at v4.8 49 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <linux/badblocks.h> 33#include <asm/uaccess.h> 34#include "internal.h" 35 36struct bdev_inode { 37 struct block_device bdev; 38 struct inode vfs_inode; 39}; 40 41static const struct address_space_operations def_blk_aops; 42 43static inline struct bdev_inode *BDEV_I(struct inode *inode) 44{ 45 return container_of(inode, struct bdev_inode, vfs_inode); 46} 47 48struct block_device *I_BDEV(struct inode *inode) 49{ 50 return &BDEV_I(inode)->bdev; 51} 52EXPORT_SYMBOL(I_BDEV); 53 54void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 55{ 56 struct va_format vaf; 57 va_list args; 58 59 va_start(args, fmt); 60 vaf.fmt = fmt; 61 vaf.va = &args; 62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 63 va_end(args); 64} 65 66static void bdev_write_inode(struct block_device *bdev) 67{ 68 struct inode *inode = bdev->bd_inode; 69 int ret; 70 71 spin_lock(&inode->i_lock); 72 while (inode->i_state & I_DIRTY) { 73 spin_unlock(&inode->i_lock); 74 ret = write_inode_now(inode, true); 75 if (ret) { 76 char name[BDEVNAME_SIZE]; 77 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 78 "for block device %s (err=%d).\n", 79 bdevname(bdev, name), ret); 80 } 81 spin_lock(&inode->i_lock); 82 } 83 spin_unlock(&inode->i_lock); 84} 85 86/* Kill _all_ buffers and pagecache , dirty or not.. */ 87void kill_bdev(struct block_device *bdev) 88{ 89 struct address_space *mapping = bdev->bd_inode->i_mapping; 90 91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 92 return; 93 94 invalidate_bh_lrus(); 95 truncate_inode_pages(mapping, 0); 96} 97EXPORT_SYMBOL(kill_bdev); 98 99/* Invalidate clean unused buffers and pagecache. */ 100void invalidate_bdev(struct block_device *bdev) 101{ 102 struct address_space *mapping = bdev->bd_inode->i_mapping; 103 104 if (mapping->nrpages == 0) 105 return; 106 107 invalidate_bh_lrus(); 108 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 109 invalidate_mapping_pages(mapping, 0, -1); 110 /* 99% of the time, we don't need to flush the cleancache on the bdev. 111 * But, for the strange corners, lets be cautious 112 */ 113 cleancache_invalidate_inode(mapping); 114} 115EXPORT_SYMBOL(invalidate_bdev); 116 117int set_blocksize(struct block_device *bdev, int size) 118{ 119 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 121 return -EINVAL; 122 123 /* Size cannot be smaller than the size supported by the device */ 124 if (size < bdev_logical_block_size(bdev)) 125 return -EINVAL; 126 127 /* Don't change the size if it is same as current */ 128 if (bdev->bd_block_size != size) { 129 sync_blockdev(bdev); 130 bdev->bd_block_size = size; 131 bdev->bd_inode->i_blkbits = blksize_bits(size); 132 kill_bdev(bdev); 133 } 134 return 0; 135} 136 137EXPORT_SYMBOL(set_blocksize); 138 139int sb_set_blocksize(struct super_block *sb, int size) 140{ 141 if (set_blocksize(sb->s_bdev, size)) 142 return 0; 143 /* If we get here, we know size is power of two 144 * and it's value is between 512 and PAGE_SIZE */ 145 sb->s_blocksize = size; 146 sb->s_blocksize_bits = blksize_bits(size); 147 return sb->s_blocksize; 148} 149 150EXPORT_SYMBOL(sb_set_blocksize); 151 152int sb_min_blocksize(struct super_block *sb, int size) 153{ 154 int minsize = bdev_logical_block_size(sb->s_bdev); 155 if (size < minsize) 156 size = minsize; 157 return sb_set_blocksize(sb, size); 158} 159 160EXPORT_SYMBOL(sb_min_blocksize); 161 162static int 163blkdev_get_block(struct inode *inode, sector_t iblock, 164 struct buffer_head *bh, int create) 165{ 166 bh->b_bdev = I_BDEV(inode); 167 bh->b_blocknr = iblock; 168 set_buffer_mapped(bh); 169 return 0; 170} 171 172static struct inode *bdev_file_inode(struct file *file) 173{ 174 return file->f_mapping->host; 175} 176 177static ssize_t 178blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 179{ 180 struct file *file = iocb->ki_filp; 181 struct inode *inode = bdev_file_inode(file); 182 183 if (IS_DAX(inode)) 184 return dax_do_io(iocb, inode, iter, blkdev_get_block, 185 NULL, DIO_SKIP_DIO_COUNT); 186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, 187 blkdev_get_block, NULL, NULL, 188 DIO_SKIP_DIO_COUNT); 189} 190 191int __sync_blockdev(struct block_device *bdev, int wait) 192{ 193 if (!bdev) 194 return 0; 195 if (!wait) 196 return filemap_flush(bdev->bd_inode->i_mapping); 197 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 198} 199 200/* 201 * Write out and wait upon all the dirty data associated with a block 202 * device via its mapping. Does not take the superblock lock. 203 */ 204int sync_blockdev(struct block_device *bdev) 205{ 206 return __sync_blockdev(bdev, 1); 207} 208EXPORT_SYMBOL(sync_blockdev); 209 210/* 211 * Write out and wait upon all dirty data associated with this 212 * device. Filesystem data as well as the underlying block 213 * device. Takes the superblock lock. 214 */ 215int fsync_bdev(struct block_device *bdev) 216{ 217 struct super_block *sb = get_super(bdev); 218 if (sb) { 219 int res = sync_filesystem(sb); 220 drop_super(sb); 221 return res; 222 } 223 return sync_blockdev(bdev); 224} 225EXPORT_SYMBOL(fsync_bdev); 226 227/** 228 * freeze_bdev -- lock a filesystem and force it into a consistent state 229 * @bdev: blockdevice to lock 230 * 231 * If a superblock is found on this device, we take the s_umount semaphore 232 * on it to make sure nobody unmounts until the snapshot creation is done. 233 * The reference counter (bd_fsfreeze_count) guarantees that only the last 234 * unfreeze process can unfreeze the frozen filesystem actually when multiple 235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 237 * actually. 238 */ 239struct super_block *freeze_bdev(struct block_device *bdev) 240{ 241 struct super_block *sb; 242 int error = 0; 243 244 mutex_lock(&bdev->bd_fsfreeze_mutex); 245 if (++bdev->bd_fsfreeze_count > 1) { 246 /* 247 * We don't even need to grab a reference - the first call 248 * to freeze_bdev grab an active reference and only the last 249 * thaw_bdev drops it. 250 */ 251 sb = get_super(bdev); 252 if (sb) 253 drop_super(sb); 254 mutex_unlock(&bdev->bd_fsfreeze_mutex); 255 return sb; 256 } 257 258 sb = get_active_super(bdev); 259 if (!sb) 260 goto out; 261 if (sb->s_op->freeze_super) 262 error = sb->s_op->freeze_super(sb); 263 else 264 error = freeze_super(sb); 265 if (error) { 266 deactivate_super(sb); 267 bdev->bd_fsfreeze_count--; 268 mutex_unlock(&bdev->bd_fsfreeze_mutex); 269 return ERR_PTR(error); 270 } 271 deactivate_super(sb); 272 out: 273 sync_blockdev(bdev); 274 mutex_unlock(&bdev->bd_fsfreeze_mutex); 275 return sb; /* thaw_bdev releases s->s_umount */ 276} 277EXPORT_SYMBOL(freeze_bdev); 278 279/** 280 * thaw_bdev -- unlock filesystem 281 * @bdev: blockdevice to unlock 282 * @sb: associated superblock 283 * 284 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 285 */ 286int thaw_bdev(struct block_device *bdev, struct super_block *sb) 287{ 288 int error = -EINVAL; 289 290 mutex_lock(&bdev->bd_fsfreeze_mutex); 291 if (!bdev->bd_fsfreeze_count) 292 goto out; 293 294 error = 0; 295 if (--bdev->bd_fsfreeze_count > 0) 296 goto out; 297 298 if (!sb) 299 goto out; 300 301 if (sb->s_op->thaw_super) 302 error = sb->s_op->thaw_super(sb); 303 else 304 error = thaw_super(sb); 305 if (error) { 306 bdev->bd_fsfreeze_count++; 307 mutex_unlock(&bdev->bd_fsfreeze_mutex); 308 return error; 309 } 310out: 311 mutex_unlock(&bdev->bd_fsfreeze_mutex); 312 return 0; 313} 314EXPORT_SYMBOL(thaw_bdev); 315 316static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 317{ 318 return block_write_full_page(page, blkdev_get_block, wbc); 319} 320 321static int blkdev_readpage(struct file * file, struct page * page) 322{ 323 return block_read_full_page(page, blkdev_get_block); 324} 325 326static int blkdev_readpages(struct file *file, struct address_space *mapping, 327 struct list_head *pages, unsigned nr_pages) 328{ 329 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 330} 331 332static int blkdev_write_begin(struct file *file, struct address_space *mapping, 333 loff_t pos, unsigned len, unsigned flags, 334 struct page **pagep, void **fsdata) 335{ 336 return block_write_begin(mapping, pos, len, flags, pagep, 337 blkdev_get_block); 338} 339 340static int blkdev_write_end(struct file *file, struct address_space *mapping, 341 loff_t pos, unsigned len, unsigned copied, 342 struct page *page, void *fsdata) 343{ 344 int ret; 345 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 346 347 unlock_page(page); 348 put_page(page); 349 350 return ret; 351} 352 353/* 354 * private llseek: 355 * for a block special file file_inode(file)->i_size is zero 356 * so we compute the size by hand (just as in block_read/write above) 357 */ 358static loff_t block_llseek(struct file *file, loff_t offset, int whence) 359{ 360 struct inode *bd_inode = bdev_file_inode(file); 361 loff_t retval; 362 363 inode_lock(bd_inode); 364 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 365 inode_unlock(bd_inode); 366 return retval; 367} 368 369int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 370{ 371 struct inode *bd_inode = bdev_file_inode(filp); 372 struct block_device *bdev = I_BDEV(bd_inode); 373 int error; 374 375 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 376 if (error) 377 return error; 378 379 /* 380 * There is no need to serialise calls to blkdev_issue_flush with 381 * i_mutex and doing so causes performance issues with concurrent 382 * O_SYNC writers to a block device. 383 */ 384 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 385 if (error == -EOPNOTSUPP) 386 error = 0; 387 388 return error; 389} 390EXPORT_SYMBOL(blkdev_fsync); 391 392/** 393 * bdev_read_page() - Start reading a page from a block device 394 * @bdev: The device to read the page from 395 * @sector: The offset on the device to read the page to (need not be aligned) 396 * @page: The page to read 397 * 398 * On entry, the page should be locked. It will be unlocked when the page 399 * has been read. If the block driver implements rw_page synchronously, 400 * that will be true on exit from this function, but it need not be. 401 * 402 * Errors returned by this function are usually "soft", eg out of memory, or 403 * queue full; callers should try a different route to read this page rather 404 * than propagate an error back up the stack. 405 * 406 * Return: negative errno if an error occurs, 0 if submission was successful. 407 */ 408int bdev_read_page(struct block_device *bdev, sector_t sector, 409 struct page *page) 410{ 411 const struct block_device_operations *ops = bdev->bd_disk->fops; 412 int result = -EOPNOTSUPP; 413 414 if (!ops->rw_page || bdev_get_integrity(bdev)) 415 return result; 416 417 result = blk_queue_enter(bdev->bd_queue, false); 418 if (result) 419 return result; 420 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 421 blk_queue_exit(bdev->bd_queue); 422 return result; 423} 424EXPORT_SYMBOL_GPL(bdev_read_page); 425 426/** 427 * bdev_write_page() - Start writing a page to a block device 428 * @bdev: The device to write the page to 429 * @sector: The offset on the device to write the page to (need not be aligned) 430 * @page: The page to write 431 * @wbc: The writeback_control for the write 432 * 433 * On entry, the page should be locked and not currently under writeback. 434 * On exit, if the write started successfully, the page will be unlocked and 435 * under writeback. If the write failed already (eg the driver failed to 436 * queue the page to the device), the page will still be locked. If the 437 * caller is a ->writepage implementation, it will need to unlock the page. 438 * 439 * Errors returned by this function are usually "soft", eg out of memory, or 440 * queue full; callers should try a different route to write this page rather 441 * than propagate an error back up the stack. 442 * 443 * Return: negative errno if an error occurs, 0 if submission was successful. 444 */ 445int bdev_write_page(struct block_device *bdev, sector_t sector, 446 struct page *page, struct writeback_control *wbc) 447{ 448 int result; 449 const struct block_device_operations *ops = bdev->bd_disk->fops; 450 451 if (!ops->rw_page || bdev_get_integrity(bdev)) 452 return -EOPNOTSUPP; 453 result = blk_queue_enter(bdev->bd_queue, false); 454 if (result) 455 return result; 456 457 set_page_writeback(page); 458 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 459 if (result) 460 end_page_writeback(page); 461 else 462 unlock_page(page); 463 blk_queue_exit(bdev->bd_queue); 464 return result; 465} 466EXPORT_SYMBOL_GPL(bdev_write_page); 467 468/** 469 * bdev_direct_access() - Get the address for directly-accessibly memory 470 * @bdev: The device containing the memory 471 * @dax: control and output parameters for ->direct_access 472 * 473 * If a block device is made up of directly addressable memory, this function 474 * will tell the caller the PFN and the address of the memory. The address 475 * may be directly dereferenced within the kernel without the need to call 476 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 477 * page tables. 478 * 479 * Return: negative errno if an error occurs, otherwise the number of bytes 480 * accessible at this address. 481 */ 482long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 483{ 484 sector_t sector = dax->sector; 485 long avail, size = dax->size; 486 const struct block_device_operations *ops = bdev->bd_disk->fops; 487 488 /* 489 * The device driver is allowed to sleep, in order to make the 490 * memory directly accessible. 491 */ 492 might_sleep(); 493 494 if (size < 0) 495 return size; 496 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access) 497 return -EOPNOTSUPP; 498 if ((sector + DIV_ROUND_UP(size, 512)) > 499 part_nr_sects_read(bdev->bd_part)) 500 return -ERANGE; 501 sector += get_start_sect(bdev); 502 if (sector % (PAGE_SIZE / 512)) 503 return -EINVAL; 504 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size); 505 if (!avail) 506 return -ERANGE; 507 if (avail > 0 && avail & ~PAGE_MASK) 508 return -ENXIO; 509 return min(avail, size); 510} 511EXPORT_SYMBOL_GPL(bdev_direct_access); 512 513/** 514 * bdev_dax_supported() - Check if the device supports dax for filesystem 515 * @sb: The superblock of the device 516 * @blocksize: The block size of the device 517 * 518 * This is a library function for filesystems to check if the block device 519 * can be mounted with dax option. 520 * 521 * Return: negative errno if unsupported, 0 if supported. 522 */ 523int bdev_dax_supported(struct super_block *sb, int blocksize) 524{ 525 struct blk_dax_ctl dax = { 526 .sector = 0, 527 .size = PAGE_SIZE, 528 }; 529 int err; 530 531 if (blocksize != PAGE_SIZE) { 532 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax"); 533 return -EINVAL; 534 } 535 536 err = bdev_direct_access(sb->s_bdev, &dax); 537 if (err < 0) { 538 switch (err) { 539 case -EOPNOTSUPP: 540 vfs_msg(sb, KERN_ERR, 541 "error: device does not support dax"); 542 break; 543 case -EINVAL: 544 vfs_msg(sb, KERN_ERR, 545 "error: unaligned partition for dax"); 546 break; 547 default: 548 vfs_msg(sb, KERN_ERR, 549 "error: dax access failed (%d)", err); 550 } 551 return err; 552 } 553 554 return 0; 555} 556EXPORT_SYMBOL_GPL(bdev_dax_supported); 557 558/** 559 * bdev_dax_capable() - Return if the raw device is capable for dax 560 * @bdev: The device for raw block device access 561 */ 562bool bdev_dax_capable(struct block_device *bdev) 563{ 564 struct blk_dax_ctl dax = { 565 .size = PAGE_SIZE, 566 }; 567 568 if (!IS_ENABLED(CONFIG_FS_DAX)) 569 return false; 570 571 dax.sector = 0; 572 if (bdev_direct_access(bdev, &dax) < 0) 573 return false; 574 575 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512); 576 if (bdev_direct_access(bdev, &dax) < 0) 577 return false; 578 579 return true; 580} 581 582/* 583 * pseudo-fs 584 */ 585 586static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 587static struct kmem_cache * bdev_cachep __read_mostly; 588 589static struct inode *bdev_alloc_inode(struct super_block *sb) 590{ 591 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 592 if (!ei) 593 return NULL; 594 return &ei->vfs_inode; 595} 596 597static void bdev_i_callback(struct rcu_head *head) 598{ 599 struct inode *inode = container_of(head, struct inode, i_rcu); 600 struct bdev_inode *bdi = BDEV_I(inode); 601 602 kmem_cache_free(bdev_cachep, bdi); 603} 604 605static void bdev_destroy_inode(struct inode *inode) 606{ 607 call_rcu(&inode->i_rcu, bdev_i_callback); 608} 609 610static void init_once(void *foo) 611{ 612 struct bdev_inode *ei = (struct bdev_inode *) foo; 613 struct block_device *bdev = &ei->bdev; 614 615 memset(bdev, 0, sizeof(*bdev)); 616 mutex_init(&bdev->bd_mutex); 617 INIT_LIST_HEAD(&bdev->bd_list); 618#ifdef CONFIG_SYSFS 619 INIT_LIST_HEAD(&bdev->bd_holder_disks); 620#endif 621 inode_init_once(&ei->vfs_inode); 622 /* Initialize mutex for freeze. */ 623 mutex_init(&bdev->bd_fsfreeze_mutex); 624} 625 626static void bdev_evict_inode(struct inode *inode) 627{ 628 struct block_device *bdev = &BDEV_I(inode)->bdev; 629 truncate_inode_pages_final(&inode->i_data); 630 invalidate_inode_buffers(inode); /* is it needed here? */ 631 clear_inode(inode); 632 spin_lock(&bdev_lock); 633 list_del_init(&bdev->bd_list); 634 spin_unlock(&bdev_lock); 635} 636 637static const struct super_operations bdev_sops = { 638 .statfs = simple_statfs, 639 .alloc_inode = bdev_alloc_inode, 640 .destroy_inode = bdev_destroy_inode, 641 .drop_inode = generic_delete_inode, 642 .evict_inode = bdev_evict_inode, 643}; 644 645static struct dentry *bd_mount(struct file_system_type *fs_type, 646 int flags, const char *dev_name, void *data) 647{ 648 struct dentry *dent; 649 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 650 if (!IS_ERR(dent)) 651 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 652 return dent; 653} 654 655static struct file_system_type bd_type = { 656 .name = "bdev", 657 .mount = bd_mount, 658 .kill_sb = kill_anon_super, 659}; 660 661struct super_block *blockdev_superblock __read_mostly; 662EXPORT_SYMBOL_GPL(blockdev_superblock); 663 664void __init bdev_cache_init(void) 665{ 666 int err; 667 static struct vfsmount *bd_mnt; 668 669 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 670 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 671 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 672 init_once); 673 err = register_filesystem(&bd_type); 674 if (err) 675 panic("Cannot register bdev pseudo-fs"); 676 bd_mnt = kern_mount(&bd_type); 677 if (IS_ERR(bd_mnt)) 678 panic("Cannot create bdev pseudo-fs"); 679 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 680} 681 682/* 683 * Most likely _very_ bad one - but then it's hardly critical for small 684 * /dev and can be fixed when somebody will need really large one. 685 * Keep in mind that it will be fed through icache hash function too. 686 */ 687static inline unsigned long hash(dev_t dev) 688{ 689 return MAJOR(dev)+MINOR(dev); 690} 691 692static int bdev_test(struct inode *inode, void *data) 693{ 694 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 695} 696 697static int bdev_set(struct inode *inode, void *data) 698{ 699 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 700 return 0; 701} 702 703static LIST_HEAD(all_bdevs); 704 705struct block_device *bdget(dev_t dev) 706{ 707 struct block_device *bdev; 708 struct inode *inode; 709 710 inode = iget5_locked(blockdev_superblock, hash(dev), 711 bdev_test, bdev_set, &dev); 712 713 if (!inode) 714 return NULL; 715 716 bdev = &BDEV_I(inode)->bdev; 717 718 if (inode->i_state & I_NEW) { 719 bdev->bd_contains = NULL; 720 bdev->bd_super = NULL; 721 bdev->bd_inode = inode; 722 bdev->bd_block_size = (1 << inode->i_blkbits); 723 bdev->bd_part_count = 0; 724 bdev->bd_invalidated = 0; 725 inode->i_mode = S_IFBLK; 726 inode->i_rdev = dev; 727 inode->i_bdev = bdev; 728 inode->i_data.a_ops = &def_blk_aops; 729 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 730 spin_lock(&bdev_lock); 731 list_add(&bdev->bd_list, &all_bdevs); 732 spin_unlock(&bdev_lock); 733 unlock_new_inode(inode); 734 } 735 return bdev; 736} 737 738EXPORT_SYMBOL(bdget); 739 740/** 741 * bdgrab -- Grab a reference to an already referenced block device 742 * @bdev: Block device to grab a reference to. 743 */ 744struct block_device *bdgrab(struct block_device *bdev) 745{ 746 ihold(bdev->bd_inode); 747 return bdev; 748} 749EXPORT_SYMBOL(bdgrab); 750 751long nr_blockdev_pages(void) 752{ 753 struct block_device *bdev; 754 long ret = 0; 755 spin_lock(&bdev_lock); 756 list_for_each_entry(bdev, &all_bdevs, bd_list) { 757 ret += bdev->bd_inode->i_mapping->nrpages; 758 } 759 spin_unlock(&bdev_lock); 760 return ret; 761} 762 763void bdput(struct block_device *bdev) 764{ 765 iput(bdev->bd_inode); 766} 767 768EXPORT_SYMBOL(bdput); 769 770static struct block_device *bd_acquire(struct inode *inode) 771{ 772 struct block_device *bdev; 773 774 spin_lock(&bdev_lock); 775 bdev = inode->i_bdev; 776 if (bdev) { 777 bdgrab(bdev); 778 spin_unlock(&bdev_lock); 779 return bdev; 780 } 781 spin_unlock(&bdev_lock); 782 783 bdev = bdget(inode->i_rdev); 784 if (bdev) { 785 spin_lock(&bdev_lock); 786 if (!inode->i_bdev) { 787 /* 788 * We take an additional reference to bd_inode, 789 * and it's released in clear_inode() of inode. 790 * So, we can access it via ->i_mapping always 791 * without igrab(). 792 */ 793 bdgrab(bdev); 794 inode->i_bdev = bdev; 795 inode->i_mapping = bdev->bd_inode->i_mapping; 796 } 797 spin_unlock(&bdev_lock); 798 } 799 return bdev; 800} 801 802/* Call when you free inode */ 803 804void bd_forget(struct inode *inode) 805{ 806 struct block_device *bdev = NULL; 807 808 spin_lock(&bdev_lock); 809 if (!sb_is_blkdev_sb(inode->i_sb)) 810 bdev = inode->i_bdev; 811 inode->i_bdev = NULL; 812 inode->i_mapping = &inode->i_data; 813 spin_unlock(&bdev_lock); 814 815 if (bdev) 816 bdput(bdev); 817} 818 819/** 820 * bd_may_claim - test whether a block device can be claimed 821 * @bdev: block device of interest 822 * @whole: whole block device containing @bdev, may equal @bdev 823 * @holder: holder trying to claim @bdev 824 * 825 * Test whether @bdev can be claimed by @holder. 826 * 827 * CONTEXT: 828 * spin_lock(&bdev_lock). 829 * 830 * RETURNS: 831 * %true if @bdev can be claimed, %false otherwise. 832 */ 833static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 834 void *holder) 835{ 836 if (bdev->bd_holder == holder) 837 return true; /* already a holder */ 838 else if (bdev->bd_holder != NULL) 839 return false; /* held by someone else */ 840 else if (bdev->bd_contains == bdev) 841 return true; /* is a whole device which isn't held */ 842 843 else if (whole->bd_holder == bd_may_claim) 844 return true; /* is a partition of a device that is being partitioned */ 845 else if (whole->bd_holder != NULL) 846 return false; /* is a partition of a held device */ 847 else 848 return true; /* is a partition of an un-held device */ 849} 850 851/** 852 * bd_prepare_to_claim - prepare to claim a block device 853 * @bdev: block device of interest 854 * @whole: the whole device containing @bdev, may equal @bdev 855 * @holder: holder trying to claim @bdev 856 * 857 * Prepare to claim @bdev. This function fails if @bdev is already 858 * claimed by another holder and waits if another claiming is in 859 * progress. This function doesn't actually claim. On successful 860 * return, the caller has ownership of bd_claiming and bd_holder[s]. 861 * 862 * CONTEXT: 863 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 864 * it multiple times. 865 * 866 * RETURNS: 867 * 0 if @bdev can be claimed, -EBUSY otherwise. 868 */ 869static int bd_prepare_to_claim(struct block_device *bdev, 870 struct block_device *whole, void *holder) 871{ 872retry: 873 /* if someone else claimed, fail */ 874 if (!bd_may_claim(bdev, whole, holder)) 875 return -EBUSY; 876 877 /* if claiming is already in progress, wait for it to finish */ 878 if (whole->bd_claiming) { 879 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 880 DEFINE_WAIT(wait); 881 882 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 883 spin_unlock(&bdev_lock); 884 schedule(); 885 finish_wait(wq, &wait); 886 spin_lock(&bdev_lock); 887 goto retry; 888 } 889 890 /* yay, all mine */ 891 return 0; 892} 893 894/** 895 * bd_start_claiming - start claiming a block device 896 * @bdev: block device of interest 897 * @holder: holder trying to claim @bdev 898 * 899 * @bdev is about to be opened exclusively. Check @bdev can be opened 900 * exclusively and mark that an exclusive open is in progress. Each 901 * successful call to this function must be matched with a call to 902 * either bd_finish_claiming() or bd_abort_claiming() (which do not 903 * fail). 904 * 905 * This function is used to gain exclusive access to the block device 906 * without actually causing other exclusive open attempts to fail. It 907 * should be used when the open sequence itself requires exclusive 908 * access but may subsequently fail. 909 * 910 * CONTEXT: 911 * Might sleep. 912 * 913 * RETURNS: 914 * Pointer to the block device containing @bdev on success, ERR_PTR() 915 * value on failure. 916 */ 917static struct block_device *bd_start_claiming(struct block_device *bdev, 918 void *holder) 919{ 920 struct gendisk *disk; 921 struct block_device *whole; 922 int partno, err; 923 924 might_sleep(); 925 926 /* 927 * @bdev might not have been initialized properly yet, look up 928 * and grab the outer block device the hard way. 929 */ 930 disk = get_gendisk(bdev->bd_dev, &partno); 931 if (!disk) 932 return ERR_PTR(-ENXIO); 933 934 /* 935 * Normally, @bdev should equal what's returned from bdget_disk() 936 * if partno is 0; however, some drivers (floppy) use multiple 937 * bdev's for the same physical device and @bdev may be one of the 938 * aliases. Keep @bdev if partno is 0. This means claimer 939 * tracking is broken for those devices but it has always been that 940 * way. 941 */ 942 if (partno) 943 whole = bdget_disk(disk, 0); 944 else 945 whole = bdgrab(bdev); 946 947 module_put(disk->fops->owner); 948 put_disk(disk); 949 if (!whole) 950 return ERR_PTR(-ENOMEM); 951 952 /* prepare to claim, if successful, mark claiming in progress */ 953 spin_lock(&bdev_lock); 954 955 err = bd_prepare_to_claim(bdev, whole, holder); 956 if (err == 0) { 957 whole->bd_claiming = holder; 958 spin_unlock(&bdev_lock); 959 return whole; 960 } else { 961 spin_unlock(&bdev_lock); 962 bdput(whole); 963 return ERR_PTR(err); 964 } 965} 966 967#ifdef CONFIG_SYSFS 968struct bd_holder_disk { 969 struct list_head list; 970 struct gendisk *disk; 971 int refcnt; 972}; 973 974static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 975 struct gendisk *disk) 976{ 977 struct bd_holder_disk *holder; 978 979 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 980 if (holder->disk == disk) 981 return holder; 982 return NULL; 983} 984 985static int add_symlink(struct kobject *from, struct kobject *to) 986{ 987 return sysfs_create_link(from, to, kobject_name(to)); 988} 989 990static void del_symlink(struct kobject *from, struct kobject *to) 991{ 992 sysfs_remove_link(from, kobject_name(to)); 993} 994 995/** 996 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 997 * @bdev: the claimed slave bdev 998 * @disk: the holding disk 999 * 1000 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1001 * 1002 * This functions creates the following sysfs symlinks. 1003 * 1004 * - from "slaves" directory of the holder @disk to the claimed @bdev 1005 * - from "holders" directory of the @bdev to the holder @disk 1006 * 1007 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1008 * passed to bd_link_disk_holder(), then: 1009 * 1010 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1011 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1012 * 1013 * The caller must have claimed @bdev before calling this function and 1014 * ensure that both @bdev and @disk are valid during the creation and 1015 * lifetime of these symlinks. 1016 * 1017 * CONTEXT: 1018 * Might sleep. 1019 * 1020 * RETURNS: 1021 * 0 on success, -errno on failure. 1022 */ 1023int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1024{ 1025 struct bd_holder_disk *holder; 1026 int ret = 0; 1027 1028 mutex_lock(&bdev->bd_mutex); 1029 1030 WARN_ON_ONCE(!bdev->bd_holder); 1031 1032 /* FIXME: remove the following once add_disk() handles errors */ 1033 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1034 goto out_unlock; 1035 1036 holder = bd_find_holder_disk(bdev, disk); 1037 if (holder) { 1038 holder->refcnt++; 1039 goto out_unlock; 1040 } 1041 1042 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1043 if (!holder) { 1044 ret = -ENOMEM; 1045 goto out_unlock; 1046 } 1047 1048 INIT_LIST_HEAD(&holder->list); 1049 holder->disk = disk; 1050 holder->refcnt = 1; 1051 1052 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1053 if (ret) 1054 goto out_free; 1055 1056 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1057 if (ret) 1058 goto out_del; 1059 /* 1060 * bdev could be deleted beneath us which would implicitly destroy 1061 * the holder directory. Hold on to it. 1062 */ 1063 kobject_get(bdev->bd_part->holder_dir); 1064 1065 list_add(&holder->list, &bdev->bd_holder_disks); 1066 goto out_unlock; 1067 1068out_del: 1069 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1070out_free: 1071 kfree(holder); 1072out_unlock: 1073 mutex_unlock(&bdev->bd_mutex); 1074 return ret; 1075} 1076EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1077 1078/** 1079 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1080 * @bdev: the calimed slave bdev 1081 * @disk: the holding disk 1082 * 1083 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1084 * 1085 * CONTEXT: 1086 * Might sleep. 1087 */ 1088void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1089{ 1090 struct bd_holder_disk *holder; 1091 1092 mutex_lock(&bdev->bd_mutex); 1093 1094 holder = bd_find_holder_disk(bdev, disk); 1095 1096 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1097 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1098 del_symlink(bdev->bd_part->holder_dir, 1099 &disk_to_dev(disk)->kobj); 1100 kobject_put(bdev->bd_part->holder_dir); 1101 list_del_init(&holder->list); 1102 kfree(holder); 1103 } 1104 1105 mutex_unlock(&bdev->bd_mutex); 1106} 1107EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1108#endif 1109 1110/** 1111 * flush_disk - invalidates all buffer-cache entries on a disk 1112 * 1113 * @bdev: struct block device to be flushed 1114 * @kill_dirty: flag to guide handling of dirty inodes 1115 * 1116 * Invalidates all buffer-cache entries on a disk. It should be called 1117 * when a disk has been changed -- either by a media change or online 1118 * resize. 1119 */ 1120static void flush_disk(struct block_device *bdev, bool kill_dirty) 1121{ 1122 if (__invalidate_device(bdev, kill_dirty)) { 1123 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1124 "resized disk %s\n", 1125 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1126 } 1127 1128 if (!bdev->bd_disk) 1129 return; 1130 if (disk_part_scan_enabled(bdev->bd_disk)) 1131 bdev->bd_invalidated = 1; 1132} 1133 1134/** 1135 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1136 * @disk: struct gendisk to check 1137 * @bdev: struct bdev to adjust. 1138 * 1139 * This routine checks to see if the bdev size does not match the disk size 1140 * and adjusts it if it differs. 1141 */ 1142void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1143{ 1144 loff_t disk_size, bdev_size; 1145 1146 disk_size = (loff_t)get_capacity(disk) << 9; 1147 bdev_size = i_size_read(bdev->bd_inode); 1148 if (disk_size != bdev_size) { 1149 printk(KERN_INFO 1150 "%s: detected capacity change from %lld to %lld\n", 1151 disk->disk_name, bdev_size, disk_size); 1152 i_size_write(bdev->bd_inode, disk_size); 1153 flush_disk(bdev, false); 1154 } 1155} 1156EXPORT_SYMBOL(check_disk_size_change); 1157 1158/** 1159 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1160 * @disk: struct gendisk to be revalidated 1161 * 1162 * This routine is a wrapper for lower-level driver's revalidate_disk 1163 * call-backs. It is used to do common pre and post operations needed 1164 * for all revalidate_disk operations. 1165 */ 1166int revalidate_disk(struct gendisk *disk) 1167{ 1168 struct block_device *bdev; 1169 int ret = 0; 1170 1171 if (disk->fops->revalidate_disk) 1172 ret = disk->fops->revalidate_disk(disk); 1173 blk_integrity_revalidate(disk); 1174 bdev = bdget_disk(disk, 0); 1175 if (!bdev) 1176 return ret; 1177 1178 mutex_lock(&bdev->bd_mutex); 1179 check_disk_size_change(disk, bdev); 1180 bdev->bd_invalidated = 0; 1181 mutex_unlock(&bdev->bd_mutex); 1182 bdput(bdev); 1183 return ret; 1184} 1185EXPORT_SYMBOL(revalidate_disk); 1186 1187/* 1188 * This routine checks whether a removable media has been changed, 1189 * and invalidates all buffer-cache-entries in that case. This 1190 * is a relatively slow routine, so we have to try to minimize using 1191 * it. Thus it is called only upon a 'mount' or 'open'. This 1192 * is the best way of combining speed and utility, I think. 1193 * People changing diskettes in the middle of an operation deserve 1194 * to lose :-) 1195 */ 1196int check_disk_change(struct block_device *bdev) 1197{ 1198 struct gendisk *disk = bdev->bd_disk; 1199 const struct block_device_operations *bdops = disk->fops; 1200 unsigned int events; 1201 1202 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1203 DISK_EVENT_EJECT_REQUEST); 1204 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1205 return 0; 1206 1207 flush_disk(bdev, true); 1208 if (bdops->revalidate_disk) 1209 bdops->revalidate_disk(bdev->bd_disk); 1210 return 1; 1211} 1212 1213EXPORT_SYMBOL(check_disk_change); 1214 1215void bd_set_size(struct block_device *bdev, loff_t size) 1216{ 1217 unsigned bsize = bdev_logical_block_size(bdev); 1218 1219 inode_lock(bdev->bd_inode); 1220 i_size_write(bdev->bd_inode, size); 1221 inode_unlock(bdev->bd_inode); 1222 while (bsize < PAGE_SIZE) { 1223 if (size & bsize) 1224 break; 1225 bsize <<= 1; 1226 } 1227 bdev->bd_block_size = bsize; 1228 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1229} 1230EXPORT_SYMBOL(bd_set_size); 1231 1232static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1233 1234/* 1235 * bd_mutex locking: 1236 * 1237 * mutex_lock(part->bd_mutex) 1238 * mutex_lock_nested(whole->bd_mutex, 1) 1239 */ 1240 1241static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1242{ 1243 struct gendisk *disk; 1244 struct module *owner; 1245 int ret; 1246 int partno; 1247 int perm = 0; 1248 1249 if (mode & FMODE_READ) 1250 perm |= MAY_READ; 1251 if (mode & FMODE_WRITE) 1252 perm |= MAY_WRITE; 1253 /* 1254 * hooks: /n/, see "layering violations". 1255 */ 1256 if (!for_part) { 1257 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1258 if (ret != 0) { 1259 bdput(bdev); 1260 return ret; 1261 } 1262 } 1263 1264 restart: 1265 1266 ret = -ENXIO; 1267 disk = get_gendisk(bdev->bd_dev, &partno); 1268 if (!disk) 1269 goto out; 1270 owner = disk->fops->owner; 1271 1272 disk_block_events(disk); 1273 mutex_lock_nested(&bdev->bd_mutex, for_part); 1274 if (!bdev->bd_openers) { 1275 bdev->bd_disk = disk; 1276 bdev->bd_queue = disk->queue; 1277 bdev->bd_contains = bdev; 1278 bdev->bd_inode->i_flags = 0; 1279 1280 if (!partno) { 1281 ret = -ENXIO; 1282 bdev->bd_part = disk_get_part(disk, partno); 1283 if (!bdev->bd_part) 1284 goto out_clear; 1285 1286 ret = 0; 1287 if (disk->fops->open) { 1288 ret = disk->fops->open(bdev, mode); 1289 if (ret == -ERESTARTSYS) { 1290 /* Lost a race with 'disk' being 1291 * deleted, try again. 1292 * See md.c 1293 */ 1294 disk_put_part(bdev->bd_part); 1295 bdev->bd_part = NULL; 1296 bdev->bd_disk = NULL; 1297 bdev->bd_queue = NULL; 1298 mutex_unlock(&bdev->bd_mutex); 1299 disk_unblock_events(disk); 1300 put_disk(disk); 1301 module_put(owner); 1302 goto restart; 1303 } 1304 } 1305 1306 if (!ret) { 1307 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1308 if (!bdev_dax_capable(bdev)) 1309 bdev->bd_inode->i_flags &= ~S_DAX; 1310 } 1311 1312 /* 1313 * If the device is invalidated, rescan partition 1314 * if open succeeded or failed with -ENOMEDIUM. 1315 * The latter is necessary to prevent ghost 1316 * partitions on a removed medium. 1317 */ 1318 if (bdev->bd_invalidated) { 1319 if (!ret) 1320 rescan_partitions(disk, bdev); 1321 else if (ret == -ENOMEDIUM) 1322 invalidate_partitions(disk, bdev); 1323 } 1324 1325 if (ret) 1326 goto out_clear; 1327 } else { 1328 struct block_device *whole; 1329 whole = bdget_disk(disk, 0); 1330 ret = -ENOMEM; 1331 if (!whole) 1332 goto out_clear; 1333 BUG_ON(for_part); 1334 ret = __blkdev_get(whole, mode, 1); 1335 if (ret) 1336 goto out_clear; 1337 bdev->bd_contains = whole; 1338 bdev->bd_part = disk_get_part(disk, partno); 1339 if (!(disk->flags & GENHD_FL_UP) || 1340 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1341 ret = -ENXIO; 1342 goto out_clear; 1343 } 1344 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1345 if (!bdev_dax_capable(bdev)) 1346 bdev->bd_inode->i_flags &= ~S_DAX; 1347 } 1348 } else { 1349 if (bdev->bd_contains == bdev) { 1350 ret = 0; 1351 if (bdev->bd_disk->fops->open) 1352 ret = bdev->bd_disk->fops->open(bdev, mode); 1353 /* the same as first opener case, read comment there */ 1354 if (bdev->bd_invalidated) { 1355 if (!ret) 1356 rescan_partitions(bdev->bd_disk, bdev); 1357 else if (ret == -ENOMEDIUM) 1358 invalidate_partitions(bdev->bd_disk, bdev); 1359 } 1360 if (ret) 1361 goto out_unlock_bdev; 1362 } 1363 /* only one opener holds refs to the module and disk */ 1364 put_disk(disk); 1365 module_put(owner); 1366 } 1367 bdev->bd_openers++; 1368 if (for_part) 1369 bdev->bd_part_count++; 1370 mutex_unlock(&bdev->bd_mutex); 1371 disk_unblock_events(disk); 1372 return 0; 1373 1374 out_clear: 1375 disk_put_part(bdev->bd_part); 1376 bdev->bd_disk = NULL; 1377 bdev->bd_part = NULL; 1378 bdev->bd_queue = NULL; 1379 if (bdev != bdev->bd_contains) 1380 __blkdev_put(bdev->bd_contains, mode, 1); 1381 bdev->bd_contains = NULL; 1382 out_unlock_bdev: 1383 mutex_unlock(&bdev->bd_mutex); 1384 disk_unblock_events(disk); 1385 put_disk(disk); 1386 module_put(owner); 1387 out: 1388 bdput(bdev); 1389 1390 return ret; 1391} 1392 1393/** 1394 * blkdev_get - open a block device 1395 * @bdev: block_device to open 1396 * @mode: FMODE_* mask 1397 * @holder: exclusive holder identifier 1398 * 1399 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1400 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1401 * @holder is invalid. Exclusive opens may nest for the same @holder. 1402 * 1403 * On success, the reference count of @bdev is unchanged. On failure, 1404 * @bdev is put. 1405 * 1406 * CONTEXT: 1407 * Might sleep. 1408 * 1409 * RETURNS: 1410 * 0 on success, -errno on failure. 1411 */ 1412int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1413{ 1414 struct block_device *whole = NULL; 1415 int res; 1416 1417 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1418 1419 if ((mode & FMODE_EXCL) && holder) { 1420 whole = bd_start_claiming(bdev, holder); 1421 if (IS_ERR(whole)) { 1422 bdput(bdev); 1423 return PTR_ERR(whole); 1424 } 1425 } 1426 1427 res = __blkdev_get(bdev, mode, 0); 1428 1429 if (whole) { 1430 struct gendisk *disk = whole->bd_disk; 1431 1432 /* finish claiming */ 1433 mutex_lock(&bdev->bd_mutex); 1434 spin_lock(&bdev_lock); 1435 1436 if (!res) { 1437 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1438 /* 1439 * Note that for a whole device bd_holders 1440 * will be incremented twice, and bd_holder 1441 * will be set to bd_may_claim before being 1442 * set to holder 1443 */ 1444 whole->bd_holders++; 1445 whole->bd_holder = bd_may_claim; 1446 bdev->bd_holders++; 1447 bdev->bd_holder = holder; 1448 } 1449 1450 /* tell others that we're done */ 1451 BUG_ON(whole->bd_claiming != holder); 1452 whole->bd_claiming = NULL; 1453 wake_up_bit(&whole->bd_claiming, 0); 1454 1455 spin_unlock(&bdev_lock); 1456 1457 /* 1458 * Block event polling for write claims if requested. Any 1459 * write holder makes the write_holder state stick until 1460 * all are released. This is good enough and tracking 1461 * individual writeable reference is too fragile given the 1462 * way @mode is used in blkdev_get/put(). 1463 */ 1464 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1465 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1466 bdev->bd_write_holder = true; 1467 disk_block_events(disk); 1468 } 1469 1470 mutex_unlock(&bdev->bd_mutex); 1471 bdput(whole); 1472 } 1473 1474 return res; 1475} 1476EXPORT_SYMBOL(blkdev_get); 1477 1478/** 1479 * blkdev_get_by_path - open a block device by name 1480 * @path: path to the block device to open 1481 * @mode: FMODE_* mask 1482 * @holder: exclusive holder identifier 1483 * 1484 * Open the blockdevice described by the device file at @path. @mode 1485 * and @holder are identical to blkdev_get(). 1486 * 1487 * On success, the returned block_device has reference count of one. 1488 * 1489 * CONTEXT: 1490 * Might sleep. 1491 * 1492 * RETURNS: 1493 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1494 */ 1495struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1496 void *holder) 1497{ 1498 struct block_device *bdev; 1499 int err; 1500 1501 bdev = lookup_bdev(path); 1502 if (IS_ERR(bdev)) 1503 return bdev; 1504 1505 err = blkdev_get(bdev, mode, holder); 1506 if (err) 1507 return ERR_PTR(err); 1508 1509 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1510 blkdev_put(bdev, mode); 1511 return ERR_PTR(-EACCES); 1512 } 1513 1514 return bdev; 1515} 1516EXPORT_SYMBOL(blkdev_get_by_path); 1517 1518/** 1519 * blkdev_get_by_dev - open a block device by device number 1520 * @dev: device number of block device to open 1521 * @mode: FMODE_* mask 1522 * @holder: exclusive holder identifier 1523 * 1524 * Open the blockdevice described by device number @dev. @mode and 1525 * @holder are identical to blkdev_get(). 1526 * 1527 * Use it ONLY if you really do not have anything better - i.e. when 1528 * you are behind a truly sucky interface and all you are given is a 1529 * device number. _Never_ to be used for internal purposes. If you 1530 * ever need it - reconsider your API. 1531 * 1532 * On success, the returned block_device has reference count of one. 1533 * 1534 * CONTEXT: 1535 * Might sleep. 1536 * 1537 * RETURNS: 1538 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1539 */ 1540struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1541{ 1542 struct block_device *bdev; 1543 int err; 1544 1545 bdev = bdget(dev); 1546 if (!bdev) 1547 return ERR_PTR(-ENOMEM); 1548 1549 err = blkdev_get(bdev, mode, holder); 1550 if (err) 1551 return ERR_PTR(err); 1552 1553 return bdev; 1554} 1555EXPORT_SYMBOL(blkdev_get_by_dev); 1556 1557static int blkdev_open(struct inode * inode, struct file * filp) 1558{ 1559 struct block_device *bdev; 1560 1561 /* 1562 * Preserve backwards compatibility and allow large file access 1563 * even if userspace doesn't ask for it explicitly. Some mkfs 1564 * binary needs it. We might want to drop this workaround 1565 * during an unstable branch. 1566 */ 1567 filp->f_flags |= O_LARGEFILE; 1568 1569 if (filp->f_flags & O_NDELAY) 1570 filp->f_mode |= FMODE_NDELAY; 1571 if (filp->f_flags & O_EXCL) 1572 filp->f_mode |= FMODE_EXCL; 1573 if ((filp->f_flags & O_ACCMODE) == 3) 1574 filp->f_mode |= FMODE_WRITE_IOCTL; 1575 1576 bdev = bd_acquire(inode); 1577 if (bdev == NULL) 1578 return -ENOMEM; 1579 1580 filp->f_mapping = bdev->bd_inode->i_mapping; 1581 1582 return blkdev_get(bdev, filp->f_mode, filp); 1583} 1584 1585static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1586{ 1587 struct gendisk *disk = bdev->bd_disk; 1588 struct block_device *victim = NULL; 1589 1590 mutex_lock_nested(&bdev->bd_mutex, for_part); 1591 if (for_part) 1592 bdev->bd_part_count--; 1593 1594 if (!--bdev->bd_openers) { 1595 WARN_ON_ONCE(bdev->bd_holders); 1596 sync_blockdev(bdev); 1597 kill_bdev(bdev); 1598 1599 bdev_write_inode(bdev); 1600 /* 1601 * Detaching bdev inode from its wb in __destroy_inode() 1602 * is too late: the queue which embeds its bdi (along with 1603 * root wb) can be gone as soon as we put_disk() below. 1604 */ 1605 inode_detach_wb(bdev->bd_inode); 1606 } 1607 if (bdev->bd_contains == bdev) { 1608 if (disk->fops->release) 1609 disk->fops->release(disk, mode); 1610 } 1611 if (!bdev->bd_openers) { 1612 struct module *owner = disk->fops->owner; 1613 1614 disk_put_part(bdev->bd_part); 1615 bdev->bd_part = NULL; 1616 bdev->bd_disk = NULL; 1617 if (bdev != bdev->bd_contains) 1618 victim = bdev->bd_contains; 1619 bdev->bd_contains = NULL; 1620 1621 put_disk(disk); 1622 module_put(owner); 1623 } 1624 mutex_unlock(&bdev->bd_mutex); 1625 bdput(bdev); 1626 if (victim) 1627 __blkdev_put(victim, mode, 1); 1628} 1629 1630void blkdev_put(struct block_device *bdev, fmode_t mode) 1631{ 1632 mutex_lock(&bdev->bd_mutex); 1633 1634 if (mode & FMODE_EXCL) { 1635 bool bdev_free; 1636 1637 /* 1638 * Release a claim on the device. The holder fields 1639 * are protected with bdev_lock. bd_mutex is to 1640 * synchronize disk_holder unlinking. 1641 */ 1642 spin_lock(&bdev_lock); 1643 1644 WARN_ON_ONCE(--bdev->bd_holders < 0); 1645 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1646 1647 /* bd_contains might point to self, check in a separate step */ 1648 if ((bdev_free = !bdev->bd_holders)) 1649 bdev->bd_holder = NULL; 1650 if (!bdev->bd_contains->bd_holders) 1651 bdev->bd_contains->bd_holder = NULL; 1652 1653 spin_unlock(&bdev_lock); 1654 1655 /* 1656 * If this was the last claim, remove holder link and 1657 * unblock evpoll if it was a write holder. 1658 */ 1659 if (bdev_free && bdev->bd_write_holder) { 1660 disk_unblock_events(bdev->bd_disk); 1661 bdev->bd_write_holder = false; 1662 } 1663 } 1664 1665 /* 1666 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1667 * event. This is to ensure detection of media removal commanded 1668 * from userland - e.g. eject(1). 1669 */ 1670 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1671 1672 mutex_unlock(&bdev->bd_mutex); 1673 1674 __blkdev_put(bdev, mode, 0); 1675} 1676EXPORT_SYMBOL(blkdev_put); 1677 1678static int blkdev_close(struct inode * inode, struct file * filp) 1679{ 1680 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1681 blkdev_put(bdev, filp->f_mode); 1682 return 0; 1683} 1684 1685static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1686{ 1687 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1688 fmode_t mode = file->f_mode; 1689 1690 /* 1691 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1692 * to updated it before every ioctl. 1693 */ 1694 if (file->f_flags & O_NDELAY) 1695 mode |= FMODE_NDELAY; 1696 else 1697 mode &= ~FMODE_NDELAY; 1698 1699 return blkdev_ioctl(bdev, mode, cmd, arg); 1700} 1701 1702/* 1703 * Write data to the block device. Only intended for the block device itself 1704 * and the raw driver which basically is a fake block device. 1705 * 1706 * Does not take i_mutex for the write and thus is not for general purpose 1707 * use. 1708 */ 1709ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1710{ 1711 struct file *file = iocb->ki_filp; 1712 struct inode *bd_inode = bdev_file_inode(file); 1713 loff_t size = i_size_read(bd_inode); 1714 struct blk_plug plug; 1715 ssize_t ret; 1716 1717 if (bdev_read_only(I_BDEV(bd_inode))) 1718 return -EPERM; 1719 1720 if (!iov_iter_count(from)) 1721 return 0; 1722 1723 if (iocb->ki_pos >= size) 1724 return -ENOSPC; 1725 1726 iov_iter_truncate(from, size - iocb->ki_pos); 1727 1728 blk_start_plug(&plug); 1729 ret = __generic_file_write_iter(iocb, from); 1730 if (ret > 0) 1731 ret = generic_write_sync(iocb, ret); 1732 blk_finish_plug(&plug); 1733 return ret; 1734} 1735EXPORT_SYMBOL_GPL(blkdev_write_iter); 1736 1737ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1738{ 1739 struct file *file = iocb->ki_filp; 1740 struct inode *bd_inode = bdev_file_inode(file); 1741 loff_t size = i_size_read(bd_inode); 1742 loff_t pos = iocb->ki_pos; 1743 1744 if (pos >= size) 1745 return 0; 1746 1747 size -= pos; 1748 iov_iter_truncate(to, size); 1749 return generic_file_read_iter(iocb, to); 1750} 1751EXPORT_SYMBOL_GPL(blkdev_read_iter); 1752 1753/* 1754 * Try to release a page associated with block device when the system 1755 * is under memory pressure. 1756 */ 1757static int blkdev_releasepage(struct page *page, gfp_t wait) 1758{ 1759 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1760 1761 if (super && super->s_op->bdev_try_to_free_page) 1762 return super->s_op->bdev_try_to_free_page(super, page, wait); 1763 1764 return try_to_free_buffers(page); 1765} 1766 1767static int blkdev_writepages(struct address_space *mapping, 1768 struct writeback_control *wbc) 1769{ 1770 if (dax_mapping(mapping)) { 1771 struct block_device *bdev = I_BDEV(mapping->host); 1772 1773 return dax_writeback_mapping_range(mapping, bdev, wbc); 1774 } 1775 return generic_writepages(mapping, wbc); 1776} 1777 1778static const struct address_space_operations def_blk_aops = { 1779 .readpage = blkdev_readpage, 1780 .readpages = blkdev_readpages, 1781 .writepage = blkdev_writepage, 1782 .write_begin = blkdev_write_begin, 1783 .write_end = blkdev_write_end, 1784 .writepages = blkdev_writepages, 1785 .releasepage = blkdev_releasepage, 1786 .direct_IO = blkdev_direct_IO, 1787 .is_dirty_writeback = buffer_check_dirty_writeback, 1788}; 1789 1790const struct file_operations def_blk_fops = { 1791 .open = blkdev_open, 1792 .release = blkdev_close, 1793 .llseek = block_llseek, 1794 .read_iter = blkdev_read_iter, 1795 .write_iter = blkdev_write_iter, 1796 .mmap = generic_file_mmap, 1797 .fsync = blkdev_fsync, 1798 .unlocked_ioctl = block_ioctl, 1799#ifdef CONFIG_COMPAT 1800 .compat_ioctl = compat_blkdev_ioctl, 1801#endif 1802 .splice_read = generic_file_splice_read, 1803 .splice_write = iter_file_splice_write, 1804}; 1805 1806int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1807{ 1808 int res; 1809 mm_segment_t old_fs = get_fs(); 1810 set_fs(KERNEL_DS); 1811 res = blkdev_ioctl(bdev, 0, cmd, arg); 1812 set_fs(old_fs); 1813 return res; 1814} 1815 1816EXPORT_SYMBOL(ioctl_by_bdev); 1817 1818/** 1819 * lookup_bdev - lookup a struct block_device by name 1820 * @pathname: special file representing the block device 1821 * 1822 * Get a reference to the blockdevice at @pathname in the current 1823 * namespace if possible and return it. Return ERR_PTR(error) 1824 * otherwise. 1825 */ 1826struct block_device *lookup_bdev(const char *pathname) 1827{ 1828 struct block_device *bdev; 1829 struct inode *inode; 1830 struct path path; 1831 int error; 1832 1833 if (!pathname || !*pathname) 1834 return ERR_PTR(-EINVAL); 1835 1836 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1837 if (error) 1838 return ERR_PTR(error); 1839 1840 inode = d_backing_inode(path.dentry); 1841 error = -ENOTBLK; 1842 if (!S_ISBLK(inode->i_mode)) 1843 goto fail; 1844 error = -EACCES; 1845 if (!may_open_dev(&path)) 1846 goto fail; 1847 error = -ENOMEM; 1848 bdev = bd_acquire(inode); 1849 if (!bdev) 1850 goto fail; 1851out: 1852 path_put(&path); 1853 return bdev; 1854fail: 1855 bdev = ERR_PTR(error); 1856 goto out; 1857} 1858EXPORT_SYMBOL(lookup_bdev); 1859 1860int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1861{ 1862 struct super_block *sb = get_super(bdev); 1863 int res = 0; 1864 1865 if (sb) { 1866 /* 1867 * no need to lock the super, get_super holds the 1868 * read mutex so the filesystem cannot go away 1869 * under us (->put_super runs with the write lock 1870 * hold). 1871 */ 1872 shrink_dcache_sb(sb); 1873 res = invalidate_inodes(sb, kill_dirty); 1874 drop_super(sb); 1875 } 1876 invalidate_bdev(bdev); 1877 return res; 1878} 1879EXPORT_SYMBOL(__invalidate_device); 1880 1881void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1882{ 1883 struct inode *inode, *old_inode = NULL; 1884 1885 spin_lock(&blockdev_superblock->s_inode_list_lock); 1886 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1887 struct address_space *mapping = inode->i_mapping; 1888 1889 spin_lock(&inode->i_lock); 1890 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1891 mapping->nrpages == 0) { 1892 spin_unlock(&inode->i_lock); 1893 continue; 1894 } 1895 __iget(inode); 1896 spin_unlock(&inode->i_lock); 1897 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1898 /* 1899 * We hold a reference to 'inode' so it couldn't have been 1900 * removed from s_inodes list while we dropped the 1901 * s_inode_list_lock We cannot iput the inode now as we can 1902 * be holding the last reference and we cannot iput it under 1903 * s_inode_list_lock. So we keep the reference and iput it 1904 * later. 1905 */ 1906 iput(old_inode); 1907 old_inode = inode; 1908 1909 func(I_BDEV(inode), arg); 1910 1911 spin_lock(&blockdev_superblock->s_inode_list_lock); 1912 } 1913 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1914 iput(old_inode); 1915}