Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <linux/page-flags-layout.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60#ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62#endif
63 MIGRATE_TYPES
64};
65
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72#else
73# define is_migrate_cma(migratetype) false
74# define is_migrate_cma_page(_page) false
75#endif
76
77#define for_each_migratetype_order(order, type) \
78 for (order = 0; order < MAX_ORDER; order++) \
79 for (type = 0; type < MIGRATE_TYPES; type++)
80
81extern int page_group_by_mobility_disabled;
82
83#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85
86#define get_pageblock_migratetype(page) \
87 get_pfnblock_flags_mask(page, page_to_pfn(page), \
88 PB_migrate_end, MIGRATETYPE_MASK)
89
90struct free_area {
91 struct list_head free_list[MIGRATE_TYPES];
92 unsigned long nr_free;
93};
94
95struct pglist_data;
96
97/*
98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99 * So add a wild amount of padding here to ensure that they fall into separate
100 * cachelines. There are very few zone structures in the machine, so space
101 * consumption is not a concern here.
102 */
103#if defined(CONFIG_SMP)
104struct zone_padding {
105 char x[0];
106} ____cacheline_internodealigned_in_smp;
107#define ZONE_PADDING(name) struct zone_padding name;
108#else
109#define ZONE_PADDING(name)
110#endif
111
112enum zone_stat_item {
113 /* First 128 byte cacheline (assuming 64 bit words) */
114 NR_FREE_PAGES,
115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 NR_ZONE_ACTIVE_ANON,
118 NR_ZONE_INACTIVE_FILE,
119 NR_ZONE_ACTIVE_FILE,
120 NR_ZONE_UNEVICTABLE,
121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
123 NR_SLAB_RECLAIMABLE,
124 NR_SLAB_UNRECLAIMABLE,
125 NR_PAGETABLE, /* used for pagetables */
126 NR_KERNEL_STACK_KB, /* measured in KiB */
127 /* Second 128 byte cacheline */
128 NR_BOUNCE,
129#if IS_ENABLED(CONFIG_ZSMALLOC)
130 NR_ZSPAGES, /* allocated in zsmalloc */
131#endif
132#ifdef CONFIG_NUMA
133 NUMA_HIT, /* allocated in intended node */
134 NUMA_MISS, /* allocated in non intended node */
135 NUMA_FOREIGN, /* was intended here, hit elsewhere */
136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
137 NUMA_LOCAL, /* allocation from local node */
138 NUMA_OTHER, /* allocation from other node */
139#endif
140 NR_FREE_CMA_PAGES,
141 NR_VM_ZONE_STAT_ITEMS };
142
143enum node_stat_item {
144 NR_LRU_BASE,
145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 NR_ACTIVE_ANON, /* " " " " " */
147 NR_INACTIVE_FILE, /* " " " " " */
148 NR_ACTIVE_FILE, /* " " " " " */
149 NR_UNEVICTABLE, /* " " " " " */
150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
152 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
153 WORKINGSET_REFAULT,
154 WORKINGSET_ACTIVATE,
155 WORKINGSET_NODERECLAIM,
156 NR_ANON_MAPPED, /* Mapped anonymous pages */
157 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
158 only modified from process context */
159 NR_FILE_PAGES,
160 NR_FILE_DIRTY,
161 NR_WRITEBACK,
162 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
163 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
164 NR_SHMEM_THPS,
165 NR_SHMEM_PMDMAPPED,
166 NR_ANON_THPS,
167 NR_UNSTABLE_NFS, /* NFS unstable pages */
168 NR_VMSCAN_WRITE,
169 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
170 NR_DIRTIED, /* page dirtyings since bootup */
171 NR_WRITTEN, /* page writings since bootup */
172 NR_VM_NODE_STAT_ITEMS
173};
174
175/*
176 * We do arithmetic on the LRU lists in various places in the code,
177 * so it is important to keep the active lists LRU_ACTIVE higher in
178 * the array than the corresponding inactive lists, and to keep
179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
180 *
181 * This has to be kept in sync with the statistics in zone_stat_item
182 * above and the descriptions in vmstat_text in mm/vmstat.c
183 */
184#define LRU_BASE 0
185#define LRU_ACTIVE 1
186#define LRU_FILE 2
187
188enum lru_list {
189 LRU_INACTIVE_ANON = LRU_BASE,
190 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
193 LRU_UNEVICTABLE,
194 NR_LRU_LISTS
195};
196
197#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
198
199#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
200
201static inline int is_file_lru(enum lru_list lru)
202{
203 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
204}
205
206static inline int is_active_lru(enum lru_list lru)
207{
208 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
209}
210
211struct zone_reclaim_stat {
212 /*
213 * The pageout code in vmscan.c keeps track of how many of the
214 * mem/swap backed and file backed pages are referenced.
215 * The higher the rotated/scanned ratio, the more valuable
216 * that cache is.
217 *
218 * The anon LRU stats live in [0], file LRU stats in [1]
219 */
220 unsigned long recent_rotated[2];
221 unsigned long recent_scanned[2];
222};
223
224struct lruvec {
225 struct list_head lists[NR_LRU_LISTS];
226 struct zone_reclaim_stat reclaim_stat;
227 /* Evictions & activations on the inactive file list */
228 atomic_long_t inactive_age;
229#ifdef CONFIG_MEMCG
230 struct pglist_data *pgdat;
231#endif
232};
233
234/* Mask used at gathering information at once (see memcontrol.c) */
235#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
237#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
238
239/* Isolate clean file */
240#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
241/* Isolate unmapped file */
242#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
243/* Isolate for asynchronous migration */
244#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
245/* Isolate unevictable pages */
246#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
247
248/* LRU Isolation modes. */
249typedef unsigned __bitwise__ isolate_mode_t;
250
251enum zone_watermarks {
252 WMARK_MIN,
253 WMARK_LOW,
254 WMARK_HIGH,
255 NR_WMARK
256};
257
258#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
259#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
260#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
261
262struct per_cpu_pages {
263 int count; /* number of pages in the list */
264 int high; /* high watermark, emptying needed */
265 int batch; /* chunk size for buddy add/remove */
266
267 /* Lists of pages, one per migrate type stored on the pcp-lists */
268 struct list_head lists[MIGRATE_PCPTYPES];
269};
270
271struct per_cpu_pageset {
272 struct per_cpu_pages pcp;
273#ifdef CONFIG_NUMA
274 s8 expire;
275#endif
276#ifdef CONFIG_SMP
277 s8 stat_threshold;
278 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
279#endif
280};
281
282struct per_cpu_nodestat {
283 s8 stat_threshold;
284 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
285};
286
287#endif /* !__GENERATING_BOUNDS.H */
288
289enum zone_type {
290#ifdef CONFIG_ZONE_DMA
291 /*
292 * ZONE_DMA is used when there are devices that are not able
293 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
294 * carve out the portion of memory that is needed for these devices.
295 * The range is arch specific.
296 *
297 * Some examples
298 *
299 * Architecture Limit
300 * ---------------------------
301 * parisc, ia64, sparc <4G
302 * s390 <2G
303 * arm Various
304 * alpha Unlimited or 0-16MB.
305 *
306 * i386, x86_64 and multiple other arches
307 * <16M.
308 */
309 ZONE_DMA,
310#endif
311#ifdef CONFIG_ZONE_DMA32
312 /*
313 * x86_64 needs two ZONE_DMAs because it supports devices that are
314 * only able to do DMA to the lower 16M but also 32 bit devices that
315 * can only do DMA areas below 4G.
316 */
317 ZONE_DMA32,
318#endif
319 /*
320 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
321 * performed on pages in ZONE_NORMAL if the DMA devices support
322 * transfers to all addressable memory.
323 */
324 ZONE_NORMAL,
325#ifdef CONFIG_HIGHMEM
326 /*
327 * A memory area that is only addressable by the kernel through
328 * mapping portions into its own address space. This is for example
329 * used by i386 to allow the kernel to address the memory beyond
330 * 900MB. The kernel will set up special mappings (page
331 * table entries on i386) for each page that the kernel needs to
332 * access.
333 */
334 ZONE_HIGHMEM,
335#endif
336 ZONE_MOVABLE,
337#ifdef CONFIG_ZONE_DEVICE
338 ZONE_DEVICE,
339#endif
340 __MAX_NR_ZONES
341
342};
343
344#ifndef __GENERATING_BOUNDS_H
345
346struct zone {
347 /* Read-mostly fields */
348
349 /* zone watermarks, access with *_wmark_pages(zone) macros */
350 unsigned long watermark[NR_WMARK];
351
352 unsigned long nr_reserved_highatomic;
353
354 /*
355 * We don't know if the memory that we're going to allocate will be
356 * freeable or/and it will be released eventually, so to avoid totally
357 * wasting several GB of ram we must reserve some of the lower zone
358 * memory (otherwise we risk to run OOM on the lower zones despite
359 * there being tons of freeable ram on the higher zones). This array is
360 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
361 * changes.
362 */
363 long lowmem_reserve[MAX_NR_ZONES];
364
365#ifdef CONFIG_NUMA
366 int node;
367#endif
368 struct pglist_data *zone_pgdat;
369 struct per_cpu_pageset __percpu *pageset;
370
371#ifndef CONFIG_SPARSEMEM
372 /*
373 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
374 * In SPARSEMEM, this map is stored in struct mem_section
375 */
376 unsigned long *pageblock_flags;
377#endif /* CONFIG_SPARSEMEM */
378
379 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
380 unsigned long zone_start_pfn;
381
382 /*
383 * spanned_pages is the total pages spanned by the zone, including
384 * holes, which is calculated as:
385 * spanned_pages = zone_end_pfn - zone_start_pfn;
386 *
387 * present_pages is physical pages existing within the zone, which
388 * is calculated as:
389 * present_pages = spanned_pages - absent_pages(pages in holes);
390 *
391 * managed_pages is present pages managed by the buddy system, which
392 * is calculated as (reserved_pages includes pages allocated by the
393 * bootmem allocator):
394 * managed_pages = present_pages - reserved_pages;
395 *
396 * So present_pages may be used by memory hotplug or memory power
397 * management logic to figure out unmanaged pages by checking
398 * (present_pages - managed_pages). And managed_pages should be used
399 * by page allocator and vm scanner to calculate all kinds of watermarks
400 * and thresholds.
401 *
402 * Locking rules:
403 *
404 * zone_start_pfn and spanned_pages are protected by span_seqlock.
405 * It is a seqlock because it has to be read outside of zone->lock,
406 * and it is done in the main allocator path. But, it is written
407 * quite infrequently.
408 *
409 * The span_seq lock is declared along with zone->lock because it is
410 * frequently read in proximity to zone->lock. It's good to
411 * give them a chance of being in the same cacheline.
412 *
413 * Write access to present_pages at runtime should be protected by
414 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
415 * present_pages should get_online_mems() to get a stable value.
416 *
417 * Read access to managed_pages should be safe because it's unsigned
418 * long. Write access to zone->managed_pages and totalram_pages are
419 * protected by managed_page_count_lock at runtime. Idealy only
420 * adjust_managed_page_count() should be used instead of directly
421 * touching zone->managed_pages and totalram_pages.
422 */
423 unsigned long managed_pages;
424 unsigned long spanned_pages;
425 unsigned long present_pages;
426
427 const char *name;
428
429#ifdef CONFIG_MEMORY_ISOLATION
430 /*
431 * Number of isolated pageblock. It is used to solve incorrect
432 * freepage counting problem due to racy retrieving migratetype
433 * of pageblock. Protected by zone->lock.
434 */
435 unsigned long nr_isolate_pageblock;
436#endif
437
438#ifdef CONFIG_MEMORY_HOTPLUG
439 /* see spanned/present_pages for more description */
440 seqlock_t span_seqlock;
441#endif
442
443 /*
444 * wait_table -- the array holding the hash table
445 * wait_table_hash_nr_entries -- the size of the hash table array
446 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
447 *
448 * The purpose of all these is to keep track of the people
449 * waiting for a page to become available and make them
450 * runnable again when possible. The trouble is that this
451 * consumes a lot of space, especially when so few things
452 * wait on pages at a given time. So instead of using
453 * per-page waitqueues, we use a waitqueue hash table.
454 *
455 * The bucket discipline is to sleep on the same queue when
456 * colliding and wake all in that wait queue when removing.
457 * When something wakes, it must check to be sure its page is
458 * truly available, a la thundering herd. The cost of a
459 * collision is great, but given the expected load of the
460 * table, they should be so rare as to be outweighed by the
461 * benefits from the saved space.
462 *
463 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
464 * primary users of these fields, and in mm/page_alloc.c
465 * free_area_init_core() performs the initialization of them.
466 */
467 wait_queue_head_t *wait_table;
468 unsigned long wait_table_hash_nr_entries;
469 unsigned long wait_table_bits;
470
471 /* Write-intensive fields used from the page allocator */
472 ZONE_PADDING(_pad1_)
473
474 /* free areas of different sizes */
475 struct free_area free_area[MAX_ORDER];
476
477 /* zone flags, see below */
478 unsigned long flags;
479
480 /* Primarily protects free_area */
481 spinlock_t lock;
482
483 /* Write-intensive fields used by compaction and vmstats. */
484 ZONE_PADDING(_pad2_)
485
486 /*
487 * When free pages are below this point, additional steps are taken
488 * when reading the number of free pages to avoid per-cpu counter
489 * drift allowing watermarks to be breached
490 */
491 unsigned long percpu_drift_mark;
492
493#if defined CONFIG_COMPACTION || defined CONFIG_CMA
494 /* pfn where compaction free scanner should start */
495 unsigned long compact_cached_free_pfn;
496 /* pfn where async and sync compaction migration scanner should start */
497 unsigned long compact_cached_migrate_pfn[2];
498#endif
499
500#ifdef CONFIG_COMPACTION
501 /*
502 * On compaction failure, 1<<compact_defer_shift compactions
503 * are skipped before trying again. The number attempted since
504 * last failure is tracked with compact_considered.
505 */
506 unsigned int compact_considered;
507 unsigned int compact_defer_shift;
508 int compact_order_failed;
509#endif
510
511#if defined CONFIG_COMPACTION || defined CONFIG_CMA
512 /* Set to true when the PG_migrate_skip bits should be cleared */
513 bool compact_blockskip_flush;
514#endif
515
516 bool contiguous;
517
518 ZONE_PADDING(_pad3_)
519 /* Zone statistics */
520 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
521} ____cacheline_internodealigned_in_smp;
522
523enum pgdat_flags {
524 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
525 * a congested BDI
526 */
527 PGDAT_DIRTY, /* reclaim scanning has recently found
528 * many dirty file pages at the tail
529 * of the LRU.
530 */
531 PGDAT_WRITEBACK, /* reclaim scanning has recently found
532 * many pages under writeback
533 */
534 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
535};
536
537static inline unsigned long zone_end_pfn(const struct zone *zone)
538{
539 return zone->zone_start_pfn + zone->spanned_pages;
540}
541
542static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
543{
544 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
545}
546
547static inline bool zone_is_initialized(struct zone *zone)
548{
549 return !!zone->wait_table;
550}
551
552static inline bool zone_is_empty(struct zone *zone)
553{
554 return zone->spanned_pages == 0;
555}
556
557/*
558 * The "priority" of VM scanning is how much of the queues we will scan in one
559 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
560 * queues ("queue_length >> 12") during an aging round.
561 */
562#define DEF_PRIORITY 12
563
564/* Maximum number of zones on a zonelist */
565#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
566
567enum {
568 ZONELIST_FALLBACK, /* zonelist with fallback */
569#ifdef CONFIG_NUMA
570 /*
571 * The NUMA zonelists are doubled because we need zonelists that
572 * restrict the allocations to a single node for __GFP_THISNODE.
573 */
574 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
575#endif
576 MAX_ZONELISTS
577};
578
579/*
580 * This struct contains information about a zone in a zonelist. It is stored
581 * here to avoid dereferences into large structures and lookups of tables
582 */
583struct zoneref {
584 struct zone *zone; /* Pointer to actual zone */
585 int zone_idx; /* zone_idx(zoneref->zone) */
586};
587
588/*
589 * One allocation request operates on a zonelist. A zonelist
590 * is a list of zones, the first one is the 'goal' of the
591 * allocation, the other zones are fallback zones, in decreasing
592 * priority.
593 *
594 * To speed the reading of the zonelist, the zonerefs contain the zone index
595 * of the entry being read. Helper functions to access information given
596 * a struct zoneref are
597 *
598 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
599 * zonelist_zone_idx() - Return the index of the zone for an entry
600 * zonelist_node_idx() - Return the index of the node for an entry
601 */
602struct zonelist {
603 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
604};
605
606#ifndef CONFIG_DISCONTIGMEM
607/* The array of struct pages - for discontigmem use pgdat->lmem_map */
608extern struct page *mem_map;
609#endif
610
611/*
612 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
613 * (mostly NUMA machines?) to denote a higher-level memory zone than the
614 * zone denotes.
615 *
616 * On NUMA machines, each NUMA node would have a pg_data_t to describe
617 * it's memory layout.
618 *
619 * Memory statistics and page replacement data structures are maintained on a
620 * per-zone basis.
621 */
622struct bootmem_data;
623typedef struct pglist_data {
624 struct zone node_zones[MAX_NR_ZONES];
625 struct zonelist node_zonelists[MAX_ZONELISTS];
626 int nr_zones;
627#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
628 struct page *node_mem_map;
629#ifdef CONFIG_PAGE_EXTENSION
630 struct page_ext *node_page_ext;
631#endif
632#endif
633#ifndef CONFIG_NO_BOOTMEM
634 struct bootmem_data *bdata;
635#endif
636#ifdef CONFIG_MEMORY_HOTPLUG
637 /*
638 * Must be held any time you expect node_start_pfn, node_present_pages
639 * or node_spanned_pages stay constant. Holding this will also
640 * guarantee that any pfn_valid() stays that way.
641 *
642 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
644 *
645 * Nests above zone->lock and zone->span_seqlock
646 */
647 spinlock_t node_size_lock;
648#endif
649 unsigned long node_start_pfn;
650 unsigned long node_present_pages; /* total number of physical pages */
651 unsigned long node_spanned_pages; /* total size of physical page
652 range, including holes */
653 int node_id;
654 wait_queue_head_t kswapd_wait;
655 wait_queue_head_t pfmemalloc_wait;
656 struct task_struct *kswapd; /* Protected by
657 mem_hotplug_begin/end() */
658 int kswapd_order;
659 enum zone_type kswapd_classzone_idx;
660
661#ifdef CONFIG_COMPACTION
662 int kcompactd_max_order;
663 enum zone_type kcompactd_classzone_idx;
664 wait_queue_head_t kcompactd_wait;
665 struct task_struct *kcompactd;
666#endif
667#ifdef CONFIG_NUMA_BALANCING
668 /* Lock serializing the migrate rate limiting window */
669 spinlock_t numabalancing_migrate_lock;
670
671 /* Rate limiting time interval */
672 unsigned long numabalancing_migrate_next_window;
673
674 /* Number of pages migrated during the rate limiting time interval */
675 unsigned long numabalancing_migrate_nr_pages;
676#endif
677 /*
678 * This is a per-node reserve of pages that are not available
679 * to userspace allocations.
680 */
681 unsigned long totalreserve_pages;
682
683#ifdef CONFIG_NUMA
684 /*
685 * zone reclaim becomes active if more unmapped pages exist.
686 */
687 unsigned long min_unmapped_pages;
688 unsigned long min_slab_pages;
689#endif /* CONFIG_NUMA */
690
691 /* Write-intensive fields used by page reclaim */
692 ZONE_PADDING(_pad1_)
693 spinlock_t lru_lock;
694
695#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
696 /*
697 * If memory initialisation on large machines is deferred then this
698 * is the first PFN that needs to be initialised.
699 */
700 unsigned long first_deferred_pfn;
701#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
702
703#ifdef CONFIG_TRANSPARENT_HUGEPAGE
704 spinlock_t split_queue_lock;
705 struct list_head split_queue;
706 unsigned long split_queue_len;
707#endif
708
709 /* Fields commonly accessed by the page reclaim scanner */
710 struct lruvec lruvec;
711
712 /*
713 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
714 * this node's LRU. Maintained by the pageout code.
715 */
716 unsigned int inactive_ratio;
717
718 unsigned long flags;
719
720 ZONE_PADDING(_pad2_)
721
722 /* Per-node vmstats */
723 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
724 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
725} pg_data_t;
726
727#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
728#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
729#ifdef CONFIG_FLAT_NODE_MEM_MAP
730#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
731#else
732#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
733#endif
734#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
735
736#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
737#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
738static inline spinlock_t *zone_lru_lock(struct zone *zone)
739{
740 return &zone->zone_pgdat->lru_lock;
741}
742
743static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
744{
745 return &pgdat->lruvec;
746}
747
748static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
749{
750 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
751}
752
753static inline bool pgdat_is_empty(pg_data_t *pgdat)
754{
755 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
756}
757
758static inline int zone_id(const struct zone *zone)
759{
760 struct pglist_data *pgdat = zone->zone_pgdat;
761
762 return zone - pgdat->node_zones;
763}
764
765#ifdef CONFIG_ZONE_DEVICE
766static inline bool is_dev_zone(const struct zone *zone)
767{
768 return zone_id(zone) == ZONE_DEVICE;
769}
770#else
771static inline bool is_dev_zone(const struct zone *zone)
772{
773 return false;
774}
775#endif
776
777#include <linux/memory_hotplug.h>
778
779extern struct mutex zonelists_mutex;
780void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
781void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
782bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
783 int classzone_idx, unsigned int alloc_flags,
784 long free_pages);
785bool zone_watermark_ok(struct zone *z, unsigned int order,
786 unsigned long mark, int classzone_idx,
787 unsigned int alloc_flags);
788bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
789 unsigned long mark, int classzone_idx);
790enum memmap_context {
791 MEMMAP_EARLY,
792 MEMMAP_HOTPLUG,
793};
794extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
795 unsigned long size);
796
797extern void lruvec_init(struct lruvec *lruvec);
798
799static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
800{
801#ifdef CONFIG_MEMCG
802 return lruvec->pgdat;
803#else
804 return container_of(lruvec, struct pglist_data, lruvec);
805#endif
806}
807
808extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
809
810#ifdef CONFIG_HAVE_MEMORY_PRESENT
811void memory_present(int nid, unsigned long start, unsigned long end);
812#else
813static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
814#endif
815
816#ifdef CONFIG_HAVE_MEMORYLESS_NODES
817int local_memory_node(int node_id);
818#else
819static inline int local_memory_node(int node_id) { return node_id; };
820#endif
821
822#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
823unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
824#endif
825
826/*
827 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
828 */
829#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
830
831/*
832 * Returns true if a zone has pages managed by the buddy allocator.
833 * All the reclaim decisions have to use this function rather than
834 * populated_zone(). If the whole zone is reserved then we can easily
835 * end up with populated_zone() && !managed_zone().
836 */
837static inline bool managed_zone(struct zone *zone)
838{
839 return zone->managed_pages;
840}
841
842/* Returns true if a zone has memory */
843static inline bool populated_zone(struct zone *zone)
844{
845 return zone->present_pages;
846}
847
848extern int movable_zone;
849
850#ifdef CONFIG_HIGHMEM
851static inline int zone_movable_is_highmem(void)
852{
853#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
854 return movable_zone == ZONE_HIGHMEM;
855#else
856 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
857#endif
858}
859#endif
860
861static inline int is_highmem_idx(enum zone_type idx)
862{
863#ifdef CONFIG_HIGHMEM
864 return (idx == ZONE_HIGHMEM ||
865 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
866#else
867 return 0;
868#endif
869}
870
871/**
872 * is_highmem - helper function to quickly check if a struct zone is a
873 * highmem zone or not. This is an attempt to keep references
874 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
875 * @zone - pointer to struct zone variable
876 */
877static inline int is_highmem(struct zone *zone)
878{
879#ifdef CONFIG_HIGHMEM
880 return is_highmem_idx(zone_idx(zone));
881#else
882 return 0;
883#endif
884}
885
886/* These two functions are used to setup the per zone pages min values */
887struct ctl_table;
888int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
889 void __user *, size_t *, loff_t *);
890int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
891 void __user *, size_t *, loff_t *);
892extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
893int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
894 void __user *, size_t *, loff_t *);
895int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
896 void __user *, size_t *, loff_t *);
897int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
898 void __user *, size_t *, loff_t *);
899int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
900 void __user *, size_t *, loff_t *);
901
902extern int numa_zonelist_order_handler(struct ctl_table *, int,
903 void __user *, size_t *, loff_t *);
904extern char numa_zonelist_order[];
905#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
906
907#ifndef CONFIG_NEED_MULTIPLE_NODES
908
909extern struct pglist_data contig_page_data;
910#define NODE_DATA(nid) (&contig_page_data)
911#define NODE_MEM_MAP(nid) mem_map
912
913#else /* CONFIG_NEED_MULTIPLE_NODES */
914
915#include <asm/mmzone.h>
916
917#endif /* !CONFIG_NEED_MULTIPLE_NODES */
918
919extern struct pglist_data *first_online_pgdat(void);
920extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
921extern struct zone *next_zone(struct zone *zone);
922
923/**
924 * for_each_online_pgdat - helper macro to iterate over all online nodes
925 * @pgdat - pointer to a pg_data_t variable
926 */
927#define for_each_online_pgdat(pgdat) \
928 for (pgdat = first_online_pgdat(); \
929 pgdat; \
930 pgdat = next_online_pgdat(pgdat))
931/**
932 * for_each_zone - helper macro to iterate over all memory zones
933 * @zone - pointer to struct zone variable
934 *
935 * The user only needs to declare the zone variable, for_each_zone
936 * fills it in.
937 */
938#define for_each_zone(zone) \
939 for (zone = (first_online_pgdat())->node_zones; \
940 zone; \
941 zone = next_zone(zone))
942
943#define for_each_populated_zone(zone) \
944 for (zone = (first_online_pgdat())->node_zones; \
945 zone; \
946 zone = next_zone(zone)) \
947 if (!populated_zone(zone)) \
948 ; /* do nothing */ \
949 else
950
951static inline struct zone *zonelist_zone(struct zoneref *zoneref)
952{
953 return zoneref->zone;
954}
955
956static inline int zonelist_zone_idx(struct zoneref *zoneref)
957{
958 return zoneref->zone_idx;
959}
960
961static inline int zonelist_node_idx(struct zoneref *zoneref)
962{
963#ifdef CONFIG_NUMA
964 /* zone_to_nid not available in this context */
965 return zoneref->zone->node;
966#else
967 return 0;
968#endif /* CONFIG_NUMA */
969}
970
971struct zoneref *__next_zones_zonelist(struct zoneref *z,
972 enum zone_type highest_zoneidx,
973 nodemask_t *nodes);
974
975/**
976 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
977 * @z - The cursor used as a starting point for the search
978 * @highest_zoneidx - The zone index of the highest zone to return
979 * @nodes - An optional nodemask to filter the zonelist with
980 *
981 * This function returns the next zone at or below a given zone index that is
982 * within the allowed nodemask using a cursor as the starting point for the
983 * search. The zoneref returned is a cursor that represents the current zone
984 * being examined. It should be advanced by one before calling
985 * next_zones_zonelist again.
986 */
987static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
988 enum zone_type highest_zoneidx,
989 nodemask_t *nodes)
990{
991 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
992 return z;
993 return __next_zones_zonelist(z, highest_zoneidx, nodes);
994}
995
996/**
997 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
998 * @zonelist - The zonelist to search for a suitable zone
999 * @highest_zoneidx - The zone index of the highest zone to return
1000 * @nodes - An optional nodemask to filter the zonelist with
1001 * @zone - The first suitable zone found is returned via this parameter
1002 *
1003 * This function returns the first zone at or below a given zone index that is
1004 * within the allowed nodemask. The zoneref returned is a cursor that can be
1005 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1006 * one before calling.
1007 */
1008static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1009 enum zone_type highest_zoneidx,
1010 nodemask_t *nodes)
1011{
1012 return next_zones_zonelist(zonelist->_zonerefs,
1013 highest_zoneidx, nodes);
1014}
1015
1016/**
1017 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1018 * @zone - The current zone in the iterator
1019 * @z - The current pointer within zonelist->zones being iterated
1020 * @zlist - The zonelist being iterated
1021 * @highidx - The zone index of the highest zone to return
1022 * @nodemask - Nodemask allowed by the allocator
1023 *
1024 * This iterator iterates though all zones at or below a given zone index and
1025 * within a given nodemask
1026 */
1027#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1028 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1029 zone; \
1030 z = next_zones_zonelist(++z, highidx, nodemask), \
1031 zone = zonelist_zone(z))
1032
1033#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034 for (zone = z->zone; \
1035 zone; \
1036 z = next_zones_zonelist(++z, highidx, nodemask), \
1037 zone = zonelist_zone(z))
1038
1039
1040/**
1041 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1042 * @zone - The current zone in the iterator
1043 * @z - The current pointer within zonelist->zones being iterated
1044 * @zlist - The zonelist being iterated
1045 * @highidx - The zone index of the highest zone to return
1046 *
1047 * This iterator iterates though all zones at or below a given zone index.
1048 */
1049#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1050 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1051
1052#ifdef CONFIG_SPARSEMEM
1053#include <asm/sparsemem.h>
1054#endif
1055
1056#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1057 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1058static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1059{
1060 return 0;
1061}
1062#endif
1063
1064#ifdef CONFIG_FLATMEM
1065#define pfn_to_nid(pfn) (0)
1066#endif
1067
1068#ifdef CONFIG_SPARSEMEM
1069
1070/*
1071 * SECTION_SHIFT #bits space required to store a section #
1072 *
1073 * PA_SECTION_SHIFT physical address to/from section number
1074 * PFN_SECTION_SHIFT pfn to/from section number
1075 */
1076#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1077#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1078
1079#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1080
1081#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1082#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1083
1084#define SECTION_BLOCKFLAGS_BITS \
1085 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1086
1087#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1088#error Allocator MAX_ORDER exceeds SECTION_SIZE
1089#endif
1090
1091#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1092#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1093
1094#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1095#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1096
1097struct page;
1098struct page_ext;
1099struct mem_section {
1100 /*
1101 * This is, logically, a pointer to an array of struct
1102 * pages. However, it is stored with some other magic.
1103 * (see sparse.c::sparse_init_one_section())
1104 *
1105 * Additionally during early boot we encode node id of
1106 * the location of the section here to guide allocation.
1107 * (see sparse.c::memory_present())
1108 *
1109 * Making it a UL at least makes someone do a cast
1110 * before using it wrong.
1111 */
1112 unsigned long section_mem_map;
1113
1114 /* See declaration of similar field in struct zone */
1115 unsigned long *pageblock_flags;
1116#ifdef CONFIG_PAGE_EXTENSION
1117 /*
1118 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1119 * section. (see page_ext.h about this.)
1120 */
1121 struct page_ext *page_ext;
1122 unsigned long pad;
1123#endif
1124 /*
1125 * WARNING: mem_section must be a power-of-2 in size for the
1126 * calculation and use of SECTION_ROOT_MASK to make sense.
1127 */
1128};
1129
1130#ifdef CONFIG_SPARSEMEM_EXTREME
1131#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1132#else
1133#define SECTIONS_PER_ROOT 1
1134#endif
1135
1136#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1137#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1138#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1139
1140#ifdef CONFIG_SPARSEMEM_EXTREME
1141extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1142#else
1143extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1144#endif
1145
1146static inline struct mem_section *__nr_to_section(unsigned long nr)
1147{
1148 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1149 return NULL;
1150 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1151}
1152extern int __section_nr(struct mem_section* ms);
1153extern unsigned long usemap_size(void);
1154
1155/*
1156 * We use the lower bits of the mem_map pointer to store
1157 * a little bit of information. There should be at least
1158 * 3 bits here due to 32-bit alignment.
1159 */
1160#define SECTION_MARKED_PRESENT (1UL<<0)
1161#define SECTION_HAS_MEM_MAP (1UL<<1)
1162#define SECTION_MAP_LAST_BIT (1UL<<2)
1163#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1164#define SECTION_NID_SHIFT 2
1165
1166static inline struct page *__section_mem_map_addr(struct mem_section *section)
1167{
1168 unsigned long map = section->section_mem_map;
1169 map &= SECTION_MAP_MASK;
1170 return (struct page *)map;
1171}
1172
1173static inline int present_section(struct mem_section *section)
1174{
1175 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1176}
1177
1178static inline int present_section_nr(unsigned long nr)
1179{
1180 return present_section(__nr_to_section(nr));
1181}
1182
1183static inline int valid_section(struct mem_section *section)
1184{
1185 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1186}
1187
1188static inline int valid_section_nr(unsigned long nr)
1189{
1190 return valid_section(__nr_to_section(nr));
1191}
1192
1193static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1194{
1195 return __nr_to_section(pfn_to_section_nr(pfn));
1196}
1197
1198#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1199static inline int pfn_valid(unsigned long pfn)
1200{
1201 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1202 return 0;
1203 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1204}
1205#endif
1206
1207static inline int pfn_present(unsigned long pfn)
1208{
1209 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1210 return 0;
1211 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1212}
1213
1214/*
1215 * These are _only_ used during initialisation, therefore they
1216 * can use __initdata ... They could have names to indicate
1217 * this restriction.
1218 */
1219#ifdef CONFIG_NUMA
1220#define pfn_to_nid(pfn) \
1221({ \
1222 unsigned long __pfn_to_nid_pfn = (pfn); \
1223 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1224})
1225#else
1226#define pfn_to_nid(pfn) (0)
1227#endif
1228
1229#define early_pfn_valid(pfn) pfn_valid(pfn)
1230void sparse_init(void);
1231#else
1232#define sparse_init() do {} while (0)
1233#define sparse_index_init(_sec, _nid) do {} while (0)
1234#endif /* CONFIG_SPARSEMEM */
1235
1236/*
1237 * During memory init memblocks map pfns to nids. The search is expensive and
1238 * this caches recent lookups. The implementation of __early_pfn_to_nid
1239 * may treat start/end as pfns or sections.
1240 */
1241struct mminit_pfnnid_cache {
1242 unsigned long last_start;
1243 unsigned long last_end;
1244 int last_nid;
1245};
1246
1247#ifndef early_pfn_valid
1248#define early_pfn_valid(pfn) (1)
1249#endif
1250
1251void memory_present(int nid, unsigned long start, unsigned long end);
1252unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1253
1254/*
1255 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1256 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1257 * pfn_valid_within() should be used in this case; we optimise this away
1258 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1259 */
1260#ifdef CONFIG_HOLES_IN_ZONE
1261#define pfn_valid_within(pfn) pfn_valid(pfn)
1262#else
1263#define pfn_valid_within(pfn) (1)
1264#endif
1265
1266#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1267/*
1268 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1269 * associated with it or not. In FLATMEM, it is expected that holes always
1270 * have valid memmap as long as there is valid PFNs either side of the hole.
1271 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1272 * entire section.
1273 *
1274 * However, an ARM, and maybe other embedded architectures in the future
1275 * free memmap backing holes to save memory on the assumption the memmap is
1276 * never used. The page_zone linkages are then broken even though pfn_valid()
1277 * returns true. A walker of the full memmap must then do this additional
1278 * check to ensure the memmap they are looking at is sane by making sure
1279 * the zone and PFN linkages are still valid. This is expensive, but walkers
1280 * of the full memmap are extremely rare.
1281 */
1282bool memmap_valid_within(unsigned long pfn,
1283 struct page *page, struct zone *zone);
1284#else
1285static inline bool memmap_valid_within(unsigned long pfn,
1286 struct page *page, struct zone *zone)
1287{
1288 return true;
1289}
1290#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1291
1292#endif /* !__GENERATING_BOUNDS.H */
1293#endif /* !__ASSEMBLY__ */
1294#endif /* _LINUX_MMZONE_H */