at v4.8 1492 lines 44 kB view raw
1/* 2 * S390 version 3 * Copyright IBM Corp. 1999, 2000 4 * Author(s): Hartmut Penner (hp@de.ibm.com) 5 * Ulrich Weigand (weigand@de.ibm.com) 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * 8 * Derived from "include/asm-i386/pgtable.h" 9 */ 10 11#ifndef _ASM_S390_PGTABLE_H 12#define _ASM_S390_PGTABLE_H 13 14/* 15 * The Linux memory management assumes a three-level page table setup. 16 * For s390 64 bit we use up to four of the five levels the hardware 17 * provides (region first tables are not used). 18 * 19 * The "pgd_xxx()" functions are trivial for a folded two-level 20 * setup: the pgd is never bad, and a pmd always exists (as it's folded 21 * into the pgd entry) 22 * 23 * This file contains the functions and defines necessary to modify and use 24 * the S390 page table tree. 25 */ 26#ifndef __ASSEMBLY__ 27#include <linux/sched.h> 28#include <linux/mm_types.h> 29#include <linux/page-flags.h> 30#include <linux/radix-tree.h> 31#include <linux/atomic.h> 32#include <asm/bug.h> 33#include <asm/page.h> 34 35extern pgd_t swapper_pg_dir[]; 36extern void paging_init(void); 37extern void vmem_map_init(void); 38pmd_t *vmem_pmd_alloc(void); 39pte_t *vmem_pte_alloc(void); 40 41enum { 42 PG_DIRECT_MAP_4K = 0, 43 PG_DIRECT_MAP_1M, 44 PG_DIRECT_MAP_2G, 45 PG_DIRECT_MAP_MAX 46}; 47 48extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 49 50static inline void update_page_count(int level, long count) 51{ 52 if (IS_ENABLED(CONFIG_PROC_FS)) 53 atomic_long_add(count, &direct_pages_count[level]); 54} 55 56struct seq_file; 57void arch_report_meminfo(struct seq_file *m); 58 59/* 60 * The S390 doesn't have any external MMU info: the kernel page 61 * tables contain all the necessary information. 62 */ 63#define update_mmu_cache(vma, address, ptep) do { } while (0) 64#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 65 66/* 67 * ZERO_PAGE is a global shared page that is always zero; used 68 * for zero-mapped memory areas etc.. 69 */ 70 71extern unsigned long empty_zero_page; 72extern unsigned long zero_page_mask; 73 74#define ZERO_PAGE(vaddr) \ 75 (virt_to_page((void *)(empty_zero_page + \ 76 (((unsigned long)(vaddr)) &zero_page_mask)))) 77#define __HAVE_COLOR_ZERO_PAGE 78 79/* TODO: s390 cannot support io_remap_pfn_range... */ 80#endif /* !__ASSEMBLY__ */ 81 82/* 83 * PMD_SHIFT determines the size of the area a second-level page 84 * table can map 85 * PGDIR_SHIFT determines what a third-level page table entry can map 86 */ 87#define PMD_SHIFT 20 88#define PUD_SHIFT 31 89#define PGDIR_SHIFT 42 90 91#define PMD_SIZE (1UL << PMD_SHIFT) 92#define PMD_MASK (~(PMD_SIZE-1)) 93#define PUD_SIZE (1UL << PUD_SHIFT) 94#define PUD_MASK (~(PUD_SIZE-1)) 95#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 96#define PGDIR_MASK (~(PGDIR_SIZE-1)) 97 98/* 99 * entries per page directory level: the S390 is two-level, so 100 * we don't really have any PMD directory physically. 101 * for S390 segment-table entries are combined to one PGD 102 * that leads to 1024 pte per pgd 103 */ 104#define PTRS_PER_PTE 256 105#define PTRS_PER_PMD 2048 106#define PTRS_PER_PUD 2048 107#define PTRS_PER_PGD 2048 108 109#define FIRST_USER_ADDRESS 0UL 110 111#define pte_ERROR(e) \ 112 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 113#define pmd_ERROR(e) \ 114 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 115#define pud_ERROR(e) \ 116 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 117#define pgd_ERROR(e) \ 118 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 119 120#ifndef __ASSEMBLY__ 121/* 122 * The vmalloc and module area will always be on the topmost area of the 123 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 124 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 125 * modules will reside. That makes sure that inter module branches always 126 * happen without trampolines and in addition the placement within a 2GB frame 127 * is branch prediction unit friendly. 128 */ 129extern unsigned long VMALLOC_START; 130extern unsigned long VMALLOC_END; 131extern struct page *vmemmap; 132 133#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 134 135extern unsigned long MODULES_VADDR; 136extern unsigned long MODULES_END; 137#define MODULES_VADDR MODULES_VADDR 138#define MODULES_END MODULES_END 139#define MODULES_LEN (1UL << 31) 140 141static inline int is_module_addr(void *addr) 142{ 143 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 144 if (addr < (void *)MODULES_VADDR) 145 return 0; 146 if (addr > (void *)MODULES_END) 147 return 0; 148 return 1; 149} 150 151/* 152 * A 64 bit pagetable entry of S390 has following format: 153 * | PFRA |0IPC| OS | 154 * 0000000000111111111122222222223333333333444444444455555555556666 155 * 0123456789012345678901234567890123456789012345678901234567890123 156 * 157 * I Page-Invalid Bit: Page is not available for address-translation 158 * P Page-Protection Bit: Store access not possible for page 159 * C Change-bit override: HW is not required to set change bit 160 * 161 * A 64 bit segmenttable entry of S390 has following format: 162 * | P-table origin | TT 163 * 0000000000111111111122222222223333333333444444444455555555556666 164 * 0123456789012345678901234567890123456789012345678901234567890123 165 * 166 * I Segment-Invalid Bit: Segment is not available for address-translation 167 * C Common-Segment Bit: Segment is not private (PoP 3-30) 168 * P Page-Protection Bit: Store access not possible for page 169 * TT Type 00 170 * 171 * A 64 bit region table entry of S390 has following format: 172 * | S-table origin | TF TTTL 173 * 0000000000111111111122222222223333333333444444444455555555556666 174 * 0123456789012345678901234567890123456789012345678901234567890123 175 * 176 * I Segment-Invalid Bit: Segment is not available for address-translation 177 * TT Type 01 178 * TF 179 * TL Table length 180 * 181 * The 64 bit regiontable origin of S390 has following format: 182 * | region table origon | DTTL 183 * 0000000000111111111122222222223333333333444444444455555555556666 184 * 0123456789012345678901234567890123456789012345678901234567890123 185 * 186 * X Space-Switch event: 187 * G Segment-Invalid Bit: 188 * P Private-Space Bit: 189 * S Storage-Alteration: 190 * R Real space 191 * TL Table-Length: 192 * 193 * A storage key has the following format: 194 * | ACC |F|R|C|0| 195 * 0 3 4 5 6 7 196 * ACC: access key 197 * F : fetch protection bit 198 * R : referenced bit 199 * C : changed bit 200 */ 201 202/* Hardware bits in the page table entry */ 203#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 204#define _PAGE_INVALID 0x400 /* HW invalid bit */ 205#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 206 207/* Software bits in the page table entry */ 208#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 209#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 210#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 211#define _PAGE_READ 0x010 /* SW pte read bit */ 212#define _PAGE_WRITE 0x020 /* SW pte write bit */ 213#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 214#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 215#define __HAVE_ARCH_PTE_SPECIAL 216 217#ifdef CONFIG_MEM_SOFT_DIRTY 218#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 219#else 220#define _PAGE_SOFT_DIRTY 0x000 221#endif 222 223/* Set of bits not changed in pte_modify */ 224#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 225 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 226 227/* 228 * handle_pte_fault uses pte_present and pte_none to find out the pte type 229 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 230 * distinguish present from not-present ptes. It is changed only with the page 231 * table lock held. 232 * 233 * The following table gives the different possible bit combinations for 234 * the pte hardware and software bits in the last 12 bits of a pte 235 * (. unassigned bit, x don't care, t swap type): 236 * 237 * 842100000000 238 * 000084210000 239 * 000000008421 240 * .IR.uswrdy.p 241 * empty .10.00000000 242 * swap .11..ttttt.0 243 * prot-none, clean, old .11.xx0000.1 244 * prot-none, clean, young .11.xx0001.1 245 * prot-none, dirty, old .11.xx0010.1 246 * prot-none, dirty, young .11.xx0011.1 247 * read-only, clean, old .11.xx0100.1 248 * read-only, clean, young .01.xx0101.1 249 * read-only, dirty, old .11.xx0110.1 250 * read-only, dirty, young .01.xx0111.1 251 * read-write, clean, old .11.xx1100.1 252 * read-write, clean, young .01.xx1101.1 253 * read-write, dirty, old .10.xx1110.1 254 * read-write, dirty, young .00.xx1111.1 255 * HW-bits: R read-only, I invalid 256 * SW-bits: p present, y young, d dirty, r read, w write, s special, 257 * u unused, l large 258 * 259 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 260 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 261 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 262 */ 263 264/* Bits in the segment/region table address-space-control-element */ 265#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 266#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 267#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 268#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 269#define _ASCE_REAL_SPACE 0x20 /* real space control */ 270#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 271#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 272#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 273#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 274#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 275#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 276 277/* Bits in the region table entry */ 278#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 279#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 280#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 281#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 282#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 283#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 284#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 285#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 286#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 287 288#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 289#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 290#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 291#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 292#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 293#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 294 295#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 296#define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */ 297 298#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 299#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 300#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 301#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 302#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 303 304#ifdef CONFIG_MEM_SOFT_DIRTY 305#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 306#else 307#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 308#endif 309 310#define _REGION_ENTRY_BITS 0xfffffffffffff227UL 311#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL 312 313/* Bits in the segment table entry */ 314#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 315#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL 316#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 317#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 318#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */ 319#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 320 321#define _SEGMENT_ENTRY (0) 322#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 323 324#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 325#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 326#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 327#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 328#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 329 330#ifdef CONFIG_MEM_SOFT_DIRTY 331#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 332#else 333#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 334#endif 335 336/* 337 * Segment table and region3 table entry encoding 338 * (R = read-only, I = invalid, y = young bit): 339 * dy..R...I...wr 340 * prot-none, clean, old 00..1...1...00 341 * prot-none, clean, young 01..1...1...00 342 * prot-none, dirty, old 10..1...1...00 343 * prot-none, dirty, young 11..1...1...00 344 * read-only, clean, old 00..1...1...01 345 * read-only, clean, young 01..1...0...01 346 * read-only, dirty, old 10..1...1...01 347 * read-only, dirty, young 11..1...0...01 348 * read-write, clean, old 00..1...1...11 349 * read-write, clean, young 01..1...0...11 350 * read-write, dirty, old 10..0...1...11 351 * read-write, dirty, young 11..0...0...11 352 * The segment table origin is used to distinguish empty (origin==0) from 353 * read-write, old segment table entries (origin!=0) 354 * HW-bits: R read-only, I invalid 355 * SW-bits: y young, d dirty, r read, w write 356 */ 357 358/* Page status table bits for virtualization */ 359#define PGSTE_ACC_BITS 0xf000000000000000UL 360#define PGSTE_FP_BIT 0x0800000000000000UL 361#define PGSTE_PCL_BIT 0x0080000000000000UL 362#define PGSTE_HR_BIT 0x0040000000000000UL 363#define PGSTE_HC_BIT 0x0020000000000000UL 364#define PGSTE_GR_BIT 0x0004000000000000UL 365#define PGSTE_GC_BIT 0x0002000000000000UL 366#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 367#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 368#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 369 370/* Guest Page State used for virtualization */ 371#define _PGSTE_GPS_ZERO 0x0000000080000000UL 372#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 373#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 374#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 375 376/* 377 * A user page table pointer has the space-switch-event bit, the 378 * private-space-control bit and the storage-alteration-event-control 379 * bit set. A kernel page table pointer doesn't need them. 380 */ 381#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 382 _ASCE_ALT_EVENT) 383 384/* 385 * Page protection definitions. 386 */ 387#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 388#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 389 _PAGE_INVALID | _PAGE_PROTECT) 390#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 391 _PAGE_INVALID | _PAGE_PROTECT) 392 393#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 394 _PAGE_YOUNG | _PAGE_DIRTY) 395#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 396 _PAGE_YOUNG | _PAGE_DIRTY) 397#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 398 _PAGE_PROTECT) 399 400/* 401 * On s390 the page table entry has an invalid bit and a read-only bit. 402 * Read permission implies execute permission and write permission 403 * implies read permission. 404 */ 405 /*xwr*/ 406#define __P000 PAGE_NONE 407#define __P001 PAGE_READ 408#define __P010 PAGE_READ 409#define __P011 PAGE_READ 410#define __P100 PAGE_READ 411#define __P101 PAGE_READ 412#define __P110 PAGE_READ 413#define __P111 PAGE_READ 414 415#define __S000 PAGE_NONE 416#define __S001 PAGE_READ 417#define __S010 PAGE_WRITE 418#define __S011 PAGE_WRITE 419#define __S100 PAGE_READ 420#define __S101 PAGE_READ 421#define __S110 PAGE_WRITE 422#define __S111 PAGE_WRITE 423 424/* 425 * Segment entry (large page) protection definitions. 426 */ 427#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 428 _SEGMENT_ENTRY_PROTECT) 429#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \ 430 _SEGMENT_ENTRY_READ) 431#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \ 432 _SEGMENT_ENTRY_WRITE) 433#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 434 _SEGMENT_ENTRY_LARGE | \ 435 _SEGMENT_ENTRY_READ | \ 436 _SEGMENT_ENTRY_WRITE | \ 437 _SEGMENT_ENTRY_YOUNG | \ 438 _SEGMENT_ENTRY_DIRTY) 439#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 440 _SEGMENT_ENTRY_LARGE | \ 441 _SEGMENT_ENTRY_READ | \ 442 _SEGMENT_ENTRY_YOUNG | \ 443 _SEGMENT_ENTRY_PROTECT) 444 445/* 446 * Region3 entry (large page) protection definitions. 447 */ 448 449#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 450 _REGION3_ENTRY_LARGE | \ 451 _REGION3_ENTRY_READ | \ 452 _REGION3_ENTRY_WRITE | \ 453 _REGION3_ENTRY_YOUNG | \ 454 _REGION3_ENTRY_DIRTY) 455#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 456 _REGION3_ENTRY_LARGE | \ 457 _REGION3_ENTRY_READ | \ 458 _REGION3_ENTRY_YOUNG | \ 459 _REGION_ENTRY_PROTECT) 460 461static inline int mm_has_pgste(struct mm_struct *mm) 462{ 463#ifdef CONFIG_PGSTE 464 if (unlikely(mm->context.has_pgste)) 465 return 1; 466#endif 467 return 0; 468} 469 470static inline int mm_alloc_pgste(struct mm_struct *mm) 471{ 472#ifdef CONFIG_PGSTE 473 if (unlikely(mm->context.alloc_pgste)) 474 return 1; 475#endif 476 return 0; 477} 478 479/* 480 * In the case that a guest uses storage keys 481 * faults should no longer be backed by zero pages 482 */ 483#define mm_forbids_zeropage mm_use_skey 484static inline int mm_use_skey(struct mm_struct *mm) 485{ 486#ifdef CONFIG_PGSTE 487 if (mm->context.use_skey) 488 return 1; 489#endif 490 return 0; 491} 492 493static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 494{ 495 register unsigned long reg2 asm("2") = old; 496 register unsigned long reg3 asm("3") = new; 497 unsigned long address = (unsigned long)ptr | 1; 498 499 asm volatile( 500 " csp %0,%3" 501 : "+d" (reg2), "+m" (*ptr) 502 : "d" (reg3), "d" (address) 503 : "cc"); 504} 505 506static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 507{ 508 register unsigned long reg2 asm("2") = old; 509 register unsigned long reg3 asm("3") = new; 510 unsigned long address = (unsigned long)ptr | 1; 511 512 asm volatile( 513 " .insn rre,0xb98a0000,%0,%3" 514 : "+d" (reg2), "+m" (*ptr) 515 : "d" (reg3), "d" (address) 516 : "cc"); 517} 518 519#define CRDTE_DTT_PAGE 0x00UL 520#define CRDTE_DTT_SEGMENT 0x10UL 521#define CRDTE_DTT_REGION3 0x14UL 522#define CRDTE_DTT_REGION2 0x18UL 523#define CRDTE_DTT_REGION1 0x1cUL 524 525static inline void crdte(unsigned long old, unsigned long new, 526 unsigned long table, unsigned long dtt, 527 unsigned long address, unsigned long asce) 528{ 529 register unsigned long reg2 asm("2") = old; 530 register unsigned long reg3 asm("3") = new; 531 register unsigned long reg4 asm("4") = table | dtt; 532 register unsigned long reg5 asm("5") = address; 533 534 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 535 : "+d" (reg2) 536 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 537 : "memory", "cc"); 538} 539 540/* 541 * pgd/pmd/pte query functions 542 */ 543static inline int pgd_present(pgd_t pgd) 544{ 545 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 546 return 1; 547 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 548} 549 550static inline int pgd_none(pgd_t pgd) 551{ 552 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 553 return 0; 554 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 555} 556 557static inline int pgd_bad(pgd_t pgd) 558{ 559 /* 560 * With dynamic page table levels the pgd can be a region table 561 * entry or a segment table entry. Check for the bit that are 562 * invalid for either table entry. 563 */ 564 unsigned long mask = 565 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 566 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 567 return (pgd_val(pgd) & mask) != 0; 568} 569 570static inline int pud_present(pud_t pud) 571{ 572 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 573 return 1; 574 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 575} 576 577static inline int pud_none(pud_t pud) 578{ 579 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 580 return 0; 581 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 582} 583 584static inline int pud_large(pud_t pud) 585{ 586 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 587 return 0; 588 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 589} 590 591static inline unsigned long pud_pfn(pud_t pud) 592{ 593 unsigned long origin_mask; 594 595 origin_mask = _REGION3_ENTRY_ORIGIN; 596 if (pud_large(pud)) 597 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 598 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 599} 600 601static inline int pmd_large(pmd_t pmd) 602{ 603 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 604} 605 606static inline int pmd_bad(pmd_t pmd) 607{ 608 if (pmd_large(pmd)) 609 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 610 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 611} 612 613static inline int pud_bad(pud_t pud) 614{ 615 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 616 return pmd_bad(__pmd(pud_val(pud))); 617 if (pud_large(pud)) 618 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0; 619 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 620} 621 622static inline int pmd_present(pmd_t pmd) 623{ 624 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID; 625} 626 627static inline int pmd_none(pmd_t pmd) 628{ 629 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID; 630} 631 632static inline unsigned long pmd_pfn(pmd_t pmd) 633{ 634 unsigned long origin_mask; 635 636 origin_mask = _SEGMENT_ENTRY_ORIGIN; 637 if (pmd_large(pmd)) 638 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 639 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 640} 641 642#define __HAVE_ARCH_PMD_WRITE 643static inline int pmd_write(pmd_t pmd) 644{ 645 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 646} 647 648static inline int pmd_dirty(pmd_t pmd) 649{ 650 int dirty = 1; 651 if (pmd_large(pmd)) 652 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 653 return dirty; 654} 655 656static inline int pmd_young(pmd_t pmd) 657{ 658 int young = 1; 659 if (pmd_large(pmd)) 660 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 661 return young; 662} 663 664static inline int pte_present(pte_t pte) 665{ 666 /* Bit pattern: (pte & 0x001) == 0x001 */ 667 return (pte_val(pte) & _PAGE_PRESENT) != 0; 668} 669 670static inline int pte_none(pte_t pte) 671{ 672 /* Bit pattern: pte == 0x400 */ 673 return pte_val(pte) == _PAGE_INVALID; 674} 675 676static inline int pte_swap(pte_t pte) 677{ 678 /* Bit pattern: (pte & 0x201) == 0x200 */ 679 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 680 == _PAGE_PROTECT; 681} 682 683static inline int pte_special(pte_t pte) 684{ 685 return (pte_val(pte) & _PAGE_SPECIAL); 686} 687 688#define __HAVE_ARCH_PTE_SAME 689static inline int pte_same(pte_t a, pte_t b) 690{ 691 return pte_val(a) == pte_val(b); 692} 693 694#ifdef CONFIG_NUMA_BALANCING 695static inline int pte_protnone(pte_t pte) 696{ 697 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 698} 699 700static inline int pmd_protnone(pmd_t pmd) 701{ 702 /* pmd_large(pmd) implies pmd_present(pmd) */ 703 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 704} 705#endif 706 707static inline int pte_soft_dirty(pte_t pte) 708{ 709 return pte_val(pte) & _PAGE_SOFT_DIRTY; 710} 711#define pte_swp_soft_dirty pte_soft_dirty 712 713static inline pte_t pte_mksoft_dirty(pte_t pte) 714{ 715 pte_val(pte) |= _PAGE_SOFT_DIRTY; 716 return pte; 717} 718#define pte_swp_mksoft_dirty pte_mksoft_dirty 719 720static inline pte_t pte_clear_soft_dirty(pte_t pte) 721{ 722 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 723 return pte; 724} 725#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 726 727static inline int pmd_soft_dirty(pmd_t pmd) 728{ 729 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 730} 731 732static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 733{ 734 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 735 return pmd; 736} 737 738static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 739{ 740 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 741 return pmd; 742} 743 744/* 745 * query functions pte_write/pte_dirty/pte_young only work if 746 * pte_present() is true. Undefined behaviour if not.. 747 */ 748static inline int pte_write(pte_t pte) 749{ 750 return (pte_val(pte) & _PAGE_WRITE) != 0; 751} 752 753static inline int pte_dirty(pte_t pte) 754{ 755 return (pte_val(pte) & _PAGE_DIRTY) != 0; 756} 757 758static inline int pte_young(pte_t pte) 759{ 760 return (pte_val(pte) & _PAGE_YOUNG) != 0; 761} 762 763#define __HAVE_ARCH_PTE_UNUSED 764static inline int pte_unused(pte_t pte) 765{ 766 return pte_val(pte) & _PAGE_UNUSED; 767} 768 769/* 770 * pgd/pmd/pte modification functions 771 */ 772 773static inline void pgd_clear(pgd_t *pgd) 774{ 775 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 776 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 777} 778 779static inline void pud_clear(pud_t *pud) 780{ 781 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 782 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 783} 784 785static inline void pmd_clear(pmd_t *pmdp) 786{ 787 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID; 788} 789 790static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 791{ 792 pte_val(*ptep) = _PAGE_INVALID; 793} 794 795/* 796 * The following pte modification functions only work if 797 * pte_present() is true. Undefined behaviour if not.. 798 */ 799static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 800{ 801 pte_val(pte) &= _PAGE_CHG_MASK; 802 pte_val(pte) |= pgprot_val(newprot); 803 /* 804 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the 805 * invalid bit set, clear it again for readable, young pages 806 */ 807 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 808 pte_val(pte) &= ~_PAGE_INVALID; 809 /* 810 * newprot for PAGE_READ and PAGE_WRITE has the page protection 811 * bit set, clear it again for writable, dirty pages 812 */ 813 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 814 pte_val(pte) &= ~_PAGE_PROTECT; 815 return pte; 816} 817 818static inline pte_t pte_wrprotect(pte_t pte) 819{ 820 pte_val(pte) &= ~_PAGE_WRITE; 821 pte_val(pte) |= _PAGE_PROTECT; 822 return pte; 823} 824 825static inline pte_t pte_mkwrite(pte_t pte) 826{ 827 pte_val(pte) |= _PAGE_WRITE; 828 if (pte_val(pte) & _PAGE_DIRTY) 829 pte_val(pte) &= ~_PAGE_PROTECT; 830 return pte; 831} 832 833static inline pte_t pte_mkclean(pte_t pte) 834{ 835 pte_val(pte) &= ~_PAGE_DIRTY; 836 pte_val(pte) |= _PAGE_PROTECT; 837 return pte; 838} 839 840static inline pte_t pte_mkdirty(pte_t pte) 841{ 842 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 843 if (pte_val(pte) & _PAGE_WRITE) 844 pte_val(pte) &= ~_PAGE_PROTECT; 845 return pte; 846} 847 848static inline pte_t pte_mkold(pte_t pte) 849{ 850 pte_val(pte) &= ~_PAGE_YOUNG; 851 pte_val(pte) |= _PAGE_INVALID; 852 return pte; 853} 854 855static inline pte_t pte_mkyoung(pte_t pte) 856{ 857 pte_val(pte) |= _PAGE_YOUNG; 858 if (pte_val(pte) & _PAGE_READ) 859 pte_val(pte) &= ~_PAGE_INVALID; 860 return pte; 861} 862 863static inline pte_t pte_mkspecial(pte_t pte) 864{ 865 pte_val(pte) |= _PAGE_SPECIAL; 866 return pte; 867} 868 869#ifdef CONFIG_HUGETLB_PAGE 870static inline pte_t pte_mkhuge(pte_t pte) 871{ 872 pte_val(pte) |= _PAGE_LARGE; 873 return pte; 874} 875#endif 876 877static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 878{ 879 unsigned long pto = (unsigned long) ptep; 880 881 /* Invalidation + global TLB flush for the pte */ 882 asm volatile( 883 " ipte %2,%3" 884 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); 885} 886 887static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep) 888{ 889 unsigned long pto = (unsigned long) ptep; 890 891 /* Invalidation + local TLB flush for the pte */ 892 asm volatile( 893 " .insn rrf,0xb2210000,%2,%3,0,1" 894 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); 895} 896 897static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep) 898{ 899 unsigned long pto = (unsigned long) ptep; 900 901 /* Invalidate a range of ptes + global TLB flush of the ptes */ 902 do { 903 asm volatile( 904 " .insn rrf,0xb2210000,%2,%0,%1,0" 905 : "+a" (address), "+a" (nr) : "a" (pto) : "memory"); 906 } while (nr != 255); 907} 908 909/* 910 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 911 * both clear the TLB for the unmapped pte. The reason is that 912 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 913 * to modify an active pte. The sequence is 914 * 1) ptep_get_and_clear 915 * 2) set_pte_at 916 * 3) flush_tlb_range 917 * On s390 the tlb needs to get flushed with the modification of the pte 918 * if the pte is active. The only way how this can be implemented is to 919 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 920 * is a nop. 921 */ 922pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 923pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 924 925#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 926static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 927 unsigned long addr, pte_t *ptep) 928{ 929 pte_t pte = *ptep; 930 931 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 932 return pte_young(pte); 933} 934 935#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 936static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 937 unsigned long address, pte_t *ptep) 938{ 939 return ptep_test_and_clear_young(vma, address, ptep); 940} 941 942#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 943static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 944 unsigned long addr, pte_t *ptep) 945{ 946 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 947} 948 949#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 950pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *); 951void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t); 952 953#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 954static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 955 unsigned long addr, pte_t *ptep) 956{ 957 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 958} 959 960/* 961 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 962 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 963 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 964 * cannot be accessed while the batched unmap is running. In this case 965 * full==1 and a simple pte_clear is enough. See tlb.h. 966 */ 967#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 968static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 969 unsigned long addr, 970 pte_t *ptep, int full) 971{ 972 if (full) { 973 pte_t pte = *ptep; 974 *ptep = __pte(_PAGE_INVALID); 975 return pte; 976 } 977 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 978} 979 980#define __HAVE_ARCH_PTEP_SET_WRPROTECT 981static inline void ptep_set_wrprotect(struct mm_struct *mm, 982 unsigned long addr, pte_t *ptep) 983{ 984 pte_t pte = *ptep; 985 986 if (pte_write(pte)) 987 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 988} 989 990#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 991static inline int ptep_set_access_flags(struct vm_area_struct *vma, 992 unsigned long addr, pte_t *ptep, 993 pte_t entry, int dirty) 994{ 995 if (pte_same(*ptep, entry)) 996 return 0; 997 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 998 return 1; 999} 1000 1001/* 1002 * Additional functions to handle KVM guest page tables 1003 */ 1004void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1005 pte_t *ptep, pte_t entry); 1006void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1007void ptep_notify(struct mm_struct *mm, unsigned long addr, 1008 pte_t *ptep, unsigned long bits); 1009int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1010 pte_t *ptep, int prot, unsigned long bit); 1011void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1012 pte_t *ptep , int reset); 1013void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1014int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1015 pte_t *sptep, pte_t *tptep, pte_t pte); 1016void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1017 1018bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address); 1019int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1020 unsigned char key, bool nq); 1021int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1022 unsigned char key, unsigned char *oldkey, 1023 bool nq, bool mr, bool mc); 1024int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1025int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1026 unsigned char *key); 1027 1028/* 1029 * Certain architectures need to do special things when PTEs 1030 * within a page table are directly modified. Thus, the following 1031 * hook is made available. 1032 */ 1033static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1034 pte_t *ptep, pte_t entry) 1035{ 1036 if (mm_has_pgste(mm)) 1037 ptep_set_pte_at(mm, addr, ptep, entry); 1038 else 1039 *ptep = entry; 1040} 1041 1042/* 1043 * Conversion functions: convert a page and protection to a page entry, 1044 * and a page entry and page directory to the page they refer to. 1045 */ 1046static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1047{ 1048 pte_t __pte; 1049 pte_val(__pte) = physpage + pgprot_val(pgprot); 1050 return pte_mkyoung(__pte); 1051} 1052 1053static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1054{ 1055 unsigned long physpage = page_to_phys(page); 1056 pte_t __pte = mk_pte_phys(physpage, pgprot); 1057 1058 if (pte_write(__pte) && PageDirty(page)) 1059 __pte = pte_mkdirty(__pte); 1060 return __pte; 1061} 1062 1063#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1064#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1065#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1066#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1067 1068#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1069#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1070 1071#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1072#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1073#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1074 1075static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 1076{ 1077 pud_t *pud = (pud_t *) pgd; 1078 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1079 pud = (pud_t *) pgd_deref(*pgd); 1080 return pud + pud_index(address); 1081} 1082 1083static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1084{ 1085 pmd_t *pmd = (pmd_t *) pud; 1086 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1087 pmd = (pmd_t *) pud_deref(*pud); 1088 return pmd + pmd_index(address); 1089} 1090 1091#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1092#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1093#define pte_page(x) pfn_to_page(pte_pfn(x)) 1094 1095#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1096#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1097 1098/* Find an entry in the lowest level page table.. */ 1099#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1100#define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1101#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1102#define pte_unmap(pte) do { } while (0) 1103 1104static inline pmd_t pmd_wrprotect(pmd_t pmd) 1105{ 1106 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1107 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1108 return pmd; 1109} 1110 1111static inline pmd_t pmd_mkwrite(pmd_t pmd) 1112{ 1113 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1114 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1115 return pmd; 1116 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1117 return pmd; 1118} 1119 1120static inline pmd_t pmd_mkclean(pmd_t pmd) 1121{ 1122 if (pmd_large(pmd)) { 1123 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1124 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1125 } 1126 return pmd; 1127} 1128 1129static inline pmd_t pmd_mkdirty(pmd_t pmd) 1130{ 1131 if (pmd_large(pmd)) { 1132 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | 1133 _SEGMENT_ENTRY_SOFT_DIRTY; 1134 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1135 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1136 } 1137 return pmd; 1138} 1139 1140static inline pud_t pud_wrprotect(pud_t pud) 1141{ 1142 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1143 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1144 return pud; 1145} 1146 1147static inline pud_t pud_mkwrite(pud_t pud) 1148{ 1149 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1150 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY)) 1151 return pud; 1152 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1153 return pud; 1154} 1155 1156static inline pud_t pud_mkclean(pud_t pud) 1157{ 1158 if (pud_large(pud)) { 1159 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1160 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1161 } 1162 return pud; 1163} 1164 1165static inline pud_t pud_mkdirty(pud_t pud) 1166{ 1167 if (pud_large(pud)) { 1168 pud_val(pud) |= _REGION3_ENTRY_DIRTY | 1169 _REGION3_ENTRY_SOFT_DIRTY; 1170 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1171 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1172 } 1173 return pud; 1174} 1175 1176#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1177static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1178{ 1179 /* 1180 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx) 1181 * Convert to segment table entry format. 1182 */ 1183 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1184 return pgprot_val(SEGMENT_NONE); 1185 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ)) 1186 return pgprot_val(SEGMENT_READ); 1187 return pgprot_val(SEGMENT_WRITE); 1188} 1189 1190static inline pmd_t pmd_mkyoung(pmd_t pmd) 1191{ 1192 if (pmd_large(pmd)) { 1193 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1194 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1195 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1196 } 1197 return pmd; 1198} 1199 1200static inline pmd_t pmd_mkold(pmd_t pmd) 1201{ 1202 if (pmd_large(pmd)) { 1203 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1204 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1205 } 1206 return pmd; 1207} 1208 1209static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1210{ 1211 if (pmd_large(pmd)) { 1212 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1213 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1214 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1215 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1216 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1217 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1218 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1219 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1220 return pmd; 1221 } 1222 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; 1223 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1224 return pmd; 1225} 1226 1227static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1228{ 1229 pmd_t __pmd; 1230 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1231 return __pmd; 1232} 1233 1234#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1235 1236static inline void __pmdp_csp(pmd_t *pmdp) 1237{ 1238 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1239 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1240} 1241 1242static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp) 1243{ 1244 unsigned long sto; 1245 1246 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); 1247 asm volatile( 1248 " .insn rrf,0xb98e0000,%2,%3,0,0" 1249 : "=m" (*pmdp) 1250 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) 1251 : "cc" ); 1252} 1253 1254static inline void __pudp_idte(unsigned long address, pud_t *pudp) 1255{ 1256 unsigned long r3o; 1257 1258 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t); 1259 r3o |= _ASCE_TYPE_REGION3; 1260 asm volatile( 1261 " .insn rrf,0xb98e0000,%2,%3,0,0" 1262 : "=m" (*pudp) 1263 : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK)) 1264 : "cc"); 1265} 1266 1267static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp) 1268{ 1269 unsigned long sto; 1270 1271 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); 1272 asm volatile( 1273 " .insn rrf,0xb98e0000,%2,%3,0,1" 1274 : "=m" (*pmdp) 1275 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) 1276 : "cc" ); 1277} 1278 1279static inline void __pudp_idte_local(unsigned long address, pud_t *pudp) 1280{ 1281 unsigned long r3o; 1282 1283 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t); 1284 r3o |= _ASCE_TYPE_REGION3; 1285 asm volatile( 1286 " .insn rrf,0xb98e0000,%2,%3,0,1" 1287 : "=m" (*pudp) 1288 : "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK)) 1289 : "cc"); 1290} 1291 1292pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1293pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1294pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1295 1296#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1297 1298#define __HAVE_ARCH_PGTABLE_DEPOSIT 1299void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1300 pgtable_t pgtable); 1301 1302#define __HAVE_ARCH_PGTABLE_WITHDRAW 1303pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1304 1305#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1306static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1307 unsigned long addr, pmd_t *pmdp, 1308 pmd_t entry, int dirty) 1309{ 1310 VM_BUG_ON(addr & ~HPAGE_MASK); 1311 1312 entry = pmd_mkyoung(entry); 1313 if (dirty) 1314 entry = pmd_mkdirty(entry); 1315 if (pmd_val(*pmdp) == pmd_val(entry)) 1316 return 0; 1317 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1318 return 1; 1319} 1320 1321#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1322static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1323 unsigned long addr, pmd_t *pmdp) 1324{ 1325 pmd_t pmd = *pmdp; 1326 1327 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1328 return pmd_young(pmd); 1329} 1330 1331#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1332static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1333 unsigned long addr, pmd_t *pmdp) 1334{ 1335 VM_BUG_ON(addr & ~HPAGE_MASK); 1336 return pmdp_test_and_clear_young(vma, addr, pmdp); 1337} 1338 1339static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1340 pmd_t *pmdp, pmd_t entry) 1341{ 1342 *pmdp = entry; 1343} 1344 1345static inline pmd_t pmd_mkhuge(pmd_t pmd) 1346{ 1347 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1348 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1349 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1350 return pmd; 1351} 1352 1353#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1354static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1355 unsigned long addr, pmd_t *pmdp) 1356{ 1357 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID)); 1358} 1359 1360#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1361static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1362 unsigned long addr, 1363 pmd_t *pmdp, int full) 1364{ 1365 if (full) { 1366 pmd_t pmd = *pmdp; 1367 *pmdp = __pmd(_SEGMENT_ENTRY_INVALID); 1368 return pmd; 1369 } 1370 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID)); 1371} 1372 1373#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1374static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1375 unsigned long addr, pmd_t *pmdp) 1376{ 1377 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1378} 1379 1380#define __HAVE_ARCH_PMDP_INVALIDATE 1381static inline void pmdp_invalidate(struct vm_area_struct *vma, 1382 unsigned long addr, pmd_t *pmdp) 1383{ 1384 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID)); 1385} 1386 1387#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1388static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1389 unsigned long addr, pmd_t *pmdp) 1390{ 1391 pmd_t pmd = *pmdp; 1392 1393 if (pmd_write(pmd)) 1394 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1395} 1396 1397static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1398 unsigned long address, 1399 pmd_t *pmdp) 1400{ 1401 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1402} 1403#define pmdp_collapse_flush pmdp_collapse_flush 1404 1405#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1406#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1407 1408static inline int pmd_trans_huge(pmd_t pmd) 1409{ 1410 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1411} 1412 1413#define has_transparent_hugepage has_transparent_hugepage 1414static inline int has_transparent_hugepage(void) 1415{ 1416 return MACHINE_HAS_HPAGE ? 1 : 0; 1417} 1418#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1419 1420/* 1421 * 64 bit swap entry format: 1422 * A page-table entry has some bits we have to treat in a special way. 1423 * Bits 52 and bit 55 have to be zero, otherwise a specification 1424 * exception will occur instead of a page translation exception. The 1425 * specification exception has the bad habit not to store necessary 1426 * information in the lowcore. 1427 * Bits 54 and 63 are used to indicate the page type. 1428 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1429 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1430 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1431 * for the offset. 1432 * | offset |01100|type |00| 1433 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1434 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1435 */ 1436 1437#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1438#define __SWP_OFFSET_SHIFT 12 1439#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1440#define __SWP_TYPE_SHIFT 2 1441 1442static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1443{ 1444 pte_t pte; 1445 1446 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1447 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1448 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1449 return pte; 1450} 1451 1452static inline unsigned long __swp_type(swp_entry_t entry) 1453{ 1454 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1455} 1456 1457static inline unsigned long __swp_offset(swp_entry_t entry) 1458{ 1459 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1460} 1461 1462static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1463{ 1464 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1465} 1466 1467#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1468#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1469 1470#endif /* !__ASSEMBLY__ */ 1471 1472#define kern_addr_valid(addr) (1) 1473 1474extern int vmem_add_mapping(unsigned long start, unsigned long size); 1475extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1476extern int s390_enable_sie(void); 1477extern int s390_enable_skey(void); 1478extern void s390_reset_cmma(struct mm_struct *mm); 1479 1480/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1481#define HAVE_ARCH_UNMAPPED_AREA 1482#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1483 1484/* 1485 * No page table caches to initialise 1486 */ 1487static inline void pgtable_cache_init(void) { } 1488static inline void check_pgt_cache(void) { } 1489 1490#include <asm-generic/pgtable.h> 1491 1492#endif /* _S390_PAGE_H */