NAPI 2083 * to exclusively poll a TX queue. 2084 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2085 */ 2086static inline void netif_tx_napi_add(struct net_device *dev, 2087 struct napi_struct *napi, 2088 int (*poll)(struct napi_struct *, int), 2089 int weight) 2090{ 2091 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2092 netif_napi_add(dev, napi, poll, weight); 2093} 2094 2095/** 2096 * netif_napi_del - remove a NAPI context 2097 * @napi: NAPI context 2098 * 2099 * netif_napi_del() removes a NAPI context from the network device NAPI list 2100 */ 2101void netif_napi_del(struct napi_struct *napi); 2102 2103struct napi_gro_cb { 2104 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2105 void *frag0; 2106 2107 /* Length of frag0. */ 2108 unsigned int frag0_len; 2109 2110 /* This indicates where we are processing relative to skb->data. */ 2111 int data_offset; 2112 2113 /* This is non-zero if the packet cannot be merged with the new skb. */ 2114 u16 flush; 2115 2116 /* Save the IP ID here and check when we get to the transport layer */ 2117 u16 flush_id; 2118 2119 /* Number of segments aggregated. */ 2120 u16 count; 2121 2122 /* Start offset for remote checksum offload */ 2123 u16 gro_remcsum_start; 2124 2125 /* jiffies when first packet was created/queued */ 2126 unsigned long age; 2127 2128 /* Used in ipv6_gro_receive() and foo-over-udp */ 2129 u16 proto; 2130 2131 /* This is non-zero if the packet may be of the same flow. */ 2132 u8 same_flow:1; 2133 2134 /* Used in tunnel GRO receive */ 2135 u8 encap_mark:1; 2136 2137 /* GRO checksum is valid */ 2138 u8 csum_valid:1; 2139 2140 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2141 u8 csum_cnt:3; 2142 2143 /* Free the skb? */ 2144 u8 free:2; 2145#define NAPI_GRO_FREE 1 2146#define NAPI_GRO_FREE_STOLEN_HEAD 2 2147 2148 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2149 u8 is_ipv6:1; 2150 2151 /* Used in GRE, set in fou/gue_gro_receive */ 2152 u8 is_fou:1; 2153 2154 /* Used to determine if flush_id can be ignored */ 2155 u8 is_atomic:1; 2156 2157 /* 5 bit hole */ 2158 2159 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2160 __wsum csum; 2161 2162 /* used in skb_gro_receive() slow path */ 2163 struct sk_buff *last; 2164}; 2165 2166#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2167 2168struct packet_type { 2169 __be16 type; /* This is really htons(ether_type). */ 2170 struct net_device *dev; /* NULL is wildcarded here */ 2171 int (*func) (struct sk_buff *, 2172 struct net_device *, 2173 struct packet_type *, 2174 struct net_device *); 2175 bool (*id_match)(struct packet_type *ptype, 2176 struct sock *sk); 2177 void *af_packet_priv; 2178 struct list_head list; 2179}; 2180 2181struct offload_callbacks { 2182 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2183 netdev_features_t features); 2184 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2185 struct sk_buff *skb); 2186 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2187}; 2188 2189struct packet_offload { 2190 __be16 type; /* This is really htons(ether_type). */ 2191 u16 priority; 2192 struct offload_callbacks callbacks; 2193 struct list_head list; 2194}; 2195 2196/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2197struct pcpu_sw_netstats { 2198 u64 rx_packets; 2199 u64 rx_bytes; 2200 u64 tx_packets; 2201 u64 tx_bytes; 2202 struct u64_stats_sync syncp; 2203}; 2204 2205#define __netdev_alloc_pcpu_stats(type, gfp) \ 2206({ \ 2207 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2208 if (pcpu_stats) { \ 2209 int __cpu; \ 2210 for_each_possible_cpu(__cpu) { \ 2211 typeof(type) *stat; \ 2212 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2213 u64_stats_init(&stat->syncp); \ 2214 } \ 2215 } \ 2216 pcpu_stats; \ 2217}) 2218 2219#define netdev_alloc_pcpu_stats(type) \ 2220 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2221 2222enum netdev_lag_tx_type { 2223 NETDEV_LAG_TX_TYPE_UNKNOWN, 2224 NETDEV_LAG_TX_TYPE_RANDOM, 2225 NETDEV_LAG_TX_TYPE_BROADCAST, 2226 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2227 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2228 NETDEV_LAG_TX_TYPE_HASH, 2229}; 2230 2231struct netdev_lag_upper_info { 2232 enum netdev_lag_tx_type tx_type; 2233}; 2234 2235struct netdev_lag_lower_state_info { 2236 u8 link_up : 1, 2237 tx_enabled : 1; 2238}; 2239 2240#include <linux/notifier.h> 2241 2242/* netdevice notifier chain. Please remember to update the rtnetlink 2243 * notification exclusion list in rtnetlink_event() when adding new 2244 * types. 2245 */ 2246#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2247#define NETDEV_DOWN 0x0002 2248#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2249 detected a hardware crash and restarted 2250 - we can use this eg to kick tcp sessions 2251 once done */ 2252#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2253#define NETDEV_REGISTER 0x0005 2254#define NETDEV_UNREGISTER 0x0006 2255#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2256#define NETDEV_CHANGEADDR 0x0008 2257#define NETDEV_GOING_DOWN 0x0009 2258#define NETDEV_CHANGENAME 0x000A 2259#define NETDEV_FEAT_CHANGE 0x000B 2260#define NETDEV_BONDING_FAILOVER 0x000C 2261#define NETDEV_PRE_UP 0x000D 2262#define NETDEV_PRE_TYPE_CHANGE 0x000E 2263#define NETDEV_POST_TYPE_CHANGE 0x000F 2264#define NETDEV_POST_INIT 0x0010 2265#define NETDEV_UNREGISTER_FINAL 0x0011 2266#define NETDEV_RELEASE 0x0012 2267#define NETDEV_NOTIFY_PEERS 0x0013 2268#define NETDEV_JOIN 0x0014 2269#define NETDEV_CHANGEUPPER 0x0015 2270#define NETDEV_RESEND_IGMP 0x0016 2271#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2272#define NETDEV_CHANGEINFODATA 0x0018 2273#define NETDEV_BONDING_INFO 0x0019 2274#define NETDEV_PRECHANGEUPPER 0x001A 2275#define NETDEV_CHANGELOWERSTATE 0x001B 2276#define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2277#define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2278 2279int register_netdevice_notifier(struct notifier_block *nb); 2280int unregister_netdevice_notifier(struct notifier_block *nb); 2281 2282struct netdev_notifier_info { 2283 struct net_device *dev; 2284}; 2285 2286struct netdev_notifier_change_info { 2287 struct netdev_notifier_info info; /* must be first */ 2288 unsigned int flags_changed; 2289}; 2290 2291struct netdev_notifier_changeupper_info { 2292 struct netdev_notifier_info info; /* must be first */ 2293 struct net_device *upper_dev; /* new upper dev */ 2294 bool master; /* is upper dev master */ 2295 bool linking; /* is the notification for link or unlink */ 2296 void *upper_info; /* upper dev info */ 2297}; 2298 2299struct netdev_notifier_changelowerstate_info { 2300 struct netdev_notifier_info info; /* must be first */ 2301 void *lower_state_info; /* is lower dev state */ 2302}; 2303 2304static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2305 struct net_device *dev) 2306{ 2307 info->dev = dev; 2308} 2309 2310static inline struct net_device * 2311netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2312{ 2313 return info->dev; 2314} 2315 2316int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2317 2318 2319extern rwlock_t dev_base_lock; /* Device list lock */ 2320 2321#define for_each_netdev(net, d) \ 2322 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2323#define for_each_netdev_reverse(net, d) \ 2324 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2325#define for_each_netdev_rcu(net, d) \ 2326 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2327#define for_each_netdev_safe(net, d, n) \ 2328 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2329#define for_each_netdev_continue(net, d) \ 2330 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2331#define for_each_netdev_continue_rcu(net, d) \ 2332 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2333#define for_each_netdev_in_bond_rcu(bond, slave) \ 2334 for_each_netdev_rcu(&init_net, slave) \ 2335 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2336#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2337 2338static inline struct net_device *next_net_device(struct net_device *dev) 2339{ 2340 struct list_head *lh; 2341 struct net *net; 2342 2343 net = dev_net(dev); 2344 lh = dev->dev_list.next; 2345 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2346} 2347 2348static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2349{ 2350 struct list_head *lh; 2351 struct net *net; 2352 2353 net = dev_net(dev); 2354 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2355 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2356} 2357 2358static inline struct net_device *first_net_device(struct net *net) 2359{ 2360 return list_empty(&net->dev_base_head) ? NULL : 2361 net_device_entry(net->dev_base_head.next); 2362} 2363 2364static inline struct net_device *first_net_device_rcu(struct net *net) 2365{ 2366 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2367 2368 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2369} 2370 2371int netdev_boot_setup_check(struct net_device *dev); 2372unsigned long netdev_boot_base(const char *prefix, int unit); 2373struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2374 const char *hwaddr); 2375struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2376struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2377void dev_add_pack(struct packet_type *pt); 2378void dev_remove_pack(struct packet_type *pt); 2379void __dev_remove_pack(struct packet_type *pt); 2380void dev_add_offload(struct packet_offload *po); 2381void dev_remove_offload(struct packet_offload *po); 2382 2383int dev_get_iflink(const struct net_device *dev); 2384int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2385struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2386 unsigned short mask); 2387struct net_device *dev_get_by_name(struct net *net, const char *name); 2388struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2389struct net_device *__dev_get_by_name(struct net *net, const char *name); 2390int dev_alloc_name(struct net_device *dev, const char *name); 2391int dev_open(struct net_device *dev); 2392int dev_close(struct net_device *dev); 2393int dev_close_many(struct list_head *head, bool unlink); 2394void dev_disable_lro(struct net_device *dev); 2395int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2396int dev_queue_xmit(struct sk_buff *skb); 2397int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2398int register_netdevice(struct net_device *dev); 2399void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2400void unregister_netdevice_many(struct list_head *head); 2401static inline void unregister_netdevice(struct net_device *dev) 2402{ 2403 unregister_netdevice_queue(dev, NULL); 2404} 2405 2406int netdev_refcnt_read(const struct net_device *dev); 2407void free_netdev(struct net_device *dev); 2408void netdev_freemem(struct net_device *dev); 2409void synchronize_net(void); 2410int init_dummy_netdev(struct net_device *dev); 2411 2412DECLARE_PER_CPU(int, xmit_recursion); 2413#define XMIT_RECURSION_LIMIT 10 2414 2415static inline int dev_recursion_level(void) 2416{ 2417 return this_cpu_read(xmit_recursion); 2418} 2419 2420struct net_device *dev_get_by_index(struct net *net, int ifindex); 2421struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2422struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2423int netdev_get_name(struct net *net, char *name, int ifindex); 2424int dev_restart(struct net_device *dev); 2425int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2426 2427static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2428{ 2429 return NAPI_GRO_CB(skb)->data_offset; 2430} 2431 2432static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2433{ 2434 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2435} 2436 2437static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2438{ 2439 NAPI_GRO_CB(skb)->data_offset += len; 2440} 2441 2442static inline void *skb_gro_header_fast(struct sk_buff *skb, 2443 unsigned int offset) 2444{ 2445 return NAPI_GRO_CB(skb)->frag0 + offset; 2446} 2447 2448static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2449{ 2450 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2451} 2452 2453static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2454 unsigned int offset) 2455{ 2456 if (!pskb_may_pull(skb, hlen)) 2457 return NULL; 2458 2459 NAPI_GRO_CB(skb)->frag0 = NULL; 2460 NAPI_GRO_CB(skb)->frag0_len = 0; 2461 return skb->data + offset; 2462} 2463 2464static inline void *skb_gro_network_header(struct sk_buff *skb) 2465{ 2466 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2467 skb_network_offset(skb); 2468} 2469 2470static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2471 const void *start, unsigned int len) 2472{ 2473 if (NAPI_GRO_CB(skb)->csum_valid) 2474 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2475 csum_partial(start, len, 0)); 2476} 2477 2478/* GRO checksum functions. These are logical equivalents of the normal 2479 * checksum functions (in skbuff.h) except that they operate on the GRO 2480 * offsets and fields in sk_buff. 2481 */ 2482 2483__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2484 2485static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2486{ 2487 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2488} 2489 2490static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2491 bool zero_okay, 2492 __sum16 check) 2493{ 2494 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2495 skb_checksum_start_offset(skb) < 2496 skb_gro_offset(skb)) && 2497 !skb_at_gro_remcsum_start(skb) && 2498 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2499 (!zero_okay || check)); 2500} 2501 2502static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2503 __wsum psum) 2504{ 2505 if (NAPI_GRO_CB(skb)->csum_valid && 2506 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2507 return 0; 2508 2509 NAPI_GRO_CB(skb)->csum = psum; 2510 2511 return __skb_gro_checksum_complete(skb); 2512} 2513 2514static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2515{ 2516 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2517 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2518 NAPI_GRO_CB(skb)->csum_cnt--; 2519 } else { 2520 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2521 * verified a new top level checksum or an encapsulated one 2522 * during GRO. This saves work if we fallback to normal path. 2523 */ 2524 __skb_incr_checksum_unnecessary(skb); 2525 } 2526} 2527 2528#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2529 compute_pseudo) \ 2530({ \ 2531 __sum16 __ret = 0; \ 2532 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2533 __ret = __skb_gro_checksum_validate_complete(skb, \ 2534 compute_pseudo(skb, proto)); \ 2535 if (__ret) \ 2536 __skb_mark_checksum_bad(skb); \ 2537 else \ 2538 skb_gro_incr_csum_unnecessary(skb); \ 2539 __ret; \ 2540}) 2541 2542#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2543 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2544 2545#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2546 compute_pseudo) \ 2547 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2548 2549#define skb_gro_checksum_simple_validate(skb) \ 2550 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2551 2552static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2553{ 2554 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2555 !NAPI_GRO_CB(skb)->csum_valid); 2556} 2557 2558static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2559 __sum16 check, __wsum pseudo) 2560{ 2561 NAPI_GRO_CB(skb)->csum = ~pseudo; 2562 NAPI_GRO_CB(skb)->csum_valid = 1; 2563} 2564 2565#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2566do { \ 2567 if (__skb_gro_checksum_convert_check(skb)) \ 2568 __skb_gro_checksum_convert(skb, check, \ 2569 compute_pseudo(skb, proto)); \ 2570} while (0) 2571 2572struct gro_remcsum { 2573 int offset; 2574 __wsum delta; 2575}; 2576 2577static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2578{ 2579 grc->offset = 0; 2580 grc->delta = 0; 2581} 2582 2583static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2584 unsigned int off, size_t hdrlen, 2585 int start, int offset, 2586 struct gro_remcsum *grc, 2587 bool nopartial) 2588{ 2589 __wsum delta; 2590 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2591 2592 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2593 2594 if (!nopartial) { 2595 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2596 return ptr; 2597 } 2598 2599 ptr = skb_gro_header_fast(skb, off); 2600 if (skb_gro_header_hard(skb, off + plen)) { 2601 ptr = skb_gro_header_slow(skb, off + plen, off); 2602 if (!ptr) 2603 return NULL; 2604 } 2605 2606 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2607 start, offset); 2608 2609 /* Adjust skb->csum since we changed the packet */ 2610 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2611 2612 grc->offset = off + hdrlen + offset; 2613 grc->delta = delta; 2614 2615 return ptr; 2616} 2617 2618static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2619 struct gro_remcsum *grc) 2620{ 2621 void *ptr; 2622 size_t plen = grc->offset + sizeof(u16); 2623 2624 if (!grc->delta) 2625 return; 2626 2627 ptr = skb_gro_header_fast(skb, grc->offset); 2628 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2629 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2630 if (!ptr) 2631 return; 2632 } 2633 2634 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2635} 2636 2637struct skb_csum_offl_spec { 2638 __u16 ipv4_okay:1, 2639 ipv6_okay:1, 2640 encap_okay:1, 2641 ip_options_okay:1, 2642 ext_hdrs_okay:1, 2643 tcp_okay:1, 2644 udp_okay:1, 2645 sctp_okay:1, 2646 vlan_okay:1, 2647 no_encapped_ipv6:1, 2648 no_not_encapped:1; 2649}; 2650 2651bool __skb_csum_offload_chk(struct sk_buff *skb, 2652 const struct skb_csum_offl_spec *spec, 2653 bool *csum_encapped, 2654 bool csum_help); 2655 2656static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2657 const struct skb_csum_offl_spec *spec, 2658 bool *csum_encapped, 2659 bool csum_help) 2660{ 2661 if (skb->ip_summed != CHECKSUM_PARTIAL) 2662 return false; 2663 2664 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2665} 2666 2667static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2668 const struct skb_csum_offl_spec *spec) 2669{ 2670 bool csum_encapped; 2671 2672 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2673} 2674 2675static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2676{ 2677 static const struct skb_csum_offl_spec csum_offl_spec = { 2678 .ipv4_okay = 1, 2679 .ip_options_okay = 1, 2680 .ipv6_okay = 1, 2681 .vlan_okay = 1, 2682 .tcp_okay = 1, 2683 .udp_okay = 1, 2684 }; 2685 2686 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2687} 2688 2689static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2690{ 2691 static const struct skb_csum_offl_spec csum_offl_spec = { 2692 .ipv4_okay = 1, 2693 .ip_options_okay = 1, 2694 .tcp_okay = 1, 2695 .udp_okay = 1, 2696 .vlan_okay = 1, 2697 }; 2698 2699 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2700} 2701 2702static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2703 unsigned short type, 2704 const void *daddr, const void *saddr, 2705 unsigned int len) 2706{ 2707 if (!dev->header_ops || !dev->header_ops->create) 2708 return 0; 2709 2710 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2711} 2712 2713static inline int dev_parse_header(const struct sk_buff *skb, 2714 unsigned char *haddr) 2715{ 2716 const struct net_device *dev = skb->dev; 2717 2718 if (!dev->header_ops || !dev->header_ops->parse) 2719 return 0; 2720 return dev->header_ops->parse(skb, haddr); 2721} 2722 2723/* ll_header must have at least hard_header_len allocated */ 2724static inline bool dev_validate_header(const struct net_device *dev, 2725 char *ll_header, int len) 2726{ 2727 if (likely(len >= dev->hard_header_len)) 2728 return true; 2729 2730 if (capable(CAP_SYS_RAWIO)) { 2731 memset(ll_header + len, 0, dev->hard_header_len - len); 2732 return true; 2733 } 2734 2735 if (dev->header_ops && dev->header_ops->validate) 2736 return dev->header_ops->validate(ll_header, len); 2737 2738 return false; 2739} 2740 2741typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2742int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2743static inline int unregister_gifconf(unsigned int family) 2744{ 2745 return register_gifconf(family, NULL); 2746} 2747 2748#ifdef CONFIG_NET_FLOW_LIMIT 2749#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2750struct sd_flow_limit { 2751 u64 count; 2752 unsigned int num_buckets; 2753 unsigned int history_head; 2754 u16 history[FLOW_LIMIT_HISTORY]; 2755 u8 buckets[]; 2756}; 2757 2758extern int netdev_flow_limit_table_len; 2759#endif /* CONFIG_NET_FLOW_LIMIT */ 2760 2761/* 2762 * Incoming packets are placed on per-CPU queues 2763 */ 2764struct softnet_data { 2765 struct list_head poll_list; 2766 struct sk_buff_head process_queue; 2767 2768 /* stats */ 2769 unsigned int processed; 2770 unsigned int time_squeeze; 2771 unsigned int received_rps; 2772#ifdef CONFIG_RPS 2773 struct softnet_data *rps_ipi_list; 2774#endif 2775#ifdef CONFIG_NET_FLOW_LIMIT 2776 struct sd_flow_limit __rcu *flow_limit; 2777#endif 2778 struct Qdisc *output_queue; 2779 struct Qdisc **output_queue_tailp; 2780 struct sk_buff *completion_queue; 2781 2782#ifdef CONFIG_RPS 2783 /* input_queue_head should be written by cpu owning this struct, 2784 * and only read by other cpus. Worth using a cache line. 2785 */ 2786 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2787 2788 /* Elements below can be accessed between CPUs for RPS/RFS */ 2789 struct call_single_data csd ____cacheline_aligned_in_smp; 2790 struct softnet_data *rps_ipi_next; 2791 unsigned int cpu; 2792 unsigned int input_queue_tail; 2793#endif 2794 unsigned int dropped; 2795 struct sk_buff_head input_pkt_queue; 2796 struct napi_struct backlog; 2797 2798}; 2799 2800static inline void input_queue_head_incr(struct softnet_data *sd) 2801{ 2802#ifdef CONFIG_RPS 2803 sd->input_queue_head++; 2804#endif 2805} 2806 2807static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2808 unsigned int *qtail) 2809{ 2810#ifdef CONFIG_RPS 2811 *qtail = ++sd->input_queue_tail; 2812#endif 2813} 2814 2815DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2816 2817void __netif_schedule(struct Qdisc *q); 2818void netif_schedule_queue(struct netdev_queue *txq); 2819 2820static inline void netif_tx_schedule_all(struct net_device *dev) 2821{ 2822 unsigned int i; 2823 2824 for (i = 0; i < dev->num_tx_queues; i++) 2825 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2826} 2827 2828static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2829{ 2830 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2831} 2832 2833/** 2834 * netif_start_queue - allow transmit 2835 * @dev: network device 2836 * 2837 * Allow upper layers to call the device hard_start_xmit routine. 2838 */ 2839static inline void netif_start_queue(struct net_device *dev) 2840{ 2841 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2842} 2843 2844static inline void netif_tx_start_all_queues(struct net_device *dev) 2845{ 2846 unsigned int i; 2847 2848 for (i = 0; i < dev->num_tx_queues; i++) { 2849 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2850 netif_tx_start_queue(txq); 2851 } 2852} 2853 2854void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2855 2856/** 2857 * netif_wake_queue - restart transmit 2858 * @dev: network device 2859 * 2860 * Allow upper layers to call the device hard_start_xmit routine. 2861 * Used for flow control when transmit resources are available. 2862 */ 2863static inline void netif_wake_queue(struct net_device *dev) 2864{ 2865 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2866} 2867 2868static inline void netif_tx_wake_all_queues(struct net_device *dev) 2869{ 2870 unsigned int i; 2871 2872 for (i = 0; i < dev->num_tx_queues; i++) { 2873 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2874 netif_tx_wake_queue(txq); 2875 } 2876} 2877 2878static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2879{ 2880 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2881} 2882 2883/** 2884 * netif_stop_queue - stop transmitted packets 2885 * @dev: network device 2886 * 2887 * Stop upper layers calling the device hard_start_xmit routine. 2888 * Used for flow control when transmit resources are unavailable. 2889 */ 2890static inline void netif_stop_queue(struct net_device *dev) 2891{ 2892 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2893} 2894 2895void netif_tx_stop_all_queues(struct net_device *dev); 2896 2897static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2898{ 2899 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2900} 2901 2902/** 2903 * netif_queue_stopped - test if transmit queue is flowblocked 2904 * @dev: network device 2905 * 2906 * Test if transmit queue on device is currently unable to send. 2907 */ 2908static inline bool netif_queue_stopped(const struct net_device *dev) 2909{ 2910 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2911} 2912 2913static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2914{ 2915 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2916} 2917 2918static inline bool 2919netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2920{ 2921 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2922} 2923 2924static inline bool 2925netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2926{ 2927 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2928} 2929 2930/** 2931 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2932 * @dev_queue: pointer to transmit queue 2933 * 2934 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2935 * to give appropriate hint to the CPU. 2936 */ 2937static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2938{ 2939#ifdef CONFIG_BQL 2940 prefetchw(&dev_queue->dql.num_queued); 2941#endif 2942} 2943 2944/** 2945 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2946 * @dev_queue: pointer to transmit queue 2947 * 2948 * BQL enabled drivers might use this helper in their TX completion path, 2949 * to give appropriate hint to the CPU. 2950 */ 2951static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2952{ 2953#ifdef CONFIG_BQL 2954 prefetchw(&dev_queue->dql.limit); 2955#endif 2956} 2957 2958static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2959 unsigned int bytes) 2960{ 2961#ifdef CONFIG_BQL 2962 dql_queued(&dev_queue->dql, bytes); 2963 2964 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2965 return; 2966 2967 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2968 2969 /* 2970 * The XOFF flag must be set before checking the dql_avail below, 2971 * because in netdev_tx_completed_queue we update the dql_completed 2972 * before checking the XOFF flag. 2973 */ 2974 smp_mb(); 2975 2976 /* check again in case another CPU has just made room avail */ 2977 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2978 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2979#endif 2980} 2981 2982/** 2983 * netdev_sent_queue - report the number of bytes queued to hardware 2984 * @dev: network device 2985 * @bytes: number of bytes queued to the hardware device queue 2986 * 2987 * Report the number of bytes queued for sending/completion to the network 2988 * device hardware queue. @bytes should be a good approximation and should 2989 * exactly match netdev_completed_queue() @bytes 2990 */ 2991static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2992{ 2993 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2994} 2995 2996static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2997 unsigned int pkts, unsigned int bytes) 2998{ 2999#ifdef CONFIG_BQL 3000 if (unlikely(!bytes)) 3001 return; 3002 3003 dql_completed(&dev_queue->dql, bytes); 3004 3005 /* 3006 * Without the memory barrier there is a small possiblity that 3007 * netdev_tx_sent_queue will miss the update and cause the queue to 3008 * be stopped forever 3009 */ 3010 smp_mb(); 3011 3012 if (dql_avail(&dev_queue->dql) < 0) 3013 return; 3014 3015 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3016 netif_schedule_queue(dev_queue); 3017#endif 3018} 3019 3020/** 3021 * netdev_completed_queue - report bytes and packets completed by device 3022 * @dev: network device 3023 * @pkts: actual number of packets sent over the medium 3024 * @bytes: actual number of bytes sent over the medium 3025 * 3026 * Report the number of bytes and packets transmitted by the network device 3027 * hardware queue over the physical medium, @bytes must exactly match the 3028 * @bytes amount passed to netdev_sent_queue() 3029 */ 3030static inline void netdev_completed_queue(struct net_device *dev, 3031 unsigned int pkts, unsigned int bytes) 3032{ 3033 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3034} 3035 3036static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3037{ 3038#ifdef CONFIG_BQL 3039 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3040 dql_reset(&q->dql); 3041#endif 3042} 3043 3044/** 3045 * netdev_reset_queue - reset the packets and bytes count of a network device 3046 * @dev_queue: network device 3047 * 3048 * Reset the bytes and packet count of a network device and clear the 3049 * software flow control OFF bit for this network device 3050 */ 3051static inline void netdev_reset_queue(struct net_device *dev_queue) 3052{ 3053 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3054} 3055 3056/** 3057 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3058 * @dev: network device 3059 * @queue_index: given tx queue index 3060 * 3061 * Returns 0 if given tx queue index >= number of device tx queues, 3062 * otherwise returns the originally passed tx queue index. 3063 */ 3064static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3065{ 3066 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3067 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3068 dev->name, queue_index, 3069 dev->real_num_tx_queues); 3070 return 0; 3071 } 3072 3073 return queue_index; 3074} 3075 3076/** 3077 * netif_running - test if up 3078 * @dev: network device 3079 * 3080 * Test if the device has been brought up. 3081 */ 3082static inline bool netif_running(const struct net_device *dev) 3083{ 3084 return test_bit(__LINK_STATE_START, &dev->state); 3085} 3086 3087/* 3088 * Routines to manage the subqueues on a device. We only need start, 3089 * stop, and a check if it's stopped. All other device management is 3090 * done at the overall netdevice level. 3091 * Also test the device if we're multiqueue. 3092 */ 3093 3094/** 3095 * netif_start_subqueue - allow sending packets on subqueue 3096 * @dev: network device 3097 * @queue_index: sub queue index 3098 * 3099 * Start individual transmit queue of a device with multiple transmit queues. 3100 */ 3101static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3102{ 3103 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3104 3105 netif_tx_start_queue(txq); 3106} 3107 3108/** 3109 * netif_stop_subqueue - stop sending packets on subqueue 3110 * @dev: network device 3111 * @queue_index: sub queue index 3112 * 3113 * Stop individual transmit queue of a device with multiple transmit queues. 3114 */ 3115static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3116{ 3117 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3118 netif_tx_stop_queue(txq); 3119} 3120 3121/** 3122 * netif_subqueue_stopped - test status of subqueue 3123 * @dev: network device 3124 * @queue_index: sub queue index 3125 * 3126 * Check individual transmit queue of a device with multiple transmit queues. 3127 */ 3128static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3129 u16 queue_index) 3130{ 3131 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3132 3133 return netif_tx_queue_stopped(txq); 3134} 3135 3136static inline bool netif_subqueue_stopped(const struct net_device *dev, 3137 struct sk_buff *skb) 3138{ 3139 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3140} 3141 3142void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3143 3144#ifdef CONFIG_XPS 3145int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3146 u16 index); 3147#else 3148static inline int netif_set_xps_queue(struct net_device *dev, 3149 const struct cpumask *mask, 3150 u16 index) 3151{ 3152 return 0; 3153} 3154#endif 3155 3156u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3157 unsigned int num_tx_queues); 3158 3159/* 3160 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3161 * as a distribution range limit for the returned value. 3162 */ 3163static inline u16 skb_tx_hash(const struct net_device *dev, 3164 struct sk_buff *skb) 3165{ 3166 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3167} 3168 3169/** 3170 * netif_is_multiqueue - test if device has multiple transmit queues 3171 * @dev: network device 3172 * 3173 * Check if device has multiple transmit queues 3174 */ 3175static inline bool netif_is_multiqueue(const struct net_device *dev) 3176{ 3177 return dev->num_tx_queues > 1; 3178} 3179 3180int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3181 3182#ifdef CONFIG_SYSFS 3183int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3184#else 3185static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3186 unsigned int rxq) 3187{ 3188 return 0; 3189} 3190#endif 3191 3192#ifdef CONFIG_SYSFS 3193static inline unsigned int get_netdev_rx_queue_index( 3194 struct netdev_rx_queue *queue) 3195{ 3196 struct net_device *dev = queue->dev; 3197 int index = queue - dev->_rx; 3198 3199 BUG_ON(index >= dev->num_rx_queues); 3200 return index; 3201} 3202#endif 3203 3204#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3205int netif_get_num_default_rss_queues(void); 3206 3207enum skb_free_reason { 3208 SKB_REASON_CONSUMED, 3209 SKB_REASON_DROPPED, 3210}; 3211 3212void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3213void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3214 3215/* 3216 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3217 * interrupt context or with hardware interrupts being disabled. 3218 * (in_irq() || irqs_disabled()) 3219 * 3220 * We provide four helpers that can be used in following contexts : 3221 * 3222 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3223 * replacing kfree_skb(skb) 3224 * 3225 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3226 * Typically used in place of consume_skb(skb) in TX completion path 3227 * 3228 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3229 * replacing kfree_skb(skb) 3230 * 3231 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3232 * and consumed a packet. Used in place of consume_skb(skb) 3233 */ 3234static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3235{ 3236 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3237} 3238 3239static inline void dev_consume_skb_irq(struct sk_buff *skb) 3240{ 3241 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3242} 3243 3244static inline void dev_kfree_skb_any(struct sk_buff *skb) 3245{ 3246 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3247} 3248 3249static inline void dev_consume_skb_any(struct sk_buff *skb) 3250{ 3251 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3252} 3253 3254int netif_rx(struct sk_buff *skb); 3255int netif_rx_ni(struct sk_buff *skb); 3256int netif_receive_skb(struct sk_buff *skb); 3257gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3258void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3259struct sk_buff *napi_get_frags(struct napi_struct *napi); 3260gro_result_t napi_gro_frags(struct napi_struct *napi); 3261struct packet_offload *gro_find_receive_by_type(__be16 type); 3262struct packet_offload *gro_find_complete_by_type(__be16 type); 3263 3264static inline void napi_free_frags(struct napi_struct *napi) 3265{ 3266 kfree_skb(napi->skb); 3267 napi->skb = NULL; 3268} 3269 3270bool netdev_is_rx_handler_busy(struct net_device *dev); 3271int netdev_rx_handler_register(struct net_device *dev, 3272 rx_handler_func_t *rx_handler, 3273 void *rx_handler_data); 3274void netdev_rx_handler_unregister(struct net_device *dev); 3275 3276bool dev_valid_name(const char *name); 3277int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3278int dev_ethtool(struct net *net, struct ifreq *); 3279unsigned int dev_get_flags(const struct net_device *); 3280int __dev_change_flags(struct net_device *, unsigned int flags); 3281int dev_change_flags(struct net_device *, unsigned int); 3282void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3283 unsigned int gchanges); 3284int dev_change_name(struct net_device *, const char *); 3285int dev_set_alias(struct net_device *, const char *, size_t); 3286int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3287int dev_set_mtu(struct net_device *, int); 3288void dev_set_group(struct net_device *, int); 3289int dev_set_mac_address(struct net_device *, struct sockaddr *); 3290int dev_change_carrier(struct net_device *, bool new_carrier); 3291int dev_get_phys_port_id(struct net_device *dev, 3292 struct netdev_phys_item_id *ppid); 3293int dev_get_phys_port_name(struct net_device *dev, 3294 char *name, size_t len); 3295int dev_change_proto_down(struct net_device *dev, bool proto_down); 3296int dev_change_xdp_fd(struct net_device *dev, int fd); 3297struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3298struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3299 struct netdev_queue *txq, int *ret); 3300int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3301int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3302bool is_skb_forwardable(const struct net_device *dev, 3303 const struct sk_buff *skb); 3304 3305void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3306 3307extern int netdev_budget; 3308 3309/* Called by rtnetlink.c:rtnl_unlock() */ 3310void netdev_run_todo(void); 3311 3312/** 3313 * dev_put - release reference to device 3314 * @dev: network device 3315 * 3316 * Release reference to device to allow it to be freed. 3317 */ 3318static inline void dev_put(struct net_device *dev) 3319{ 3320 this_cpu_dec(*dev->pcpu_refcnt); 3321} 3322 3323/** 3324 * dev_hold - get reference to device 3325 * @dev: network device 3326 * 3327 * Hold reference to device to keep it from being freed. 3328 */ 3329static inline void dev_hold(struct net_device *dev) 3330{ 3331 this_cpu_inc(*dev->pcpu_refcnt); 3332} 3333 3334/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3335 * and _off may be called from IRQ context, but it is caller 3336 * who is responsible for serialization of these calls. 3337 * 3338 * The name carrier is inappropriate, these functions should really be 3339 * called netif_lowerlayer_*() because they represent the state of any 3340 * kind of lower layer not just hardware media. 3341 */ 3342 3343void linkwatch_init_dev(struct net_device *dev); 3344void linkwatch_fire_event(struct net_device *dev); 3345void linkwatch_forget_dev(struct net_device *dev); 3346 3347/** 3348 * netif_carrier_ok - test if carrier present 3349 * @dev: network device 3350 * 3351 * Check if carrier is present on device 3352 */ 3353static inline bool netif_carrier_ok(const struct net_device *dev) 3354{ 3355 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3356} 3357 3358unsigned long dev_trans_start(struct net_device *dev); 3359 3360void __netdev_watchdog_up(struct net_device *dev); 3361 3362void netif_carrier_on(struct net_device *dev); 3363 3364void netif_carrier_off(struct net_device *dev); 3365 3366/** 3367 * netif_dormant_on - mark device as dormant. 3368 * @dev: network device 3369 * 3370 * Mark device as dormant (as per RFC2863). 3371 * 3372 * The dormant state indicates that the relevant interface is not 3373 * actually in a condition to pass packets (i.e., it is not 'up') but is 3374 * in a "pending" state, waiting for some external event. For "on- 3375 * demand" interfaces, this new state identifies the situation where the 3376 * interface is waiting for events to place it in the up state. 3377 */ 3378static inline void netif_dormant_on(struct net_device *dev) 3379{ 3380 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3381 linkwatch_fire_event(dev); 3382} 3383 3384/** 3385 * netif_dormant_off - set device as not dormant. 3386 * @dev: network device 3387 * 3388 * Device is not in dormant state. 3389 */ 3390static inline void netif_dormant_off(struct net_device *dev) 3391{ 3392 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3393 linkwatch_fire_event(dev); 3394} 3395 3396/** 3397 * netif_dormant - test if carrier present 3398 * @dev: network device 3399 * 3400 * Check if carrier is present on device 3401 */ 3402static inline bool netif_dormant(const struct net_device *dev) 3403{ 3404 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3405} 3406 3407 3408/** 3409 * netif_oper_up - test if device is operational 3410 * @dev: network device 3411 * 3412 * Check if carrier is operational 3413 */ 3414static inline bool netif_oper_up(const struct net_device *dev) 3415{ 3416 return (dev->operstate == IF_OPER_UP || 3417 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3418} 3419 3420/** 3421 * netif_device_present - is device available or removed 3422 * @dev: network device 3423 * 3424 * Check if device has not been removed from system. 3425 */ 3426static inline bool netif_device_present(struct net_device *dev) 3427{ 3428 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3429} 3430 3431void netif_device_detach(struct net_device *dev); 3432 3433void netif_device_attach(struct net_device *dev); 3434 3435/* 3436 * Network interface message level settings 3437 */ 3438 3439enum { 3440 NETIF_MSG_DRV = 0x0001, 3441 NETIF_MSG_PROBE = 0x0002, 3442 NETIF_MSG_LINK = 0x0004, 3443 NETIF_MSG_TIMER = 0x0008, 3444 NETIF_MSG_IFDOWN = 0x0010, 3445 NETIF_MSG_IFUP = 0x0020, 3446 NETIF_MSG_RX_ERR = 0x0040, 3447 NETIF_MSG_TX_ERR = 0x0080, 3448 NETIF_MSG_TX_QUEUED = 0x0100, 3449 NETIF_MSG_INTR = 0x0200, 3450 NETIF_MSG_TX_DONE = 0x0400, 3451 NETIF_MSG_RX_STATUS = 0x0800, 3452 NETIF_MSG_PKTDATA = 0x1000, 3453 NETIF_MSG_HW = 0x2000, 3454 NETIF_MSG_WOL = 0x4000, 3455}; 3456 3457#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3458#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3459#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3460#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3461#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3462#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3463#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3464#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3465#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3466#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3467#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3468#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3469#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3470#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3471#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3472 3473static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3474{ 3475 /* use default */ 3476 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3477 return default_msg_enable_bits; 3478 if (debug_value == 0) /* no output */ 3479 return 0; 3480 /* set low N bits */ 3481 return (1 << debug_value) - 1; 3482} 3483 3484static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3485{ 3486 spin_lock(&txq->_xmit_lock); 3487 txq->xmit_lock_owner = cpu; 3488} 3489 3490static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3491{ 3492 spin_lock_bh(&txq->_xmit_lock); 3493 txq->xmit_lock_owner = smp_processor_id(); 3494} 3495 3496static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3497{ 3498 bool ok = spin_trylock(&txq->_xmit_lock); 3499 if (likely(ok)) 3500 txq->xmit_lock_owner = smp_processor_id(); 3501 return ok; 3502} 3503 3504static inline void __netif_tx_unlock(struct netdev_queue *txq) 3505{ 3506 txq->xmit_lock_owner = -1; 3507 spin_unlock(&txq->_xmit_lock); 3508} 3509 3510static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3511{ 3512 txq->xmit_lock_owner = -1; 3513 spin_unlock_bh(&txq->_xmit_lock); 3514} 3515 3516static inline void txq_trans_update(struct netdev_queue *txq) 3517{ 3518 if (txq->xmit_lock_owner != -1) 3519 txq->trans_start = jiffies; 3520} 3521 3522/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3523static inline void netif_trans_update(struct net_device *dev) 3524{ 3525 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3526 3527 if (txq->trans_start != jiffies) 3528 txq->trans_start = jiffies; 3529} 3530 3531/** 3532 * netif_tx_lock - grab network device transmit lock 3533 * @dev: network device 3534 * 3535 * Get network device transmit lock 3536 */ 3537static inline void netif_tx_lock(struct net_device *dev) 3538{ 3539 unsigned int i; 3540 int cpu; 3541 3542 spin_lock(&dev->tx_global_lock); 3543 cpu = smp_processor_id(); 3544 for (i = 0; i < dev->num_tx_queues; i++) { 3545 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3546 3547 /* We are the only thread of execution doing a 3548 * freeze, but we have to grab the _xmit_lock in 3549 * order to synchronize with threads which are in 3550 * the ->hard_start_xmit() handler and already 3551 * checked the frozen bit. 3552 */ 3553 __netif_tx_lock(txq, cpu); 3554 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3555 __netif_tx_unlock(txq); 3556 } 3557} 3558 3559static inline void netif_tx_lock_bh(struct net_device *dev) 3560{ 3561 local_bh_disable(); 3562 netif_tx_lock(dev); 3563} 3564 3565static inline void netif_tx_unlock(struct net_device *dev) 3566{ 3567 unsigned int i; 3568 3569 for (i = 0; i < dev->num_tx_queues; i++) { 3570 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3571 3572 /* No need to grab the _xmit_lock here. If the 3573 * queue is not stopped for another reason, we 3574 * force a schedule. 3575 */ 3576 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3577 netif_schedule_queue(txq); 3578 } 3579 spin_unlock(&dev->tx_global_lock); 3580} 3581 3582static inline void netif_tx_unlock_bh(struct net_device *dev) 3583{ 3584 netif_tx_unlock(dev); 3585 local_bh_enable(); 3586} 3587 3588#define HARD_TX_LOCK(dev, txq, cpu) { \ 3589 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3590 __netif_tx_lock(txq, cpu); \ 3591 } \ 3592} 3593 3594#define HARD_TX_TRYLOCK(dev, txq) \ 3595 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3596 __netif_tx_trylock(txq) : \ 3597 true ) 3598 3599#define HARD_TX_UNLOCK(dev, txq) { \ 3600 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3601 __netif_tx_unlock(txq); \ 3602 } \ 3603} 3604 3605static inline void netif_tx_disable(struct net_device *dev) 3606{ 3607 unsigned int i; 3608 int cpu; 3609 3610 local_bh_disable(); 3611 cpu = smp_processor_id(); 3612 for (i = 0; i < dev->num_tx_queues; i++) { 3613 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3614 3615 __netif_tx_lock(txq, cpu); 3616 netif_tx_stop_queue(txq); 3617 __netif_tx_unlock(txq); 3618 } 3619 local_bh_enable(); 3620} 3621 3622static inline void netif_addr_lock(struct net_device *dev) 3623{ 3624 spin_lock(&dev->addr_list_lock); 3625} 3626 3627static inline void netif_addr_lock_nested(struct net_device *dev) 3628{ 3629 int subclass = SINGLE_DEPTH_NESTING; 3630 3631 if (dev->netdev_ops->ndo_get_lock_subclass) 3632 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3633 3634 spin_lock_nested(&dev->addr_list_lock, subclass); 3635} 3636 3637static inline void netif_addr_lock_bh(struct net_device *dev) 3638{ 3639 spin_lock_bh(&dev->addr_list_lock); 3640} 3641 3642static inline void netif_addr_unlock(struct net_device *dev) 3643{ 3644 spin_unlock(&dev->addr_list_lock); 3645} 3646 3647static inline void netif_addr_unlock_bh(struct net_device *dev) 3648{ 3649 spin_unlock_bh(&dev->addr_list_lock); 3650} 3651 3652/* 3653 * dev_addrs walker. Should be used only for read access. Call with 3654 * rcu_read_lock held. 3655 */ 3656#define for_each_dev_addr(dev, ha) \ 3657 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3658 3659/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3660 3661void ether_setup(struct net_device *dev); 3662 3663/* Support for loadable net-drivers */ 3664struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3665 unsigned char name_assign_type, 3666 void (*setup)(struct net_device *), 3667 unsigned int txqs, unsigned int rxqs); 3668#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3669 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3670 3671#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3672 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3673 count) 3674 3675int register_netdev(struct net_device *dev); 3676void unregister_netdev(struct net_device *dev); 3677 3678/* General hardware address lists handling functions */ 3679int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3680 struct netdev_hw_addr_list *from_list, int addr_len); 3681void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3682 struct netdev_hw_addr_list *from_list, int addr_len); 3683int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3684 struct net_device *dev, 3685 int (*sync)(struct net_device *, const unsigned char *), 3686 int (*unsync)(struct net_device *, 3687 const unsigned char *)); 3688void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3689 struct net_device *dev, 3690 int (*unsync)(struct net_device *, 3691 const unsigned char *)); 3692void __hw_addr_init(struct netdev_hw_addr_list *list); 3693 3694/* Functions used for device addresses handling */ 3695int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3696 unsigned char addr_type); 3697int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3698 unsigned char addr_type); 3699void dev_addr_flush(struct net_device *dev); 3700int dev_addr_init(struct net_device *dev); 3701 3702/* Functions used for unicast addresses handling */ 3703int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3704int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3705int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3706int dev_uc_sync(struct net_device *to, struct net_device *from); 3707int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3708void dev_uc_unsync(struct net_device *to, struct net_device *from); 3709void dev_uc_flush(struct net_device *dev); 3710void dev_uc_init(struct net_device *dev); 3711 3712/** 3713 * __dev_uc_sync - Synchonize device's unicast list 3714 * @dev: device to sync 3715 * @sync: function to call if address should be added 3716 * @unsync: function to call if address should be removed 3717 * 3718 * Add newly added addresses to the interface, and release 3719 * addresses that have been deleted. 3720 */ 3721static inline int __dev_uc_sync(struct net_device *dev, 3722 int (*sync)(struct net_device *, 3723 const unsigned char *), 3724 int (*unsync)(struct net_device *, 3725 const unsigned char *)) 3726{ 3727 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3728} 3729 3730/** 3731 * __dev_uc_unsync - Remove synchronized addresses from device 3732 * @dev: device to sync 3733 * @unsync: function to call if address should be removed 3734 * 3735 * Remove all addresses that were added to the device by dev_uc_sync(). 3736 */ 3737static inline void __dev_uc_unsync(struct net_device *dev, 3738 int (*unsync)(struct net_device *, 3739 const unsigned char *)) 3740{ 3741 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3742} 3743 3744/* Functions used for multicast addresses handling */ 3745int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3746int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3747int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3748int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3749int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3750int dev_mc_sync(struct net_device *to, struct net_device *from); 3751int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3752void dev_mc_unsync(struct net_device *to, struct net_device *from); 3753void dev_mc_flush(struct net_device *dev); 3754void dev_mc_init(struct net_device *dev); 3755 3756/** 3757 * __dev_mc_sync - Synchonize device's multicast list 3758 * @dev: device to sync 3759 * @sync: function to call if address should be added 3760 * @unsync: function to call if address should be removed 3761 * 3762 * Add newly added addresses to the interface, and release 3763 * addresses that have been deleted. 3764 */ 3765static inline int __dev_mc_sync(struct net_device *dev, 3766 int (*sync)(struct net_device *, 3767 const unsigned char *), 3768 int (*unsync)(struct net_device *, 3769 const unsigned char *)) 3770{ 3771 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3772} 3773 3774/** 3775 * __dev_mc_unsync - Remove synchronized addresses from device 3776 * @dev: device to sync 3777 * @unsync: function to call if address should be removed 3778 * 3779 * Remove all addresses that were added to the device by dev_mc_sync(). 3780 */ 3781static inline void __dev_mc_unsync(struct net_device *dev, 3782 int (*unsync)(struct net_device *, 3783 const unsigned char *)) 3784{ 3785 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3786} 3787 3788/* Functions used for secondary unicast and multicast support */ 3789void dev_set_rx_mode(struct net_device *dev); 3790void __dev_set_rx_mode(struct net_device *dev); 3791int dev_set_promiscuity(struct net_device *dev, int inc); 3792int dev_set_allmulti(struct net_device *dev, int inc); 3793void netdev_state_change(struct net_device *dev); 3794void netdev_notify_peers(struct net_device *dev); 3795void netdev_features_change(struct net_device *dev); 3796/* Load a device via the kmod */ 3797void dev_load(struct net *net, const char *name); 3798struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3799 struct rtnl_link_stats64 *storage); 3800void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3801 const struct net_device_stats *netdev_stats); 3802 3803extern int netdev_max_backlog; 3804extern int netdev_tstamp_prequeue; 3805extern int weight_p; 3806 3807bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3808struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3809 struct list_head **iter); 3810struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3811 struct list_head **iter); 3812 3813/* iterate through upper list, must be called under RCU read lock */ 3814#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3815 for (iter = &(dev)->adj_list.upper, \ 3816 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3817 updev; \ 3818 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3819 3820/* iterate through upper list, must be called under RCU read lock */ 3821#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3822 for (iter = &(dev)->all_adj_list.upper, \ 3823 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3824 updev; \ 3825 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3826 3827void *netdev_lower_get_next_private(struct net_device *dev, 3828 struct list_head **iter); 3829void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3830 struct list_head **iter); 3831 3832#define netdev_for_each_lower_private(dev, priv, iter) \ 3833 for (iter = (dev)->adj_list.lower.next, \ 3834 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3835 priv; \ 3836 priv = netdev_lower_get_next_private(dev, &(iter))) 3837 3838#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3839 for (iter = &(dev)->adj_list.lower, \ 3840 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3841 priv; \ 3842 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3843 3844void *netdev_lower_get_next(struct net_device *dev, 3845 struct list_head **iter); 3846 3847#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3848 for (iter = (dev)->adj_list.lower.next, \ 3849 ldev = netdev_lower_get_next(dev, &(iter)); \ 3850 ldev; \ 3851 ldev = netdev_lower_get_next(dev, &(iter))) 3852 3853struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3854 struct list_head **iter); 3855struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3856 struct list_head **iter); 3857 3858#define netdev_for_each_all_lower_dev(dev, ldev, iter) \ 3859 for (iter = (dev)->all_adj_list.lower.next, \ 3860 ldev = netdev_all_lower_get_next(dev, &(iter)); \ 3861 ldev; \ 3862 ldev = netdev_all_lower_get_next(dev, &(iter))) 3863 3864#define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \ 3865 for (iter = (dev)->all_adj_list.lower.next, \ 3866 ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \ 3867 ldev; \ 3868 ldev = netdev_all_lower_get_next_rcu(dev, &(iter))) 3869 3870void *netdev_adjacent_get_private(struct list_head *adj_list); 3871void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3872struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3873struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3874int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3875int netdev_master_upper_dev_link(struct net_device *dev, 3876 struct net_device *upper_dev, 3877 void *upper_priv, void *upper_info); 3878void netdev_upper_dev_unlink(struct net_device *dev, 3879 struct net_device *upper_dev); 3880void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3881void *netdev_lower_dev_get_private(struct net_device *dev, 3882 struct net_device *lower_dev); 3883void netdev_lower_state_changed(struct net_device *lower_dev, 3884 void *lower_state_info); 3885int netdev_default_l2upper_neigh_construct(struct net_device *dev, 3886 struct neighbour *n); 3887void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 3888 struct neighbour *n); 3889 3890/* RSS keys are 40 or 52 bytes long */ 3891#define NETDEV_RSS_KEY_LEN 52 3892extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3893void netdev_rss_key_fill(void *buffer, size_t len); 3894 3895int dev_get_nest_level(struct net_device *dev); 3896int skb_checksum_help(struct sk_buff *skb); 3897struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3898 netdev_features_t features, bool tx_path); 3899struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3900 netdev_features_t features); 3901 3902struct netdev_bonding_info { 3903 ifslave slave; 3904 ifbond master; 3905}; 3906 3907struct netdev_notifier_bonding_info { 3908 struct netdev_notifier_info info; /* must be first */ 3909 struct netdev_bonding_info bonding_info; 3910}; 3911 3912void netdev_bonding_info_change(struct net_device *dev, 3913 struct netdev_bonding_info *bonding_info); 3914 3915static inline 3916struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3917{ 3918 return __skb_gso_segment(skb, features, true); 3919} 3920__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3921 3922static inline bool can_checksum_protocol(netdev_features_t features, 3923 __be16 protocol) 3924{ 3925 if (protocol == htons(ETH_P_FCOE)) 3926 return !!(features & NETIF_F_FCOE_CRC); 3927 3928 /* Assume this is an IP checksum (not SCTP CRC) */ 3929 3930 if (features & NETIF_F_HW_CSUM) { 3931 /* Can checksum everything */ 3932 return true; 3933 } 3934 3935 switch (protocol) { 3936 case htons(ETH_P_IP): 3937 return !!(features & NETIF_F_IP_CSUM); 3938 case htons(ETH_P_IPV6): 3939 return !!(features & NETIF_F_IPV6_CSUM); 3940 default: 3941 return false; 3942 } 3943} 3944 3945/* Map an ethertype into IP protocol if possible */ 3946static inline int eproto_to_ipproto(int eproto) 3947{ 3948 switch (eproto) { 3949 case htons(ETH_P_IP): 3950 return IPPROTO_IP; 3951 case htons(ETH_P_IPV6): 3952 return IPPROTO_IPV6; 3953 default: 3954 return -1; 3955 } 3956} 3957 3958#ifdef CONFIG_BUG 3959void netdev_rx_csum_fault(struct net_device *dev); 3960#else 3961static inline void netdev_rx_csum_fault(struct net_device *dev) 3962{ 3963} 3964#endif 3965/* rx skb timestamps */ 3966void net_enable_timestamp(void); 3967void net_disable_timestamp(void); 3968 3969#ifdef CONFIG_PROC_FS 3970int __init dev_proc_init(void); 3971#else 3972#define dev_proc_init() 0 3973#endif 3974 3975static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3976 struct sk_buff *skb, struct net_device *dev, 3977 bool more) 3978{ 3979 skb->xmit_more = more ? 1 : 0; 3980 return ops->ndo_start_xmit(skb, dev); 3981} 3982 3983static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3984 struct netdev_queue *txq, bool more) 3985{ 3986 const struct net_device_ops *ops = dev->netdev_ops; 3987 int rc; 3988 3989 rc = __netdev_start_xmit(ops, skb, dev, more); 3990 if (rc == NETDEV_TX_OK) 3991 txq_trans_update(txq); 3992 3993 return rc; 3994} 3995 3996int netdev_class_create_file_ns(struct class_attribute *class_attr, 3997 const void *ns); 3998void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3999 const void *ns); 4000 4001static inline int netdev_class_create_file(struct class_attribute *class_attr) 4002{ 4003 return netdev_class_create_file_ns(class_attr, NULL); 4004} 4005 4006static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4007{ 4008 netdev_class_remove_file_ns(class_attr, NULL); 4009} 4010 4011extern struct kobj_ns_type_operations net_ns_type_operations; 4012 4013const char *netdev_drivername(const struct net_device *dev); 4014 4015void linkwatch_run_queue(void); 4016 4017static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4018 netdev_features_t f2) 4019{ 4020 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4021 if (f1 & NETIF_F_HW_CSUM) 4022 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4023 else 4024 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4025 } 4026 4027 return f1 & f2; 4028} 4029 4030static inline netdev_features_t netdev_get_wanted_features( 4031 struct net_device *dev) 4032{ 4033 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4034} 4035netdev_features_t netdev_increment_features(netdev_features_t all, 4036 netdev_features_t one, netdev_features_t mask); 4037 4038/* Allow TSO being used on stacked device : 4039 * Performing the GSO segmentation before last device 4040 * is a performance improvement. 4041 */ 4042static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4043 netdev_features_t mask) 4044{ 4045 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4046} 4047 4048int __netdev_update_features(struct net_device *dev); 4049void netdev_update_features(struct net_device *dev); 4050void netdev_change_features(struct net_device *dev); 4051 4052void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4053 struct net_device *dev); 4054 4055netdev_features_t passthru_features_check(struct sk_buff *skb, 4056 struct net_device *dev, 4057 netdev_features_t features); 4058netdev_features_t netif_skb_features(struct sk_buff *skb); 4059 4060static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4061{ 4062 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4063 4064 /* check flags correspondence */ 4065 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4066 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4067 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4068 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4069 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4070 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4071 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4072 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4073 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4074 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4075 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4076 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4077 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4078 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4079 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4080 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4081 4082 return (features & feature) == feature; 4083} 4084 4085static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4086{ 4087 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4088 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4089} 4090 4091static inline bool netif_needs_gso(struct sk_buff *skb, 4092 netdev_features_t features) 4093{ 4094 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4095 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4096 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4097} 4098 4099static inline void netif_set_gso_max_size(struct net_device *dev, 4100 unsigned int size) 4101{ 4102 dev->gso_max_size = size; 4103} 4104 4105static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4106 int pulled_hlen, u16 mac_offset, 4107 int mac_len) 4108{ 4109 skb->protocol = protocol; 4110 skb->encapsulation = 1; 4111 skb_push(skb, pulled_hlen); 4112 skb_reset_transport_header(skb); 4113 skb->mac_header = mac_offset; 4114 skb->network_header = skb->mac_header + mac_len; 4115 skb->mac_len = mac_len; 4116} 4117 4118static inline bool netif_is_macsec(const struct net_device *dev) 4119{ 4120 return dev->priv_flags & IFF_MACSEC; 4121} 4122 4123static inline bool netif_is_macvlan(const struct net_device *dev) 4124{ 4125 return dev->priv_flags & IFF_MACVLAN; 4126} 4127 4128static inline bool netif_is_macvlan_port(const struct net_device *dev) 4129{ 4130 return dev->priv_flags & IFF_MACVLAN_PORT; 4131} 4132 4133static inline bool netif_is_ipvlan(const struct net_device *dev) 4134{ 4135 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4136} 4137 4138static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4139{ 4140 return dev->priv_flags & IFF_IPVLAN_MASTER; 4141} 4142 4143static inline bool netif_is_bond_master(const struct net_device *dev) 4144{ 4145 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4146} 4147 4148static inline bool netif_is_bond_slave(const struct net_device *dev) 4149{ 4150 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4151} 4152 4153static inline bool netif_supports_nofcs(struct net_device *dev) 4154{ 4155 return dev->priv_flags & IFF_SUPP_NOFCS; 4156} 4157 4158static inline bool netif_is_l3_master(const struct net_device *dev) 4159{ 4160 return dev->priv_flags & IFF_L3MDEV_MASTER; 4161} 4162 4163static inline bool netif_is_l3_slave(const struct net_device *dev) 4164{ 4165 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4166} 4167 4168static inline bool netif_is_bridge_master(const struct net_device *dev) 4169{ 4170 return dev->priv_flags & IFF_EBRIDGE; 4171} 4172 4173static inline bool netif_is_bridge_port(const struct net_device *dev) 4174{ 4175 return dev->priv_flags & IFF_BRIDGE_PORT; 4176} 4177 4178static inline bool netif_is_ovs_master(const struct net_device *dev) 4179{ 4180 return dev->priv_flags & IFF_OPENVSWITCH; 4181} 4182 4183static inline bool netif_is_team_master(const struct net_device *dev) 4184{ 4185 return dev->priv_flags & IFF_TEAM; 4186} 4187 4188static inline bool netif_is_team_port(const struct net_device *dev) 4189{ 4190 return dev->priv_flags & IFF_TEAM_PORT; 4191} 4192 4193static inline bool netif_is_lag_master(const struct net_device *dev) 4194{ 4195 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4196} 4197 4198static inline bool netif_is_lag_port(const struct net_device *dev) 4199{ 4200 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4201} 4202 4203static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4204{ 4205 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4206} 4207 4208/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4209static inline void netif_keep_dst(struct net_device *dev) 4210{ 4211 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4212} 4213 4214/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4215static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4216{ 4217 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4218 return dev->priv_flags & IFF_MACSEC; 4219} 4220 4221extern struct pernet_operations __net_initdata loopback_net_ops; 4222 4223/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4224 4225/* netdev_printk helpers, similar to dev_printk */ 4226 4227static inline const char *netdev_name(const struct net_device *dev) 4228{ 4229 if (!dev->name[0] || strchr(dev->name, '%')) 4230 return "(unnamed net_device)"; 4231 return dev->name; 4232} 4233 4234static inline const char *netdev_reg_state(const struct net_device *dev) 4235{ 4236 switch (dev->reg_state) { 4237 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4238 case NETREG_REGISTERED: return ""; 4239 case NETREG_UNREGISTERING: return " (unregistering)"; 4240 case NETREG_UNREGISTERED: return " (unregistered)"; 4241 case NETREG_RELEASED: return " (released)"; 4242 case NETREG_DUMMY: return " (dummy)"; 4243 } 4244 4245 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4246 return " (unknown)"; 4247} 4248 4249__printf(3, 4) 4250void netdev_printk(const char *level, const struct net_device *dev, 4251 const char *format, ...); 4252__printf(2, 3) 4253void netdev_emerg(const struct net_device *dev, const char *format, ...); 4254__printf(2, 3) 4255void netdev_alert(const struct net_device *dev, const char *format, ...); 4256__printf(2, 3) 4257void netdev_crit(const struct net_device *dev, const char *format, ...); 4258__printf(2, 3) 4259void netdev_err(const struct net_device *dev, const char *format, ...); 4260__printf(2, 3) 4261void netdev_warn(const struct net_device *dev, const char *format, ...); 4262__printf(2, 3) 4263void netdev_notice(const struct net_device *dev, const char *format, ...); 4264__printf(2, 3) 4265void netdev_info(const struct net_device *dev, const char *format, ...); 4266 4267#define MODULE_ALIAS_NETDEV(device) \ 4268 MODULE_ALIAS("netdev-" device) 4269 4270#if defined(CONFIG_DYNAMIC_DEBUG) 4271#define netdev_dbg(__dev, format, args...) \ 4272do { \ 4273 dynamic_netdev_dbg(__dev, format, ##args); \ 4274} while (0) 4275#elif defined(DEBUG) 4276#define netdev_dbg(__dev, format, args...) \ 4277 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4278#else 4279#define netdev_dbg(__dev, format, args...) \ 4280({ \ 4281 if (0) \ 4282 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4283}) 4284#endif 4285 4286#if defined(VERBOSE_DEBUG) 4287#define netdev_vdbg netdev_dbg 4288#else 4289 4290#define netdev_vdbg(dev, format, args...) \ 4291({ \ 4292 if (0) \ 4293 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4294 0; \ 4295}) 4296#endif 4297 4298/* 4299 * netdev_WARN() acts like dev_printk(), but with the key difference 4300 * of using a WARN/WARN_ON to get the message out, including the 4301 * file/line information and a backtrace. 4302 */ 4303#define netdev_WARN(dev, format, args...) \ 4304 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4305 netdev_reg_state(dev), ##args) 4306 4307/* netif printk helpers, similar to netdev_printk */ 4308 4309#define netif_printk(priv, type, level, dev, fmt, args...) \ 4310do { \ 4311 if (netif_msg_##type(priv)) \ 4312 netdev_printk(level, (dev), fmt, ##args); \ 4313} while (0) 4314 4315#define netif_level(level, priv, type, dev, fmt, args...) \ 4316do { \ 4317 if (netif_msg_##type(priv)) \ 4318 netdev_##level(dev, fmt, ##args); \ 4319} while (0) 4320 4321#define netif_emerg(priv, type, dev, fmt, args...) \ 4322 netif_level(emerg, priv, type, dev, fmt, ##args) 4323#define netif_alert(priv, type, dev, fmt, args...) \ 4324 netif_level(alert, priv, type, dev, fmt, ##args) 4325#define netif_crit(priv, type, dev, fmt, args...) \ 4326 netif_level(crit, priv, type, dev, fmt, ##args) 4327#define netif_err(priv, type, dev, fmt, args...) \ 4328 netif_level(err, priv, type, dev, fmt, ##args) 4329#define netif_warn(priv, type, dev, fmt, args...) \ 4330 netif_level(warn, priv, type, dev, fmt, ##args) 4331#define netif_notice(priv, type, dev, fmt, args...) \ 4332 netif_level(notice, priv, type, dev, fmt, ##args) 4333#define netif_info(priv, type, dev, fmt, args...) \ 4334 netif_level(info, priv, type, dev, fmt, ##args) 4335 4336#if defined(CONFIG_DYNAMIC_DEBUG) 4337#define netif_dbg(priv, type, netdev, format, args...) \ 4338do { \ 4339 if (netif_msg_##type(priv)) \ 4340 dynamic_netdev_dbg(netdev, format, ##args); \ 4341} while (0) 4342#elif defined(DEBUG) 4343#define netif_dbg(priv, type, dev, format, args...) \ 4344 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4345#else 4346#define netif_dbg(priv, type, dev, format, args...) \ 4347({ \ 4348 if (0) \ 4349 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4350 0; \ 4351}) 4352#endif 4353 4354#if defined(VERBOSE_DEBUG) 4355#define netif_vdbg netif_dbg 4356#else 4357#define netif_vdbg(priv, type, dev, format, args...) \ 4358({ \ 4359 if (0) \ 4360 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4361 0; \ 4362}) 4363#endif 4364 4365/* 4366 * The list of packet types we will receive (as opposed to discard) 4367 * and the routines to invoke. 4368 * 4369 * Why 16. Because with 16 the only overlap we get on a hash of the 4370 * low nibble of the protocol value is RARP/SNAP/X.25. 4371 * 4372 * NOTE: That is no longer true with the addition of VLAN tags. Not 4373 * sure which should go first, but I bet it won't make much 4374 * difference if we are running VLANs. The good news is that 4375 * this protocol won't be in the list unless compiled in, so 4376 * the average user (w/out VLANs) will not be adversely affected. 4377 * --BLG 4378 * 4379 * 0800 IP 4380 * 8100 802.1Q VLAN 4381 * 0001 802.3 4382 * 0002 AX.25 4383 * 0004 802.2 4384 * 8035 RARP 4385 * 0005 SNAP 4386 * 0805 X.25 4387 * 0806 ARP 4388 * 8137 IPX 4389 * 0009 Localtalk 4390 * 86DD IPv6 4391 */ 4392#define PTYPE_HASH_SIZE (16) 4393#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4394 4395#endif /* _LINUX_NETDEVICE_H */