Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _PARISC_PGTABLE_H
2#define _PARISC_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6#include <asm/fixmap.h>
7
8#ifndef __ASSEMBLY__
9/*
10 * we simulate an x86-style page table for the linux mm code
11 */
12
13#include <linux/bitops.h>
14#include <linux/spinlock.h>
15#include <linux/mm_types.h>
16#include <asm/processor.h>
17#include <asm/cache.h>
18
19extern spinlock_t pa_tlb_lock;
20
21/*
22 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
23 * memory. For the return value to be meaningful, ADDR must be >=
24 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
25 * require a hash-, or multi-level tree-lookup or something of that
26 * sort) but it guarantees to return TRUE only if accessing the page
27 * at that address does not cause an error. Note that there may be
28 * addresses for which kern_addr_valid() returns FALSE even though an
29 * access would not cause an error (e.g., this is typically true for
30 * memory mapped I/O regions.
31 *
32 * XXX Need to implement this for parisc.
33 */
34#define kern_addr_valid(addr) (1)
35
36/* Purge data and instruction TLB entries. Must be called holding
37 * the pa_tlb_lock. The TLB purge instructions are slow on SMP
38 * machines since the purge must be broadcast to all CPUs.
39 */
40
41static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
42{
43 mtsp(mm->context, 1);
44 pdtlb(addr);
45 if (unlikely(split_tlb))
46 pitlb(addr);
47}
48
49/* Certain architectures need to do special things when PTEs
50 * within a page table are directly modified. Thus, the following
51 * hook is made available.
52 */
53#define set_pte(pteptr, pteval) \
54 do{ \
55 *(pteptr) = (pteval); \
56 } while(0)
57
58#define pte_inserted(x) \
59 ((pte_val(x) & (_PAGE_PRESENT|_PAGE_ACCESSED)) \
60 == (_PAGE_PRESENT|_PAGE_ACCESSED))
61
62#define set_pte_at(mm, addr, ptep, pteval) \
63 do { \
64 pte_t old_pte; \
65 unsigned long flags; \
66 spin_lock_irqsave(&pa_tlb_lock, flags); \
67 old_pte = *ptep; \
68 set_pte(ptep, pteval); \
69 if (pte_inserted(old_pte)) \
70 purge_tlb_entries(mm, addr); \
71 spin_unlock_irqrestore(&pa_tlb_lock, flags); \
72 } while (0)
73
74#endif /* !__ASSEMBLY__ */
75
76#include <asm/page.h>
77
78#define pte_ERROR(e) \
79 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
80#define pmd_ERROR(e) \
81 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
82#define pgd_ERROR(e) \
83 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
84
85/* This is the size of the initially mapped kernel memory */
86#ifdef CONFIG_64BIT
87#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */
88#else
89#define KERNEL_INITIAL_ORDER 24 /* 1<<24 = 16MB */
90#endif
91#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
92
93#if CONFIG_PGTABLE_LEVELS == 3
94#define PGD_ORDER 1 /* Number of pages per pgd */
95#define PMD_ORDER 1 /* Number of pages per pmd */
96#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */
97#else
98#define PGD_ORDER 1 /* Number of pages per pgd */
99#define PGD_ALLOC_ORDER PGD_ORDER
100#endif
101
102/* Definitions for 3rd level (we use PLD here for Page Lower directory
103 * because PTE_SHIFT is used lower down to mean shift that has to be
104 * done to get usable bits out of the PTE) */
105#define PLD_SHIFT PAGE_SHIFT
106#define PLD_SIZE PAGE_SIZE
107#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
108#define PTRS_PER_PTE (1UL << BITS_PER_PTE)
109
110/* Definitions for 2nd level */
111#define pgtable_cache_init() do { } while (0)
112
113#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
114#define PMD_SIZE (1UL << PMD_SHIFT)
115#define PMD_MASK (~(PMD_SIZE-1))
116#if CONFIG_PGTABLE_LEVELS == 3
117#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
118#else
119#define __PAGETABLE_PMD_FOLDED
120#define BITS_PER_PMD 0
121#endif
122#define PTRS_PER_PMD (1UL << BITS_PER_PMD)
123
124/* Definitions for 1st level */
125#define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD)
126#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
127#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
128#else
129#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
130#endif
131#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
132#define PGDIR_MASK (~(PGDIR_SIZE-1))
133#define PTRS_PER_PGD (1UL << BITS_PER_PGD)
134#define USER_PTRS_PER_PGD PTRS_PER_PGD
135
136#ifdef CONFIG_64BIT
137#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
138#define MAX_ADDRESS (1UL << MAX_ADDRBITS)
139#define SPACEID_SHIFT (MAX_ADDRBITS - 32)
140#else
141#define MAX_ADDRBITS (BITS_PER_LONG)
142#define MAX_ADDRESS (1UL << MAX_ADDRBITS)
143#define SPACEID_SHIFT 0
144#endif
145
146/* This calculates the number of initial pages we need for the initial
147 * page tables */
148#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
149# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
150#else
151# define PT_INITIAL (1) /* all initial PTEs fit into one page */
152#endif
153
154/*
155 * pgd entries used up by user/kernel:
156 */
157
158#define FIRST_USER_ADDRESS 0UL
159
160/* NB: The tlb miss handlers make certain assumptions about the order */
161/* of the following bits, so be careful (One example, bits 25-31 */
162/* are moved together in one instruction). */
163
164#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
165#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
166#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
167#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
168#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
169#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
170#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
171#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
172#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
173#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
174#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */
175#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
176
177/* N.B. The bits are defined in terms of a 32 bit word above, so the */
178/* following macro is ok for both 32 and 64 bit. */
179
180#define xlate_pabit(x) (31 - x)
181
182/* this defines the shift to the usable bits in the PTE it is set so
183 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
184 * to zero */
185#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
186
187/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
188#define PFN_PTE_SHIFT 12
189
190#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
191#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
192#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
193#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
194#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
195#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
196#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
197#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
198#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
199#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
200#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
201#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT))
202#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
203
204#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
205#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
206#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
207#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC)
208#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
209#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE)
210
211/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
212 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
213 * for a few meta-information bits, so we shift the address to be
214 * able to effectively address 40/42/44-bits of physical address space
215 * depending on 4k/16k/64k PAGE_SIZE */
216#define _PxD_PRESENT_BIT 31
217#define _PxD_ATTACHED_BIT 30
218#define _PxD_VALID_BIT 29
219
220#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
221#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
222#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
223#define PxD_FLAG_MASK (0xf)
224#define PxD_FLAG_SHIFT (4)
225#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
226
227#ifndef __ASSEMBLY__
228
229#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
230#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
231/* Others seem to make this executable, I don't know if that's correct
232 or not. The stack is mapped this way though so this is necessary
233 in the short term - dhd@linuxcare.com, 2000-08-08 */
234#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
235#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
236#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
237#define PAGE_COPY PAGE_EXECREAD
238#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
239#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
240#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
241#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
242#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
243#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
244#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
245
246
247/*
248 * We could have an execute only page using "gateway - promote to priv
249 * level 3", but that is kind of silly. So, the way things are defined
250 * now, we must always have read permission for pages with execute
251 * permission. For the fun of it we'll go ahead and support write only
252 * pages.
253 */
254
255 /*xwr*/
256#define __P000 PAGE_NONE
257#define __P001 PAGE_READONLY
258#define __P010 __P000 /* copy on write */
259#define __P011 __P001 /* copy on write */
260#define __P100 PAGE_EXECREAD
261#define __P101 PAGE_EXECREAD
262#define __P110 __P100 /* copy on write */
263#define __P111 __P101 /* copy on write */
264
265#define __S000 PAGE_NONE
266#define __S001 PAGE_READONLY
267#define __S010 PAGE_WRITEONLY
268#define __S011 PAGE_SHARED
269#define __S100 PAGE_EXECREAD
270#define __S101 PAGE_EXECREAD
271#define __S110 PAGE_RWX
272#define __S111 PAGE_RWX
273
274
275extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
276
277/* initial page tables for 0-8MB for kernel */
278
279extern pte_t pg0[];
280
281/* zero page used for uninitialized stuff */
282
283extern unsigned long *empty_zero_page;
284
285/*
286 * ZERO_PAGE is a global shared page that is always zero: used
287 * for zero-mapped memory areas etc..
288 */
289
290#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
291
292#define pte_none(x) (pte_val(x) == 0)
293#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
294#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0))
295
296#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
297#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
298#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
299#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
300
301#if CONFIG_PGTABLE_LEVELS == 3
302/* The first entry of the permanent pmd is not there if it contains
303 * the gateway marker */
304#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
305#else
306#define pmd_none(x) (!pmd_val(x))
307#endif
308#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
309#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
310static inline void pmd_clear(pmd_t *pmd) {
311#if CONFIG_PGTABLE_LEVELS == 3
312 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
313 /* This is the entry pointing to the permanent pmd
314 * attached to the pgd; cannot clear it */
315 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
316 else
317#endif
318 __pmd_val_set(*pmd, 0);
319}
320
321
322
323#if CONFIG_PGTABLE_LEVELS == 3
324#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
325#define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd))
326
327/* For 64 bit we have three level tables */
328
329#define pgd_none(x) (!pgd_val(x))
330#define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID))
331#define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT)
332static inline void pgd_clear(pgd_t *pgd) {
333#if CONFIG_PGTABLE_LEVELS == 3
334 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
335 /* This is the permanent pmd attached to the pgd; cannot
336 * free it */
337 return;
338#endif
339 __pgd_val_set(*pgd, 0);
340}
341#else
342/*
343 * The "pgd_xxx()" functions here are trivial for a folded two-level
344 * setup: the pgd is never bad, and a pmd always exists (as it's folded
345 * into the pgd entry)
346 */
347static inline int pgd_none(pgd_t pgd) { return 0; }
348static inline int pgd_bad(pgd_t pgd) { return 0; }
349static inline int pgd_present(pgd_t pgd) { return 1; }
350static inline void pgd_clear(pgd_t * pgdp) { }
351#endif
352
353/*
354 * The following only work if pte_present() is true.
355 * Undefined behaviour if not..
356 */
357static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
358static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
359static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
360static inline int pte_special(pte_t pte) { return 0; }
361
362static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
363static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
364static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
365static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
366static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
367static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
368static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
369
370/*
371 * Huge pte definitions.
372 */
373#ifdef CONFIG_HUGETLB_PAGE
374#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE)
375#define pte_mkhuge(pte) (__pte(pte_val(pte) | \
376 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
377#else
378#define pte_huge(pte) (0)
379#define pte_mkhuge(pte) (pte)
380#endif
381
382
383/*
384 * Conversion functions: convert a page and protection to a page entry,
385 * and a page entry and page directory to the page they refer to.
386 */
387#define __mk_pte(addr,pgprot) \
388({ \
389 pte_t __pte; \
390 \
391 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
392 \
393 __pte; \
394})
395
396#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
397
398static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
399{
400 pte_t pte;
401 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
402 return pte;
403}
404
405static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
406{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
407
408/* Permanent address of a page. On parisc we don't have highmem. */
409
410#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
411
412#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
413
414#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd)))
415
416#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
417#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
418
419#define pgd_index(address) ((address) >> PGDIR_SHIFT)
420
421/* to find an entry in a page-table-directory */
422#define pgd_offset(mm, address) \
423((mm)->pgd + ((address) >> PGDIR_SHIFT))
424
425/* to find an entry in a kernel page-table-directory */
426#define pgd_offset_k(address) pgd_offset(&init_mm, address)
427
428/* Find an entry in the second-level page table.. */
429
430#if CONFIG_PGTABLE_LEVELS == 3
431#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
432#define pmd_offset(dir,address) \
433((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(address))
434#else
435#define pmd_offset(dir,addr) ((pmd_t *) dir)
436#endif
437
438/* Find an entry in the third-level page table.. */
439#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
440#define pte_offset_kernel(pmd, address) \
441 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
442#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
443#define pte_unmap(pte) do { } while (0)
444
445#define pte_unmap(pte) do { } while (0)
446#define pte_unmap_nested(pte) do { } while (0)
447
448extern void paging_init (void);
449
450/* Used for deferring calls to flush_dcache_page() */
451
452#define PG_dcache_dirty PG_arch_1
453
454extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
455
456/* Encode and de-code a swap entry */
457
458#define __swp_type(x) ((x).val & 0x1f)
459#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
460 (((x).val >> 8) & ~0x7) )
461#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
462 ((offset & 0x7) << 6) | \
463 ((offset & ~0x7) << 8) })
464#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
465#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
466
467static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
468{
469 pte_t pte;
470 unsigned long flags;
471
472 if (!pte_young(*ptep))
473 return 0;
474
475 spin_lock_irqsave(&pa_tlb_lock, flags);
476 pte = *ptep;
477 if (!pte_young(pte)) {
478 spin_unlock_irqrestore(&pa_tlb_lock, flags);
479 return 0;
480 }
481 set_pte(ptep, pte_mkold(pte));
482 purge_tlb_entries(vma->vm_mm, addr);
483 spin_unlock_irqrestore(&pa_tlb_lock, flags);
484 return 1;
485}
486
487struct mm_struct;
488static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
489{
490 pte_t old_pte;
491 unsigned long flags;
492
493 spin_lock_irqsave(&pa_tlb_lock, flags);
494 old_pte = *ptep;
495 set_pte(ptep, __pte(0));
496 if (pte_inserted(old_pte))
497 purge_tlb_entries(mm, addr);
498 spin_unlock_irqrestore(&pa_tlb_lock, flags);
499
500 return old_pte;
501}
502
503static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
504{
505 unsigned long flags;
506 spin_lock_irqsave(&pa_tlb_lock, flags);
507 set_pte(ptep, pte_wrprotect(*ptep));
508 purge_tlb_entries(mm, addr);
509 spin_unlock_irqrestore(&pa_tlb_lock, flags);
510}
511
512#define pte_same(A,B) (pte_val(A) == pte_val(B))
513
514#endif /* !__ASSEMBLY__ */
515
516
517/* TLB page size encoding - see table 3-1 in parisc20.pdf */
518#define _PAGE_SIZE_ENCODING_4K 0
519#define _PAGE_SIZE_ENCODING_16K 1
520#define _PAGE_SIZE_ENCODING_64K 2
521#define _PAGE_SIZE_ENCODING_256K 3
522#define _PAGE_SIZE_ENCODING_1M 4
523#define _PAGE_SIZE_ENCODING_4M 5
524#define _PAGE_SIZE_ENCODING_16M 6
525#define _PAGE_SIZE_ENCODING_64M 7
526
527#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
528# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
529#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
530# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
531#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
532# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
533#endif
534
535
536#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
537
538/* We provide our own get_unmapped_area to provide cache coherency */
539
540#define HAVE_ARCH_UNMAPPED_AREA
541#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
542
543#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
544#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
545#define __HAVE_ARCH_PTEP_SET_WRPROTECT
546#define __HAVE_ARCH_PTE_SAME
547#include <asm-generic/pgtable.h>
548
549#endif /* _PARISC_PGTABLE_H */