at v4.8 21 kB view raw
1/* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 */ 14 15#include <linux/sched.h> 16#include <linux/preempt.h> 17#include <linux/module.h> 18#include <linux/fs.h> 19#include <linux/kprobes.h> 20#include <linux/elfcore.h> 21#include <linux/tick.h> 22#include <linux/init.h> 23#include <linux/mm.h> 24#include <linux/compat.h> 25#include <linux/hardirq.h> 26#include <linux/syscalls.h> 27#include <linux/kernel.h> 28#include <linux/tracehook.h> 29#include <linux/signal.h> 30#include <linux/delay.h> 31#include <linux/context_tracking.h> 32#include <asm/stack.h> 33#include <asm/switch_to.h> 34#include <asm/homecache.h> 35#include <asm/syscalls.h> 36#include <asm/traps.h> 37#include <asm/setup.h> 38#include <asm/uaccess.h> 39#ifdef CONFIG_HARDWALL 40#include <asm/hardwall.h> 41#endif 42#include <arch/chip.h> 43#include <arch/abi.h> 44#include <arch/sim_def.h> 45 46/* 47 * Use the (x86) "idle=poll" option to prefer low latency when leaving the 48 * idle loop over low power while in the idle loop, e.g. if we have 49 * one thread per core and we want to get threads out of futex waits fast. 50 */ 51static int __init idle_setup(char *str) 52{ 53 if (!str) 54 return -EINVAL; 55 56 if (!strcmp(str, "poll")) { 57 pr_info("using polling idle threads\n"); 58 cpu_idle_poll_ctrl(true); 59 return 0; 60 } else if (!strcmp(str, "halt")) { 61 return 0; 62 } 63 return -1; 64} 65early_param("idle", idle_setup); 66 67void arch_cpu_idle(void) 68{ 69 __this_cpu_write(irq_stat.idle_timestamp, jiffies); 70 _cpu_idle(); 71} 72 73/* 74 * Release a thread_info structure 75 */ 76void arch_release_thread_stack(unsigned long *stack) 77{ 78 struct thread_info *info = (void *)stack; 79 struct single_step_state *step_state = info->step_state; 80 81 if (step_state) { 82 83 /* 84 * FIXME: we don't munmap step_state->buffer 85 * because the mm_struct for this process (info->task->mm) 86 * has already been zeroed in exit_mm(). Keeping a 87 * reference to it here seems like a bad move, so this 88 * means we can't munmap() the buffer, and therefore if we 89 * ptrace multiple threads in a process, we will slowly 90 * leak user memory. (Note that as soon as the last 91 * thread in a process dies, we will reclaim all user 92 * memory including single-step buffers in the usual way.) 93 * We should either assign a kernel VA to this buffer 94 * somehow, or we should associate the buffer(s) with the 95 * mm itself so we can clean them up that way. 96 */ 97 kfree(step_state); 98 } 99} 100 101static void save_arch_state(struct thread_struct *t); 102 103int copy_thread(unsigned long clone_flags, unsigned long sp, 104 unsigned long arg, struct task_struct *p) 105{ 106 struct pt_regs *childregs = task_pt_regs(p); 107 unsigned long ksp; 108 unsigned long *callee_regs; 109 110 /* 111 * Set up the stack and stack pointer appropriately for the 112 * new child to find itself woken up in __switch_to(). 113 * The callee-saved registers must be on the stack to be read; 114 * the new task will then jump to assembly support to handle 115 * calling schedule_tail(), etc., and (for userspace tasks) 116 * returning to the context set up in the pt_regs. 117 */ 118 ksp = (unsigned long) childregs; 119 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */ 120 ((long *)ksp)[0] = ((long *)ksp)[1] = 0; 121 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); 122 callee_regs = (unsigned long *)ksp; 123 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */ 124 ((long *)ksp)[0] = ((long *)ksp)[1] = 0; 125 p->thread.ksp = ksp; 126 127 /* Record the pid of the task that created this one. */ 128 p->thread.creator_pid = current->pid; 129 130 if (unlikely(p->flags & PF_KTHREAD)) { 131 /* kernel thread */ 132 memset(childregs, 0, sizeof(struct pt_regs)); 133 memset(&callee_regs[2], 0, 134 (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long)); 135 callee_regs[0] = sp; /* r30 = function */ 136 callee_regs[1] = arg; /* r31 = arg */ 137 p->thread.pc = (unsigned long) ret_from_kernel_thread; 138 return 0; 139 } 140 141 /* 142 * Start new thread in ret_from_fork so it schedules properly 143 * and then return from interrupt like the parent. 144 */ 145 p->thread.pc = (unsigned long) ret_from_fork; 146 147 /* 148 * Do not clone step state from the parent; each thread 149 * must make its own lazily. 150 */ 151 task_thread_info(p)->step_state = NULL; 152 153#ifdef __tilegx__ 154 /* 155 * Do not clone unalign jit fixup from the parent; each thread 156 * must allocate its own on demand. 157 */ 158 task_thread_info(p)->unalign_jit_base = NULL; 159#endif 160 161 /* 162 * Copy the registers onto the kernel stack so the 163 * return-from-interrupt code will reload it into registers. 164 */ 165 *childregs = *current_pt_regs(); 166 childregs->regs[0] = 0; /* return value is zero */ 167 if (sp) 168 childregs->sp = sp; /* override with new user stack pointer */ 169 memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG], 170 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); 171 172 /* Save user stack top pointer so we can ID the stack vm area later. */ 173 p->thread.usp0 = childregs->sp; 174 175 /* 176 * If CLONE_SETTLS is set, set "tp" in the new task to "r4", 177 * which is passed in as arg #5 to sys_clone(). 178 */ 179 if (clone_flags & CLONE_SETTLS) 180 childregs->tp = childregs->regs[4]; 181 182 183#if CHIP_HAS_TILE_DMA() 184 /* 185 * No DMA in the new thread. We model this on the fact that 186 * fork() clears the pending signals, alarms, and aio for the child. 187 */ 188 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); 189 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); 190#endif 191 192 /* New thread has its miscellaneous processor state bits clear. */ 193 p->thread.proc_status = 0; 194 195#ifdef CONFIG_HARDWALL 196 /* New thread does not own any networks. */ 197 memset(&p->thread.hardwall[0], 0, 198 sizeof(struct hardwall_task) * HARDWALL_TYPES); 199#endif 200 201 202 /* 203 * Start the new thread with the current architecture state 204 * (user interrupt masks, etc.). 205 */ 206 save_arch_state(&p->thread); 207 208 return 0; 209} 210 211int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 212{ 213 task_thread_info(tsk)->align_ctl = val; 214 return 0; 215} 216 217int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 218{ 219 return put_user(task_thread_info(tsk)->align_ctl, 220 (unsigned int __user *)adr); 221} 222 223static struct task_struct corrupt_current = { .comm = "<corrupt>" }; 224 225/* 226 * Return "current" if it looks plausible, or else a pointer to a dummy. 227 * This can be helpful if we are just trying to emit a clean panic. 228 */ 229struct task_struct *validate_current(void) 230{ 231 struct task_struct *tsk = current; 232 if (unlikely((unsigned long)tsk < PAGE_OFFSET || 233 (high_memory && (void *)tsk > high_memory) || 234 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { 235 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); 236 tsk = &corrupt_current; 237 } 238 return tsk; 239} 240 241/* Take and return the pointer to the previous task, for schedule_tail(). */ 242struct task_struct *sim_notify_fork(struct task_struct *prev) 243{ 244 struct task_struct *tsk = current; 245 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | 246 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); 247 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | 248 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); 249 return prev; 250} 251 252int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) 253{ 254 struct pt_regs *ptregs = task_pt_regs(tsk); 255 elf_core_copy_regs(regs, ptregs); 256 return 1; 257} 258 259#if CHIP_HAS_TILE_DMA() 260 261/* Allow user processes to access the DMA SPRs */ 262void grant_dma_mpls(void) 263{ 264#if CONFIG_KERNEL_PL == 2 265 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); 266 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); 267#else 268 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); 269 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); 270#endif 271} 272 273/* Forbid user processes from accessing the DMA SPRs */ 274void restrict_dma_mpls(void) 275{ 276#if CONFIG_KERNEL_PL == 2 277 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1); 278 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1); 279#else 280 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); 281 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); 282#endif 283} 284 285/* Pause the DMA engine, then save off its state registers. */ 286static void save_tile_dma_state(struct tile_dma_state *dma) 287{ 288 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); 289 unsigned long post_suspend_state; 290 291 /* If we're running, suspend the engine. */ 292 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) 293 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); 294 295 /* 296 * Wait for the engine to idle, then save regs. Note that we 297 * want to record the "running" bit from before suspension, 298 * and the "done" bit from after, so that we can properly 299 * distinguish a case where the user suspended the engine from 300 * the case where the kernel suspended as part of the context 301 * swap. 302 */ 303 do { 304 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); 305 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); 306 307 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); 308 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); 309 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); 310 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); 311 dma->strides = __insn_mfspr(SPR_DMA_STRIDE); 312 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); 313 dma->byte = __insn_mfspr(SPR_DMA_BYTE); 314 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | 315 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK); 316} 317 318/* Restart a DMA that was running before we were context-switched out. */ 319static void restore_tile_dma_state(struct thread_struct *t) 320{ 321 const struct tile_dma_state *dma = &t->tile_dma_state; 322 323 /* 324 * The only way to restore the done bit is to run a zero 325 * length transaction. 326 */ 327 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && 328 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { 329 __insn_mtspr(SPR_DMA_BYTE, 0); 330 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); 331 while (__insn_mfspr(SPR_DMA_USER_STATUS) & 332 SPR_DMA_STATUS__BUSY_MASK) 333 ; 334 } 335 336 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); 337 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); 338 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); 339 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); 340 __insn_mtspr(SPR_DMA_STRIDE, dma->strides); 341 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); 342 __insn_mtspr(SPR_DMA_BYTE, dma->byte); 343 344 /* 345 * Restart the engine if we were running and not done. 346 * Clear a pending async DMA fault that we were waiting on return 347 * to user space to execute, since we expect the DMA engine 348 * to regenerate those faults for us now. Note that we don't 349 * try to clear the TIF_ASYNC_TLB flag, since it's relatively 350 * harmless if set, and it covers both DMA and the SN processor. 351 */ 352 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { 353 t->dma_async_tlb.fault_num = 0; 354 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); 355 } 356} 357 358#endif 359 360static void save_arch_state(struct thread_struct *t) 361{ 362#if CHIP_HAS_SPLIT_INTR_MASK() 363 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | 364 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); 365#else 366 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); 367#endif 368 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); 369 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); 370 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); 371 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); 372 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); 373 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); 374 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); 375 t->proc_status = __insn_mfspr(SPR_PROC_STATUS); 376#if !CHIP_HAS_FIXED_INTVEC_BASE() 377 t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0); 378#endif 379 t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM); 380#if CHIP_HAS_DSTREAM_PF() 381 t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF); 382#endif 383} 384 385static void restore_arch_state(const struct thread_struct *t) 386{ 387#if CHIP_HAS_SPLIT_INTR_MASK() 388 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); 389 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); 390#else 391 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); 392#endif 393 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); 394 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); 395 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); 396 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); 397 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); 398 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); 399 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); 400 __insn_mtspr(SPR_PROC_STATUS, t->proc_status); 401#if !CHIP_HAS_FIXED_INTVEC_BASE() 402 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base); 403#endif 404 __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm); 405#if CHIP_HAS_DSTREAM_PF() 406 __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf); 407#endif 408} 409 410 411void _prepare_arch_switch(struct task_struct *next) 412{ 413#if CHIP_HAS_TILE_DMA() 414 struct tile_dma_state *dma = &current->thread.tile_dma_state; 415 if (dma->enabled) 416 save_tile_dma_state(dma); 417#endif 418} 419 420 421struct task_struct *__sched _switch_to(struct task_struct *prev, 422 struct task_struct *next) 423{ 424 /* DMA state is already saved; save off other arch state. */ 425 save_arch_state(&prev->thread); 426 427#if CHIP_HAS_TILE_DMA() 428 /* 429 * Restore DMA in new task if desired. 430 * Note that it is only safe to restart here since interrupts 431 * are disabled, so we can't take any DMATLB miss or access 432 * interrupts before we have finished switching stacks. 433 */ 434 if (next->thread.tile_dma_state.enabled) { 435 restore_tile_dma_state(&next->thread); 436 grant_dma_mpls(); 437 } else { 438 restrict_dma_mpls(); 439 } 440#endif 441 442 /* Restore other arch state. */ 443 restore_arch_state(&next->thread); 444 445#ifdef CONFIG_HARDWALL 446 /* Enable or disable access to the network registers appropriately. */ 447 hardwall_switch_tasks(prev, next); 448#endif 449 450 /* Notify the simulator of task exit. */ 451 if (unlikely(prev->state == TASK_DEAD)) 452 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT | 453 (prev->pid << _SIM_CONTROL_OPERATOR_BITS)); 454 455 /* 456 * Switch kernel SP, PC, and callee-saved registers. 457 * In the context of the new task, return the old task pointer 458 * (i.e. the task that actually called __switch_to). 459 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp. 460 */ 461 return __switch_to(prev, next, next_current_ksp0(next)); 462} 463 464/* 465 * This routine is called on return from interrupt if any of the 466 * TIF_ALLWORK_MASK flags are set in thread_info->flags. It is 467 * entered with interrupts disabled so we don't miss an event that 468 * modified the thread_info flags. We loop until all the tested flags 469 * are clear. Note that the function is called on certain conditions 470 * that are not listed in the loop condition here (e.g. SINGLESTEP) 471 * which guarantees we will do those things once, and redo them if any 472 * of the other work items is re-done, but won't continue looping if 473 * all the other work is done. 474 */ 475void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags) 476{ 477 if (WARN_ON(!user_mode(regs))) 478 return; 479 480 do { 481 local_irq_enable(); 482 483 if (thread_info_flags & _TIF_NEED_RESCHED) 484 schedule(); 485 486#if CHIP_HAS_TILE_DMA() 487 if (thread_info_flags & _TIF_ASYNC_TLB) 488 do_async_page_fault(regs); 489#endif 490 491 if (thread_info_flags & _TIF_SIGPENDING) 492 do_signal(regs); 493 494 if (thread_info_flags & _TIF_NOTIFY_RESUME) { 495 clear_thread_flag(TIF_NOTIFY_RESUME); 496 tracehook_notify_resume(regs); 497 } 498 499 local_irq_disable(); 500 thread_info_flags = READ_ONCE(current_thread_info()->flags); 501 502 } while (thread_info_flags & _TIF_WORK_MASK); 503 504 if (thread_info_flags & _TIF_SINGLESTEP) { 505 single_step_once(regs); 506#ifndef __tilegx__ 507 /* 508 * FIXME: on tilepro, since we enable interrupts in 509 * this routine, it's possible that we miss a signal 510 * or other asynchronous event. 511 */ 512 local_irq_disable(); 513#endif 514 } 515 516 user_enter(); 517} 518 519unsigned long get_wchan(struct task_struct *p) 520{ 521 struct KBacktraceIterator kbt; 522 523 if (!p || p == current || p->state == TASK_RUNNING) 524 return 0; 525 526 for (KBacktraceIterator_init(&kbt, p, NULL); 527 !KBacktraceIterator_end(&kbt); 528 KBacktraceIterator_next(&kbt)) { 529 if (!in_sched_functions(kbt.it.pc)) 530 return kbt.it.pc; 531 } 532 533 return 0; 534} 535 536/* Flush thread state. */ 537void flush_thread(void) 538{ 539 /* Nothing */ 540} 541 542/* 543 * Free current thread data structures etc.. 544 */ 545void exit_thread(struct task_struct *tsk) 546{ 547#ifdef CONFIG_HARDWALL 548 /* 549 * Remove the task from the list of tasks that are associated 550 * with any live hardwalls. (If the task that is exiting held 551 * the last reference to a hardwall fd, it would already have 552 * been released and deactivated at this point.) 553 */ 554 hardwall_deactivate_all(tsk); 555#endif 556} 557 558void tile_show_regs(struct pt_regs *regs) 559{ 560 int i; 561#ifdef __tilegx__ 562 for (i = 0; i < 17; i++) 563 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n", 564 i, regs->regs[i], i+18, regs->regs[i+18], 565 i+36, regs->regs[i+36]); 566 pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n", 567 regs->regs[17], regs->regs[35], regs->tp); 568 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr); 569#else 570 for (i = 0; i < 13; i++) 571 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT 572 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n", 573 i, regs->regs[i], i+14, regs->regs[i+14], 574 i+27, regs->regs[i+27], i+40, regs->regs[i+40]); 575 pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n", 576 regs->regs[13], regs->tp, regs->sp, regs->lr); 577#endif 578 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld flags:%s%s%s%s\n", 579 regs->pc, regs->ex1, regs->faultnum, 580 is_compat_task() ? " compat" : "", 581 (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "", 582 !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "", 583 (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : ""); 584} 585 586void show_regs(struct pt_regs *regs) 587{ 588 struct KBacktraceIterator kbt; 589 590 show_regs_print_info(KERN_DEFAULT); 591 tile_show_regs(regs); 592 593 KBacktraceIterator_init(&kbt, NULL, regs); 594 tile_show_stack(&kbt); 595} 596 597/* To ensure stack dump on tiles occurs one by one. */ 598static DEFINE_SPINLOCK(backtrace_lock); 599/* To ensure no backtrace occurs before all of the stack dump are done. */ 600static atomic_t backtrace_cpus; 601/* The cpu mask to avoid reentrance. */ 602static struct cpumask backtrace_mask; 603 604void do_nmi_dump_stack(struct pt_regs *regs) 605{ 606 int is_idle = is_idle_task(current) && !in_interrupt(); 607 int cpu; 608 609 nmi_enter(); 610 cpu = smp_processor_id(); 611 if (WARN_ON_ONCE(!cpumask_test_and_clear_cpu(cpu, &backtrace_mask))) 612 goto done; 613 614 spin_lock(&backtrace_lock); 615 if (is_idle) 616 pr_info("CPU: %d idle\n", cpu); 617 else 618 show_regs(regs); 619 spin_unlock(&backtrace_lock); 620 atomic_dec(&backtrace_cpus); 621done: 622 nmi_exit(); 623} 624 625#ifdef __tilegx__ 626void arch_trigger_all_cpu_backtrace(bool self) 627{ 628 struct cpumask mask; 629 HV_Coord tile; 630 unsigned int timeout; 631 int cpu; 632 int ongoing; 633 HV_NMI_Info info[NR_CPUS]; 634 635 ongoing = atomic_cmpxchg(&backtrace_cpus, 0, num_online_cpus() - 1); 636 if (ongoing != 0) { 637 pr_err("Trying to do all-cpu backtrace.\n"); 638 pr_err("But another all-cpu backtrace is ongoing (%d cpus left)\n", 639 ongoing); 640 if (self) { 641 pr_err("Reporting the stack on this cpu only.\n"); 642 dump_stack(); 643 } 644 return; 645 } 646 647 cpumask_copy(&mask, cpu_online_mask); 648 cpumask_clear_cpu(smp_processor_id(), &mask); 649 cpumask_copy(&backtrace_mask, &mask); 650 651 /* Backtrace for myself first. */ 652 if (self) 653 dump_stack(); 654 655 /* Tentatively dump stack on remote tiles via NMI. */ 656 timeout = 100; 657 while (!cpumask_empty(&mask) && timeout) { 658 for_each_cpu(cpu, &mask) { 659 tile.x = cpu_x(cpu); 660 tile.y = cpu_y(cpu); 661 info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0); 662 if (info[cpu].result == HV_NMI_RESULT_OK) 663 cpumask_clear_cpu(cpu, &mask); 664 } 665 666 mdelay(10); 667 timeout--; 668 } 669 670 /* Warn about cpus stuck in ICS and decrement their counts here. */ 671 if (!cpumask_empty(&mask)) { 672 for_each_cpu(cpu, &mask) { 673 switch (info[cpu].result) { 674 case HV_NMI_RESULT_FAIL_ICS: 675 pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n", 676 cpu, info[cpu].pc); 677 break; 678 case HV_NMI_RESULT_FAIL_HV: 679 pr_warn("Skipping stack dump of cpu %d in hypervisor\n", 680 cpu); 681 break; 682 case HV_ENOSYS: 683 pr_warn("Hypervisor too old to allow remote stack dumps.\n"); 684 goto skip_for_each; 685 default: /* should not happen */ 686 pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n", 687 cpu, info[cpu].result, info[cpu].pc); 688 break; 689 } 690 } 691skip_for_each: 692 atomic_sub(cpumask_weight(&mask), &backtrace_cpus); 693 } 694} 695#endif /* __tilegx_ */