at v4.8 549 lines 19 kB view raw
1#ifndef _PARISC_PGTABLE_H 2#define _PARISC_PGTABLE_H 3 4#include <asm-generic/4level-fixup.h> 5 6#include <asm/fixmap.h> 7 8#ifndef __ASSEMBLY__ 9/* 10 * we simulate an x86-style page table for the linux mm code 11 */ 12 13#include <linux/bitops.h> 14#include <linux/spinlock.h> 15#include <linux/mm_types.h> 16#include <asm/processor.h> 17#include <asm/cache.h> 18 19extern spinlock_t pa_tlb_lock; 20 21/* 22 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 23 * memory. For the return value to be meaningful, ADDR must be >= 24 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 25 * require a hash-, or multi-level tree-lookup or something of that 26 * sort) but it guarantees to return TRUE only if accessing the page 27 * at that address does not cause an error. Note that there may be 28 * addresses for which kern_addr_valid() returns FALSE even though an 29 * access would not cause an error (e.g., this is typically true for 30 * memory mapped I/O regions. 31 * 32 * XXX Need to implement this for parisc. 33 */ 34#define kern_addr_valid(addr) (1) 35 36/* Purge data and instruction TLB entries. Must be called holding 37 * the pa_tlb_lock. The TLB purge instructions are slow on SMP 38 * machines since the purge must be broadcast to all CPUs. 39 */ 40 41static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr) 42{ 43 mtsp(mm->context, 1); 44 pdtlb(addr); 45 if (unlikely(split_tlb)) 46 pitlb(addr); 47} 48 49/* Certain architectures need to do special things when PTEs 50 * within a page table are directly modified. Thus, the following 51 * hook is made available. 52 */ 53#define set_pte(pteptr, pteval) \ 54 do{ \ 55 *(pteptr) = (pteval); \ 56 } while(0) 57 58#define pte_inserted(x) \ 59 ((pte_val(x) & (_PAGE_PRESENT|_PAGE_ACCESSED)) \ 60 == (_PAGE_PRESENT|_PAGE_ACCESSED)) 61 62#define set_pte_at(mm, addr, ptep, pteval) \ 63 do { \ 64 pte_t old_pte; \ 65 unsigned long flags; \ 66 spin_lock_irqsave(&pa_tlb_lock, flags); \ 67 old_pte = *ptep; \ 68 set_pte(ptep, pteval); \ 69 if (pte_inserted(old_pte)) \ 70 purge_tlb_entries(mm, addr); \ 71 spin_unlock_irqrestore(&pa_tlb_lock, flags); \ 72 } while (0) 73 74#endif /* !__ASSEMBLY__ */ 75 76#include <asm/page.h> 77 78#define pte_ERROR(e) \ 79 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 80#define pmd_ERROR(e) \ 81 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 82#define pgd_ERROR(e) \ 83 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 84 85/* This is the size of the initially mapped kernel memory */ 86#ifdef CONFIG_64BIT 87#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */ 88#else 89#define KERNEL_INITIAL_ORDER 24 /* 1<<24 = 16MB */ 90#endif 91#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 92 93#if CONFIG_PGTABLE_LEVELS == 3 94#define PGD_ORDER 1 /* Number of pages per pgd */ 95#define PMD_ORDER 1 /* Number of pages per pmd */ 96#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ 97#else 98#define PGD_ORDER 1 /* Number of pages per pgd */ 99#define PGD_ALLOC_ORDER PGD_ORDER 100#endif 101 102/* Definitions for 3rd level (we use PLD here for Page Lower directory 103 * because PTE_SHIFT is used lower down to mean shift that has to be 104 * done to get usable bits out of the PTE) */ 105#define PLD_SHIFT PAGE_SHIFT 106#define PLD_SIZE PAGE_SIZE 107#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 108#define PTRS_PER_PTE (1UL << BITS_PER_PTE) 109 110/* Definitions for 2nd level */ 111#define pgtable_cache_init() do { } while (0) 112 113#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 114#define PMD_SIZE (1UL << PMD_SHIFT) 115#define PMD_MASK (~(PMD_SIZE-1)) 116#if CONFIG_PGTABLE_LEVELS == 3 117#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) 118#else 119#define __PAGETABLE_PMD_FOLDED 120#define BITS_PER_PMD 0 121#endif 122#define PTRS_PER_PMD (1UL << BITS_PER_PMD) 123 124/* Definitions for 1st level */ 125#define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) 126#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 127#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 128#else 129#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) 130#endif 131#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 132#define PGDIR_MASK (~(PGDIR_SIZE-1)) 133#define PTRS_PER_PGD (1UL << BITS_PER_PGD) 134#define USER_PTRS_PER_PGD PTRS_PER_PGD 135 136#ifdef CONFIG_64BIT 137#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 138#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 139#define SPACEID_SHIFT (MAX_ADDRBITS - 32) 140#else 141#define MAX_ADDRBITS (BITS_PER_LONG) 142#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 143#define SPACEID_SHIFT 0 144#endif 145 146/* This calculates the number of initial pages we need for the initial 147 * page tables */ 148#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) 149# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) 150#else 151# define PT_INITIAL (1) /* all initial PTEs fit into one page */ 152#endif 153 154/* 155 * pgd entries used up by user/kernel: 156 */ 157 158#define FIRST_USER_ADDRESS 0UL 159 160/* NB: The tlb miss handlers make certain assumptions about the order */ 161/* of the following bits, so be careful (One example, bits 25-31 */ 162/* are moved together in one instruction). */ 163 164#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 165#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 166#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 167#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 168#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 169#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 170#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 171#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 172#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 173#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 174#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */ 175#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 176 177/* N.B. The bits are defined in terms of a 32 bit word above, so the */ 178/* following macro is ok for both 32 and 64 bit. */ 179 180#define xlate_pabit(x) (31 - x) 181 182/* this defines the shift to the usable bits in the PTE it is set so 183 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 184 * to zero */ 185#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 186 187/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 188#define PFN_PTE_SHIFT 12 189 190#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 191#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 192#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 193#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 194#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 195#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 196#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 197#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 198#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 199#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 200#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 201#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT)) 202#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 203 204#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 205#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 206#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) 207#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) 208#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) 209#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) 210 211/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 212 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 213 * for a few meta-information bits, so we shift the address to be 214 * able to effectively address 40/42/44-bits of physical address space 215 * depending on 4k/16k/64k PAGE_SIZE */ 216#define _PxD_PRESENT_BIT 31 217#define _PxD_ATTACHED_BIT 30 218#define _PxD_VALID_BIT 29 219 220#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 221#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) 222#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 223#define PxD_FLAG_MASK (0xf) 224#define PxD_FLAG_SHIFT (4) 225#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT) 226 227#ifndef __ASSEMBLY__ 228 229#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) 230#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED) 231/* Others seem to make this executable, I don't know if that's correct 232 or not. The stack is mapped this way though so this is necessary 233 in the short term - dhd@linuxcare.com, 2000-08-08 */ 234#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED) 235#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED) 236#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED) 237#define PAGE_COPY PAGE_EXECREAD 238#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED) 239#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 240#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 241#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) 242#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 243#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 244#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ) 245 246 247/* 248 * We could have an execute only page using "gateway - promote to priv 249 * level 3", but that is kind of silly. So, the way things are defined 250 * now, we must always have read permission for pages with execute 251 * permission. For the fun of it we'll go ahead and support write only 252 * pages. 253 */ 254 255 /*xwr*/ 256#define __P000 PAGE_NONE 257#define __P001 PAGE_READONLY 258#define __P010 __P000 /* copy on write */ 259#define __P011 __P001 /* copy on write */ 260#define __P100 PAGE_EXECREAD 261#define __P101 PAGE_EXECREAD 262#define __P110 __P100 /* copy on write */ 263#define __P111 __P101 /* copy on write */ 264 265#define __S000 PAGE_NONE 266#define __S001 PAGE_READONLY 267#define __S010 PAGE_WRITEONLY 268#define __S011 PAGE_SHARED 269#define __S100 PAGE_EXECREAD 270#define __S101 PAGE_EXECREAD 271#define __S110 PAGE_RWX 272#define __S111 PAGE_RWX 273 274 275extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 276 277/* initial page tables for 0-8MB for kernel */ 278 279extern pte_t pg0[]; 280 281/* zero page used for uninitialized stuff */ 282 283extern unsigned long *empty_zero_page; 284 285/* 286 * ZERO_PAGE is a global shared page that is always zero: used 287 * for zero-mapped memory areas etc.. 288 */ 289 290#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 291 292#define pte_none(x) (pte_val(x) == 0) 293#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 294#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0)) 295 296#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 297#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 298#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 299#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 300 301#if CONFIG_PGTABLE_LEVELS == 3 302/* The first entry of the permanent pmd is not there if it contains 303 * the gateway marker */ 304#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) 305#else 306#define pmd_none(x) (!pmd_val(x)) 307#endif 308#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 309#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 310static inline void pmd_clear(pmd_t *pmd) { 311#if CONFIG_PGTABLE_LEVELS == 3 312 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) 313 /* This is the entry pointing to the permanent pmd 314 * attached to the pgd; cannot clear it */ 315 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); 316 else 317#endif 318 __pmd_val_set(*pmd, 0); 319} 320 321 322 323#if CONFIG_PGTABLE_LEVELS == 3 324#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd))) 325#define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd)) 326 327/* For 64 bit we have three level tables */ 328 329#define pgd_none(x) (!pgd_val(x)) 330#define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) 331#define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) 332static inline void pgd_clear(pgd_t *pgd) { 333#if CONFIG_PGTABLE_LEVELS == 3 334 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) 335 /* This is the permanent pmd attached to the pgd; cannot 336 * free it */ 337 return; 338#endif 339 __pgd_val_set(*pgd, 0); 340} 341#else 342/* 343 * The "pgd_xxx()" functions here are trivial for a folded two-level 344 * setup: the pgd is never bad, and a pmd always exists (as it's folded 345 * into the pgd entry) 346 */ 347static inline int pgd_none(pgd_t pgd) { return 0; } 348static inline int pgd_bad(pgd_t pgd) { return 0; } 349static inline int pgd_present(pgd_t pgd) { return 1; } 350static inline void pgd_clear(pgd_t * pgdp) { } 351#endif 352 353/* 354 * The following only work if pte_present() is true. 355 * Undefined behaviour if not.. 356 */ 357static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 358static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 359static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 360static inline int pte_special(pte_t pte) { return 0; } 361 362static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 363static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 364static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 365static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 366static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 367static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 368static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 369 370/* 371 * Huge pte definitions. 372 */ 373#ifdef CONFIG_HUGETLB_PAGE 374#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE) 375#define pte_mkhuge(pte) (__pte(pte_val(pte) | \ 376 (parisc_requires_coherency() ? 0 : _PAGE_HUGE))) 377#else 378#define pte_huge(pte) (0) 379#define pte_mkhuge(pte) (pte) 380#endif 381 382 383/* 384 * Conversion functions: convert a page and protection to a page entry, 385 * and a page entry and page directory to the page they refer to. 386 */ 387#define __mk_pte(addr,pgprot) \ 388({ \ 389 pte_t __pte; \ 390 \ 391 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 392 \ 393 __pte; \ 394}) 395 396#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 397 398static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 399{ 400 pte_t pte; 401 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 402 return pte; 403} 404 405static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 406{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 407 408/* Permanent address of a page. On parisc we don't have highmem. */ 409 410#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 411 412#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 413 414#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) 415 416#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 417#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 418 419#define pgd_index(address) ((address) >> PGDIR_SHIFT) 420 421/* to find an entry in a page-table-directory */ 422#define pgd_offset(mm, address) \ 423((mm)->pgd + ((address) >> PGDIR_SHIFT)) 424 425/* to find an entry in a kernel page-table-directory */ 426#define pgd_offset_k(address) pgd_offset(&init_mm, address) 427 428/* Find an entry in the second-level page table.. */ 429 430#if CONFIG_PGTABLE_LEVELS == 3 431#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) 432#define pmd_offset(dir,address) \ 433((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(address)) 434#else 435#define pmd_offset(dir,addr) ((pmd_t *) dir) 436#endif 437 438/* Find an entry in the third-level page table.. */ 439#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 440#define pte_offset_kernel(pmd, address) \ 441 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 442#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 443#define pte_unmap(pte) do { } while (0) 444 445#define pte_unmap(pte) do { } while (0) 446#define pte_unmap_nested(pte) do { } while (0) 447 448extern void paging_init (void); 449 450/* Used for deferring calls to flush_dcache_page() */ 451 452#define PG_dcache_dirty PG_arch_1 453 454extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 455 456/* Encode and de-code a swap entry */ 457 458#define __swp_type(x) ((x).val & 0x1f) 459#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ 460 (((x).val >> 8) & ~0x7) ) 461#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ 462 ((offset & 0x7) << 6) | \ 463 ((offset & ~0x7) << 8) }) 464#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 465#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 466 467static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 468{ 469 pte_t pte; 470 unsigned long flags; 471 472 if (!pte_young(*ptep)) 473 return 0; 474 475 spin_lock_irqsave(&pa_tlb_lock, flags); 476 pte = *ptep; 477 if (!pte_young(pte)) { 478 spin_unlock_irqrestore(&pa_tlb_lock, flags); 479 return 0; 480 } 481 set_pte(ptep, pte_mkold(pte)); 482 purge_tlb_entries(vma->vm_mm, addr); 483 spin_unlock_irqrestore(&pa_tlb_lock, flags); 484 return 1; 485} 486 487struct mm_struct; 488static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 489{ 490 pte_t old_pte; 491 unsigned long flags; 492 493 spin_lock_irqsave(&pa_tlb_lock, flags); 494 old_pte = *ptep; 495 set_pte(ptep, __pte(0)); 496 if (pte_inserted(old_pte)) 497 purge_tlb_entries(mm, addr); 498 spin_unlock_irqrestore(&pa_tlb_lock, flags); 499 500 return old_pte; 501} 502 503static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 504{ 505 unsigned long flags; 506 spin_lock_irqsave(&pa_tlb_lock, flags); 507 set_pte(ptep, pte_wrprotect(*ptep)); 508 purge_tlb_entries(mm, addr); 509 spin_unlock_irqrestore(&pa_tlb_lock, flags); 510} 511 512#define pte_same(A,B) (pte_val(A) == pte_val(B)) 513 514#endif /* !__ASSEMBLY__ */ 515 516 517/* TLB page size encoding - see table 3-1 in parisc20.pdf */ 518#define _PAGE_SIZE_ENCODING_4K 0 519#define _PAGE_SIZE_ENCODING_16K 1 520#define _PAGE_SIZE_ENCODING_64K 2 521#define _PAGE_SIZE_ENCODING_256K 3 522#define _PAGE_SIZE_ENCODING_1M 4 523#define _PAGE_SIZE_ENCODING_4M 5 524#define _PAGE_SIZE_ENCODING_16M 6 525#define _PAGE_SIZE_ENCODING_64M 7 526 527#if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 528# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 529#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 530# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 531#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 532# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 533#endif 534 535 536#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 537 538/* We provide our own get_unmapped_area to provide cache coherency */ 539 540#define HAVE_ARCH_UNMAPPED_AREA 541#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 542 543#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 544#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 545#define __HAVE_ARCH_PTEP_SET_WRPROTECT 546#define __HAVE_ARCH_PTE_SAME 547#include <asm-generic/pgtable.h> 548 549#endif /* _PARISC_PGTABLE_H */