at v4.8 704 lines 18 kB view raw
1/* 2 * Software multibuffer async crypto daemon. 3 * 4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com> 5 * 6 * Adapted from crypto daemon. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 */ 14 15#include <crypto/algapi.h> 16#include <crypto/internal/hash.h> 17#include <crypto/internal/aead.h> 18#include <crypto/mcryptd.h> 19#include <crypto/crypto_wq.h> 20#include <linux/err.h> 21#include <linux/init.h> 22#include <linux/kernel.h> 23#include <linux/list.h> 24#include <linux/module.h> 25#include <linux/scatterlist.h> 26#include <linux/sched.h> 27#include <linux/slab.h> 28#include <linux/hardirq.h> 29 30#define MCRYPTD_MAX_CPU_QLEN 100 31#define MCRYPTD_BATCH 9 32 33static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 34 unsigned int tail); 35 36struct mcryptd_flush_list { 37 struct list_head list; 38 struct mutex lock; 39}; 40 41static struct mcryptd_flush_list __percpu *mcryptd_flist; 42 43struct hashd_instance_ctx { 44 struct crypto_ahash_spawn spawn; 45 struct mcryptd_queue *queue; 46}; 47 48static void mcryptd_queue_worker(struct work_struct *work); 49 50void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay) 51{ 52 struct mcryptd_flush_list *flist; 53 54 if (!cstate->flusher_engaged) { 55 /* put the flusher on the flush list */ 56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 57 mutex_lock(&flist->lock); 58 list_add_tail(&cstate->flush_list, &flist->list); 59 cstate->flusher_engaged = true; 60 cstate->next_flush = jiffies + delay; 61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq, 62 &cstate->flush, delay); 63 mutex_unlock(&flist->lock); 64 } 65} 66EXPORT_SYMBOL(mcryptd_arm_flusher); 67 68static int mcryptd_init_queue(struct mcryptd_queue *queue, 69 unsigned int max_cpu_qlen) 70{ 71 int cpu; 72 struct mcryptd_cpu_queue *cpu_queue; 73 74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue); 75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue); 76 if (!queue->cpu_queue) 77 return -ENOMEM; 78 for_each_possible_cpu(cpu) { 79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue); 81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker); 83 } 84 return 0; 85} 86 87static void mcryptd_fini_queue(struct mcryptd_queue *queue) 88{ 89 int cpu; 90 struct mcryptd_cpu_queue *cpu_queue; 91 92 for_each_possible_cpu(cpu) { 93 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 94 BUG_ON(cpu_queue->queue.qlen); 95 } 96 free_percpu(queue->cpu_queue); 97} 98 99static int mcryptd_enqueue_request(struct mcryptd_queue *queue, 100 struct crypto_async_request *request, 101 struct mcryptd_hash_request_ctx *rctx) 102{ 103 int cpu, err; 104 struct mcryptd_cpu_queue *cpu_queue; 105 106 cpu = get_cpu(); 107 cpu_queue = this_cpu_ptr(queue->cpu_queue); 108 rctx->tag.cpu = cpu; 109 110 err = crypto_enqueue_request(&cpu_queue->queue, request); 111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n", 112 cpu, cpu_queue, request); 113 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 114 put_cpu(); 115 116 return err; 117} 118 119/* 120 * Try to opportunisticlly flush the partially completed jobs if 121 * crypto daemon is the only task running. 122 */ 123static void mcryptd_opportunistic_flush(void) 124{ 125 struct mcryptd_flush_list *flist; 126 struct mcryptd_alg_cstate *cstate; 127 128 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 129 while (single_task_running()) { 130 mutex_lock(&flist->lock); 131 cstate = list_first_entry_or_null(&flist->list, 132 struct mcryptd_alg_cstate, flush_list); 133 if (!cstate || !cstate->flusher_engaged) { 134 mutex_unlock(&flist->lock); 135 return; 136 } 137 list_del(&cstate->flush_list); 138 cstate->flusher_engaged = false; 139 mutex_unlock(&flist->lock); 140 cstate->alg_state->flusher(cstate); 141 } 142} 143 144/* 145 * Called in workqueue context, do one real cryption work (via 146 * req->complete) and reschedule itself if there are more work to 147 * do. 148 */ 149static void mcryptd_queue_worker(struct work_struct *work) 150{ 151 struct mcryptd_cpu_queue *cpu_queue; 152 struct crypto_async_request *req, *backlog; 153 int i; 154 155 /* 156 * Need to loop through more than once for multi-buffer to 157 * be effective. 158 */ 159 160 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work); 161 i = 0; 162 while (i < MCRYPTD_BATCH || single_task_running()) { 163 /* 164 * preempt_disable/enable is used to prevent 165 * being preempted by mcryptd_enqueue_request() 166 */ 167 local_bh_disable(); 168 preempt_disable(); 169 backlog = crypto_get_backlog(&cpu_queue->queue); 170 req = crypto_dequeue_request(&cpu_queue->queue); 171 preempt_enable(); 172 local_bh_enable(); 173 174 if (!req) { 175 mcryptd_opportunistic_flush(); 176 return; 177 } 178 179 if (backlog) 180 backlog->complete(backlog, -EINPROGRESS); 181 req->complete(req, 0); 182 if (!cpu_queue->queue.qlen) 183 return; 184 ++i; 185 } 186 if (cpu_queue->queue.qlen) 187 queue_work(kcrypto_wq, &cpu_queue->work); 188} 189 190void mcryptd_flusher(struct work_struct *__work) 191{ 192 struct mcryptd_alg_cstate *alg_cpu_state; 193 struct mcryptd_alg_state *alg_state; 194 struct mcryptd_flush_list *flist; 195 int cpu; 196 197 cpu = smp_processor_id(); 198 alg_cpu_state = container_of(to_delayed_work(__work), 199 struct mcryptd_alg_cstate, flush); 200 alg_state = alg_cpu_state->alg_state; 201 if (alg_cpu_state->cpu != cpu) 202 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n", 203 cpu, alg_cpu_state->cpu); 204 205 if (alg_cpu_state->flusher_engaged) { 206 flist = per_cpu_ptr(mcryptd_flist, cpu); 207 mutex_lock(&flist->lock); 208 list_del(&alg_cpu_state->flush_list); 209 alg_cpu_state->flusher_engaged = false; 210 mutex_unlock(&flist->lock); 211 alg_state->flusher(alg_cpu_state); 212 } 213} 214EXPORT_SYMBOL_GPL(mcryptd_flusher); 215 216static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm) 217{ 218 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 219 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 220 221 return ictx->queue; 222} 223 224static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 225 unsigned int tail) 226{ 227 char *p; 228 struct crypto_instance *inst; 229 int err; 230 231 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 232 if (!p) 233 return ERR_PTR(-ENOMEM); 234 235 inst = (void *)(p + head); 236 237 err = -ENAMETOOLONG; 238 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 239 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 240 goto out_free_inst; 241 242 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 243 244 inst->alg.cra_priority = alg->cra_priority + 50; 245 inst->alg.cra_blocksize = alg->cra_blocksize; 246 inst->alg.cra_alignmask = alg->cra_alignmask; 247 248out: 249 return p; 250 251out_free_inst: 252 kfree(p); 253 p = ERR_PTR(err); 254 goto out; 255} 256 257static inline void mcryptd_check_internal(struct rtattr **tb, u32 *type, 258 u32 *mask) 259{ 260 struct crypto_attr_type *algt; 261 262 algt = crypto_get_attr_type(tb); 263 if (IS_ERR(algt)) 264 return; 265 if ((algt->type & CRYPTO_ALG_INTERNAL)) 266 *type |= CRYPTO_ALG_INTERNAL; 267 if ((algt->mask & CRYPTO_ALG_INTERNAL)) 268 *mask |= CRYPTO_ALG_INTERNAL; 269} 270 271static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm) 272{ 273 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 274 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 275 struct crypto_ahash_spawn *spawn = &ictx->spawn; 276 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 277 struct crypto_ahash *hash; 278 279 hash = crypto_spawn_ahash(spawn); 280 if (IS_ERR(hash)) 281 return PTR_ERR(hash); 282 283 ctx->child = hash; 284 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 285 sizeof(struct mcryptd_hash_request_ctx) + 286 crypto_ahash_reqsize(hash)); 287 return 0; 288} 289 290static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm) 291{ 292 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 293 294 crypto_free_ahash(ctx->child); 295} 296 297static int mcryptd_hash_setkey(struct crypto_ahash *parent, 298 const u8 *key, unsigned int keylen) 299{ 300 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 301 struct crypto_ahash *child = ctx->child; 302 int err; 303 304 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 305 crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) & 306 CRYPTO_TFM_REQ_MASK); 307 err = crypto_ahash_setkey(child, key, keylen); 308 crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) & 309 CRYPTO_TFM_RES_MASK); 310 return err; 311} 312 313static int mcryptd_hash_enqueue(struct ahash_request *req, 314 crypto_completion_t complete) 315{ 316 int ret; 317 318 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 319 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 320 struct mcryptd_queue *queue = 321 mcryptd_get_queue(crypto_ahash_tfm(tfm)); 322 323 rctx->complete = req->base.complete; 324 req->base.complete = complete; 325 326 ret = mcryptd_enqueue_request(queue, &req->base, rctx); 327 328 return ret; 329} 330 331static void mcryptd_hash_init(struct crypto_async_request *req_async, int err) 332{ 333 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 334 struct crypto_ahash *child = ctx->child; 335 struct ahash_request *req = ahash_request_cast(req_async); 336 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 337 struct ahash_request *desc = &rctx->areq; 338 339 if (unlikely(err == -EINPROGRESS)) 340 goto out; 341 342 ahash_request_set_tfm(desc, child); 343 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, 344 rctx->complete, req_async); 345 346 rctx->out = req->result; 347 err = crypto_ahash_init(desc); 348 349out: 350 local_bh_disable(); 351 rctx->complete(&req->base, err); 352 local_bh_enable(); 353} 354 355static int mcryptd_hash_init_enqueue(struct ahash_request *req) 356{ 357 return mcryptd_hash_enqueue(req, mcryptd_hash_init); 358} 359 360static void mcryptd_hash_update(struct crypto_async_request *req_async, int err) 361{ 362 struct ahash_request *req = ahash_request_cast(req_async); 363 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 364 365 if (unlikely(err == -EINPROGRESS)) 366 goto out; 367 368 rctx->out = req->result; 369 err = ahash_mcryptd_update(&rctx->areq); 370 if (err) { 371 req->base.complete = rctx->complete; 372 goto out; 373 } 374 375 return; 376out: 377 local_bh_disable(); 378 rctx->complete(&req->base, err); 379 local_bh_enable(); 380} 381 382static int mcryptd_hash_update_enqueue(struct ahash_request *req) 383{ 384 return mcryptd_hash_enqueue(req, mcryptd_hash_update); 385} 386 387static void mcryptd_hash_final(struct crypto_async_request *req_async, int err) 388{ 389 struct ahash_request *req = ahash_request_cast(req_async); 390 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 391 392 if (unlikely(err == -EINPROGRESS)) 393 goto out; 394 395 rctx->out = req->result; 396 err = ahash_mcryptd_final(&rctx->areq); 397 if (err) { 398 req->base.complete = rctx->complete; 399 goto out; 400 } 401 402 return; 403out: 404 local_bh_disable(); 405 rctx->complete(&req->base, err); 406 local_bh_enable(); 407} 408 409static int mcryptd_hash_final_enqueue(struct ahash_request *req) 410{ 411 return mcryptd_hash_enqueue(req, mcryptd_hash_final); 412} 413 414static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err) 415{ 416 struct ahash_request *req = ahash_request_cast(req_async); 417 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 418 419 if (unlikely(err == -EINPROGRESS)) 420 goto out; 421 rctx->out = req->result; 422 err = ahash_mcryptd_finup(&rctx->areq); 423 424 if (err) { 425 req->base.complete = rctx->complete; 426 goto out; 427 } 428 429 return; 430out: 431 local_bh_disable(); 432 rctx->complete(&req->base, err); 433 local_bh_enable(); 434} 435 436static int mcryptd_hash_finup_enqueue(struct ahash_request *req) 437{ 438 return mcryptd_hash_enqueue(req, mcryptd_hash_finup); 439} 440 441static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err) 442{ 443 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 444 struct crypto_ahash *child = ctx->child; 445 struct ahash_request *req = ahash_request_cast(req_async); 446 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 447 struct ahash_request *desc = &rctx->areq; 448 449 if (unlikely(err == -EINPROGRESS)) 450 goto out; 451 452 ahash_request_set_tfm(desc, child); 453 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, 454 rctx->complete, req_async); 455 456 rctx->out = req->result; 457 err = ahash_mcryptd_digest(desc); 458 459out: 460 local_bh_disable(); 461 rctx->complete(&req->base, err); 462 local_bh_enable(); 463} 464 465static int mcryptd_hash_digest_enqueue(struct ahash_request *req) 466{ 467 return mcryptd_hash_enqueue(req, mcryptd_hash_digest); 468} 469 470static int mcryptd_hash_export(struct ahash_request *req, void *out) 471{ 472 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 473 474 return crypto_ahash_export(&rctx->areq, out); 475} 476 477static int mcryptd_hash_import(struct ahash_request *req, const void *in) 478{ 479 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 480 481 return crypto_ahash_import(&rctx->areq, in); 482} 483 484static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 485 struct mcryptd_queue *queue) 486{ 487 struct hashd_instance_ctx *ctx; 488 struct ahash_instance *inst; 489 struct hash_alg_common *halg; 490 struct crypto_alg *alg; 491 u32 type = 0; 492 u32 mask = 0; 493 int err; 494 495 mcryptd_check_internal(tb, &type, &mask); 496 497 halg = ahash_attr_alg(tb[1], type, mask); 498 if (IS_ERR(halg)) 499 return PTR_ERR(halg); 500 501 alg = &halg->base; 502 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name); 503 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(), 504 sizeof(*ctx)); 505 err = PTR_ERR(inst); 506 if (IS_ERR(inst)) 507 goto out_put_alg; 508 509 ctx = ahash_instance_ctx(inst); 510 ctx->queue = queue; 511 512 err = crypto_init_ahash_spawn(&ctx->spawn, halg, 513 ahash_crypto_instance(inst)); 514 if (err) 515 goto out_free_inst; 516 517 type = CRYPTO_ALG_ASYNC; 518 if (alg->cra_flags & CRYPTO_ALG_INTERNAL) 519 type |= CRYPTO_ALG_INTERNAL; 520 inst->alg.halg.base.cra_flags = type; 521 522 inst->alg.halg.digestsize = halg->digestsize; 523 inst->alg.halg.statesize = halg->statesize; 524 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx); 525 526 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm; 527 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm; 528 529 inst->alg.init = mcryptd_hash_init_enqueue; 530 inst->alg.update = mcryptd_hash_update_enqueue; 531 inst->alg.final = mcryptd_hash_final_enqueue; 532 inst->alg.finup = mcryptd_hash_finup_enqueue; 533 inst->alg.export = mcryptd_hash_export; 534 inst->alg.import = mcryptd_hash_import; 535 inst->alg.setkey = mcryptd_hash_setkey; 536 inst->alg.digest = mcryptd_hash_digest_enqueue; 537 538 err = ahash_register_instance(tmpl, inst); 539 if (err) { 540 crypto_drop_ahash(&ctx->spawn); 541out_free_inst: 542 kfree(inst); 543 } 544 545out_put_alg: 546 crypto_mod_put(alg); 547 return err; 548} 549 550static struct mcryptd_queue mqueue; 551 552static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 553{ 554 struct crypto_attr_type *algt; 555 556 algt = crypto_get_attr_type(tb); 557 if (IS_ERR(algt)) 558 return PTR_ERR(algt); 559 560 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 561 case CRYPTO_ALG_TYPE_DIGEST: 562 return mcryptd_create_hash(tmpl, tb, &mqueue); 563 break; 564 } 565 566 return -EINVAL; 567} 568 569static void mcryptd_free(struct crypto_instance *inst) 570{ 571 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 572 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 573 574 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 575 case CRYPTO_ALG_TYPE_AHASH: 576 crypto_drop_ahash(&hctx->spawn); 577 kfree(ahash_instance(inst)); 578 return; 579 default: 580 crypto_drop_spawn(&ctx->spawn); 581 kfree(inst); 582 } 583} 584 585static struct crypto_template mcryptd_tmpl = { 586 .name = "mcryptd", 587 .create = mcryptd_create, 588 .free = mcryptd_free, 589 .module = THIS_MODULE, 590}; 591 592struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name, 593 u32 type, u32 mask) 594{ 595 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 596 struct crypto_ahash *tfm; 597 598 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME, 599 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 600 return ERR_PTR(-EINVAL); 601 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask); 602 if (IS_ERR(tfm)) 603 return ERR_CAST(tfm); 604 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 605 crypto_free_ahash(tfm); 606 return ERR_PTR(-EINVAL); 607 } 608 609 return __mcryptd_ahash_cast(tfm); 610} 611EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash); 612 613int ahash_mcryptd_digest(struct ahash_request *desc) 614{ 615 int err; 616 617 err = crypto_ahash_init(desc) ?: 618 ahash_mcryptd_finup(desc); 619 620 return err; 621} 622 623int ahash_mcryptd_update(struct ahash_request *desc) 624{ 625 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 626 627 return crypto_ahash_update(desc); 628} 629 630int ahash_mcryptd_finup(struct ahash_request *desc) 631{ 632 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 633 634 return crypto_ahash_finup(desc); 635} 636 637int ahash_mcryptd_final(struct ahash_request *desc) 638{ 639 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 640 641 return crypto_ahash_final(desc); 642} 643 644struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm) 645{ 646 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 647 648 return ctx->child; 649} 650EXPORT_SYMBOL_GPL(mcryptd_ahash_child); 651 652struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req) 653{ 654 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 655 return &rctx->areq; 656} 657EXPORT_SYMBOL_GPL(mcryptd_ahash_desc); 658 659void mcryptd_free_ahash(struct mcryptd_ahash *tfm) 660{ 661 crypto_free_ahash(&tfm->base); 662} 663EXPORT_SYMBOL_GPL(mcryptd_free_ahash); 664 665static int __init mcryptd_init(void) 666{ 667 int err, cpu; 668 struct mcryptd_flush_list *flist; 669 670 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list); 671 for_each_possible_cpu(cpu) { 672 flist = per_cpu_ptr(mcryptd_flist, cpu); 673 INIT_LIST_HEAD(&flist->list); 674 mutex_init(&flist->lock); 675 } 676 677 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN); 678 if (err) { 679 free_percpu(mcryptd_flist); 680 return err; 681 } 682 683 err = crypto_register_template(&mcryptd_tmpl); 684 if (err) { 685 mcryptd_fini_queue(&mqueue); 686 free_percpu(mcryptd_flist); 687 } 688 689 return err; 690} 691 692static void __exit mcryptd_exit(void) 693{ 694 mcryptd_fini_queue(&mqueue); 695 crypto_unregister_template(&mcryptd_tmpl); 696 free_percpu(mcryptd_flist); 697} 698 699subsys_initcall(mcryptd_init); 700module_exit(mcryptd_exit); 701 702MODULE_LICENSE("GPL"); 703MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); 704MODULE_ALIAS_CRYPTO("mcryptd");