at v4.8 1014 lines 29 kB view raw
1/* 2 * ARC Cache Management 3 * 4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com) 5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12#include <linux/module.h> 13#include <linux/mm.h> 14#include <linux/sched.h> 15#include <linux/cache.h> 16#include <linux/mmu_context.h> 17#include <linux/syscalls.h> 18#include <linux/uaccess.h> 19#include <linux/pagemap.h> 20#include <asm/cacheflush.h> 21#include <asm/cachectl.h> 22#include <asm/setup.h> 23 24static int l2_line_sz; 25int ioc_exists; 26volatile int slc_enable = 1, ioc_enable = 1; 27unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */ 28 29void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr, 30 unsigned long sz, const int cacheop); 31 32void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz); 33void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz); 34void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz); 35 36char *arc_cache_mumbojumbo(int c, char *buf, int len) 37{ 38 int n = 0; 39 struct cpuinfo_arc_cache *p; 40 41#define PR_CACHE(p, cfg, str) \ 42 if (!(p)->ver) \ 43 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \ 44 else \ 45 n += scnprintf(buf + n, len - n, \ 46 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \ 47 (p)->sz_k, (p)->assoc, (p)->line_len, \ 48 (p)->vipt ? "VIPT" : "PIPT", \ 49 (p)->alias ? " aliasing" : "", \ 50 IS_USED_CFG(cfg)); 51 52 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache"); 53 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache"); 54 55 if (!is_isa_arcv2()) 56 return buf; 57 58 p = &cpuinfo_arc700[c].slc; 59 if (p->ver) 60 n += scnprintf(buf + n, len - n, 61 "SLC\t\t: %uK, %uB Line%s\n", 62 p->sz_k, p->line_len, IS_USED_RUN(slc_enable)); 63 64 if (ioc_exists) 65 n += scnprintf(buf + n, len - n, "IOC\t\t:%s\n", 66 IS_DISABLED_RUN(ioc_enable)); 67 68 return buf; 69} 70 71/* 72 * Read the Cache Build Confuration Registers, Decode them and save into 73 * the cpuinfo structure for later use. 74 * No Validation done here, simply read/convert the BCRs 75 */ 76static void read_decode_cache_bcr_arcv2(int cpu) 77{ 78 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc; 79 struct bcr_generic uncached_space; 80 struct bcr_generic sbcr; 81 82 struct bcr_slc_cfg { 83#ifdef CONFIG_CPU_BIG_ENDIAN 84 unsigned int pad:24, way:2, lsz:2, sz:4; 85#else 86 unsigned int sz:4, lsz:2, way:2, pad:24; 87#endif 88 } slc_cfg; 89 90 struct bcr_clust_cfg { 91#ifdef CONFIG_CPU_BIG_ENDIAN 92 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8; 93#else 94 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7; 95#endif 96 } cbcr; 97 98 READ_BCR(ARC_REG_SLC_BCR, sbcr); 99 if (sbcr.ver) { 100 READ_BCR(ARC_REG_SLC_CFG, slc_cfg); 101 p_slc->ver = sbcr.ver; 102 p_slc->sz_k = 128 << slc_cfg.sz; 103 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64; 104 } 105 106 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr); 107 if (cbcr.c && ioc_enable) 108 ioc_exists = 1; 109 110 /* Legacy Data Uncached BCR is deprecated from v3 onwards */ 111 READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space); 112 if (uncached_space.ver > 2) 113 perip_base = read_aux_reg(AUX_NON_VOL) & 0xF0000000; 114} 115 116void read_decode_cache_bcr(void) 117{ 118 struct cpuinfo_arc_cache *p_ic, *p_dc; 119 unsigned int cpu = smp_processor_id(); 120 struct bcr_cache { 121#ifdef CONFIG_CPU_BIG_ENDIAN 122 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8; 123#else 124 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12; 125#endif 126 } ibcr, dbcr; 127 128 p_ic = &cpuinfo_arc700[cpu].icache; 129 READ_BCR(ARC_REG_IC_BCR, ibcr); 130 131 if (!ibcr.ver) 132 goto dc_chk; 133 134 if (ibcr.ver <= 3) { 135 BUG_ON(ibcr.config != 3); 136 p_ic->assoc = 2; /* Fixed to 2w set assoc */ 137 } else if (ibcr.ver >= 4) { 138 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */ 139 } 140 141 p_ic->line_len = 8 << ibcr.line_len; 142 p_ic->sz_k = 1 << (ibcr.sz - 1); 143 p_ic->ver = ibcr.ver; 144 p_ic->vipt = 1; 145 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1; 146 147dc_chk: 148 p_dc = &cpuinfo_arc700[cpu].dcache; 149 READ_BCR(ARC_REG_DC_BCR, dbcr); 150 151 if (!dbcr.ver) 152 goto slc_chk; 153 154 if (dbcr.ver <= 3) { 155 BUG_ON(dbcr.config != 2); 156 p_dc->assoc = 4; /* Fixed to 4w set assoc */ 157 p_dc->vipt = 1; 158 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1; 159 } else if (dbcr.ver >= 4) { 160 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */ 161 p_dc->vipt = 0; 162 p_dc->alias = 0; /* PIPT so can't VIPT alias */ 163 } 164 165 p_dc->line_len = 16 << dbcr.line_len; 166 p_dc->sz_k = 1 << (dbcr.sz - 1); 167 p_dc->ver = dbcr.ver; 168 169slc_chk: 170 if (is_isa_arcv2()) 171 read_decode_cache_bcr_arcv2(cpu); 172} 173 174/* 175 * Line Operation on {I,D}-Cache 176 */ 177 178#define OP_INV 0x1 179#define OP_FLUSH 0x2 180#define OP_FLUSH_N_INV 0x3 181#define OP_INV_IC 0x4 182 183/* 184 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3) 185 * 186 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag. 187 * The orig Cache Management Module "CDU" only required paddr to invalidate a 188 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry. 189 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching 190 * the exact same line. 191 * 192 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config, 193 * paddr alone could not be used to correctly index the cache. 194 * 195 * ------------------ 196 * MMU v1/v2 (Fixed Page Size 8k) 197 * ------------------ 198 * The solution was to provide CDU with these additonal vaddr bits. These 199 * would be bits [x:13], x would depend on cache-geometry, 13 comes from 200 * standard page size of 8k. 201 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits 202 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the 203 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they 204 * represent the offset within cache-line. The adv of using this "clumsy" 205 * interface for additional info was no new reg was needed in CDU programming 206 * model. 207 * 208 * 17:13 represented the max num of bits passable, actual bits needed were 209 * fewer, based on the num-of-aliases possible. 210 * -for 2 alias possibility, only bit 13 needed (32K cache) 211 * -for 4 alias possibility, bits 14:13 needed (64K cache) 212 * 213 * ------------------ 214 * MMU v3 215 * ------------------ 216 * This ver of MMU supports variable page sizes (1k-16k): although Linux will 217 * only support 8k (default), 16k and 4k. 218 * However from hardware perspective, smaller page sizes aggravate aliasing 219 * meaning more vaddr bits needed to disambiguate the cache-line-op ; 220 * the existing scheme of piggybacking won't work for certain configurations. 221 * Two new registers IC_PTAG and DC_PTAG inttoduced. 222 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs 223 */ 224 225static inline 226void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr, 227 unsigned long sz, const int op) 228{ 229 unsigned int aux_cmd; 230 int num_lines; 231 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 232 233 if (op == OP_INV_IC) { 234 aux_cmd = ARC_REG_IC_IVIL; 235 } else { 236 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 237 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 238 } 239 240 /* Ensure we properly floor/ceil the non-line aligned/sized requests 241 * and have @paddr - aligned to cache line and integral @num_lines. 242 * This however can be avoided for page sized since: 243 * -@paddr will be cache-line aligned already (being page aligned) 244 * -@sz will be integral multiple of line size (being page sized). 245 */ 246 if (!full_page) { 247 sz += paddr & ~CACHE_LINE_MASK; 248 paddr &= CACHE_LINE_MASK; 249 vaddr &= CACHE_LINE_MASK; 250 } 251 252 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 253 254 /* MMUv2 and before: paddr contains stuffed vaddrs bits */ 255 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F; 256 257 while (num_lines-- > 0) { 258 write_aux_reg(aux_cmd, paddr); 259 paddr += L1_CACHE_BYTES; 260 } 261} 262 263/* 264 * For ARC700 MMUv3 I-cache and D-cache flushes 265 * Also reused for HS38 aliasing I-cache configuration 266 */ 267static inline 268void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr, 269 unsigned long sz, const int op) 270{ 271 unsigned int aux_cmd, aux_tag; 272 int num_lines; 273 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE; 274 275 if (op == OP_INV_IC) { 276 aux_cmd = ARC_REG_IC_IVIL; 277 aux_tag = ARC_REG_IC_PTAG; 278 } else { 279 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 280 aux_tag = ARC_REG_DC_PTAG; 281 } 282 283 /* Ensure we properly floor/ceil the non-line aligned/sized requests 284 * and have @paddr - aligned to cache line and integral @num_lines. 285 * This however can be avoided for page sized since: 286 * -@paddr will be cache-line aligned already (being page aligned) 287 * -@sz will be integral multiple of line size (being page sized). 288 */ 289 if (!full_page) { 290 sz += paddr & ~CACHE_LINE_MASK; 291 paddr &= CACHE_LINE_MASK; 292 vaddr &= CACHE_LINE_MASK; 293 } 294 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 295 296 /* 297 * MMUv3, cache ops require paddr in PTAG reg 298 * if V-P const for loop, PTAG can be written once outside loop 299 */ 300 if (full_page) 301 write_aux_reg(aux_tag, paddr); 302 303 /* 304 * This is technically for MMU v4, using the MMU v3 programming model 305 * Special work for HS38 aliasing I-cache configuration with PAE40 306 * - upper 8 bits of paddr need to be written into PTAG_HI 307 * - (and needs to be written before the lower 32 bits) 308 * Note that PTAG_HI is hoisted outside the line loop 309 */ 310 if (is_pae40_enabled() && op == OP_INV_IC) 311 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 312 313 while (num_lines-- > 0) { 314 if (!full_page) { 315 write_aux_reg(aux_tag, paddr); 316 paddr += L1_CACHE_BYTES; 317 } 318 319 write_aux_reg(aux_cmd, vaddr); 320 vaddr += L1_CACHE_BYTES; 321 } 322} 323 324/* 325 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT 326 * Here's how cache ops are implemented 327 * 328 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL) 329 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL) 330 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG 331 * respectively, similar to MMU v3 programming model, hence 332 * __cache_line_loop_v3() is used) 333 * 334 * If PAE40 is enabled, independent of aliasing considerations, the higher bits 335 * needs to be written into PTAG_HI 336 */ 337static inline 338void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr, 339 unsigned long sz, const int cacheop) 340{ 341 unsigned int aux_cmd; 342 int num_lines; 343 const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE; 344 345 if (cacheop == OP_INV_IC) { 346 aux_cmd = ARC_REG_IC_IVIL; 347 } else { 348 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */ 349 aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL; 350 } 351 352 /* Ensure we properly floor/ceil the non-line aligned/sized requests 353 * and have @paddr - aligned to cache line and integral @num_lines. 354 * This however can be avoided for page sized since: 355 * -@paddr will be cache-line aligned already (being page aligned) 356 * -@sz will be integral multiple of line size (being page sized). 357 */ 358 if (!full_page_op) { 359 sz += paddr & ~CACHE_LINE_MASK; 360 paddr &= CACHE_LINE_MASK; 361 } 362 363 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES); 364 365 /* 366 * For HS38 PAE40 configuration 367 * - upper 8 bits of paddr need to be written into PTAG_HI 368 * - (and needs to be written before the lower 32 bits) 369 */ 370 if (is_pae40_enabled()) { 371 if (cacheop == OP_INV_IC) 372 /* 373 * Non aliasing I-cache in HS38, 374 * aliasing I-cache handled in __cache_line_loop_v3() 375 */ 376 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32); 377 else 378 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32); 379 } 380 381 while (num_lines-- > 0) { 382 write_aux_reg(aux_cmd, paddr); 383 paddr += L1_CACHE_BYTES; 384 } 385} 386 387#if (CONFIG_ARC_MMU_VER < 3) 388#define __cache_line_loop __cache_line_loop_v2 389#elif (CONFIG_ARC_MMU_VER == 3) 390#define __cache_line_loop __cache_line_loop_v3 391#elif (CONFIG_ARC_MMU_VER > 3) 392#define __cache_line_loop __cache_line_loop_v4 393#endif 394 395#ifdef CONFIG_ARC_HAS_DCACHE 396 397/*************************************************************** 398 * Machine specific helpers for Entire D-Cache or Per Line ops 399 */ 400 401static inline void __before_dc_op(const int op) 402{ 403 if (op == OP_FLUSH_N_INV) { 404 /* Dcache provides 2 cmd: FLUSH or INV 405 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE 406 * flush-n-inv is achieved by INV cmd but with IM=1 407 * So toggle INV sub-mode depending on op request and default 408 */ 409 const unsigned int ctl = ARC_REG_DC_CTRL; 410 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH); 411 } 412} 413 414static inline void __after_dc_op(const int op) 415{ 416 if (op & OP_FLUSH) { 417 const unsigned int ctl = ARC_REG_DC_CTRL; 418 unsigned int reg; 419 420 /* flush / flush-n-inv both wait */ 421 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS) 422 ; 423 424 /* Switch back to default Invalidate mode */ 425 if (op == OP_FLUSH_N_INV) 426 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH); 427 } 428} 429 430/* 431 * Operation on Entire D-Cache 432 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV} 433 * Note that constant propagation ensures all the checks are gone 434 * in generated code 435 */ 436static inline void __dc_entire_op(const int op) 437{ 438 int aux; 439 440 __before_dc_op(op); 441 442 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */ 443 aux = ARC_REG_DC_IVDC; 444 else 445 aux = ARC_REG_DC_FLSH; 446 447 write_aux_reg(aux, 0x1); 448 449 __after_dc_op(op); 450} 451 452/* For kernel mappings cache operation: index is same as paddr */ 453#define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op) 454 455/* 456 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback) 457 */ 458static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr, 459 unsigned long sz, const int op) 460{ 461 unsigned long flags; 462 463 local_irq_save(flags); 464 465 __before_dc_op(op); 466 467 __cache_line_loop(paddr, vaddr, sz, op); 468 469 __after_dc_op(op); 470 471 local_irq_restore(flags); 472} 473 474#else 475 476#define __dc_entire_op(op) 477#define __dc_line_op(paddr, vaddr, sz, op) 478#define __dc_line_op_k(paddr, sz, op) 479 480#endif /* CONFIG_ARC_HAS_DCACHE */ 481 482#ifdef CONFIG_ARC_HAS_ICACHE 483 484static inline void __ic_entire_inv(void) 485{ 486 write_aux_reg(ARC_REG_IC_IVIC, 1); 487 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */ 488} 489 490static inline void 491__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr, 492 unsigned long sz) 493{ 494 unsigned long flags; 495 496 local_irq_save(flags); 497 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC); 498 local_irq_restore(flags); 499} 500 501#ifndef CONFIG_SMP 502 503#define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s) 504 505#else 506 507struct ic_inv_args { 508 phys_addr_t paddr, vaddr; 509 int sz; 510}; 511 512static void __ic_line_inv_vaddr_helper(void *info) 513{ 514 struct ic_inv_args *ic_inv = info; 515 516 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz); 517} 518 519static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr, 520 unsigned long sz) 521{ 522 struct ic_inv_args ic_inv = { 523 .paddr = paddr, 524 .vaddr = vaddr, 525 .sz = sz 526 }; 527 528 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1); 529} 530 531#endif /* CONFIG_SMP */ 532 533#else /* !CONFIG_ARC_HAS_ICACHE */ 534 535#define __ic_entire_inv() 536#define __ic_line_inv_vaddr(pstart, vstart, sz) 537 538#endif /* CONFIG_ARC_HAS_ICACHE */ 539 540noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op) 541{ 542#ifdef CONFIG_ISA_ARCV2 543 /* 544 * SLC is shared between all cores and concurrent aux operations from 545 * multiple cores need to be serialized using a spinlock 546 * A concurrent operation can be silently ignored and/or the old/new 547 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop 548 * below) 549 */ 550 static DEFINE_SPINLOCK(lock); 551 unsigned long flags; 552 unsigned int ctrl; 553 554 spin_lock_irqsave(&lock, flags); 555 556 /* 557 * The Region Flush operation is specified by CTRL.RGN_OP[11..9] 558 * - b'000 (default) is Flush, 559 * - b'001 is Invalidate if CTRL.IM == 0 560 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1 561 */ 562 ctrl = read_aux_reg(ARC_REG_SLC_CTRL); 563 564 /* Don't rely on default value of IM bit */ 565 if (!(op & OP_FLUSH)) /* i.e. OP_INV */ 566 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */ 567 else 568 ctrl |= SLC_CTRL_IM; 569 570 if (op & OP_INV) 571 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */ 572 else 573 ctrl &= ~SLC_CTRL_RGN_OP_INV; 574 575 write_aux_reg(ARC_REG_SLC_CTRL, ctrl); 576 577 /* 578 * Lower bits are ignored, no need to clip 579 * END needs to be setup before START (latter triggers the operation) 580 * END can't be same as START, so add (l2_line_sz - 1) to sz 581 */ 582 write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1)); 583 write_aux_reg(ARC_REG_SLC_RGN_START, paddr); 584 585 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 586 587 spin_unlock_irqrestore(&lock, flags); 588#endif 589} 590 591/*********************************************************** 592 * Exported APIs 593 */ 594 595/* 596 * Handle cache congruency of kernel and userspace mappings of page when kernel 597 * writes-to/reads-from 598 * 599 * The idea is to defer flushing of kernel mapping after a WRITE, possible if: 600 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent 601 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache) 602 * -In SMP, if hardware caches are coherent 603 * 604 * There's a corollary case, where kernel READs from a userspace mapped page. 605 * If the U-mapping is not congruent to to K-mapping, former needs flushing. 606 */ 607void flush_dcache_page(struct page *page) 608{ 609 struct address_space *mapping; 610 611 if (!cache_is_vipt_aliasing()) { 612 clear_bit(PG_dc_clean, &page->flags); 613 return; 614 } 615 616 /* don't handle anon pages here */ 617 mapping = page_mapping(page); 618 if (!mapping) 619 return; 620 621 /* 622 * pagecache page, file not yet mapped to userspace 623 * Make a note that K-mapping is dirty 624 */ 625 if (!mapping_mapped(mapping)) { 626 clear_bit(PG_dc_clean, &page->flags); 627 } else if (page_mapcount(page)) { 628 629 /* kernel reading from page with U-mapping */ 630 phys_addr_t paddr = (unsigned long)page_address(page); 631 unsigned long vaddr = page->index << PAGE_SHIFT; 632 633 if (addr_not_cache_congruent(paddr, vaddr)) 634 __flush_dcache_page(paddr, vaddr); 635 } 636} 637EXPORT_SYMBOL(flush_dcache_page); 638 639/* 640 * DMA ops for systems with L1 cache only 641 * Make memory coherent with L1 cache by flushing/invalidating L1 lines 642 */ 643static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz) 644{ 645 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 646} 647 648static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz) 649{ 650 __dc_line_op_k(start, sz, OP_INV); 651} 652 653static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz) 654{ 655 __dc_line_op_k(start, sz, OP_FLUSH); 656} 657 658/* 659 * DMA ops for systems with both L1 and L2 caches, but without IOC 660 * Both L1 and L2 lines need to be explicitly flushed/invalidated 661 */ 662static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz) 663{ 664 __dc_line_op_k(start, sz, OP_FLUSH_N_INV); 665 slc_op(start, sz, OP_FLUSH_N_INV); 666} 667 668static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz) 669{ 670 __dc_line_op_k(start, sz, OP_INV); 671 slc_op(start, sz, OP_INV); 672} 673 674static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz) 675{ 676 __dc_line_op_k(start, sz, OP_FLUSH); 677 slc_op(start, sz, OP_FLUSH); 678} 679 680/* 681 * DMA ops for systems with IOC 682 * IOC hardware snoops all DMA traffic keeping the caches consistent with 683 * memory - eliding need for any explicit cache maintenance of DMA buffers 684 */ 685static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {} 686static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {} 687static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {} 688 689/* 690 * Exported DMA API 691 */ 692void dma_cache_wback_inv(phys_addr_t start, unsigned long sz) 693{ 694 __dma_cache_wback_inv(start, sz); 695} 696EXPORT_SYMBOL(dma_cache_wback_inv); 697 698void dma_cache_inv(phys_addr_t start, unsigned long sz) 699{ 700 __dma_cache_inv(start, sz); 701} 702EXPORT_SYMBOL(dma_cache_inv); 703 704void dma_cache_wback(phys_addr_t start, unsigned long sz) 705{ 706 __dma_cache_wback(start, sz); 707} 708EXPORT_SYMBOL(dma_cache_wback); 709 710/* 711 * This is API for making I/D Caches consistent when modifying 712 * kernel code (loadable modules, kprobes, kgdb...) 713 * This is called on insmod, with kernel virtual address for CODE of 714 * the module. ARC cache maintenance ops require PHY address thus we 715 * need to convert vmalloc addr to PHY addr 716 */ 717void flush_icache_range(unsigned long kstart, unsigned long kend) 718{ 719 unsigned int tot_sz; 720 721 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__); 722 723 /* Shortcut for bigger flush ranges. 724 * Here we don't care if this was kernel virtual or phy addr 725 */ 726 tot_sz = kend - kstart; 727 if (tot_sz > PAGE_SIZE) { 728 flush_cache_all(); 729 return; 730 } 731 732 /* Case: Kernel Phy addr (0x8000_0000 onwards) */ 733 if (likely(kstart > PAGE_OFFSET)) { 734 /* 735 * The 2nd arg despite being paddr will be used to index icache 736 * This is OK since no alternate virtual mappings will exist 737 * given the callers for this case: kprobe/kgdb in built-in 738 * kernel code only. 739 */ 740 __sync_icache_dcache(kstart, kstart, kend - kstart); 741 return; 742 } 743 744 /* 745 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff) 746 * (1) ARC Cache Maintenance ops only take Phy addr, hence special 747 * handling of kernel vaddr. 748 * 749 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already), 750 * it still needs to handle a 2 page scenario, where the range 751 * straddles across 2 virtual pages and hence need for loop 752 */ 753 while (tot_sz > 0) { 754 unsigned int off, sz; 755 unsigned long phy, pfn; 756 757 off = kstart % PAGE_SIZE; 758 pfn = vmalloc_to_pfn((void *)kstart); 759 phy = (pfn << PAGE_SHIFT) + off; 760 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off); 761 __sync_icache_dcache(phy, kstart, sz); 762 kstart += sz; 763 tot_sz -= sz; 764 } 765} 766EXPORT_SYMBOL(flush_icache_range); 767 768/* 769 * General purpose helper to make I and D cache lines consistent. 770 * @paddr is phy addr of region 771 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc) 772 * However in one instance, when called by kprobe (for a breakpt in 773 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will 774 * use a paddr to index the cache (despite VIPT). This is fine since since a 775 * builtin kernel page will not have any virtual mappings. 776 * kprobe on loadable module will be kernel vaddr. 777 */ 778void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len) 779{ 780 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV); 781 __ic_line_inv_vaddr(paddr, vaddr, len); 782} 783 784/* wrapper to compile time eliminate alignment checks in flush loop */ 785void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr) 786{ 787 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE); 788} 789 790/* 791 * wrapper to clearout kernel or userspace mappings of a page 792 * For kernel mappings @vaddr == @paddr 793 */ 794void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr) 795{ 796 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV); 797} 798 799noinline void flush_cache_all(void) 800{ 801 unsigned long flags; 802 803 local_irq_save(flags); 804 805 __ic_entire_inv(); 806 __dc_entire_op(OP_FLUSH_N_INV); 807 808 local_irq_restore(flags); 809 810} 811 812#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING 813 814void flush_cache_mm(struct mm_struct *mm) 815{ 816 flush_cache_all(); 817} 818 819void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr, 820 unsigned long pfn) 821{ 822 unsigned int paddr = pfn << PAGE_SHIFT; 823 824 u_vaddr &= PAGE_MASK; 825 826 __flush_dcache_page(paddr, u_vaddr); 827 828 if (vma->vm_flags & VM_EXEC) 829 __inv_icache_page(paddr, u_vaddr); 830} 831 832void flush_cache_range(struct vm_area_struct *vma, unsigned long start, 833 unsigned long end) 834{ 835 flush_cache_all(); 836} 837 838void flush_anon_page(struct vm_area_struct *vma, struct page *page, 839 unsigned long u_vaddr) 840{ 841 /* TBD: do we really need to clear the kernel mapping */ 842 __flush_dcache_page(page_address(page), u_vaddr); 843 __flush_dcache_page(page_address(page), page_address(page)); 844 845} 846 847#endif 848 849void copy_user_highpage(struct page *to, struct page *from, 850 unsigned long u_vaddr, struct vm_area_struct *vma) 851{ 852 void *kfrom = kmap_atomic(from); 853 void *kto = kmap_atomic(to); 854 int clean_src_k_mappings = 0; 855 856 /* 857 * If SRC page was already mapped in userspace AND it's U-mapping is 858 * not congruent with K-mapping, sync former to physical page so that 859 * K-mapping in memcpy below, sees the right data 860 * 861 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is 862 * equally valid for SRC page as well 863 * 864 * For !VIPT cache, all of this gets compiled out as 865 * addr_not_cache_congruent() is 0 866 */ 867 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) { 868 __flush_dcache_page((unsigned long)kfrom, u_vaddr); 869 clean_src_k_mappings = 1; 870 } 871 872 copy_page(kto, kfrom); 873 874 /* 875 * Mark DST page K-mapping as dirty for a later finalization by 876 * update_mmu_cache(). Although the finalization could have been done 877 * here as well (given that both vaddr/paddr are available). 878 * But update_mmu_cache() already has code to do that for other 879 * non copied user pages (e.g. read faults which wire in pagecache page 880 * directly). 881 */ 882 clear_bit(PG_dc_clean, &to->flags); 883 884 /* 885 * if SRC was already usermapped and non-congruent to kernel mapping 886 * sync the kernel mapping back to physical page 887 */ 888 if (clean_src_k_mappings) { 889 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom); 890 set_bit(PG_dc_clean, &from->flags); 891 } else { 892 clear_bit(PG_dc_clean, &from->flags); 893 } 894 895 kunmap_atomic(kto); 896 kunmap_atomic(kfrom); 897} 898 899void clear_user_page(void *to, unsigned long u_vaddr, struct page *page) 900{ 901 clear_page(to); 902 clear_bit(PG_dc_clean, &page->flags); 903} 904 905 906/********************************************************************** 907 * Explicit Cache flush request from user space via syscall 908 * Needed for JITs which generate code on the fly 909 */ 910SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags) 911{ 912 /* TBD: optimize this */ 913 flush_cache_all(); 914 return 0; 915} 916 917void arc_cache_init(void) 918{ 919 unsigned int __maybe_unused cpu = smp_processor_id(); 920 char str[256]; 921 922 printk(arc_cache_mumbojumbo(0, str, sizeof(str))); 923 924 /* 925 * Only master CPU needs to execute rest of function: 926 * - Assume SMP so all cores will have same cache config so 927 * any geomtry checks will be same for all 928 * - IOC setup / dma callbacks only need to be setup once 929 */ 930 if (cpu) 931 return; 932 933 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) { 934 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache; 935 936 if (!ic->ver) 937 panic("cache support enabled but non-existent cache\n"); 938 939 if (ic->line_len != L1_CACHE_BYTES) 940 panic("ICache line [%d] != kernel Config [%d]", 941 ic->line_len, L1_CACHE_BYTES); 942 943 if (ic->ver != CONFIG_ARC_MMU_VER) 944 panic("Cache ver [%d] doesn't match MMU ver [%d]\n", 945 ic->ver, CONFIG_ARC_MMU_VER); 946 947 /* 948 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG 949 * pair to provide vaddr/paddr respectively, just as in MMU v3 950 */ 951 if (is_isa_arcv2() && ic->alias) 952 _cache_line_loop_ic_fn = __cache_line_loop_v3; 953 else 954 _cache_line_loop_ic_fn = __cache_line_loop; 955 } 956 957 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) { 958 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache; 959 960 if (!dc->ver) 961 panic("cache support enabled but non-existent cache\n"); 962 963 if (dc->line_len != L1_CACHE_BYTES) 964 panic("DCache line [%d] != kernel Config [%d]", 965 dc->line_len, L1_CACHE_BYTES); 966 967 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */ 968 if (is_isa_arcompact()) { 969 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING); 970 971 if (dc->alias && !handled) 972 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 973 else if (!dc->alias && handled) 974 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n"); 975 } 976 } 977 978 if (is_isa_arcv2() && l2_line_sz && !slc_enable) { 979 980 /* IM set : flush before invalidate */ 981 write_aux_reg(ARC_REG_SLC_CTRL, 982 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_IM); 983 984 write_aux_reg(ARC_REG_SLC_INVALIDATE, 1); 985 986 /* Important to wait for flush to complete */ 987 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY); 988 write_aux_reg(ARC_REG_SLC_CTRL, 989 read_aux_reg(ARC_REG_SLC_CTRL) | SLC_CTRL_DISABLE); 990 } 991 992 if (is_isa_arcv2() && ioc_exists) { 993 /* IO coherency base - 0x8z */ 994 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000); 995 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */ 996 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, 0x11); 997 /* Enable partial writes */ 998 write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1); 999 /* Enable IO coherency */ 1000 write_aux_reg(ARC_REG_IO_COH_ENABLE, 1); 1001 1002 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc; 1003 __dma_cache_inv = __dma_cache_inv_ioc; 1004 __dma_cache_wback = __dma_cache_wback_ioc; 1005 } else if (is_isa_arcv2() && l2_line_sz && slc_enable) { 1006 __dma_cache_wback_inv = __dma_cache_wback_inv_slc; 1007 __dma_cache_inv = __dma_cache_inv_slc; 1008 __dma_cache_wback = __dma_cache_wback_slc; 1009 } else { 1010 __dma_cache_wback_inv = __dma_cache_wback_inv_l1; 1011 __dma_cache_inv = __dma_cache_inv_l1; 1012 __dma_cache_wback = __dma_cache_wback_l1; 1013 } 1014}