at v4.8 78 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36extern unsigned long max_mapnr; 37 38static inline void set_max_mapnr(unsigned long limit) 39{ 40 max_mapnr = limit; 41} 42#else 43static inline void set_max_mapnr(unsigned long limit) { } 44#endif 45 46extern unsigned long totalram_pages; 47extern void * high_memory; 48extern int page_cluster; 49 50#ifdef CONFIG_SYSCTL 51extern int sysctl_legacy_va_layout; 52#else 53#define sysctl_legacy_va_layout 0 54#endif 55 56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57extern const int mmap_rnd_bits_min; 58extern const int mmap_rnd_bits_max; 59extern int mmap_rnd_bits __read_mostly; 60#endif 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62extern const int mmap_rnd_compat_bits_min; 63extern const int mmap_rnd_compat_bits_max; 64extern int mmap_rnd_compat_bits __read_mostly; 65#endif 66 67#include <asm/page.h> 68#include <asm/pgtable.h> 69#include <asm/processor.h> 70 71#ifndef __pa_symbol 72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73#endif 74 75#ifndef page_to_virt 76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77#endif 78 79/* 80 * To prevent common memory management code establishing 81 * a zero page mapping on a read fault. 82 * This macro should be defined within <asm/pgtable.h>. 83 * s390 does this to prevent multiplexing of hardware bits 84 * related to the physical page in case of virtualization. 85 */ 86#ifndef mm_forbids_zeropage 87#define mm_forbids_zeropage(X) (0) 88#endif 89 90/* 91 * Default maximum number of active map areas, this limits the number of vmas 92 * per mm struct. Users can overwrite this number by sysctl but there is a 93 * problem. 94 * 95 * When a program's coredump is generated as ELF format, a section is created 96 * per a vma. In ELF, the number of sections is represented in unsigned short. 97 * This means the number of sections should be smaller than 65535 at coredump. 98 * Because the kernel adds some informative sections to a image of program at 99 * generating coredump, we need some margin. The number of extra sections is 100 * 1-3 now and depends on arch. We use "5" as safe margin, here. 101 * 102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 103 * not a hard limit any more. Although some userspace tools can be surprised by 104 * that. 105 */ 106#define MAPCOUNT_ELF_CORE_MARGIN (5) 107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 108 109extern int sysctl_max_map_count; 110 111extern unsigned long sysctl_user_reserve_kbytes; 112extern unsigned long sysctl_admin_reserve_kbytes; 113 114extern int sysctl_overcommit_memory; 115extern int sysctl_overcommit_ratio; 116extern unsigned long sysctl_overcommit_kbytes; 117 118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 119 size_t *, loff_t *); 120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 121 size_t *, loff_t *); 122 123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 124 125/* to align the pointer to the (next) page boundary */ 126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 127 128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 130 131/* 132 * Linux kernel virtual memory manager primitives. 133 * The idea being to have a "virtual" mm in the same way 134 * we have a virtual fs - giving a cleaner interface to the 135 * mm details, and allowing different kinds of memory mappings 136 * (from shared memory to executable loading to arbitrary 137 * mmap() functions). 138 */ 139 140extern struct kmem_cache *vm_area_cachep; 141 142#ifndef CONFIG_MMU 143extern struct rb_root nommu_region_tree; 144extern struct rw_semaphore nommu_region_sem; 145 146extern unsigned int kobjsize(const void *objp); 147#endif 148 149/* 150 * vm_flags in vm_area_struct, see mm_types.h. 151 * When changing, update also include/trace/events/mmflags.h 152 */ 153#define VM_NONE 0x00000000 154 155#define VM_READ 0x00000001 /* currently active flags */ 156#define VM_WRITE 0x00000002 157#define VM_EXEC 0x00000004 158#define VM_SHARED 0x00000008 159 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 162#define VM_MAYWRITE 0x00000020 163#define VM_MAYEXEC 0x00000040 164#define VM_MAYSHARE 0x00000080 165 166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 171 172#define VM_LOCKED 0x00002000 173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 174 175 /* Used by sys_madvise() */ 176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 178 179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 186#define VM_ARCH_2 0x02000000 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 188 189#ifdef CONFIG_MEM_SOFT_DIRTY 190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 191#else 192# define VM_SOFTDIRTY 0 193#endif 194 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 199 200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 210 211#if defined(CONFIG_X86) 212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 219#endif 220#elif defined(CONFIG_PPC) 221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 222#elif defined(CONFIG_PARISC) 223# define VM_GROWSUP VM_ARCH_1 224#elif defined(CONFIG_METAG) 225# define VM_GROWSUP VM_ARCH_1 226#elif defined(CONFIG_IA64) 227# define VM_GROWSUP VM_ARCH_1 228#elif !defined(CONFIG_MMU) 229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 230#endif 231 232#if defined(CONFIG_X86) 233/* MPX specific bounds table or bounds directory */ 234# define VM_MPX VM_ARCH_2 235#endif 236 237#ifndef VM_GROWSUP 238# define VM_GROWSUP VM_NONE 239#endif 240 241/* Bits set in the VMA until the stack is in its final location */ 242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 243 244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 246#endif 247 248#ifdef CONFIG_STACK_GROWSUP 249#define VM_STACK VM_GROWSUP 250#else 251#define VM_STACK VM_GROWSDOWN 252#endif 253 254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 255 256/* 257 * Special vmas that are non-mergable, non-mlock()able. 258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 259 */ 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 261 262/* This mask defines which mm->def_flags a process can inherit its parent */ 263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 264 265/* This mask is used to clear all the VMA flags used by mlock */ 266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 267 268/* 269 * mapping from the currently active vm_flags protection bits (the 270 * low four bits) to a page protection mask.. 271 */ 272extern pgprot_t protection_map[16]; 273 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 279#define FAULT_FLAG_TRIED 0x20 /* Second try */ 280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 283 284/* 285 * vm_fault is filled by the the pagefault handler and passed to the vma's 286 * ->fault function. The vma's ->fault is responsible for returning a bitmask 287 * of VM_FAULT_xxx flags that give details about how the fault was handled. 288 * 289 * MM layer fills up gfp_mask for page allocations but fault handler might 290 * alter it if its implementation requires a different allocation context. 291 * 292 * pgoff should be used in favour of virtual_address, if possible. 293 */ 294struct vm_fault { 295 unsigned int flags; /* FAULT_FLAG_xxx flags */ 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 297 pgoff_t pgoff; /* Logical page offset based on vma */ 298 void __user *virtual_address; /* Faulting virtual address */ 299 300 struct page *cow_page; /* Handler may choose to COW */ 301 struct page *page; /* ->fault handlers should return a 302 * page here, unless VM_FAULT_NOPAGE 303 * is set (which is also implied by 304 * VM_FAULT_ERROR). 305 */ 306 void *entry; /* ->fault handler can alternatively 307 * return locked DAX entry. In that 308 * case handler should return 309 * VM_FAULT_DAX_LOCKED and fill in 310 * entry here. 311 */ 312}; 313 314/* 315 * Page fault context: passes though page fault handler instead of endless list 316 * of function arguments. 317 */ 318struct fault_env { 319 struct vm_area_struct *vma; /* Target VMA */ 320 unsigned long address; /* Faulting virtual address */ 321 unsigned int flags; /* FAULT_FLAG_xxx flags */ 322 pmd_t *pmd; /* Pointer to pmd entry matching 323 * the 'address' 324 */ 325 pte_t *pte; /* Pointer to pte entry matching 326 * the 'address'. NULL if the page 327 * table hasn't been allocated. 328 */ 329 spinlock_t *ptl; /* Page table lock. 330 * Protects pte page table if 'pte' 331 * is not NULL, otherwise pmd. 332 */ 333 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 334 * vm_ops->map_pages() calls 335 * alloc_set_pte() from atomic context. 336 * do_fault_around() pre-allocates 337 * page table to avoid allocation from 338 * atomic context. 339 */ 340}; 341 342/* 343 * These are the virtual MM functions - opening of an area, closing and 344 * unmapping it (needed to keep files on disk up-to-date etc), pointer 345 * to the functions called when a no-page or a wp-page exception occurs. 346 */ 347struct vm_operations_struct { 348 void (*open)(struct vm_area_struct * area); 349 void (*close)(struct vm_area_struct * area); 350 int (*mremap)(struct vm_area_struct * area); 351 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 352 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 353 pmd_t *, unsigned int flags); 354 void (*map_pages)(struct fault_env *fe, 355 pgoff_t start_pgoff, pgoff_t end_pgoff); 356 357 /* notification that a previously read-only page is about to become 358 * writable, if an error is returned it will cause a SIGBUS */ 359 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 360 361 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 362 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 363 364 /* called by access_process_vm when get_user_pages() fails, typically 365 * for use by special VMAs that can switch between memory and hardware 366 */ 367 int (*access)(struct vm_area_struct *vma, unsigned long addr, 368 void *buf, int len, int write); 369 370 /* Called by the /proc/PID/maps code to ask the vma whether it 371 * has a special name. Returning non-NULL will also cause this 372 * vma to be dumped unconditionally. */ 373 const char *(*name)(struct vm_area_struct *vma); 374 375#ifdef CONFIG_NUMA 376 /* 377 * set_policy() op must add a reference to any non-NULL @new mempolicy 378 * to hold the policy upon return. Caller should pass NULL @new to 379 * remove a policy and fall back to surrounding context--i.e. do not 380 * install a MPOL_DEFAULT policy, nor the task or system default 381 * mempolicy. 382 */ 383 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 384 385 /* 386 * get_policy() op must add reference [mpol_get()] to any policy at 387 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 388 * in mm/mempolicy.c will do this automatically. 389 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 390 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 391 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 392 * must return NULL--i.e., do not "fallback" to task or system default 393 * policy. 394 */ 395 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 396 unsigned long addr); 397#endif 398 /* 399 * Called by vm_normal_page() for special PTEs to find the 400 * page for @addr. This is useful if the default behavior 401 * (using pte_page()) would not find the correct page. 402 */ 403 struct page *(*find_special_page)(struct vm_area_struct *vma, 404 unsigned long addr); 405}; 406 407struct mmu_gather; 408struct inode; 409 410#define page_private(page) ((page)->private) 411#define set_page_private(page, v) ((page)->private = (v)) 412 413#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 414static inline int pmd_devmap(pmd_t pmd) 415{ 416 return 0; 417} 418#endif 419 420/* 421 * FIXME: take this include out, include page-flags.h in 422 * files which need it (119 of them) 423 */ 424#include <linux/page-flags.h> 425#include <linux/huge_mm.h> 426 427/* 428 * Methods to modify the page usage count. 429 * 430 * What counts for a page usage: 431 * - cache mapping (page->mapping) 432 * - private data (page->private) 433 * - page mapped in a task's page tables, each mapping 434 * is counted separately 435 * 436 * Also, many kernel routines increase the page count before a critical 437 * routine so they can be sure the page doesn't go away from under them. 438 */ 439 440/* 441 * Drop a ref, return true if the refcount fell to zero (the page has no users) 442 */ 443static inline int put_page_testzero(struct page *page) 444{ 445 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 446 return page_ref_dec_and_test(page); 447} 448 449/* 450 * Try to grab a ref unless the page has a refcount of zero, return false if 451 * that is the case. 452 * This can be called when MMU is off so it must not access 453 * any of the virtual mappings. 454 */ 455static inline int get_page_unless_zero(struct page *page) 456{ 457 return page_ref_add_unless(page, 1, 0); 458} 459 460extern int page_is_ram(unsigned long pfn); 461 462enum { 463 REGION_INTERSECTS, 464 REGION_DISJOINT, 465 REGION_MIXED, 466}; 467 468int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 469 unsigned long desc); 470 471/* Support for virtually mapped pages */ 472struct page *vmalloc_to_page(const void *addr); 473unsigned long vmalloc_to_pfn(const void *addr); 474 475/* 476 * Determine if an address is within the vmalloc range 477 * 478 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 479 * is no special casing required. 480 */ 481static inline bool is_vmalloc_addr(const void *x) 482{ 483#ifdef CONFIG_MMU 484 unsigned long addr = (unsigned long)x; 485 486 return addr >= VMALLOC_START && addr < VMALLOC_END; 487#else 488 return false; 489#endif 490} 491#ifdef CONFIG_MMU 492extern int is_vmalloc_or_module_addr(const void *x); 493#else 494static inline int is_vmalloc_or_module_addr(const void *x) 495{ 496 return 0; 497} 498#endif 499 500extern void kvfree(const void *addr); 501 502static inline atomic_t *compound_mapcount_ptr(struct page *page) 503{ 504 return &page[1].compound_mapcount; 505} 506 507static inline int compound_mapcount(struct page *page) 508{ 509 VM_BUG_ON_PAGE(!PageCompound(page), page); 510 page = compound_head(page); 511 return atomic_read(compound_mapcount_ptr(page)) + 1; 512} 513 514/* 515 * The atomic page->_mapcount, starts from -1: so that transitions 516 * both from it and to it can be tracked, using atomic_inc_and_test 517 * and atomic_add_negative(-1). 518 */ 519static inline void page_mapcount_reset(struct page *page) 520{ 521 atomic_set(&(page)->_mapcount, -1); 522} 523 524int __page_mapcount(struct page *page); 525 526static inline int page_mapcount(struct page *page) 527{ 528 VM_BUG_ON_PAGE(PageSlab(page), page); 529 530 if (unlikely(PageCompound(page))) 531 return __page_mapcount(page); 532 return atomic_read(&page->_mapcount) + 1; 533} 534 535#ifdef CONFIG_TRANSPARENT_HUGEPAGE 536int total_mapcount(struct page *page); 537int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 538#else 539static inline int total_mapcount(struct page *page) 540{ 541 return page_mapcount(page); 542} 543static inline int page_trans_huge_mapcount(struct page *page, 544 int *total_mapcount) 545{ 546 int mapcount = page_mapcount(page); 547 if (total_mapcount) 548 *total_mapcount = mapcount; 549 return mapcount; 550} 551#endif 552 553static inline struct page *virt_to_head_page(const void *x) 554{ 555 struct page *page = virt_to_page(x); 556 557 return compound_head(page); 558} 559 560void __put_page(struct page *page); 561 562void put_pages_list(struct list_head *pages); 563 564void split_page(struct page *page, unsigned int order); 565 566/* 567 * Compound pages have a destructor function. Provide a 568 * prototype for that function and accessor functions. 569 * These are _only_ valid on the head of a compound page. 570 */ 571typedef void compound_page_dtor(struct page *); 572 573/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 574enum compound_dtor_id { 575 NULL_COMPOUND_DTOR, 576 COMPOUND_PAGE_DTOR, 577#ifdef CONFIG_HUGETLB_PAGE 578 HUGETLB_PAGE_DTOR, 579#endif 580#ifdef CONFIG_TRANSPARENT_HUGEPAGE 581 TRANSHUGE_PAGE_DTOR, 582#endif 583 NR_COMPOUND_DTORS, 584}; 585extern compound_page_dtor * const compound_page_dtors[]; 586 587static inline void set_compound_page_dtor(struct page *page, 588 enum compound_dtor_id compound_dtor) 589{ 590 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 591 page[1].compound_dtor = compound_dtor; 592} 593 594static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 595{ 596 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 597 return compound_page_dtors[page[1].compound_dtor]; 598} 599 600static inline unsigned int compound_order(struct page *page) 601{ 602 if (!PageHead(page)) 603 return 0; 604 return page[1].compound_order; 605} 606 607static inline void set_compound_order(struct page *page, unsigned int order) 608{ 609 page[1].compound_order = order; 610} 611 612void free_compound_page(struct page *page); 613 614#ifdef CONFIG_MMU 615/* 616 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 617 * servicing faults for write access. In the normal case, do always want 618 * pte_mkwrite. But get_user_pages can cause write faults for mappings 619 * that do not have writing enabled, when used by access_process_vm. 620 */ 621static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 622{ 623 if (likely(vma->vm_flags & VM_WRITE)) 624 pte = pte_mkwrite(pte); 625 return pte; 626} 627 628int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg, 629 struct page *page); 630#endif 631 632/* 633 * Multiple processes may "see" the same page. E.g. for untouched 634 * mappings of /dev/null, all processes see the same page full of 635 * zeroes, and text pages of executables and shared libraries have 636 * only one copy in memory, at most, normally. 637 * 638 * For the non-reserved pages, page_count(page) denotes a reference count. 639 * page_count() == 0 means the page is free. page->lru is then used for 640 * freelist management in the buddy allocator. 641 * page_count() > 0 means the page has been allocated. 642 * 643 * Pages are allocated by the slab allocator in order to provide memory 644 * to kmalloc and kmem_cache_alloc. In this case, the management of the 645 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 646 * unless a particular usage is carefully commented. (the responsibility of 647 * freeing the kmalloc memory is the caller's, of course). 648 * 649 * A page may be used by anyone else who does a __get_free_page(). 650 * In this case, page_count still tracks the references, and should only 651 * be used through the normal accessor functions. The top bits of page->flags 652 * and page->virtual store page management information, but all other fields 653 * are unused and could be used privately, carefully. The management of this 654 * page is the responsibility of the one who allocated it, and those who have 655 * subsequently been given references to it. 656 * 657 * The other pages (we may call them "pagecache pages") are completely 658 * managed by the Linux memory manager: I/O, buffers, swapping etc. 659 * The following discussion applies only to them. 660 * 661 * A pagecache page contains an opaque `private' member, which belongs to the 662 * page's address_space. Usually, this is the address of a circular list of 663 * the page's disk buffers. PG_private must be set to tell the VM to call 664 * into the filesystem to release these pages. 665 * 666 * A page may belong to an inode's memory mapping. In this case, page->mapping 667 * is the pointer to the inode, and page->index is the file offset of the page, 668 * in units of PAGE_SIZE. 669 * 670 * If pagecache pages are not associated with an inode, they are said to be 671 * anonymous pages. These may become associated with the swapcache, and in that 672 * case PG_swapcache is set, and page->private is an offset into the swapcache. 673 * 674 * In either case (swapcache or inode backed), the pagecache itself holds one 675 * reference to the page. Setting PG_private should also increment the 676 * refcount. The each user mapping also has a reference to the page. 677 * 678 * The pagecache pages are stored in a per-mapping radix tree, which is 679 * rooted at mapping->page_tree, and indexed by offset. 680 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 681 * lists, we instead now tag pages as dirty/writeback in the radix tree. 682 * 683 * All pagecache pages may be subject to I/O: 684 * - inode pages may need to be read from disk, 685 * - inode pages which have been modified and are MAP_SHARED may need 686 * to be written back to the inode on disk, 687 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 688 * modified may need to be swapped out to swap space and (later) to be read 689 * back into memory. 690 */ 691 692/* 693 * The zone field is never updated after free_area_init_core() 694 * sets it, so none of the operations on it need to be atomic. 695 */ 696 697/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 698#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 699#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 700#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 701#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 702 703/* 704 * Define the bit shifts to access each section. For non-existent 705 * sections we define the shift as 0; that plus a 0 mask ensures 706 * the compiler will optimise away reference to them. 707 */ 708#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 709#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 710#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 711#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 712 713/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 714#ifdef NODE_NOT_IN_PAGE_FLAGS 715#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 716#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 717 SECTIONS_PGOFF : ZONES_PGOFF) 718#else 719#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 720#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 721 NODES_PGOFF : ZONES_PGOFF) 722#endif 723 724#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 725 726#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 727#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 728#endif 729 730#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 731#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 732#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 733#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 734#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 735 736static inline enum zone_type page_zonenum(const struct page *page) 737{ 738 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 739} 740 741#ifdef CONFIG_ZONE_DEVICE 742void get_zone_device_page(struct page *page); 743void put_zone_device_page(struct page *page); 744static inline bool is_zone_device_page(const struct page *page) 745{ 746 return page_zonenum(page) == ZONE_DEVICE; 747} 748#else 749static inline void get_zone_device_page(struct page *page) 750{ 751} 752static inline void put_zone_device_page(struct page *page) 753{ 754} 755static inline bool is_zone_device_page(const struct page *page) 756{ 757 return false; 758} 759#endif 760 761static inline void get_page(struct page *page) 762{ 763 page = compound_head(page); 764 /* 765 * Getting a normal page or the head of a compound page 766 * requires to already have an elevated page->_refcount. 767 */ 768 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 769 page_ref_inc(page); 770 771 if (unlikely(is_zone_device_page(page))) 772 get_zone_device_page(page); 773} 774 775static inline void put_page(struct page *page) 776{ 777 page = compound_head(page); 778 779 if (put_page_testzero(page)) 780 __put_page(page); 781 782 if (unlikely(is_zone_device_page(page))) 783 put_zone_device_page(page); 784} 785 786#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 787#define SECTION_IN_PAGE_FLAGS 788#endif 789 790/* 791 * The identification function is mainly used by the buddy allocator for 792 * determining if two pages could be buddies. We are not really identifying 793 * the zone since we could be using the section number id if we do not have 794 * node id available in page flags. 795 * We only guarantee that it will return the same value for two combinable 796 * pages in a zone. 797 */ 798static inline int page_zone_id(struct page *page) 799{ 800 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 801} 802 803static inline int zone_to_nid(struct zone *zone) 804{ 805#ifdef CONFIG_NUMA 806 return zone->node; 807#else 808 return 0; 809#endif 810} 811 812#ifdef NODE_NOT_IN_PAGE_FLAGS 813extern int page_to_nid(const struct page *page); 814#else 815static inline int page_to_nid(const struct page *page) 816{ 817 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 818} 819#endif 820 821#ifdef CONFIG_NUMA_BALANCING 822static inline int cpu_pid_to_cpupid(int cpu, int pid) 823{ 824 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 825} 826 827static inline int cpupid_to_pid(int cpupid) 828{ 829 return cpupid & LAST__PID_MASK; 830} 831 832static inline int cpupid_to_cpu(int cpupid) 833{ 834 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 835} 836 837static inline int cpupid_to_nid(int cpupid) 838{ 839 return cpu_to_node(cpupid_to_cpu(cpupid)); 840} 841 842static inline bool cpupid_pid_unset(int cpupid) 843{ 844 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 845} 846 847static inline bool cpupid_cpu_unset(int cpupid) 848{ 849 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 850} 851 852static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 853{ 854 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 855} 856 857#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 858#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 859static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 860{ 861 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 862} 863 864static inline int page_cpupid_last(struct page *page) 865{ 866 return page->_last_cpupid; 867} 868static inline void page_cpupid_reset_last(struct page *page) 869{ 870 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 871} 872#else 873static inline int page_cpupid_last(struct page *page) 874{ 875 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 876} 877 878extern int page_cpupid_xchg_last(struct page *page, int cpupid); 879 880static inline void page_cpupid_reset_last(struct page *page) 881{ 882 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 883} 884#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 885#else /* !CONFIG_NUMA_BALANCING */ 886static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 887{ 888 return page_to_nid(page); /* XXX */ 889} 890 891static inline int page_cpupid_last(struct page *page) 892{ 893 return page_to_nid(page); /* XXX */ 894} 895 896static inline int cpupid_to_nid(int cpupid) 897{ 898 return -1; 899} 900 901static inline int cpupid_to_pid(int cpupid) 902{ 903 return -1; 904} 905 906static inline int cpupid_to_cpu(int cpupid) 907{ 908 return -1; 909} 910 911static inline int cpu_pid_to_cpupid(int nid, int pid) 912{ 913 return -1; 914} 915 916static inline bool cpupid_pid_unset(int cpupid) 917{ 918 return 1; 919} 920 921static inline void page_cpupid_reset_last(struct page *page) 922{ 923} 924 925static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 926{ 927 return false; 928} 929#endif /* CONFIG_NUMA_BALANCING */ 930 931static inline struct zone *page_zone(const struct page *page) 932{ 933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 934} 935 936static inline pg_data_t *page_pgdat(const struct page *page) 937{ 938 return NODE_DATA(page_to_nid(page)); 939} 940 941#ifdef SECTION_IN_PAGE_FLAGS 942static inline void set_page_section(struct page *page, unsigned long section) 943{ 944 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 945 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 946} 947 948static inline unsigned long page_to_section(const struct page *page) 949{ 950 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 951} 952#endif 953 954static inline void set_page_zone(struct page *page, enum zone_type zone) 955{ 956 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 957 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 958} 959 960static inline void set_page_node(struct page *page, unsigned long node) 961{ 962 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 963 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 964} 965 966static inline void set_page_links(struct page *page, enum zone_type zone, 967 unsigned long node, unsigned long pfn) 968{ 969 set_page_zone(page, zone); 970 set_page_node(page, node); 971#ifdef SECTION_IN_PAGE_FLAGS 972 set_page_section(page, pfn_to_section_nr(pfn)); 973#endif 974} 975 976#ifdef CONFIG_MEMCG 977static inline struct mem_cgroup *page_memcg(struct page *page) 978{ 979 return page->mem_cgroup; 980} 981static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 982{ 983 WARN_ON_ONCE(!rcu_read_lock_held()); 984 return READ_ONCE(page->mem_cgroup); 985} 986#else 987static inline struct mem_cgroup *page_memcg(struct page *page) 988{ 989 return NULL; 990} 991static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 992{ 993 WARN_ON_ONCE(!rcu_read_lock_held()); 994 return NULL; 995} 996#endif 997 998/* 999 * Some inline functions in vmstat.h depend on page_zone() 1000 */ 1001#include <linux/vmstat.h> 1002 1003static __always_inline void *lowmem_page_address(const struct page *page) 1004{ 1005 return page_to_virt(page); 1006} 1007 1008#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1009#define HASHED_PAGE_VIRTUAL 1010#endif 1011 1012#if defined(WANT_PAGE_VIRTUAL) 1013static inline void *page_address(const struct page *page) 1014{ 1015 return page->virtual; 1016} 1017static inline void set_page_address(struct page *page, void *address) 1018{ 1019 page->virtual = address; 1020} 1021#define page_address_init() do { } while(0) 1022#endif 1023 1024#if defined(HASHED_PAGE_VIRTUAL) 1025void *page_address(const struct page *page); 1026void set_page_address(struct page *page, void *virtual); 1027void page_address_init(void); 1028#endif 1029 1030#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1031#define page_address(page) lowmem_page_address(page) 1032#define set_page_address(page, address) do { } while(0) 1033#define page_address_init() do { } while(0) 1034#endif 1035 1036extern void *page_rmapping(struct page *page); 1037extern struct anon_vma *page_anon_vma(struct page *page); 1038extern struct address_space *page_mapping(struct page *page); 1039 1040extern struct address_space *__page_file_mapping(struct page *); 1041 1042static inline 1043struct address_space *page_file_mapping(struct page *page) 1044{ 1045 if (unlikely(PageSwapCache(page))) 1046 return __page_file_mapping(page); 1047 1048 return page->mapping; 1049} 1050 1051/* 1052 * Return the pagecache index of the passed page. Regular pagecache pages 1053 * use ->index whereas swapcache pages use ->private 1054 */ 1055static inline pgoff_t page_index(struct page *page) 1056{ 1057 if (unlikely(PageSwapCache(page))) 1058 return page_private(page); 1059 return page->index; 1060} 1061 1062extern pgoff_t __page_file_index(struct page *page); 1063 1064/* 1065 * Return the file index of the page. Regular pagecache pages use ->index 1066 * whereas swapcache pages use swp_offset(->private) 1067 */ 1068static inline pgoff_t page_file_index(struct page *page) 1069{ 1070 if (unlikely(PageSwapCache(page))) 1071 return __page_file_index(page); 1072 1073 return page->index; 1074} 1075 1076bool page_mapped(struct page *page); 1077struct address_space *page_mapping(struct page *page); 1078 1079/* 1080 * Return true only if the page has been allocated with 1081 * ALLOC_NO_WATERMARKS and the low watermark was not 1082 * met implying that the system is under some pressure. 1083 */ 1084static inline bool page_is_pfmemalloc(struct page *page) 1085{ 1086 /* 1087 * Page index cannot be this large so this must be 1088 * a pfmemalloc page. 1089 */ 1090 return page->index == -1UL; 1091} 1092 1093/* 1094 * Only to be called by the page allocator on a freshly allocated 1095 * page. 1096 */ 1097static inline void set_page_pfmemalloc(struct page *page) 1098{ 1099 page->index = -1UL; 1100} 1101 1102static inline void clear_page_pfmemalloc(struct page *page) 1103{ 1104 page->index = 0; 1105} 1106 1107/* 1108 * Different kinds of faults, as returned by handle_mm_fault(). 1109 * Used to decide whether a process gets delivered SIGBUS or 1110 * just gets major/minor fault counters bumped up. 1111 */ 1112 1113#define VM_FAULT_OOM 0x0001 1114#define VM_FAULT_SIGBUS 0x0002 1115#define VM_FAULT_MAJOR 0x0004 1116#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1117#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1118#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1119#define VM_FAULT_SIGSEGV 0x0040 1120 1121#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1122#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1123#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1124#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1125#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */ 1126 1127#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1128 1129#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1130 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1131 VM_FAULT_FALLBACK) 1132 1133/* Encode hstate index for a hwpoisoned large page */ 1134#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1135#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1136 1137/* 1138 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1139 */ 1140extern void pagefault_out_of_memory(void); 1141 1142#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1143 1144/* 1145 * Flags passed to show_mem() and show_free_areas() to suppress output in 1146 * various contexts. 1147 */ 1148#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1149 1150extern void show_free_areas(unsigned int flags); 1151extern bool skip_free_areas_node(unsigned int flags, int nid); 1152 1153int shmem_zero_setup(struct vm_area_struct *); 1154#ifdef CONFIG_SHMEM 1155bool shmem_mapping(struct address_space *mapping); 1156#else 1157static inline bool shmem_mapping(struct address_space *mapping) 1158{ 1159 return false; 1160} 1161#endif 1162 1163extern bool can_do_mlock(void); 1164extern int user_shm_lock(size_t, struct user_struct *); 1165extern void user_shm_unlock(size_t, struct user_struct *); 1166 1167/* 1168 * Parameter block passed down to zap_pte_range in exceptional cases. 1169 */ 1170struct zap_details { 1171 struct address_space *check_mapping; /* Check page->mapping if set */ 1172 pgoff_t first_index; /* Lowest page->index to unmap */ 1173 pgoff_t last_index; /* Highest page->index to unmap */ 1174 bool ignore_dirty; /* Ignore dirty pages */ 1175 bool check_swap_entries; /* Check also swap entries */ 1176}; 1177 1178struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1179 pte_t pte); 1180struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1181 pmd_t pmd); 1182 1183int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1184 unsigned long size); 1185void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1186 unsigned long size, struct zap_details *); 1187void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1188 unsigned long start, unsigned long end); 1189 1190/** 1191 * mm_walk - callbacks for walk_page_range 1192 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1193 * this handler is required to be able to handle 1194 * pmd_trans_huge() pmds. They may simply choose to 1195 * split_huge_page() instead of handling it explicitly. 1196 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1197 * @pte_hole: if set, called for each hole at all levels 1198 * @hugetlb_entry: if set, called for each hugetlb entry 1199 * @test_walk: caller specific callback function to determine whether 1200 * we walk over the current vma or not. A positive returned 1201 * value means "do page table walk over the current vma," 1202 * and a negative one means "abort current page table walk 1203 * right now." 0 means "skip the current vma." 1204 * @mm: mm_struct representing the target process of page table walk 1205 * @vma: vma currently walked (NULL if walking outside vmas) 1206 * @private: private data for callbacks' usage 1207 * 1208 * (see the comment on walk_page_range() for more details) 1209 */ 1210struct mm_walk { 1211 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1212 unsigned long next, struct mm_walk *walk); 1213 int (*pte_entry)(pte_t *pte, unsigned long addr, 1214 unsigned long next, struct mm_walk *walk); 1215 int (*pte_hole)(unsigned long addr, unsigned long next, 1216 struct mm_walk *walk); 1217 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1218 unsigned long addr, unsigned long next, 1219 struct mm_walk *walk); 1220 int (*test_walk)(unsigned long addr, unsigned long next, 1221 struct mm_walk *walk); 1222 struct mm_struct *mm; 1223 struct vm_area_struct *vma; 1224 void *private; 1225}; 1226 1227int walk_page_range(unsigned long addr, unsigned long end, 1228 struct mm_walk *walk); 1229int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1230void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1231 unsigned long end, unsigned long floor, unsigned long ceiling); 1232int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1233 struct vm_area_struct *vma); 1234void unmap_mapping_range(struct address_space *mapping, 1235 loff_t const holebegin, loff_t const holelen, int even_cows); 1236int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1237 unsigned long *pfn); 1238int follow_phys(struct vm_area_struct *vma, unsigned long address, 1239 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1240int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1241 void *buf, int len, int write); 1242 1243static inline void unmap_shared_mapping_range(struct address_space *mapping, 1244 loff_t const holebegin, loff_t const holelen) 1245{ 1246 unmap_mapping_range(mapping, holebegin, holelen, 0); 1247} 1248 1249extern void truncate_pagecache(struct inode *inode, loff_t new); 1250extern void truncate_setsize(struct inode *inode, loff_t newsize); 1251void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1252void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1253int truncate_inode_page(struct address_space *mapping, struct page *page); 1254int generic_error_remove_page(struct address_space *mapping, struct page *page); 1255int invalidate_inode_page(struct page *page); 1256 1257#ifdef CONFIG_MMU 1258extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1259 unsigned int flags); 1260extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1261 unsigned long address, unsigned int fault_flags, 1262 bool *unlocked); 1263#else 1264static inline int handle_mm_fault(struct vm_area_struct *vma, 1265 unsigned long address, unsigned int flags) 1266{ 1267 /* should never happen if there's no MMU */ 1268 BUG(); 1269 return VM_FAULT_SIGBUS; 1270} 1271static inline int fixup_user_fault(struct task_struct *tsk, 1272 struct mm_struct *mm, unsigned long address, 1273 unsigned int fault_flags, bool *unlocked) 1274{ 1275 /* should never happen if there's no MMU */ 1276 BUG(); 1277 return -EFAULT; 1278} 1279#endif 1280 1281extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1282extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1283 void *buf, int len, int write); 1284 1285long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1286 unsigned long start, unsigned long nr_pages, 1287 unsigned int foll_flags, struct page **pages, 1288 struct vm_area_struct **vmas, int *nonblocking); 1289long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1290 unsigned long start, unsigned long nr_pages, 1291 int write, int force, struct page **pages, 1292 struct vm_area_struct **vmas); 1293long get_user_pages(unsigned long start, unsigned long nr_pages, 1294 int write, int force, struct page **pages, 1295 struct vm_area_struct **vmas); 1296long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1297 int write, int force, struct page **pages, int *locked); 1298long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1299 unsigned long start, unsigned long nr_pages, 1300 int write, int force, struct page **pages, 1301 unsigned int gup_flags); 1302long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1303 int write, int force, struct page **pages); 1304int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1305 struct page **pages); 1306 1307/* Container for pinned pfns / pages */ 1308struct frame_vector { 1309 unsigned int nr_allocated; /* Number of frames we have space for */ 1310 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1311 bool got_ref; /* Did we pin pages by getting page ref? */ 1312 bool is_pfns; /* Does array contain pages or pfns? */ 1313 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1314 * pfns_vector_pages() or pfns_vector_pfns() 1315 * for access */ 1316}; 1317 1318struct frame_vector *frame_vector_create(unsigned int nr_frames); 1319void frame_vector_destroy(struct frame_vector *vec); 1320int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1321 bool write, bool force, struct frame_vector *vec); 1322void put_vaddr_frames(struct frame_vector *vec); 1323int frame_vector_to_pages(struct frame_vector *vec); 1324void frame_vector_to_pfns(struct frame_vector *vec); 1325 1326static inline unsigned int frame_vector_count(struct frame_vector *vec) 1327{ 1328 return vec->nr_frames; 1329} 1330 1331static inline struct page **frame_vector_pages(struct frame_vector *vec) 1332{ 1333 if (vec->is_pfns) { 1334 int err = frame_vector_to_pages(vec); 1335 1336 if (err) 1337 return ERR_PTR(err); 1338 } 1339 return (struct page **)(vec->ptrs); 1340} 1341 1342static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1343{ 1344 if (!vec->is_pfns) 1345 frame_vector_to_pfns(vec); 1346 return (unsigned long *)(vec->ptrs); 1347} 1348 1349struct kvec; 1350int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1351 struct page **pages); 1352int get_kernel_page(unsigned long start, int write, struct page **pages); 1353struct page *get_dump_page(unsigned long addr); 1354 1355extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1356extern void do_invalidatepage(struct page *page, unsigned int offset, 1357 unsigned int length); 1358 1359int __set_page_dirty_nobuffers(struct page *page); 1360int __set_page_dirty_no_writeback(struct page *page); 1361int redirty_page_for_writepage(struct writeback_control *wbc, 1362 struct page *page); 1363void account_page_dirtied(struct page *page, struct address_space *mapping); 1364void account_page_cleaned(struct page *page, struct address_space *mapping, 1365 struct bdi_writeback *wb); 1366int set_page_dirty(struct page *page); 1367int set_page_dirty_lock(struct page *page); 1368void cancel_dirty_page(struct page *page); 1369int clear_page_dirty_for_io(struct page *page); 1370 1371int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1372 1373/* Is the vma a continuation of the stack vma above it? */ 1374static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1375{ 1376 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1377} 1378 1379static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1380{ 1381 return !vma->vm_ops; 1382} 1383 1384static inline int stack_guard_page_start(struct vm_area_struct *vma, 1385 unsigned long addr) 1386{ 1387 return (vma->vm_flags & VM_GROWSDOWN) && 1388 (vma->vm_start == addr) && 1389 !vma_growsdown(vma->vm_prev, addr); 1390} 1391 1392/* Is the vma a continuation of the stack vma below it? */ 1393static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1394{ 1395 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1396} 1397 1398static inline int stack_guard_page_end(struct vm_area_struct *vma, 1399 unsigned long addr) 1400{ 1401 return (vma->vm_flags & VM_GROWSUP) && 1402 (vma->vm_end == addr) && 1403 !vma_growsup(vma->vm_next, addr); 1404} 1405 1406int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1407 1408extern unsigned long move_page_tables(struct vm_area_struct *vma, 1409 unsigned long old_addr, struct vm_area_struct *new_vma, 1410 unsigned long new_addr, unsigned long len, 1411 bool need_rmap_locks); 1412extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1413 unsigned long end, pgprot_t newprot, 1414 int dirty_accountable, int prot_numa); 1415extern int mprotect_fixup(struct vm_area_struct *vma, 1416 struct vm_area_struct **pprev, unsigned long start, 1417 unsigned long end, unsigned long newflags); 1418 1419/* 1420 * doesn't attempt to fault and will return short. 1421 */ 1422int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1423 struct page **pages); 1424/* 1425 * per-process(per-mm_struct) statistics. 1426 */ 1427static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1428{ 1429 long val = atomic_long_read(&mm->rss_stat.count[member]); 1430 1431#ifdef SPLIT_RSS_COUNTING 1432 /* 1433 * counter is updated in asynchronous manner and may go to minus. 1434 * But it's never be expected number for users. 1435 */ 1436 if (val < 0) 1437 val = 0; 1438#endif 1439 return (unsigned long)val; 1440} 1441 1442static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1443{ 1444 atomic_long_add(value, &mm->rss_stat.count[member]); 1445} 1446 1447static inline void inc_mm_counter(struct mm_struct *mm, int member) 1448{ 1449 atomic_long_inc(&mm->rss_stat.count[member]); 1450} 1451 1452static inline void dec_mm_counter(struct mm_struct *mm, int member) 1453{ 1454 atomic_long_dec(&mm->rss_stat.count[member]); 1455} 1456 1457/* Optimized variant when page is already known not to be PageAnon */ 1458static inline int mm_counter_file(struct page *page) 1459{ 1460 if (PageSwapBacked(page)) 1461 return MM_SHMEMPAGES; 1462 return MM_FILEPAGES; 1463} 1464 1465static inline int mm_counter(struct page *page) 1466{ 1467 if (PageAnon(page)) 1468 return MM_ANONPAGES; 1469 return mm_counter_file(page); 1470} 1471 1472static inline unsigned long get_mm_rss(struct mm_struct *mm) 1473{ 1474 return get_mm_counter(mm, MM_FILEPAGES) + 1475 get_mm_counter(mm, MM_ANONPAGES) + 1476 get_mm_counter(mm, MM_SHMEMPAGES); 1477} 1478 1479static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1480{ 1481 return max(mm->hiwater_rss, get_mm_rss(mm)); 1482} 1483 1484static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1485{ 1486 return max(mm->hiwater_vm, mm->total_vm); 1487} 1488 1489static inline void update_hiwater_rss(struct mm_struct *mm) 1490{ 1491 unsigned long _rss = get_mm_rss(mm); 1492 1493 if ((mm)->hiwater_rss < _rss) 1494 (mm)->hiwater_rss = _rss; 1495} 1496 1497static inline void update_hiwater_vm(struct mm_struct *mm) 1498{ 1499 if (mm->hiwater_vm < mm->total_vm) 1500 mm->hiwater_vm = mm->total_vm; 1501} 1502 1503static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1504{ 1505 mm->hiwater_rss = get_mm_rss(mm); 1506} 1507 1508static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1509 struct mm_struct *mm) 1510{ 1511 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1512 1513 if (*maxrss < hiwater_rss) 1514 *maxrss = hiwater_rss; 1515} 1516 1517#if defined(SPLIT_RSS_COUNTING) 1518void sync_mm_rss(struct mm_struct *mm); 1519#else 1520static inline void sync_mm_rss(struct mm_struct *mm) 1521{ 1522} 1523#endif 1524 1525#ifndef __HAVE_ARCH_PTE_DEVMAP 1526static inline int pte_devmap(pte_t pte) 1527{ 1528 return 0; 1529} 1530#endif 1531 1532int vma_wants_writenotify(struct vm_area_struct *vma); 1533 1534extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1535 spinlock_t **ptl); 1536static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1537 spinlock_t **ptl) 1538{ 1539 pte_t *ptep; 1540 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1541 return ptep; 1542} 1543 1544#ifdef __PAGETABLE_PUD_FOLDED 1545static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1546 unsigned long address) 1547{ 1548 return 0; 1549} 1550#else 1551int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1552#endif 1553 1554#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1555static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1556 unsigned long address) 1557{ 1558 return 0; 1559} 1560 1561static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1562 1563static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1564{ 1565 return 0; 1566} 1567 1568static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1569static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1570 1571#else 1572int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1573 1574static inline void mm_nr_pmds_init(struct mm_struct *mm) 1575{ 1576 atomic_long_set(&mm->nr_pmds, 0); 1577} 1578 1579static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1580{ 1581 return atomic_long_read(&mm->nr_pmds); 1582} 1583 1584static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1585{ 1586 atomic_long_inc(&mm->nr_pmds); 1587} 1588 1589static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1590{ 1591 atomic_long_dec(&mm->nr_pmds); 1592} 1593#endif 1594 1595int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1596int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1597 1598/* 1599 * The following ifdef needed to get the 4level-fixup.h header to work. 1600 * Remove it when 4level-fixup.h has been removed. 1601 */ 1602#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1603static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1604{ 1605 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1606 NULL: pud_offset(pgd, address); 1607} 1608 1609static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1610{ 1611 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1612 NULL: pmd_offset(pud, address); 1613} 1614#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1615 1616#if USE_SPLIT_PTE_PTLOCKS 1617#if ALLOC_SPLIT_PTLOCKS 1618void __init ptlock_cache_init(void); 1619extern bool ptlock_alloc(struct page *page); 1620extern void ptlock_free(struct page *page); 1621 1622static inline spinlock_t *ptlock_ptr(struct page *page) 1623{ 1624 return page->ptl; 1625} 1626#else /* ALLOC_SPLIT_PTLOCKS */ 1627static inline void ptlock_cache_init(void) 1628{ 1629} 1630 1631static inline bool ptlock_alloc(struct page *page) 1632{ 1633 return true; 1634} 1635 1636static inline void ptlock_free(struct page *page) 1637{ 1638} 1639 1640static inline spinlock_t *ptlock_ptr(struct page *page) 1641{ 1642 return &page->ptl; 1643} 1644#endif /* ALLOC_SPLIT_PTLOCKS */ 1645 1646static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1647{ 1648 return ptlock_ptr(pmd_page(*pmd)); 1649} 1650 1651static inline bool ptlock_init(struct page *page) 1652{ 1653 /* 1654 * prep_new_page() initialize page->private (and therefore page->ptl) 1655 * with 0. Make sure nobody took it in use in between. 1656 * 1657 * It can happen if arch try to use slab for page table allocation: 1658 * slab code uses page->slab_cache, which share storage with page->ptl. 1659 */ 1660 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1661 if (!ptlock_alloc(page)) 1662 return false; 1663 spin_lock_init(ptlock_ptr(page)); 1664 return true; 1665} 1666 1667/* Reset page->mapping so free_pages_check won't complain. */ 1668static inline void pte_lock_deinit(struct page *page) 1669{ 1670 page->mapping = NULL; 1671 ptlock_free(page); 1672} 1673 1674#else /* !USE_SPLIT_PTE_PTLOCKS */ 1675/* 1676 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1677 */ 1678static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1679{ 1680 return &mm->page_table_lock; 1681} 1682static inline void ptlock_cache_init(void) {} 1683static inline bool ptlock_init(struct page *page) { return true; } 1684static inline void pte_lock_deinit(struct page *page) {} 1685#endif /* USE_SPLIT_PTE_PTLOCKS */ 1686 1687static inline void pgtable_init(void) 1688{ 1689 ptlock_cache_init(); 1690 pgtable_cache_init(); 1691} 1692 1693static inline bool pgtable_page_ctor(struct page *page) 1694{ 1695 if (!ptlock_init(page)) 1696 return false; 1697 inc_zone_page_state(page, NR_PAGETABLE); 1698 return true; 1699} 1700 1701static inline void pgtable_page_dtor(struct page *page) 1702{ 1703 pte_lock_deinit(page); 1704 dec_zone_page_state(page, NR_PAGETABLE); 1705} 1706 1707#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1708({ \ 1709 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1710 pte_t *__pte = pte_offset_map(pmd, address); \ 1711 *(ptlp) = __ptl; \ 1712 spin_lock(__ptl); \ 1713 __pte; \ 1714}) 1715 1716#define pte_unmap_unlock(pte, ptl) do { \ 1717 spin_unlock(ptl); \ 1718 pte_unmap(pte); \ 1719} while (0) 1720 1721#define pte_alloc(mm, pmd, address) \ 1722 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1723 1724#define pte_alloc_map(mm, pmd, address) \ 1725 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1726 1727#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1728 (pte_alloc(mm, pmd, address) ? \ 1729 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1730 1731#define pte_alloc_kernel(pmd, address) \ 1732 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1733 NULL: pte_offset_kernel(pmd, address)) 1734 1735#if USE_SPLIT_PMD_PTLOCKS 1736 1737static struct page *pmd_to_page(pmd_t *pmd) 1738{ 1739 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1740 return virt_to_page((void *)((unsigned long) pmd & mask)); 1741} 1742 1743static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1744{ 1745 return ptlock_ptr(pmd_to_page(pmd)); 1746} 1747 1748static inline bool pgtable_pmd_page_ctor(struct page *page) 1749{ 1750#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1751 page->pmd_huge_pte = NULL; 1752#endif 1753 return ptlock_init(page); 1754} 1755 1756static inline void pgtable_pmd_page_dtor(struct page *page) 1757{ 1758#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1759 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1760#endif 1761 ptlock_free(page); 1762} 1763 1764#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1765 1766#else 1767 1768static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1769{ 1770 return &mm->page_table_lock; 1771} 1772 1773static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1774static inline void pgtable_pmd_page_dtor(struct page *page) {} 1775 1776#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1777 1778#endif 1779 1780static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1781{ 1782 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1783 spin_lock(ptl); 1784 return ptl; 1785} 1786 1787extern void free_area_init(unsigned long * zones_size); 1788extern void free_area_init_node(int nid, unsigned long * zones_size, 1789 unsigned long zone_start_pfn, unsigned long *zholes_size); 1790extern void free_initmem(void); 1791 1792/* 1793 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1794 * into the buddy system. The freed pages will be poisoned with pattern 1795 * "poison" if it's within range [0, UCHAR_MAX]. 1796 * Return pages freed into the buddy system. 1797 */ 1798extern unsigned long free_reserved_area(void *start, void *end, 1799 int poison, char *s); 1800 1801#ifdef CONFIG_HIGHMEM 1802/* 1803 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1804 * and totalram_pages. 1805 */ 1806extern void free_highmem_page(struct page *page); 1807#endif 1808 1809extern void adjust_managed_page_count(struct page *page, long count); 1810extern void mem_init_print_info(const char *str); 1811 1812extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1813 1814/* Free the reserved page into the buddy system, so it gets managed. */ 1815static inline void __free_reserved_page(struct page *page) 1816{ 1817 ClearPageReserved(page); 1818 init_page_count(page); 1819 __free_page(page); 1820} 1821 1822static inline void free_reserved_page(struct page *page) 1823{ 1824 __free_reserved_page(page); 1825 adjust_managed_page_count(page, 1); 1826} 1827 1828static inline void mark_page_reserved(struct page *page) 1829{ 1830 SetPageReserved(page); 1831 adjust_managed_page_count(page, -1); 1832} 1833 1834/* 1835 * Default method to free all the __init memory into the buddy system. 1836 * The freed pages will be poisoned with pattern "poison" if it's within 1837 * range [0, UCHAR_MAX]. 1838 * Return pages freed into the buddy system. 1839 */ 1840static inline unsigned long free_initmem_default(int poison) 1841{ 1842 extern char __init_begin[], __init_end[]; 1843 1844 return free_reserved_area(&__init_begin, &__init_end, 1845 poison, "unused kernel"); 1846} 1847 1848static inline unsigned long get_num_physpages(void) 1849{ 1850 int nid; 1851 unsigned long phys_pages = 0; 1852 1853 for_each_online_node(nid) 1854 phys_pages += node_present_pages(nid); 1855 1856 return phys_pages; 1857} 1858 1859#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1860/* 1861 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1862 * zones, allocate the backing mem_map and account for memory holes in a more 1863 * architecture independent manner. This is a substitute for creating the 1864 * zone_sizes[] and zholes_size[] arrays and passing them to 1865 * free_area_init_node() 1866 * 1867 * An architecture is expected to register range of page frames backed by 1868 * physical memory with memblock_add[_node]() before calling 1869 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1870 * usage, an architecture is expected to do something like 1871 * 1872 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1873 * max_highmem_pfn}; 1874 * for_each_valid_physical_page_range() 1875 * memblock_add_node(base, size, nid) 1876 * free_area_init_nodes(max_zone_pfns); 1877 * 1878 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1879 * registered physical page range. Similarly 1880 * sparse_memory_present_with_active_regions() calls memory_present() for 1881 * each range when SPARSEMEM is enabled. 1882 * 1883 * See mm/page_alloc.c for more information on each function exposed by 1884 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1885 */ 1886extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1887unsigned long node_map_pfn_alignment(void); 1888unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1889 unsigned long end_pfn); 1890extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1891 unsigned long end_pfn); 1892extern void get_pfn_range_for_nid(unsigned int nid, 1893 unsigned long *start_pfn, unsigned long *end_pfn); 1894extern unsigned long find_min_pfn_with_active_regions(void); 1895extern void free_bootmem_with_active_regions(int nid, 1896 unsigned long max_low_pfn); 1897extern void sparse_memory_present_with_active_regions(int nid); 1898 1899#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1900 1901#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1902 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1903static inline int __early_pfn_to_nid(unsigned long pfn, 1904 struct mminit_pfnnid_cache *state) 1905{ 1906 return 0; 1907} 1908#else 1909/* please see mm/page_alloc.c */ 1910extern int __meminit early_pfn_to_nid(unsigned long pfn); 1911/* there is a per-arch backend function. */ 1912extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1913 struct mminit_pfnnid_cache *state); 1914#endif 1915 1916extern void set_dma_reserve(unsigned long new_dma_reserve); 1917extern void memmap_init_zone(unsigned long, int, unsigned long, 1918 unsigned long, enum memmap_context); 1919extern void setup_per_zone_wmarks(void); 1920extern int __meminit init_per_zone_wmark_min(void); 1921extern void mem_init(void); 1922extern void __init mmap_init(void); 1923extern void show_mem(unsigned int flags); 1924extern long si_mem_available(void); 1925extern void si_meminfo(struct sysinfo * val); 1926extern void si_meminfo_node(struct sysinfo *val, int nid); 1927 1928extern __printf(3, 4) 1929void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1930 const char *fmt, ...); 1931 1932extern void setup_per_cpu_pageset(void); 1933 1934extern void zone_pcp_update(struct zone *zone); 1935extern void zone_pcp_reset(struct zone *zone); 1936 1937/* page_alloc.c */ 1938extern int min_free_kbytes; 1939extern int watermark_scale_factor; 1940 1941/* nommu.c */ 1942extern atomic_long_t mmap_pages_allocated; 1943extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1944 1945/* interval_tree.c */ 1946void vma_interval_tree_insert(struct vm_area_struct *node, 1947 struct rb_root *root); 1948void vma_interval_tree_insert_after(struct vm_area_struct *node, 1949 struct vm_area_struct *prev, 1950 struct rb_root *root); 1951void vma_interval_tree_remove(struct vm_area_struct *node, 1952 struct rb_root *root); 1953struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1954 unsigned long start, unsigned long last); 1955struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1956 unsigned long start, unsigned long last); 1957 1958#define vma_interval_tree_foreach(vma, root, start, last) \ 1959 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1960 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1961 1962void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1963 struct rb_root *root); 1964void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1965 struct rb_root *root); 1966struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1967 struct rb_root *root, unsigned long start, unsigned long last); 1968struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1969 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1970#ifdef CONFIG_DEBUG_VM_RB 1971void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1972#endif 1973 1974#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1975 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1976 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1977 1978/* mmap.c */ 1979extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1980extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1981 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1982extern struct vm_area_struct *vma_merge(struct mm_struct *, 1983 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1984 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1985 struct mempolicy *, struct vm_userfaultfd_ctx); 1986extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1987extern int split_vma(struct mm_struct *, 1988 struct vm_area_struct *, unsigned long addr, int new_below); 1989extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1990extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1991 struct rb_node **, struct rb_node *); 1992extern void unlink_file_vma(struct vm_area_struct *); 1993extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1994 unsigned long addr, unsigned long len, pgoff_t pgoff, 1995 bool *need_rmap_locks); 1996extern void exit_mmap(struct mm_struct *); 1997 1998static inline int check_data_rlimit(unsigned long rlim, 1999 unsigned long new, 2000 unsigned long start, 2001 unsigned long end_data, 2002 unsigned long start_data) 2003{ 2004 if (rlim < RLIM_INFINITY) { 2005 if (((new - start) + (end_data - start_data)) > rlim) 2006 return -ENOSPC; 2007 } 2008 2009 return 0; 2010} 2011 2012extern int mm_take_all_locks(struct mm_struct *mm); 2013extern void mm_drop_all_locks(struct mm_struct *mm); 2014 2015extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2016extern struct file *get_mm_exe_file(struct mm_struct *mm); 2017extern struct file *get_task_exe_file(struct task_struct *task); 2018 2019extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2020extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2021 2022extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2023 unsigned long addr, unsigned long len, 2024 unsigned long flags, 2025 const struct vm_special_mapping *spec); 2026/* This is an obsolete alternative to _install_special_mapping. */ 2027extern int install_special_mapping(struct mm_struct *mm, 2028 unsigned long addr, unsigned long len, 2029 unsigned long flags, struct page **pages); 2030 2031extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2032 2033extern unsigned long mmap_region(struct file *file, unsigned long addr, 2034 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2035extern unsigned long do_mmap(struct file *file, unsigned long addr, 2036 unsigned long len, unsigned long prot, unsigned long flags, 2037 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2038extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2039 2040static inline unsigned long 2041do_mmap_pgoff(struct file *file, unsigned long addr, 2042 unsigned long len, unsigned long prot, unsigned long flags, 2043 unsigned long pgoff, unsigned long *populate) 2044{ 2045 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2046} 2047 2048#ifdef CONFIG_MMU 2049extern int __mm_populate(unsigned long addr, unsigned long len, 2050 int ignore_errors); 2051static inline void mm_populate(unsigned long addr, unsigned long len) 2052{ 2053 /* Ignore errors */ 2054 (void) __mm_populate(addr, len, 1); 2055} 2056#else 2057static inline void mm_populate(unsigned long addr, unsigned long len) {} 2058#endif 2059 2060/* These take the mm semaphore themselves */ 2061extern int __must_check vm_brk(unsigned long, unsigned long); 2062extern int vm_munmap(unsigned long, size_t); 2063extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2064 unsigned long, unsigned long, 2065 unsigned long, unsigned long); 2066 2067struct vm_unmapped_area_info { 2068#define VM_UNMAPPED_AREA_TOPDOWN 1 2069 unsigned long flags; 2070 unsigned long length; 2071 unsigned long low_limit; 2072 unsigned long high_limit; 2073 unsigned long align_mask; 2074 unsigned long align_offset; 2075}; 2076 2077extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2078extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2079 2080/* 2081 * Search for an unmapped address range. 2082 * 2083 * We are looking for a range that: 2084 * - does not intersect with any VMA; 2085 * - is contained within the [low_limit, high_limit) interval; 2086 * - is at least the desired size. 2087 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2088 */ 2089static inline unsigned long 2090vm_unmapped_area(struct vm_unmapped_area_info *info) 2091{ 2092 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2093 return unmapped_area_topdown(info); 2094 else 2095 return unmapped_area(info); 2096} 2097 2098/* truncate.c */ 2099extern void truncate_inode_pages(struct address_space *, loff_t); 2100extern void truncate_inode_pages_range(struct address_space *, 2101 loff_t lstart, loff_t lend); 2102extern void truncate_inode_pages_final(struct address_space *); 2103 2104/* generic vm_area_ops exported for stackable file systems */ 2105extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2106extern void filemap_map_pages(struct fault_env *fe, 2107 pgoff_t start_pgoff, pgoff_t end_pgoff); 2108extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2109 2110/* mm/page-writeback.c */ 2111int write_one_page(struct page *page, int wait); 2112void task_dirty_inc(struct task_struct *tsk); 2113 2114/* readahead.c */ 2115#define VM_MAX_READAHEAD 128 /* kbytes */ 2116#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2117 2118int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2119 pgoff_t offset, unsigned long nr_to_read); 2120 2121void page_cache_sync_readahead(struct address_space *mapping, 2122 struct file_ra_state *ra, 2123 struct file *filp, 2124 pgoff_t offset, 2125 unsigned long size); 2126 2127void page_cache_async_readahead(struct address_space *mapping, 2128 struct file_ra_state *ra, 2129 struct file *filp, 2130 struct page *pg, 2131 pgoff_t offset, 2132 unsigned long size); 2133 2134/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2135extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2136 2137/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2138extern int expand_downwards(struct vm_area_struct *vma, 2139 unsigned long address); 2140#if VM_GROWSUP 2141extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2142#else 2143 #define expand_upwards(vma, address) (0) 2144#endif 2145 2146/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2147extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2148extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2149 struct vm_area_struct **pprev); 2150 2151/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2152 NULL if none. Assume start_addr < end_addr. */ 2153static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2154{ 2155 struct vm_area_struct * vma = find_vma(mm,start_addr); 2156 2157 if (vma && end_addr <= vma->vm_start) 2158 vma = NULL; 2159 return vma; 2160} 2161 2162static inline unsigned long vma_pages(struct vm_area_struct *vma) 2163{ 2164 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2165} 2166 2167/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2168static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2169 unsigned long vm_start, unsigned long vm_end) 2170{ 2171 struct vm_area_struct *vma = find_vma(mm, vm_start); 2172 2173 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2174 vma = NULL; 2175 2176 return vma; 2177} 2178 2179#ifdef CONFIG_MMU 2180pgprot_t vm_get_page_prot(unsigned long vm_flags); 2181void vma_set_page_prot(struct vm_area_struct *vma); 2182#else 2183static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2184{ 2185 return __pgprot(0); 2186} 2187static inline void vma_set_page_prot(struct vm_area_struct *vma) 2188{ 2189 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2190} 2191#endif 2192 2193#ifdef CONFIG_NUMA_BALANCING 2194unsigned long change_prot_numa(struct vm_area_struct *vma, 2195 unsigned long start, unsigned long end); 2196#endif 2197 2198struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2199int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2200 unsigned long pfn, unsigned long size, pgprot_t); 2201int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2202int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2203 unsigned long pfn); 2204int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2205 unsigned long pfn, pgprot_t pgprot); 2206int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2207 pfn_t pfn); 2208int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2209 2210 2211struct page *follow_page_mask(struct vm_area_struct *vma, 2212 unsigned long address, unsigned int foll_flags, 2213 unsigned int *page_mask); 2214 2215static inline struct page *follow_page(struct vm_area_struct *vma, 2216 unsigned long address, unsigned int foll_flags) 2217{ 2218 unsigned int unused_page_mask; 2219 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2220} 2221 2222#define FOLL_WRITE 0x01 /* check pte is writable */ 2223#define FOLL_TOUCH 0x02 /* mark page accessed */ 2224#define FOLL_GET 0x04 /* do get_page on page */ 2225#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2226#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2227#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2228 * and return without waiting upon it */ 2229#define FOLL_POPULATE 0x40 /* fault in page */ 2230#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2231#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2232#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2233#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2234#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2235#define FOLL_MLOCK 0x1000 /* lock present pages */ 2236#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2237 2238typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2239 void *data); 2240extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2241 unsigned long size, pte_fn_t fn, void *data); 2242 2243 2244#ifdef CONFIG_PAGE_POISONING 2245extern bool page_poisoning_enabled(void); 2246extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2247extern bool page_is_poisoned(struct page *page); 2248#else 2249static inline bool page_poisoning_enabled(void) { return false; } 2250static inline void kernel_poison_pages(struct page *page, int numpages, 2251 int enable) { } 2252static inline bool page_is_poisoned(struct page *page) { return false; } 2253#endif 2254 2255#ifdef CONFIG_DEBUG_PAGEALLOC 2256extern bool _debug_pagealloc_enabled; 2257extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2258 2259static inline bool debug_pagealloc_enabled(void) 2260{ 2261 return _debug_pagealloc_enabled; 2262} 2263 2264static inline void 2265kernel_map_pages(struct page *page, int numpages, int enable) 2266{ 2267 if (!debug_pagealloc_enabled()) 2268 return; 2269 2270 __kernel_map_pages(page, numpages, enable); 2271} 2272#ifdef CONFIG_HIBERNATION 2273extern bool kernel_page_present(struct page *page); 2274#endif /* CONFIG_HIBERNATION */ 2275#else /* CONFIG_DEBUG_PAGEALLOC */ 2276static inline void 2277kernel_map_pages(struct page *page, int numpages, int enable) {} 2278#ifdef CONFIG_HIBERNATION 2279static inline bool kernel_page_present(struct page *page) { return true; } 2280#endif /* CONFIG_HIBERNATION */ 2281static inline bool debug_pagealloc_enabled(void) 2282{ 2283 return false; 2284} 2285#endif /* CONFIG_DEBUG_PAGEALLOC */ 2286 2287#ifdef __HAVE_ARCH_GATE_AREA 2288extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2289extern int in_gate_area_no_mm(unsigned long addr); 2290extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2291#else 2292static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2293{ 2294 return NULL; 2295} 2296static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2297static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2298{ 2299 return 0; 2300} 2301#endif /* __HAVE_ARCH_GATE_AREA */ 2302 2303extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2304 2305#ifdef CONFIG_SYSCTL 2306extern int sysctl_drop_caches; 2307int drop_caches_sysctl_handler(struct ctl_table *, int, 2308 void __user *, size_t *, loff_t *); 2309#endif 2310 2311void drop_slab(void); 2312void drop_slab_node(int nid); 2313 2314#ifndef CONFIG_MMU 2315#define randomize_va_space 0 2316#else 2317extern int randomize_va_space; 2318#endif 2319 2320const char * arch_vma_name(struct vm_area_struct *vma); 2321void print_vma_addr(char *prefix, unsigned long rip); 2322 2323void sparse_mem_maps_populate_node(struct page **map_map, 2324 unsigned long pnum_begin, 2325 unsigned long pnum_end, 2326 unsigned long map_count, 2327 int nodeid); 2328 2329struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2330pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2331pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2332pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2333pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2334void *vmemmap_alloc_block(unsigned long size, int node); 2335struct vmem_altmap; 2336void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2337 struct vmem_altmap *altmap); 2338static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2339{ 2340 return __vmemmap_alloc_block_buf(size, node, NULL); 2341} 2342 2343void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2344int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2345 int node); 2346int vmemmap_populate(unsigned long start, unsigned long end, int node); 2347void vmemmap_populate_print_last(void); 2348#ifdef CONFIG_MEMORY_HOTPLUG 2349void vmemmap_free(unsigned long start, unsigned long end); 2350#endif 2351void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2352 unsigned long size); 2353 2354enum mf_flags { 2355 MF_COUNT_INCREASED = 1 << 0, 2356 MF_ACTION_REQUIRED = 1 << 1, 2357 MF_MUST_KILL = 1 << 2, 2358 MF_SOFT_OFFLINE = 1 << 3, 2359}; 2360extern int memory_failure(unsigned long pfn, int trapno, int flags); 2361extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2362extern int unpoison_memory(unsigned long pfn); 2363extern int get_hwpoison_page(struct page *page); 2364#define put_hwpoison_page(page) put_page(page) 2365extern int sysctl_memory_failure_early_kill; 2366extern int sysctl_memory_failure_recovery; 2367extern void shake_page(struct page *p, int access); 2368extern atomic_long_t num_poisoned_pages; 2369extern int soft_offline_page(struct page *page, int flags); 2370 2371 2372/* 2373 * Error handlers for various types of pages. 2374 */ 2375enum mf_result { 2376 MF_IGNORED, /* Error: cannot be handled */ 2377 MF_FAILED, /* Error: handling failed */ 2378 MF_DELAYED, /* Will be handled later */ 2379 MF_RECOVERED, /* Successfully recovered */ 2380}; 2381 2382enum mf_action_page_type { 2383 MF_MSG_KERNEL, 2384 MF_MSG_KERNEL_HIGH_ORDER, 2385 MF_MSG_SLAB, 2386 MF_MSG_DIFFERENT_COMPOUND, 2387 MF_MSG_POISONED_HUGE, 2388 MF_MSG_HUGE, 2389 MF_MSG_FREE_HUGE, 2390 MF_MSG_UNMAP_FAILED, 2391 MF_MSG_DIRTY_SWAPCACHE, 2392 MF_MSG_CLEAN_SWAPCACHE, 2393 MF_MSG_DIRTY_MLOCKED_LRU, 2394 MF_MSG_CLEAN_MLOCKED_LRU, 2395 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2396 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2397 MF_MSG_DIRTY_LRU, 2398 MF_MSG_CLEAN_LRU, 2399 MF_MSG_TRUNCATED_LRU, 2400 MF_MSG_BUDDY, 2401 MF_MSG_BUDDY_2ND, 2402 MF_MSG_UNKNOWN, 2403}; 2404 2405#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2406extern void clear_huge_page(struct page *page, 2407 unsigned long addr, 2408 unsigned int pages_per_huge_page); 2409extern void copy_user_huge_page(struct page *dst, struct page *src, 2410 unsigned long addr, struct vm_area_struct *vma, 2411 unsigned int pages_per_huge_page); 2412#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2413 2414extern struct page_ext_operations debug_guardpage_ops; 2415extern struct page_ext_operations page_poisoning_ops; 2416 2417#ifdef CONFIG_DEBUG_PAGEALLOC 2418extern unsigned int _debug_guardpage_minorder; 2419extern bool _debug_guardpage_enabled; 2420 2421static inline unsigned int debug_guardpage_minorder(void) 2422{ 2423 return _debug_guardpage_minorder; 2424} 2425 2426static inline bool debug_guardpage_enabled(void) 2427{ 2428 return _debug_guardpage_enabled; 2429} 2430 2431static inline bool page_is_guard(struct page *page) 2432{ 2433 struct page_ext *page_ext; 2434 2435 if (!debug_guardpage_enabled()) 2436 return false; 2437 2438 page_ext = lookup_page_ext(page); 2439 if (unlikely(!page_ext)) 2440 return false; 2441 2442 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2443} 2444#else 2445static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2446static inline bool debug_guardpage_enabled(void) { return false; } 2447static inline bool page_is_guard(struct page *page) { return false; } 2448#endif /* CONFIG_DEBUG_PAGEALLOC */ 2449 2450#if MAX_NUMNODES > 1 2451void __init setup_nr_node_ids(void); 2452#else 2453static inline void setup_nr_node_ids(void) {} 2454#endif 2455 2456#endif /* __KERNEL__ */ 2457#endif /* _LINUX_MM_H */