at v4.8 40 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 67extern char * const migratetype_names[MIGRATE_TYPES]; 68 69#ifdef CONFIG_CMA 70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 71# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 72#else 73# define is_migrate_cma(migratetype) false 74# define is_migrate_cma_page(_page) false 75#endif 76 77#define for_each_migratetype_order(order, type) \ 78 for (order = 0; order < MAX_ORDER; order++) \ 79 for (type = 0; type < MIGRATE_TYPES; type++) 80 81extern int page_group_by_mobility_disabled; 82 83#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 84#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 85 86#define get_pageblock_migratetype(page) \ 87 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 88 PB_migrate_end, MIGRATETYPE_MASK) 89 90struct free_area { 91 struct list_head free_list[MIGRATE_TYPES]; 92 unsigned long nr_free; 93}; 94 95struct pglist_data; 96 97/* 98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 99 * So add a wild amount of padding here to ensure that they fall into separate 100 * cachelines. There are very few zone structures in the machine, so space 101 * consumption is not a concern here. 102 */ 103#if defined(CONFIG_SMP) 104struct zone_padding { 105 char x[0]; 106} ____cacheline_internodealigned_in_smp; 107#define ZONE_PADDING(name) struct zone_padding name; 108#else 109#define ZONE_PADDING(name) 110#endif 111 112enum zone_stat_item { 113 /* First 128 byte cacheline (assuming 64 bit words) */ 114 NR_FREE_PAGES, 115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 117 NR_ZONE_ACTIVE_ANON, 118 NR_ZONE_INACTIVE_FILE, 119 NR_ZONE_ACTIVE_FILE, 120 NR_ZONE_UNEVICTABLE, 121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 123 NR_SLAB_RECLAIMABLE, 124 NR_SLAB_UNRECLAIMABLE, 125 NR_PAGETABLE, /* used for pagetables */ 126 NR_KERNEL_STACK_KB, /* measured in KiB */ 127 /* Second 128 byte cacheline */ 128 NR_BOUNCE, 129#if IS_ENABLED(CONFIG_ZSMALLOC) 130 NR_ZSPAGES, /* allocated in zsmalloc */ 131#endif 132#ifdef CONFIG_NUMA 133 NUMA_HIT, /* allocated in intended node */ 134 NUMA_MISS, /* allocated in non intended node */ 135 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 137 NUMA_LOCAL, /* allocation from local node */ 138 NUMA_OTHER, /* allocation from other node */ 139#endif 140 NR_FREE_CMA_PAGES, 141 NR_VM_ZONE_STAT_ITEMS }; 142 143enum node_stat_item { 144 NR_LRU_BASE, 145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 146 NR_ACTIVE_ANON, /* " " " " " */ 147 NR_INACTIVE_FILE, /* " " " " " */ 148 NR_ACTIVE_FILE, /* " " " " " */ 149 NR_UNEVICTABLE, /* " " " " " */ 150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 152 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 153 WORKINGSET_REFAULT, 154 WORKINGSET_ACTIVATE, 155 WORKINGSET_NODERECLAIM, 156 NR_ANON_MAPPED, /* Mapped anonymous pages */ 157 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 158 only modified from process context */ 159 NR_FILE_PAGES, 160 NR_FILE_DIRTY, 161 NR_WRITEBACK, 162 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 163 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 164 NR_SHMEM_THPS, 165 NR_SHMEM_PMDMAPPED, 166 NR_ANON_THPS, 167 NR_UNSTABLE_NFS, /* NFS unstable pages */ 168 NR_VMSCAN_WRITE, 169 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 170 NR_DIRTIED, /* page dirtyings since bootup */ 171 NR_WRITTEN, /* page writings since bootup */ 172 NR_VM_NODE_STAT_ITEMS 173}; 174 175/* 176 * We do arithmetic on the LRU lists in various places in the code, 177 * so it is important to keep the active lists LRU_ACTIVE higher in 178 * the array than the corresponding inactive lists, and to keep 179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 180 * 181 * This has to be kept in sync with the statistics in zone_stat_item 182 * above and the descriptions in vmstat_text in mm/vmstat.c 183 */ 184#define LRU_BASE 0 185#define LRU_ACTIVE 1 186#define LRU_FILE 2 187 188enum lru_list { 189 LRU_INACTIVE_ANON = LRU_BASE, 190 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 191 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 192 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 193 LRU_UNEVICTABLE, 194 NR_LRU_LISTS 195}; 196 197#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 198 199#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 200 201static inline int is_file_lru(enum lru_list lru) 202{ 203 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 204} 205 206static inline int is_active_lru(enum lru_list lru) 207{ 208 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 209} 210 211struct zone_reclaim_stat { 212 /* 213 * The pageout code in vmscan.c keeps track of how many of the 214 * mem/swap backed and file backed pages are referenced. 215 * The higher the rotated/scanned ratio, the more valuable 216 * that cache is. 217 * 218 * The anon LRU stats live in [0], file LRU stats in [1] 219 */ 220 unsigned long recent_rotated[2]; 221 unsigned long recent_scanned[2]; 222}; 223 224struct lruvec { 225 struct list_head lists[NR_LRU_LISTS]; 226 struct zone_reclaim_stat reclaim_stat; 227 /* Evictions & activations on the inactive file list */ 228 atomic_long_t inactive_age; 229#ifdef CONFIG_MEMCG 230 struct pglist_data *pgdat; 231#endif 232}; 233 234/* Mask used at gathering information at once (see memcontrol.c) */ 235#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 236#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 237#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 238 239/* Isolate clean file */ 240#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 241/* Isolate unmapped file */ 242#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 243/* Isolate for asynchronous migration */ 244#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 245/* Isolate unevictable pages */ 246#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 247 248/* LRU Isolation modes. */ 249typedef unsigned __bitwise__ isolate_mode_t; 250 251enum zone_watermarks { 252 WMARK_MIN, 253 WMARK_LOW, 254 WMARK_HIGH, 255 NR_WMARK 256}; 257 258#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 259#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 260#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 261 262struct per_cpu_pages { 263 int count; /* number of pages in the list */ 264 int high; /* high watermark, emptying needed */ 265 int batch; /* chunk size for buddy add/remove */ 266 267 /* Lists of pages, one per migrate type stored on the pcp-lists */ 268 struct list_head lists[MIGRATE_PCPTYPES]; 269}; 270 271struct per_cpu_pageset { 272 struct per_cpu_pages pcp; 273#ifdef CONFIG_NUMA 274 s8 expire; 275#endif 276#ifdef CONFIG_SMP 277 s8 stat_threshold; 278 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 279#endif 280}; 281 282struct per_cpu_nodestat { 283 s8 stat_threshold; 284 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 285}; 286 287#endif /* !__GENERATING_BOUNDS.H */ 288 289enum zone_type { 290#ifdef CONFIG_ZONE_DMA 291 /* 292 * ZONE_DMA is used when there are devices that are not able 293 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 294 * carve out the portion of memory that is needed for these devices. 295 * The range is arch specific. 296 * 297 * Some examples 298 * 299 * Architecture Limit 300 * --------------------------- 301 * parisc, ia64, sparc <4G 302 * s390 <2G 303 * arm Various 304 * alpha Unlimited or 0-16MB. 305 * 306 * i386, x86_64 and multiple other arches 307 * <16M. 308 */ 309 ZONE_DMA, 310#endif 311#ifdef CONFIG_ZONE_DMA32 312 /* 313 * x86_64 needs two ZONE_DMAs because it supports devices that are 314 * only able to do DMA to the lower 16M but also 32 bit devices that 315 * can only do DMA areas below 4G. 316 */ 317 ZONE_DMA32, 318#endif 319 /* 320 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 321 * performed on pages in ZONE_NORMAL if the DMA devices support 322 * transfers to all addressable memory. 323 */ 324 ZONE_NORMAL, 325#ifdef CONFIG_HIGHMEM 326 /* 327 * A memory area that is only addressable by the kernel through 328 * mapping portions into its own address space. This is for example 329 * used by i386 to allow the kernel to address the memory beyond 330 * 900MB. The kernel will set up special mappings (page 331 * table entries on i386) for each page that the kernel needs to 332 * access. 333 */ 334 ZONE_HIGHMEM, 335#endif 336 ZONE_MOVABLE, 337#ifdef CONFIG_ZONE_DEVICE 338 ZONE_DEVICE, 339#endif 340 __MAX_NR_ZONES 341 342}; 343 344#ifndef __GENERATING_BOUNDS_H 345 346struct zone { 347 /* Read-mostly fields */ 348 349 /* zone watermarks, access with *_wmark_pages(zone) macros */ 350 unsigned long watermark[NR_WMARK]; 351 352 unsigned long nr_reserved_highatomic; 353 354 /* 355 * We don't know if the memory that we're going to allocate will be 356 * freeable or/and it will be released eventually, so to avoid totally 357 * wasting several GB of ram we must reserve some of the lower zone 358 * memory (otherwise we risk to run OOM on the lower zones despite 359 * there being tons of freeable ram on the higher zones). This array is 360 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 361 * changes. 362 */ 363 long lowmem_reserve[MAX_NR_ZONES]; 364 365#ifdef CONFIG_NUMA 366 int node; 367#endif 368 struct pglist_data *zone_pgdat; 369 struct per_cpu_pageset __percpu *pageset; 370 371#ifndef CONFIG_SPARSEMEM 372 /* 373 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 374 * In SPARSEMEM, this map is stored in struct mem_section 375 */ 376 unsigned long *pageblock_flags; 377#endif /* CONFIG_SPARSEMEM */ 378 379 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 380 unsigned long zone_start_pfn; 381 382 /* 383 * spanned_pages is the total pages spanned by the zone, including 384 * holes, which is calculated as: 385 * spanned_pages = zone_end_pfn - zone_start_pfn; 386 * 387 * present_pages is physical pages existing within the zone, which 388 * is calculated as: 389 * present_pages = spanned_pages - absent_pages(pages in holes); 390 * 391 * managed_pages is present pages managed by the buddy system, which 392 * is calculated as (reserved_pages includes pages allocated by the 393 * bootmem allocator): 394 * managed_pages = present_pages - reserved_pages; 395 * 396 * So present_pages may be used by memory hotplug or memory power 397 * management logic to figure out unmanaged pages by checking 398 * (present_pages - managed_pages). And managed_pages should be used 399 * by page allocator and vm scanner to calculate all kinds of watermarks 400 * and thresholds. 401 * 402 * Locking rules: 403 * 404 * zone_start_pfn and spanned_pages are protected by span_seqlock. 405 * It is a seqlock because it has to be read outside of zone->lock, 406 * and it is done in the main allocator path. But, it is written 407 * quite infrequently. 408 * 409 * The span_seq lock is declared along with zone->lock because it is 410 * frequently read in proximity to zone->lock. It's good to 411 * give them a chance of being in the same cacheline. 412 * 413 * Write access to present_pages at runtime should be protected by 414 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 415 * present_pages should get_online_mems() to get a stable value. 416 * 417 * Read access to managed_pages should be safe because it's unsigned 418 * long. Write access to zone->managed_pages and totalram_pages are 419 * protected by managed_page_count_lock at runtime. Idealy only 420 * adjust_managed_page_count() should be used instead of directly 421 * touching zone->managed_pages and totalram_pages. 422 */ 423 unsigned long managed_pages; 424 unsigned long spanned_pages; 425 unsigned long present_pages; 426 427 const char *name; 428 429#ifdef CONFIG_MEMORY_ISOLATION 430 /* 431 * Number of isolated pageblock. It is used to solve incorrect 432 * freepage counting problem due to racy retrieving migratetype 433 * of pageblock. Protected by zone->lock. 434 */ 435 unsigned long nr_isolate_pageblock; 436#endif 437 438#ifdef CONFIG_MEMORY_HOTPLUG 439 /* see spanned/present_pages for more description */ 440 seqlock_t span_seqlock; 441#endif 442 443 /* 444 * wait_table -- the array holding the hash table 445 * wait_table_hash_nr_entries -- the size of the hash table array 446 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 447 * 448 * The purpose of all these is to keep track of the people 449 * waiting for a page to become available and make them 450 * runnable again when possible. The trouble is that this 451 * consumes a lot of space, especially when so few things 452 * wait on pages at a given time. So instead of using 453 * per-page waitqueues, we use a waitqueue hash table. 454 * 455 * The bucket discipline is to sleep on the same queue when 456 * colliding and wake all in that wait queue when removing. 457 * When something wakes, it must check to be sure its page is 458 * truly available, a la thundering herd. The cost of a 459 * collision is great, but given the expected load of the 460 * table, they should be so rare as to be outweighed by the 461 * benefits from the saved space. 462 * 463 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 464 * primary users of these fields, and in mm/page_alloc.c 465 * free_area_init_core() performs the initialization of them. 466 */ 467 wait_queue_head_t *wait_table; 468 unsigned long wait_table_hash_nr_entries; 469 unsigned long wait_table_bits; 470 471 /* Write-intensive fields used from the page allocator */ 472 ZONE_PADDING(_pad1_) 473 474 /* free areas of different sizes */ 475 struct free_area free_area[MAX_ORDER]; 476 477 /* zone flags, see below */ 478 unsigned long flags; 479 480 /* Primarily protects free_area */ 481 spinlock_t lock; 482 483 /* Write-intensive fields used by compaction and vmstats. */ 484 ZONE_PADDING(_pad2_) 485 486 /* 487 * When free pages are below this point, additional steps are taken 488 * when reading the number of free pages to avoid per-cpu counter 489 * drift allowing watermarks to be breached 490 */ 491 unsigned long percpu_drift_mark; 492 493#if defined CONFIG_COMPACTION || defined CONFIG_CMA 494 /* pfn where compaction free scanner should start */ 495 unsigned long compact_cached_free_pfn; 496 /* pfn where async and sync compaction migration scanner should start */ 497 unsigned long compact_cached_migrate_pfn[2]; 498#endif 499 500#ifdef CONFIG_COMPACTION 501 /* 502 * On compaction failure, 1<<compact_defer_shift compactions 503 * are skipped before trying again. The number attempted since 504 * last failure is tracked with compact_considered. 505 */ 506 unsigned int compact_considered; 507 unsigned int compact_defer_shift; 508 int compact_order_failed; 509#endif 510 511#if defined CONFIG_COMPACTION || defined CONFIG_CMA 512 /* Set to true when the PG_migrate_skip bits should be cleared */ 513 bool compact_blockskip_flush; 514#endif 515 516 bool contiguous; 517 518 ZONE_PADDING(_pad3_) 519 /* Zone statistics */ 520 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 521} ____cacheline_internodealigned_in_smp; 522 523enum pgdat_flags { 524 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 525 * a congested BDI 526 */ 527 PGDAT_DIRTY, /* reclaim scanning has recently found 528 * many dirty file pages at the tail 529 * of the LRU. 530 */ 531 PGDAT_WRITEBACK, /* reclaim scanning has recently found 532 * many pages under writeback 533 */ 534 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 535}; 536 537static inline unsigned long zone_end_pfn(const struct zone *zone) 538{ 539 return zone->zone_start_pfn + zone->spanned_pages; 540} 541 542static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 543{ 544 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 545} 546 547static inline bool zone_is_initialized(struct zone *zone) 548{ 549 return !!zone->wait_table; 550} 551 552static inline bool zone_is_empty(struct zone *zone) 553{ 554 return zone->spanned_pages == 0; 555} 556 557/* 558 * The "priority" of VM scanning is how much of the queues we will scan in one 559 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 560 * queues ("queue_length >> 12") during an aging round. 561 */ 562#define DEF_PRIORITY 12 563 564/* Maximum number of zones on a zonelist */ 565#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 566 567enum { 568 ZONELIST_FALLBACK, /* zonelist with fallback */ 569#ifdef CONFIG_NUMA 570 /* 571 * The NUMA zonelists are doubled because we need zonelists that 572 * restrict the allocations to a single node for __GFP_THISNODE. 573 */ 574 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 575#endif 576 MAX_ZONELISTS 577}; 578 579/* 580 * This struct contains information about a zone in a zonelist. It is stored 581 * here to avoid dereferences into large structures and lookups of tables 582 */ 583struct zoneref { 584 struct zone *zone; /* Pointer to actual zone */ 585 int zone_idx; /* zone_idx(zoneref->zone) */ 586}; 587 588/* 589 * One allocation request operates on a zonelist. A zonelist 590 * is a list of zones, the first one is the 'goal' of the 591 * allocation, the other zones are fallback zones, in decreasing 592 * priority. 593 * 594 * To speed the reading of the zonelist, the zonerefs contain the zone index 595 * of the entry being read. Helper functions to access information given 596 * a struct zoneref are 597 * 598 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 599 * zonelist_zone_idx() - Return the index of the zone for an entry 600 * zonelist_node_idx() - Return the index of the node for an entry 601 */ 602struct zonelist { 603 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 604}; 605 606#ifndef CONFIG_DISCONTIGMEM 607/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 608extern struct page *mem_map; 609#endif 610 611/* 612 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 613 * (mostly NUMA machines?) to denote a higher-level memory zone than the 614 * zone denotes. 615 * 616 * On NUMA machines, each NUMA node would have a pg_data_t to describe 617 * it's memory layout. 618 * 619 * Memory statistics and page replacement data structures are maintained on a 620 * per-zone basis. 621 */ 622struct bootmem_data; 623typedef struct pglist_data { 624 struct zone node_zones[MAX_NR_ZONES]; 625 struct zonelist node_zonelists[MAX_ZONELISTS]; 626 int nr_zones; 627#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 628 struct page *node_mem_map; 629#ifdef CONFIG_PAGE_EXTENSION 630 struct page_ext *node_page_ext; 631#endif 632#endif 633#ifndef CONFIG_NO_BOOTMEM 634 struct bootmem_data *bdata; 635#endif 636#ifdef CONFIG_MEMORY_HOTPLUG 637 /* 638 * Must be held any time you expect node_start_pfn, node_present_pages 639 * or node_spanned_pages stay constant. Holding this will also 640 * guarantee that any pfn_valid() stays that way. 641 * 642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 644 * 645 * Nests above zone->lock and zone->span_seqlock 646 */ 647 spinlock_t node_size_lock; 648#endif 649 unsigned long node_start_pfn; 650 unsigned long node_present_pages; /* total number of physical pages */ 651 unsigned long node_spanned_pages; /* total size of physical page 652 range, including holes */ 653 int node_id; 654 wait_queue_head_t kswapd_wait; 655 wait_queue_head_t pfmemalloc_wait; 656 struct task_struct *kswapd; /* Protected by 657 mem_hotplug_begin/end() */ 658 int kswapd_order; 659 enum zone_type kswapd_classzone_idx; 660 661#ifdef CONFIG_COMPACTION 662 int kcompactd_max_order; 663 enum zone_type kcompactd_classzone_idx; 664 wait_queue_head_t kcompactd_wait; 665 struct task_struct *kcompactd; 666#endif 667#ifdef CONFIG_NUMA_BALANCING 668 /* Lock serializing the migrate rate limiting window */ 669 spinlock_t numabalancing_migrate_lock; 670 671 /* Rate limiting time interval */ 672 unsigned long numabalancing_migrate_next_window; 673 674 /* Number of pages migrated during the rate limiting time interval */ 675 unsigned long numabalancing_migrate_nr_pages; 676#endif 677 /* 678 * This is a per-node reserve of pages that are not available 679 * to userspace allocations. 680 */ 681 unsigned long totalreserve_pages; 682 683#ifdef CONFIG_NUMA 684 /* 685 * zone reclaim becomes active if more unmapped pages exist. 686 */ 687 unsigned long min_unmapped_pages; 688 unsigned long min_slab_pages; 689#endif /* CONFIG_NUMA */ 690 691 /* Write-intensive fields used by page reclaim */ 692 ZONE_PADDING(_pad1_) 693 spinlock_t lru_lock; 694 695#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 696 /* 697 * If memory initialisation on large machines is deferred then this 698 * is the first PFN that needs to be initialised. 699 */ 700 unsigned long first_deferred_pfn; 701#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 702 703#ifdef CONFIG_TRANSPARENT_HUGEPAGE 704 spinlock_t split_queue_lock; 705 struct list_head split_queue; 706 unsigned long split_queue_len; 707#endif 708 709 /* Fields commonly accessed by the page reclaim scanner */ 710 struct lruvec lruvec; 711 712 /* 713 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 714 * this node's LRU. Maintained by the pageout code. 715 */ 716 unsigned int inactive_ratio; 717 718 unsigned long flags; 719 720 ZONE_PADDING(_pad2_) 721 722 /* Per-node vmstats */ 723 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 724 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 725} pg_data_t; 726 727#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 728#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 729#ifdef CONFIG_FLAT_NODE_MEM_MAP 730#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 731#else 732#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 733#endif 734#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 735 736#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 737#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 738static inline spinlock_t *zone_lru_lock(struct zone *zone) 739{ 740 return &zone->zone_pgdat->lru_lock; 741} 742 743static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 744{ 745 return &pgdat->lruvec; 746} 747 748static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 749{ 750 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 751} 752 753static inline bool pgdat_is_empty(pg_data_t *pgdat) 754{ 755 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 756} 757 758static inline int zone_id(const struct zone *zone) 759{ 760 struct pglist_data *pgdat = zone->zone_pgdat; 761 762 return zone - pgdat->node_zones; 763} 764 765#ifdef CONFIG_ZONE_DEVICE 766static inline bool is_dev_zone(const struct zone *zone) 767{ 768 return zone_id(zone) == ZONE_DEVICE; 769} 770#else 771static inline bool is_dev_zone(const struct zone *zone) 772{ 773 return false; 774} 775#endif 776 777#include <linux/memory_hotplug.h> 778 779extern struct mutex zonelists_mutex; 780void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 781void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 782bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 783 int classzone_idx, unsigned int alloc_flags, 784 long free_pages); 785bool zone_watermark_ok(struct zone *z, unsigned int order, 786 unsigned long mark, int classzone_idx, 787 unsigned int alloc_flags); 788bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 789 unsigned long mark, int classzone_idx); 790enum memmap_context { 791 MEMMAP_EARLY, 792 MEMMAP_HOTPLUG, 793}; 794extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 795 unsigned long size); 796 797extern void lruvec_init(struct lruvec *lruvec); 798 799static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 800{ 801#ifdef CONFIG_MEMCG 802 return lruvec->pgdat; 803#else 804 return container_of(lruvec, struct pglist_data, lruvec); 805#endif 806} 807 808extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru); 809 810#ifdef CONFIG_HAVE_MEMORY_PRESENT 811void memory_present(int nid, unsigned long start, unsigned long end); 812#else 813static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 814#endif 815 816#ifdef CONFIG_HAVE_MEMORYLESS_NODES 817int local_memory_node(int node_id); 818#else 819static inline int local_memory_node(int node_id) { return node_id; }; 820#endif 821 822#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 823unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 824#endif 825 826/* 827 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 828 */ 829#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 830 831/* 832 * Returns true if a zone has pages managed by the buddy allocator. 833 * All the reclaim decisions have to use this function rather than 834 * populated_zone(). If the whole zone is reserved then we can easily 835 * end up with populated_zone() && !managed_zone(). 836 */ 837static inline bool managed_zone(struct zone *zone) 838{ 839 return zone->managed_pages; 840} 841 842/* Returns true if a zone has memory */ 843static inline bool populated_zone(struct zone *zone) 844{ 845 return zone->present_pages; 846} 847 848extern int movable_zone; 849 850#ifdef CONFIG_HIGHMEM 851static inline int zone_movable_is_highmem(void) 852{ 853#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 854 return movable_zone == ZONE_HIGHMEM; 855#else 856 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 857#endif 858} 859#endif 860 861static inline int is_highmem_idx(enum zone_type idx) 862{ 863#ifdef CONFIG_HIGHMEM 864 return (idx == ZONE_HIGHMEM || 865 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 866#else 867 return 0; 868#endif 869} 870 871/** 872 * is_highmem - helper function to quickly check if a struct zone is a 873 * highmem zone or not. This is an attempt to keep references 874 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 875 * @zone - pointer to struct zone variable 876 */ 877static inline int is_highmem(struct zone *zone) 878{ 879#ifdef CONFIG_HIGHMEM 880 return is_highmem_idx(zone_idx(zone)); 881#else 882 return 0; 883#endif 884} 885 886/* These two functions are used to setup the per zone pages min values */ 887struct ctl_table; 888int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 889 void __user *, size_t *, loff_t *); 890int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 891 void __user *, size_t *, loff_t *); 892extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 893int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 894 void __user *, size_t *, loff_t *); 895int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 896 void __user *, size_t *, loff_t *); 897int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 898 void __user *, size_t *, loff_t *); 899int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 900 void __user *, size_t *, loff_t *); 901 902extern int numa_zonelist_order_handler(struct ctl_table *, int, 903 void __user *, size_t *, loff_t *); 904extern char numa_zonelist_order[]; 905#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 906 907#ifndef CONFIG_NEED_MULTIPLE_NODES 908 909extern struct pglist_data contig_page_data; 910#define NODE_DATA(nid) (&contig_page_data) 911#define NODE_MEM_MAP(nid) mem_map 912 913#else /* CONFIG_NEED_MULTIPLE_NODES */ 914 915#include <asm/mmzone.h> 916 917#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 918 919extern struct pglist_data *first_online_pgdat(void); 920extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 921extern struct zone *next_zone(struct zone *zone); 922 923/** 924 * for_each_online_pgdat - helper macro to iterate over all online nodes 925 * @pgdat - pointer to a pg_data_t variable 926 */ 927#define for_each_online_pgdat(pgdat) \ 928 for (pgdat = first_online_pgdat(); \ 929 pgdat; \ 930 pgdat = next_online_pgdat(pgdat)) 931/** 932 * for_each_zone - helper macro to iterate over all memory zones 933 * @zone - pointer to struct zone variable 934 * 935 * The user only needs to declare the zone variable, for_each_zone 936 * fills it in. 937 */ 938#define for_each_zone(zone) \ 939 for (zone = (first_online_pgdat())->node_zones; \ 940 zone; \ 941 zone = next_zone(zone)) 942 943#define for_each_populated_zone(zone) \ 944 for (zone = (first_online_pgdat())->node_zones; \ 945 zone; \ 946 zone = next_zone(zone)) \ 947 if (!populated_zone(zone)) \ 948 ; /* do nothing */ \ 949 else 950 951static inline struct zone *zonelist_zone(struct zoneref *zoneref) 952{ 953 return zoneref->zone; 954} 955 956static inline int zonelist_zone_idx(struct zoneref *zoneref) 957{ 958 return zoneref->zone_idx; 959} 960 961static inline int zonelist_node_idx(struct zoneref *zoneref) 962{ 963#ifdef CONFIG_NUMA 964 /* zone_to_nid not available in this context */ 965 return zoneref->zone->node; 966#else 967 return 0; 968#endif /* CONFIG_NUMA */ 969} 970 971struct zoneref *__next_zones_zonelist(struct zoneref *z, 972 enum zone_type highest_zoneidx, 973 nodemask_t *nodes); 974 975/** 976 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 977 * @z - The cursor used as a starting point for the search 978 * @highest_zoneidx - The zone index of the highest zone to return 979 * @nodes - An optional nodemask to filter the zonelist with 980 * 981 * This function returns the next zone at or below a given zone index that is 982 * within the allowed nodemask using a cursor as the starting point for the 983 * search. The zoneref returned is a cursor that represents the current zone 984 * being examined. It should be advanced by one before calling 985 * next_zones_zonelist again. 986 */ 987static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 988 enum zone_type highest_zoneidx, 989 nodemask_t *nodes) 990{ 991 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 992 return z; 993 return __next_zones_zonelist(z, highest_zoneidx, nodes); 994} 995 996/** 997 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 998 * @zonelist - The zonelist to search for a suitable zone 999 * @highest_zoneidx - The zone index of the highest zone to return 1000 * @nodes - An optional nodemask to filter the zonelist with 1001 * @zone - The first suitable zone found is returned via this parameter 1002 * 1003 * This function returns the first zone at or below a given zone index that is 1004 * within the allowed nodemask. The zoneref returned is a cursor that can be 1005 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1006 * one before calling. 1007 */ 1008static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1009 enum zone_type highest_zoneidx, 1010 nodemask_t *nodes) 1011{ 1012 return next_zones_zonelist(zonelist->_zonerefs, 1013 highest_zoneidx, nodes); 1014} 1015 1016/** 1017 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1018 * @zone - The current zone in the iterator 1019 * @z - The current pointer within zonelist->zones being iterated 1020 * @zlist - The zonelist being iterated 1021 * @highidx - The zone index of the highest zone to return 1022 * @nodemask - Nodemask allowed by the allocator 1023 * 1024 * This iterator iterates though all zones at or below a given zone index and 1025 * within a given nodemask 1026 */ 1027#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1028 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1029 zone; \ 1030 z = next_zones_zonelist(++z, highidx, nodemask), \ 1031 zone = zonelist_zone(z)) 1032 1033#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1034 for (zone = z->zone; \ 1035 zone; \ 1036 z = next_zones_zonelist(++z, highidx, nodemask), \ 1037 zone = zonelist_zone(z)) 1038 1039 1040/** 1041 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1042 * @zone - The current zone in the iterator 1043 * @z - The current pointer within zonelist->zones being iterated 1044 * @zlist - The zonelist being iterated 1045 * @highidx - The zone index of the highest zone to return 1046 * 1047 * This iterator iterates though all zones at or below a given zone index. 1048 */ 1049#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1050 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1051 1052#ifdef CONFIG_SPARSEMEM 1053#include <asm/sparsemem.h> 1054#endif 1055 1056#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1057 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1058static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1059{ 1060 return 0; 1061} 1062#endif 1063 1064#ifdef CONFIG_FLATMEM 1065#define pfn_to_nid(pfn) (0) 1066#endif 1067 1068#ifdef CONFIG_SPARSEMEM 1069 1070/* 1071 * SECTION_SHIFT #bits space required to store a section # 1072 * 1073 * PA_SECTION_SHIFT physical address to/from section number 1074 * PFN_SECTION_SHIFT pfn to/from section number 1075 */ 1076#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1077#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1078 1079#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1080 1081#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1082#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1083 1084#define SECTION_BLOCKFLAGS_BITS \ 1085 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1086 1087#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1088#error Allocator MAX_ORDER exceeds SECTION_SIZE 1089#endif 1090 1091#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1092#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1093 1094#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1095#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1096 1097struct page; 1098struct page_ext; 1099struct mem_section { 1100 /* 1101 * This is, logically, a pointer to an array of struct 1102 * pages. However, it is stored with some other magic. 1103 * (see sparse.c::sparse_init_one_section()) 1104 * 1105 * Additionally during early boot we encode node id of 1106 * the location of the section here to guide allocation. 1107 * (see sparse.c::memory_present()) 1108 * 1109 * Making it a UL at least makes someone do a cast 1110 * before using it wrong. 1111 */ 1112 unsigned long section_mem_map; 1113 1114 /* See declaration of similar field in struct zone */ 1115 unsigned long *pageblock_flags; 1116#ifdef CONFIG_PAGE_EXTENSION 1117 /* 1118 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1119 * section. (see page_ext.h about this.) 1120 */ 1121 struct page_ext *page_ext; 1122 unsigned long pad; 1123#endif 1124 /* 1125 * WARNING: mem_section must be a power-of-2 in size for the 1126 * calculation and use of SECTION_ROOT_MASK to make sense. 1127 */ 1128}; 1129 1130#ifdef CONFIG_SPARSEMEM_EXTREME 1131#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1132#else 1133#define SECTIONS_PER_ROOT 1 1134#endif 1135 1136#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1137#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1138#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1139 1140#ifdef CONFIG_SPARSEMEM_EXTREME 1141extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1142#else 1143extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1144#endif 1145 1146static inline struct mem_section *__nr_to_section(unsigned long nr) 1147{ 1148 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1149 return NULL; 1150 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1151} 1152extern int __section_nr(struct mem_section* ms); 1153extern unsigned long usemap_size(void); 1154 1155/* 1156 * We use the lower bits of the mem_map pointer to store 1157 * a little bit of information. There should be at least 1158 * 3 bits here due to 32-bit alignment. 1159 */ 1160#define SECTION_MARKED_PRESENT (1UL<<0) 1161#define SECTION_HAS_MEM_MAP (1UL<<1) 1162#define SECTION_MAP_LAST_BIT (1UL<<2) 1163#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1164#define SECTION_NID_SHIFT 2 1165 1166static inline struct page *__section_mem_map_addr(struct mem_section *section) 1167{ 1168 unsigned long map = section->section_mem_map; 1169 map &= SECTION_MAP_MASK; 1170 return (struct page *)map; 1171} 1172 1173static inline int present_section(struct mem_section *section) 1174{ 1175 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1176} 1177 1178static inline int present_section_nr(unsigned long nr) 1179{ 1180 return present_section(__nr_to_section(nr)); 1181} 1182 1183static inline int valid_section(struct mem_section *section) 1184{ 1185 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1186} 1187 1188static inline int valid_section_nr(unsigned long nr) 1189{ 1190 return valid_section(__nr_to_section(nr)); 1191} 1192 1193static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1194{ 1195 return __nr_to_section(pfn_to_section_nr(pfn)); 1196} 1197 1198#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1199static inline int pfn_valid(unsigned long pfn) 1200{ 1201 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1202 return 0; 1203 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1204} 1205#endif 1206 1207static inline int pfn_present(unsigned long pfn) 1208{ 1209 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1210 return 0; 1211 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1212} 1213 1214/* 1215 * These are _only_ used during initialisation, therefore they 1216 * can use __initdata ... They could have names to indicate 1217 * this restriction. 1218 */ 1219#ifdef CONFIG_NUMA 1220#define pfn_to_nid(pfn) \ 1221({ \ 1222 unsigned long __pfn_to_nid_pfn = (pfn); \ 1223 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1224}) 1225#else 1226#define pfn_to_nid(pfn) (0) 1227#endif 1228 1229#define early_pfn_valid(pfn) pfn_valid(pfn) 1230void sparse_init(void); 1231#else 1232#define sparse_init() do {} while (0) 1233#define sparse_index_init(_sec, _nid) do {} while (0) 1234#endif /* CONFIG_SPARSEMEM */ 1235 1236/* 1237 * During memory init memblocks map pfns to nids. The search is expensive and 1238 * this caches recent lookups. The implementation of __early_pfn_to_nid 1239 * may treat start/end as pfns or sections. 1240 */ 1241struct mminit_pfnnid_cache { 1242 unsigned long last_start; 1243 unsigned long last_end; 1244 int last_nid; 1245}; 1246 1247#ifndef early_pfn_valid 1248#define early_pfn_valid(pfn) (1) 1249#endif 1250 1251void memory_present(int nid, unsigned long start, unsigned long end); 1252unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1253 1254/* 1255 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1256 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1257 * pfn_valid_within() should be used in this case; we optimise this away 1258 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1259 */ 1260#ifdef CONFIG_HOLES_IN_ZONE 1261#define pfn_valid_within(pfn) pfn_valid(pfn) 1262#else 1263#define pfn_valid_within(pfn) (1) 1264#endif 1265 1266#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1267/* 1268 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1269 * associated with it or not. In FLATMEM, it is expected that holes always 1270 * have valid memmap as long as there is valid PFNs either side of the hole. 1271 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1272 * entire section. 1273 * 1274 * However, an ARM, and maybe other embedded architectures in the future 1275 * free memmap backing holes to save memory on the assumption the memmap is 1276 * never used. The page_zone linkages are then broken even though pfn_valid() 1277 * returns true. A walker of the full memmap must then do this additional 1278 * check to ensure the memmap they are looking at is sane by making sure 1279 * the zone and PFN linkages are still valid. This is expensive, but walkers 1280 * of the full memmap are extremely rare. 1281 */ 1282bool memmap_valid_within(unsigned long pfn, 1283 struct page *page, struct zone *zone); 1284#else 1285static inline bool memmap_valid_within(unsigned long pfn, 1286 struct page *page, struct zone *zone) 1287{ 1288 return true; 1289} 1290#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1291 1292#endif /* !__GENERATING_BOUNDS.H */ 1293#endif /* !__ASSEMBLY__ */ 1294#endif /* _LINUX_MMZONE_H */