at v4.8-rc8 3146 lines 95 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/serial.h> 76#include <linux/string.h> 77#include <linux/fcntl.h> 78#include <linux/ptrace.h> 79#include <linux/mutex.h> 80#include <linux/ioport.h> 81#include <linux/delay.h> 82#include <linux/completion.h> 83#include <linux/wait.h> 84#include <linux/pci.h> 85#include <linux/uaccess.h> 86#include <linux/atomic.h> 87#include <asm/unaligned.h> 88#include <linux/bitops.h> 89#include <linux/spinlock.h> 90#include <linux/init.h> 91 92/****** RocketPort includes ******/ 93 94#include "rocket_int.h" 95#include "rocket.h" 96 97#define ROCKET_VERSION "2.09" 98#define ROCKET_DATE "12-June-2003" 99 100/****** RocketPort Local Variables ******/ 101 102static void rp_do_poll(unsigned long dummy); 103 104static struct tty_driver *rocket_driver; 105 106static struct rocket_version driver_version = { 107 ROCKET_VERSION, ROCKET_DATE 108}; 109 110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 112 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 113static atomic_t rp_num_ports_open; /* Number of serial ports open */ 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 115 116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 117static unsigned long board2; 118static unsigned long board3; 119static unsigned long board4; 120static unsigned long controller; 121static bool support_low_speed; 122static unsigned long modem1; 123static unsigned long modem2; 124static unsigned long modem3; 125static unsigned long modem4; 126static unsigned long pc104_1[8]; 127static unsigned long pc104_2[8]; 128static unsigned long pc104_3[8]; 129static unsigned long pc104_4[8]; 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 131 132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 133static unsigned long rcktpt_io_addr[NUM_BOARDS]; 134static int rcktpt_type[NUM_BOARDS]; 135static int is_PCI[NUM_BOARDS]; 136static rocketModel_t rocketModel[NUM_BOARDS]; 137static int max_board; 138static const struct tty_port_operations rocket_port_ops; 139 140/* 141 * The following arrays define the interrupt bits corresponding to each AIOP. 142 * These bits are different between the ISA and regular PCI boards and the 143 * Universal PCI boards. 144 */ 145 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 147 AIOP_INTR_BIT_0, 148 AIOP_INTR_BIT_1, 149 AIOP_INTR_BIT_2, 150 AIOP_INTR_BIT_3 151}; 152 153#ifdef CONFIG_PCI 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 155 UPCI_AIOP_INTR_BIT_0, 156 UPCI_AIOP_INTR_BIT_1, 157 UPCI_AIOP_INTR_BIT_2, 158 UPCI_AIOP_INTR_BIT_3 159}; 160#endif 161 162static Byte_t RData[RDATASIZE] = { 163 0x00, 0x09, 0xf6, 0x82, 164 0x02, 0x09, 0x86, 0xfb, 165 0x04, 0x09, 0x00, 0x0a, 166 0x06, 0x09, 0x01, 0x0a, 167 0x08, 0x09, 0x8a, 0x13, 168 0x0a, 0x09, 0xc5, 0x11, 169 0x0c, 0x09, 0x86, 0x85, 170 0x0e, 0x09, 0x20, 0x0a, 171 0x10, 0x09, 0x21, 0x0a, 172 0x12, 0x09, 0x41, 0xff, 173 0x14, 0x09, 0x82, 0x00, 174 0x16, 0x09, 0x82, 0x7b, 175 0x18, 0x09, 0x8a, 0x7d, 176 0x1a, 0x09, 0x88, 0x81, 177 0x1c, 0x09, 0x86, 0x7a, 178 0x1e, 0x09, 0x84, 0x81, 179 0x20, 0x09, 0x82, 0x7c, 180 0x22, 0x09, 0x0a, 0x0a 181}; 182 183static Byte_t RRegData[RREGDATASIZE] = { 184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 197}; 198 199static CONTROLLER_T sController[CTL_SIZE] = { 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 208}; 209 210static Byte_t sBitMapClrTbl[8] = { 211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 212}; 213 214static Byte_t sBitMapSetTbl[8] = { 215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 216}; 217 218static int sClockPrescale = 0x14; 219 220/* 221 * Line number is the ttySIx number (x), the Minor number. We 222 * assign them sequentially, starting at zero. The following 223 * array keeps track of the line number assigned to a given board/aiop/channel. 224 */ 225static unsigned char lineNumbers[MAX_RP_PORTS]; 226static unsigned long nextLineNumber; 227 228/***** RocketPort Static Prototypes *********/ 229static int __init init_ISA(int i); 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 231static void rp_flush_buffer(struct tty_struct *tty); 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 234static void rp_start(struct tty_struct *tty); 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 236 int ChanNum); 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 238static void sFlushRxFIFO(CHANNEL_T * ChP); 239static void sFlushTxFIFO(CHANNEL_T * ChP); 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 246 ByteIO_t * AiopIOList, int AiopIOListSize, 247 int IRQNum, Byte_t Frequency, int PeriodicOnly); 248static int sReadAiopID(ByteIO_t io); 249static int sReadAiopNumChan(WordIO_t io); 250 251MODULE_AUTHOR("Theodore Ts'o"); 252MODULE_DESCRIPTION("Comtrol RocketPort driver"); 253module_param(board1, ulong, 0); 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 255module_param(board2, ulong, 0); 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 257module_param(board3, ulong, 0); 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 259module_param(board4, ulong, 0); 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 261module_param(controller, ulong, 0); 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 263module_param(support_low_speed, bool, 0); 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 265module_param(modem1, ulong, 0); 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 267module_param(modem2, ulong, 0); 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 269module_param(modem3, ulong, 0); 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 271module_param(modem4, ulong, 0); 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 273module_param_array(pc104_1, ulong, NULL, 0); 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 275module_param_array(pc104_2, ulong, NULL, 0); 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 277module_param_array(pc104_3, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 279module_param_array(pc104_4, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 281 282static int rp_init(void); 283static void rp_cleanup_module(void); 284 285module_init(rp_init); 286module_exit(rp_cleanup_module); 287 288 289MODULE_LICENSE("Dual BSD/GPL"); 290 291/*************************************************************************/ 292/* Module code starts here */ 293 294static inline int rocket_paranoia_check(struct r_port *info, 295 const char *routine) 296{ 297#ifdef ROCKET_PARANOIA_CHECK 298 if (!info) 299 return 1; 300 if (info->magic != RPORT_MAGIC) { 301 printk(KERN_WARNING "Warning: bad magic number for rocketport " 302 "struct in %s\n", routine); 303 return 1; 304 } 305#endif 306 return 0; 307} 308 309 310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 312 * tty layer. 313 */ 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 315 unsigned int ChanStatus) 316{ 317 unsigned int CharNStat; 318 int ToRecv, wRecv, space; 319 unsigned char *cbuf; 320 321 ToRecv = sGetRxCnt(cp); 322#ifdef ROCKET_DEBUG_INTR 323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 324#endif 325 if (ToRecv == 0) 326 return; 327 328 /* 329 * if status indicates there are errored characters in the 330 * FIFO, then enter status mode (a word in FIFO holds 331 * character and status). 332 */ 333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 334 if (!(ChanStatus & STATMODE)) { 335#ifdef ROCKET_DEBUG_RECEIVE 336 printk(KERN_INFO "Entering STATMODE...\n"); 337#endif 338 ChanStatus |= STATMODE; 339 sEnRxStatusMode(cp); 340 } 341 } 342 343 /* 344 * if we previously entered status mode, then read down the 345 * FIFO one word at a time, pulling apart the character and 346 * the status. Update error counters depending on status 347 */ 348 if (ChanStatus & STATMODE) { 349#ifdef ROCKET_DEBUG_RECEIVE 350 printk(KERN_INFO "Ignore %x, read %x...\n", 351 info->ignore_status_mask, info->read_status_mask); 352#endif 353 while (ToRecv) { 354 char flag; 355 356 CharNStat = sInW(sGetTxRxDataIO(cp)); 357#ifdef ROCKET_DEBUG_RECEIVE 358 printk(KERN_INFO "%x...\n", CharNStat); 359#endif 360 if (CharNStat & STMBREAKH) 361 CharNStat &= ~(STMFRAMEH | STMPARITYH); 362 if (CharNStat & info->ignore_status_mask) { 363 ToRecv--; 364 continue; 365 } 366 CharNStat &= info->read_status_mask; 367 if (CharNStat & STMBREAKH) 368 flag = TTY_BREAK; 369 else if (CharNStat & STMPARITYH) 370 flag = TTY_PARITY; 371 else if (CharNStat & STMFRAMEH) 372 flag = TTY_FRAME; 373 else if (CharNStat & STMRCVROVRH) 374 flag = TTY_OVERRUN; 375 else 376 flag = TTY_NORMAL; 377 tty_insert_flip_char(&info->port, CharNStat & 0xff, 378 flag); 379 ToRecv--; 380 } 381 382 /* 383 * after we've emptied the FIFO in status mode, turn 384 * status mode back off 385 */ 386 if (sGetRxCnt(cp) == 0) { 387#ifdef ROCKET_DEBUG_RECEIVE 388 printk(KERN_INFO "Status mode off.\n"); 389#endif 390 sDisRxStatusMode(cp); 391 } 392 } else { 393 /* 394 * we aren't in status mode, so read down the FIFO two 395 * characters at time by doing repeated word IO 396 * transfer. 397 */ 398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 399 if (space < ToRecv) { 400#ifdef ROCKET_DEBUG_RECEIVE 401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 402#endif 403 if (space <= 0) 404 return; 405 ToRecv = space; 406 } 407 wRecv = ToRecv >> 1; 408 if (wRecv) 409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 410 if (ToRecv & 1) 411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 412 } 413 /* Push the data up to the tty layer */ 414 tty_flip_buffer_push(&info->port); 415} 416 417/* 418 * Serial port transmit data function. Called from the timer polling loop as a 419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 422 */ 423static void rp_do_transmit(struct r_port *info) 424{ 425 int c; 426 CHANNEL_t *cp = &info->channel; 427 struct tty_struct *tty; 428 unsigned long flags; 429 430#ifdef ROCKET_DEBUG_INTR 431 printk(KERN_DEBUG "%s\n", __func__); 432#endif 433 if (!info) 434 return; 435 tty = tty_port_tty_get(&info->port); 436 437 if (tty == NULL) { 438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 440 return; 441 } 442 443 spin_lock_irqsave(&info->slock, flags); 444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 445 446 /* Loop sending data to FIFO until done or FIFO full */ 447 while (1) { 448 if (tty->stopped) 449 break; 450 c = min(info->xmit_fifo_room, info->xmit_cnt); 451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 452 if (c <= 0 || info->xmit_fifo_room <= 0) 453 break; 454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 455 if (c & 1) 456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 457 info->xmit_tail += c; 458 info->xmit_tail &= XMIT_BUF_SIZE - 1; 459 info->xmit_cnt -= c; 460 info->xmit_fifo_room -= c; 461#ifdef ROCKET_DEBUG_INTR 462 printk(KERN_INFO "tx %d chars...\n", c); 463#endif 464 } 465 466 if (info->xmit_cnt == 0) 467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 468 469 if (info->xmit_cnt < WAKEUP_CHARS) { 470 tty_wakeup(tty); 471#ifdef ROCKETPORT_HAVE_POLL_WAIT 472 wake_up_interruptible(&tty->poll_wait); 473#endif 474 } 475 476 spin_unlock_irqrestore(&info->slock, flags); 477 tty_kref_put(tty); 478 479#ifdef ROCKET_DEBUG_INTR 480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 481 info->xmit_tail, info->xmit_fifo_room); 482#endif 483} 484 485/* 486 * Called when a serial port signals it has read data in it's RX FIFO. 487 * It checks what interrupts are pending and services them, including 488 * receiving serial data. 489 */ 490static void rp_handle_port(struct r_port *info) 491{ 492 CHANNEL_t *cp; 493 unsigned int IntMask, ChanStatus; 494 495 if (!info) 496 return; 497 498 if (!tty_port_initialized(&info->port)) { 499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 500 "info->flags & NOT_INIT\n"); 501 return; 502 } 503 504 cp = &info->channel; 505 506 IntMask = sGetChanIntID(cp) & info->intmask; 507#ifdef ROCKET_DEBUG_INTR 508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 509#endif 510 ChanStatus = sGetChanStatus(cp); 511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 512 rp_do_receive(info, cp, ChanStatus); 513 } 514 if (IntMask & DELTA_CD) { /* CD change */ 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 517 (ChanStatus & CD_ACT) ? "on" : "off"); 518#endif 519 if (!(ChanStatus & CD_ACT) && info->cd_status) { 520#ifdef ROCKET_DEBUG_HANGUP 521 printk(KERN_INFO "CD drop, calling hangup.\n"); 522#endif 523 tty_port_tty_hangup(&info->port, false); 524 } 525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 526 wake_up_interruptible(&info->port.open_wait); 527 } 528#ifdef ROCKET_DEBUG_INTR 529 if (IntMask & DELTA_CTS) { /* CTS change */ 530 printk(KERN_INFO "CTS change...\n"); 531 } 532 if (IntMask & DELTA_DSR) { /* DSR change */ 533 printk(KERN_INFO "DSR change...\n"); 534 } 535#endif 536} 537 538/* 539 * The top level polling routine. Repeats every 1/100 HZ (10ms). 540 */ 541static void rp_do_poll(unsigned long dummy) 542{ 543 CONTROLLER_t *ctlp; 544 int ctrl, aiop, ch, line; 545 unsigned int xmitmask, i; 546 unsigned int CtlMask; 547 unsigned char AiopMask; 548 Word_t bit; 549 550 /* Walk through all the boards (ctrl's) */ 551 for (ctrl = 0; ctrl < max_board; ctrl++) { 552 if (rcktpt_io_addr[ctrl] <= 0) 553 continue; 554 555 /* Get a ptr to the board's control struct */ 556 ctlp = sCtlNumToCtlPtr(ctrl); 557 558 /* Get the interrupt status from the board */ 559#ifdef CONFIG_PCI 560 if (ctlp->BusType == isPCI) 561 CtlMask = sPCIGetControllerIntStatus(ctlp); 562 else 563#endif 564 CtlMask = sGetControllerIntStatus(ctlp); 565 566 /* Check if any AIOP read bits are set */ 567 for (aiop = 0; CtlMask; aiop++) { 568 bit = ctlp->AiopIntrBits[aiop]; 569 if (CtlMask & bit) { 570 CtlMask &= ~bit; 571 AiopMask = sGetAiopIntStatus(ctlp, aiop); 572 573 /* Check if any port read bits are set */ 574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 575 if (AiopMask & 1) { 576 577 /* Get the line number (/dev/ttyRx number). */ 578 /* Read the data from the port. */ 579 line = GetLineNumber(ctrl, aiop, ch); 580 rp_handle_port(rp_table[line]); 581 } 582 } 583 } 584 } 585 586 xmitmask = xmit_flags[ctrl]; 587 588 /* 589 * xmit_flags contains bit-significant flags, indicating there is data 590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 591 * 1, ... (32 total possible). The variable i has the aiop and ch 592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 593 */ 594 if (xmitmask) { 595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 596 if (xmitmask & (1 << i)) { 597 aiop = (i & 0x18) >> 3; 598 ch = i & 0x07; 599 line = GetLineNumber(ctrl, aiop, ch); 600 rp_do_transmit(rp_table[line]); 601 } 602 } 603 } 604 } 605 606 /* 607 * Reset the timer so we get called at the next clock tick (10ms). 608 */ 609 if (atomic_read(&rp_num_ports_open)) 610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 611} 612 613/* 614 * Initializes the r_port structure for a port, as well as enabling the port on 615 * the board. 616 * Inputs: board, aiop, chan numbers 617 */ 618static void __init 619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 620{ 621 unsigned rocketMode; 622 struct r_port *info; 623 int line; 624 CONTROLLER_T *ctlp; 625 626 /* Get the next available line number */ 627 line = SetLineNumber(board, aiop, chan); 628 629 ctlp = sCtlNumToCtlPtr(board); 630 631 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 632 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 633 if (!info) { 634 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 635 line); 636 return; 637 } 638 639 info->magic = RPORT_MAGIC; 640 info->line = line; 641 info->ctlp = ctlp; 642 info->board = board; 643 info->aiop = aiop; 644 info->chan = chan; 645 tty_port_init(&info->port); 646 info->port.ops = &rocket_port_ops; 647 info->flags &= ~ROCKET_MODE_MASK; 648 switch (pc104[board][line]) { 649 case 422: 650 info->flags |= ROCKET_MODE_RS422; 651 break; 652 case 485: 653 info->flags |= ROCKET_MODE_RS485; 654 break; 655 case 232: 656 default: 657 info->flags |= ROCKET_MODE_RS232; 658 break; 659 } 660 661 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 662 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 663 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 664 board, aiop, chan); 665 tty_port_destroy(&info->port); 666 kfree(info); 667 return; 668 } 669 670 rocketMode = info->flags & ROCKET_MODE_MASK; 671 672 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 673 sEnRTSToggle(&info->channel); 674 else 675 sDisRTSToggle(&info->channel); 676 677 if (ctlp->boardType == ROCKET_TYPE_PC104) { 678 switch (rocketMode) { 679 case ROCKET_MODE_RS485: 680 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 681 break; 682 case ROCKET_MODE_RS422: 683 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 684 break; 685 case ROCKET_MODE_RS232: 686 default: 687 if (info->flags & ROCKET_RTS_TOGGLE) 688 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 689 else 690 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 691 break; 692 } 693 } 694 spin_lock_init(&info->slock); 695 mutex_init(&info->write_mtx); 696 rp_table[line] = info; 697 tty_port_register_device(&info->port, rocket_driver, line, 698 pci_dev ? &pci_dev->dev : NULL); 699} 700 701/* 702 * Configures a rocketport port according to its termio settings. Called from 703 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 704 */ 705static void configure_r_port(struct tty_struct *tty, struct r_port *info, 706 struct ktermios *old_termios) 707{ 708 unsigned cflag; 709 unsigned long flags; 710 unsigned rocketMode; 711 int bits, baud, divisor; 712 CHANNEL_t *cp; 713 struct ktermios *t = &tty->termios; 714 715 cp = &info->channel; 716 cflag = t->c_cflag; 717 718 /* Byte size and parity */ 719 if ((cflag & CSIZE) == CS8) { 720 sSetData8(cp); 721 bits = 10; 722 } else { 723 sSetData7(cp); 724 bits = 9; 725 } 726 if (cflag & CSTOPB) { 727 sSetStop2(cp); 728 bits++; 729 } else { 730 sSetStop1(cp); 731 } 732 733 if (cflag & PARENB) { 734 sEnParity(cp); 735 bits++; 736 if (cflag & PARODD) { 737 sSetOddParity(cp); 738 } else { 739 sSetEvenParity(cp); 740 } 741 } else { 742 sDisParity(cp); 743 } 744 745 /* baud rate */ 746 baud = tty_get_baud_rate(tty); 747 if (!baud) 748 baud = 9600; 749 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 750 if ((divisor >= 8192 || divisor < 0) && old_termios) { 751 baud = tty_termios_baud_rate(old_termios); 752 if (!baud) 753 baud = 9600; 754 divisor = (rp_baud_base[info->board] / baud) - 1; 755 } 756 if (divisor >= 8192 || divisor < 0) { 757 baud = 9600; 758 divisor = (rp_baud_base[info->board] / baud) - 1; 759 } 760 info->cps = baud / bits; 761 sSetBaud(cp, divisor); 762 763 /* FIXME: Should really back compute a baud rate from the divisor */ 764 tty_encode_baud_rate(tty, baud, baud); 765 766 if (cflag & CRTSCTS) { 767 info->intmask |= DELTA_CTS; 768 sEnCTSFlowCtl(cp); 769 } else { 770 info->intmask &= ~DELTA_CTS; 771 sDisCTSFlowCtl(cp); 772 } 773 if (cflag & CLOCAL) { 774 info->intmask &= ~DELTA_CD; 775 } else { 776 spin_lock_irqsave(&info->slock, flags); 777 if (sGetChanStatus(cp) & CD_ACT) 778 info->cd_status = 1; 779 else 780 info->cd_status = 0; 781 info->intmask |= DELTA_CD; 782 spin_unlock_irqrestore(&info->slock, flags); 783 } 784 785 /* 786 * Handle software flow control in the board 787 */ 788#ifdef ROCKET_SOFT_FLOW 789 if (I_IXON(tty)) { 790 sEnTxSoftFlowCtl(cp); 791 if (I_IXANY(tty)) { 792 sEnIXANY(cp); 793 } else { 794 sDisIXANY(cp); 795 } 796 sSetTxXONChar(cp, START_CHAR(tty)); 797 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 798 } else { 799 sDisTxSoftFlowCtl(cp); 800 sDisIXANY(cp); 801 sClrTxXOFF(cp); 802 } 803#endif 804 805 /* 806 * Set up ignore/read mask words 807 */ 808 info->read_status_mask = STMRCVROVRH | 0xFF; 809 if (I_INPCK(tty)) 810 info->read_status_mask |= STMFRAMEH | STMPARITYH; 811 if (I_BRKINT(tty) || I_PARMRK(tty)) 812 info->read_status_mask |= STMBREAKH; 813 814 /* 815 * Characters to ignore 816 */ 817 info->ignore_status_mask = 0; 818 if (I_IGNPAR(tty)) 819 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 820 if (I_IGNBRK(tty)) { 821 info->ignore_status_mask |= STMBREAKH; 822 /* 823 * If we're ignoring parity and break indicators, 824 * ignore overruns too. (For real raw support). 825 */ 826 if (I_IGNPAR(tty)) 827 info->ignore_status_mask |= STMRCVROVRH; 828 } 829 830 rocketMode = info->flags & ROCKET_MODE_MASK; 831 832 if ((info->flags & ROCKET_RTS_TOGGLE) 833 || (rocketMode == ROCKET_MODE_RS485)) 834 sEnRTSToggle(cp); 835 else 836 sDisRTSToggle(cp); 837 838 sSetRTS(&info->channel); 839 840 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 841 switch (rocketMode) { 842 case ROCKET_MODE_RS485: 843 sSetInterfaceMode(cp, InterfaceModeRS485); 844 break; 845 case ROCKET_MODE_RS422: 846 sSetInterfaceMode(cp, InterfaceModeRS422); 847 break; 848 case ROCKET_MODE_RS232: 849 default: 850 if (info->flags & ROCKET_RTS_TOGGLE) 851 sSetInterfaceMode(cp, InterfaceModeRS232T); 852 else 853 sSetInterfaceMode(cp, InterfaceModeRS232); 854 break; 855 } 856 } 857} 858 859static int carrier_raised(struct tty_port *port) 860{ 861 struct r_port *info = container_of(port, struct r_port, port); 862 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 863} 864 865static void dtr_rts(struct tty_port *port, int on) 866{ 867 struct r_port *info = container_of(port, struct r_port, port); 868 if (on) { 869 sSetDTR(&info->channel); 870 sSetRTS(&info->channel); 871 } else { 872 sClrDTR(&info->channel); 873 sClrRTS(&info->channel); 874 } 875} 876 877/* 878 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 879 * port's r_port struct. Initializes the port hardware. 880 */ 881static int rp_open(struct tty_struct *tty, struct file *filp) 882{ 883 struct r_port *info; 884 struct tty_port *port; 885 int retval; 886 CHANNEL_t *cp; 887 unsigned long page; 888 889 info = rp_table[tty->index]; 890 if (info == NULL) 891 return -ENXIO; 892 port = &info->port; 893 894 page = __get_free_page(GFP_KERNEL); 895 if (!page) 896 return -ENOMEM; 897 898 /* 899 * We must not sleep from here until the port is marked fully in use. 900 */ 901 if (info->xmit_buf) 902 free_page(page); 903 else 904 info->xmit_buf = (unsigned char *) page; 905 906 tty->driver_data = info; 907 tty_port_tty_set(port, tty); 908 909 if (port->count++ == 0) { 910 atomic_inc(&rp_num_ports_open); 911 912#ifdef ROCKET_DEBUG_OPEN 913 printk(KERN_INFO "rocket mod++ = %d...\n", 914 atomic_read(&rp_num_ports_open)); 915#endif 916 } 917#ifdef ROCKET_DEBUG_OPEN 918 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 919#endif 920 921 /* 922 * Info->count is now 1; so it's safe to sleep now. 923 */ 924 if (!tty_port_initialized(port)) { 925 cp = &info->channel; 926 sSetRxTrigger(cp, TRIG_1); 927 if (sGetChanStatus(cp) & CD_ACT) 928 info->cd_status = 1; 929 else 930 info->cd_status = 0; 931 sDisRxStatusMode(cp); 932 sFlushRxFIFO(cp); 933 sFlushTxFIFO(cp); 934 935 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 936 sSetRxTrigger(cp, TRIG_1); 937 938 sGetChanStatus(cp); 939 sDisRxStatusMode(cp); 940 sClrTxXOFF(cp); 941 942 sDisCTSFlowCtl(cp); 943 sDisTxSoftFlowCtl(cp); 944 945 sEnRxFIFO(cp); 946 sEnTransmit(cp); 947 948 tty_port_set_initialized(&info->port, 1); 949 950 /* 951 * Set up the tty->alt_speed kludge 952 */ 953 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 954 tty->alt_speed = 57600; 955 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 956 tty->alt_speed = 115200; 957 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 958 tty->alt_speed = 230400; 959 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 960 tty->alt_speed = 460800; 961 962 configure_r_port(tty, info, NULL); 963 if (C_BAUD(tty)) { 964 sSetDTR(cp); 965 sSetRTS(cp); 966 } 967 } 968 /* Starts (or resets) the maint polling loop */ 969 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 970 971 retval = tty_port_block_til_ready(port, tty, filp); 972 if (retval) { 973#ifdef ROCKET_DEBUG_OPEN 974 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 975#endif 976 return retval; 977 } 978 return 0; 979} 980 981/* 982 * Exception handler that closes a serial port. info->port.count is considered critical. 983 */ 984static void rp_close(struct tty_struct *tty, struct file *filp) 985{ 986 struct r_port *info = tty->driver_data; 987 struct tty_port *port = &info->port; 988 int timeout; 989 CHANNEL_t *cp; 990 991 if (rocket_paranoia_check(info, "rp_close")) 992 return; 993 994#ifdef ROCKET_DEBUG_OPEN 995 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 996#endif 997 998 if (tty_port_close_start(port, tty, filp) == 0) 999 return; 1000 1001 mutex_lock(&port->mutex); 1002 cp = &info->channel; 1003 /* 1004 * Before we drop DTR, make sure the UART transmitter 1005 * has completely drained; this is especially 1006 * important if there is a transmit FIFO! 1007 */ 1008 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 1009 if (timeout == 0) 1010 timeout = 1; 1011 rp_wait_until_sent(tty, timeout); 1012 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1013 1014 sDisTransmit(cp); 1015 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1016 sDisCTSFlowCtl(cp); 1017 sDisTxSoftFlowCtl(cp); 1018 sClrTxXOFF(cp); 1019 sFlushRxFIFO(cp); 1020 sFlushTxFIFO(cp); 1021 sClrRTS(cp); 1022 if (C_HUPCL(tty)) 1023 sClrDTR(cp); 1024 1025 rp_flush_buffer(tty); 1026 1027 tty_ldisc_flush(tty); 1028 1029 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1030 1031 /* We can't yet use tty_port_close_end as the buffer handling in this 1032 driver is a bit different to the usual */ 1033 1034 if (port->blocked_open) { 1035 if (port->close_delay) { 1036 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1037 } 1038 wake_up_interruptible(&port->open_wait); 1039 } else { 1040 if (info->xmit_buf) { 1041 free_page((unsigned long) info->xmit_buf); 1042 info->xmit_buf = NULL; 1043 } 1044 } 1045 spin_lock_irq(&port->lock); 1046 tty->closing = 0; 1047 spin_unlock_irq(&port->lock); 1048 tty_port_set_initialized(port, 0); 1049 tty_port_set_active(port, 0); 1050 mutex_unlock(&port->mutex); 1051 tty_port_tty_set(port, NULL); 1052 1053 atomic_dec(&rp_num_ports_open); 1054 1055#ifdef ROCKET_DEBUG_OPEN 1056 printk(KERN_INFO "rocket mod-- = %d...\n", 1057 atomic_read(&rp_num_ports_open)); 1058 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1059#endif 1060 1061} 1062 1063static void rp_set_termios(struct tty_struct *tty, 1064 struct ktermios *old_termios) 1065{ 1066 struct r_port *info = tty->driver_data; 1067 CHANNEL_t *cp; 1068 unsigned cflag; 1069 1070 if (rocket_paranoia_check(info, "rp_set_termios")) 1071 return; 1072 1073 cflag = tty->termios.c_cflag; 1074 1075 /* 1076 * This driver doesn't support CS5 or CS6 1077 */ 1078 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1079 tty->termios.c_cflag = 1080 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1081 /* Or CMSPAR */ 1082 tty->termios.c_cflag &= ~CMSPAR; 1083 1084 configure_r_port(tty, info, old_termios); 1085 1086 cp = &info->channel; 1087 1088 /* Handle transition to B0 status */ 1089 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 1090 sClrDTR(cp); 1091 sClrRTS(cp); 1092 } 1093 1094 /* Handle transition away from B0 status */ 1095 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 1096 sSetRTS(cp); 1097 sSetDTR(cp); 1098 } 1099 1100 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) 1101 rp_start(tty); 1102} 1103 1104static int rp_break(struct tty_struct *tty, int break_state) 1105{ 1106 struct r_port *info = tty->driver_data; 1107 unsigned long flags; 1108 1109 if (rocket_paranoia_check(info, "rp_break")) 1110 return -EINVAL; 1111 1112 spin_lock_irqsave(&info->slock, flags); 1113 if (break_state == -1) 1114 sSendBreak(&info->channel); 1115 else 1116 sClrBreak(&info->channel); 1117 spin_unlock_irqrestore(&info->slock, flags); 1118 return 0; 1119} 1120 1121/* 1122 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1123 * the UPCI boards was added, it was decided to make this a function because 1124 * the macro was getting too complicated. All cases except the first one 1125 * (UPCIRingInd) are taken directly from the original macro. 1126 */ 1127static int sGetChanRI(CHANNEL_T * ChP) 1128{ 1129 CONTROLLER_t *CtlP = ChP->CtlP; 1130 int ChanNum = ChP->ChanNum; 1131 int RingInd = 0; 1132 1133 if (CtlP->UPCIRingInd) 1134 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1135 else if (CtlP->AltChanRingIndicator) 1136 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1137 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1138 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1139 1140 return RingInd; 1141} 1142 1143/********************************************************************************************/ 1144/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1145 1146/* 1147 * Returns the state of the serial modem control lines. These next 2 functions 1148 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1149 */ 1150static int rp_tiocmget(struct tty_struct *tty) 1151{ 1152 struct r_port *info = tty->driver_data; 1153 unsigned int control, result, ChanStatus; 1154 1155 ChanStatus = sGetChanStatusLo(&info->channel); 1156 control = info->channel.TxControl[3]; 1157 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1158 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1159 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1160 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1161 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1162 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1163 1164 return result; 1165} 1166 1167/* 1168 * Sets the modem control lines 1169 */ 1170static int rp_tiocmset(struct tty_struct *tty, 1171 unsigned int set, unsigned int clear) 1172{ 1173 struct r_port *info = tty->driver_data; 1174 1175 if (set & TIOCM_RTS) 1176 info->channel.TxControl[3] |= SET_RTS; 1177 if (set & TIOCM_DTR) 1178 info->channel.TxControl[3] |= SET_DTR; 1179 if (clear & TIOCM_RTS) 1180 info->channel.TxControl[3] &= ~SET_RTS; 1181 if (clear & TIOCM_DTR) 1182 info->channel.TxControl[3] &= ~SET_DTR; 1183 1184 out32(info->channel.IndexAddr, info->channel.TxControl); 1185 return 0; 1186} 1187 1188static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1189{ 1190 struct rocket_config tmp; 1191 1192 if (!retinfo) 1193 return -EFAULT; 1194 memset(&tmp, 0, sizeof (tmp)); 1195 mutex_lock(&info->port.mutex); 1196 tmp.line = info->line; 1197 tmp.flags = info->flags; 1198 tmp.close_delay = info->port.close_delay; 1199 tmp.closing_wait = info->port.closing_wait; 1200 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1201 mutex_unlock(&info->port.mutex); 1202 1203 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1204 return -EFAULT; 1205 return 0; 1206} 1207 1208static int set_config(struct tty_struct *tty, struct r_port *info, 1209 struct rocket_config __user *new_info) 1210{ 1211 struct rocket_config new_serial; 1212 1213 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1214 return -EFAULT; 1215 1216 mutex_lock(&info->port.mutex); 1217 if (!capable(CAP_SYS_ADMIN)) 1218 { 1219 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1220 mutex_unlock(&info->port.mutex); 1221 return -EPERM; 1222 } 1223 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1224 configure_r_port(tty, info, NULL); 1225 mutex_unlock(&info->port.mutex); 1226 return 0; 1227 } 1228 1229 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1230 info->port.close_delay = new_serial.close_delay; 1231 info->port.closing_wait = new_serial.closing_wait; 1232 1233 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1234 tty->alt_speed = 57600; 1235 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1236 tty->alt_speed = 115200; 1237 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1238 tty->alt_speed = 230400; 1239 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1240 tty->alt_speed = 460800; 1241 mutex_unlock(&info->port.mutex); 1242 1243 configure_r_port(tty, info, NULL); 1244 return 0; 1245} 1246 1247/* 1248 * This function fills in a rocket_ports struct with information 1249 * about what boards/ports are in the system. This info is passed 1250 * to user space. See setrocket.c where the info is used to create 1251 * the /dev/ttyRx ports. 1252 */ 1253static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1254{ 1255 struct rocket_ports tmp; 1256 int board; 1257 1258 if (!retports) 1259 return -EFAULT; 1260 memset(&tmp, 0, sizeof (tmp)); 1261 tmp.tty_major = rocket_driver->major; 1262 1263 for (board = 0; board < 4; board++) { 1264 tmp.rocketModel[board].model = rocketModel[board].model; 1265 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1266 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1267 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1268 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1269 } 1270 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1271 return -EFAULT; 1272 return 0; 1273} 1274 1275static int reset_rm2(struct r_port *info, void __user *arg) 1276{ 1277 int reset; 1278 1279 if (!capable(CAP_SYS_ADMIN)) 1280 return -EPERM; 1281 1282 if (copy_from_user(&reset, arg, sizeof (int))) 1283 return -EFAULT; 1284 if (reset) 1285 reset = 1; 1286 1287 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1288 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1289 return -EINVAL; 1290 1291 if (info->ctlp->BusType == isISA) 1292 sModemReset(info->ctlp, info->chan, reset); 1293 else 1294 sPCIModemReset(info->ctlp, info->chan, reset); 1295 1296 return 0; 1297} 1298 1299static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1300{ 1301 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1302 return -EFAULT; 1303 return 0; 1304} 1305 1306/* IOCTL call handler into the driver */ 1307static int rp_ioctl(struct tty_struct *tty, 1308 unsigned int cmd, unsigned long arg) 1309{ 1310 struct r_port *info = tty->driver_data; 1311 void __user *argp = (void __user *)arg; 1312 int ret = 0; 1313 1314 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1315 return -ENXIO; 1316 1317 switch (cmd) { 1318 case RCKP_GET_STRUCT: 1319 if (copy_to_user(argp, info, sizeof (struct r_port))) 1320 ret = -EFAULT; 1321 break; 1322 case RCKP_GET_CONFIG: 1323 ret = get_config(info, argp); 1324 break; 1325 case RCKP_SET_CONFIG: 1326 ret = set_config(tty, info, argp); 1327 break; 1328 case RCKP_GET_PORTS: 1329 ret = get_ports(info, argp); 1330 break; 1331 case RCKP_RESET_RM2: 1332 ret = reset_rm2(info, argp); 1333 break; 1334 case RCKP_GET_VERSION: 1335 ret = get_version(info, argp); 1336 break; 1337 default: 1338 ret = -ENOIOCTLCMD; 1339 } 1340 return ret; 1341} 1342 1343static void rp_send_xchar(struct tty_struct *tty, char ch) 1344{ 1345 struct r_port *info = tty->driver_data; 1346 CHANNEL_t *cp; 1347 1348 if (rocket_paranoia_check(info, "rp_send_xchar")) 1349 return; 1350 1351 cp = &info->channel; 1352 if (sGetTxCnt(cp)) 1353 sWriteTxPrioByte(cp, ch); 1354 else 1355 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1356} 1357 1358static void rp_throttle(struct tty_struct *tty) 1359{ 1360 struct r_port *info = tty->driver_data; 1361 1362#ifdef ROCKET_DEBUG_THROTTLE 1363 printk(KERN_INFO "throttle %s ....\n", tty->name); 1364#endif 1365 1366 if (rocket_paranoia_check(info, "rp_throttle")) 1367 return; 1368 1369 if (I_IXOFF(tty)) 1370 rp_send_xchar(tty, STOP_CHAR(tty)); 1371 1372 sClrRTS(&info->channel); 1373} 1374 1375static void rp_unthrottle(struct tty_struct *tty) 1376{ 1377 struct r_port *info = tty->driver_data; 1378#ifdef ROCKET_DEBUG_THROTTLE 1379 printk(KERN_INFO "unthrottle %s ....\n", tty->name); 1380#endif 1381 1382 if (rocket_paranoia_check(info, "rp_unthrottle")) 1383 return; 1384 1385 if (I_IXOFF(tty)) 1386 rp_send_xchar(tty, START_CHAR(tty)); 1387 1388 sSetRTS(&info->channel); 1389} 1390 1391/* 1392 * ------------------------------------------------------------ 1393 * rp_stop() and rp_start() 1394 * 1395 * This routines are called before setting or resetting tty->stopped. 1396 * They enable or disable transmitter interrupts, as necessary. 1397 * ------------------------------------------------------------ 1398 */ 1399static void rp_stop(struct tty_struct *tty) 1400{ 1401 struct r_port *info = tty->driver_data; 1402 1403#ifdef ROCKET_DEBUG_FLOW 1404 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1405 info->xmit_cnt, info->xmit_fifo_room); 1406#endif 1407 1408 if (rocket_paranoia_check(info, "rp_stop")) 1409 return; 1410 1411 if (sGetTxCnt(&info->channel)) 1412 sDisTransmit(&info->channel); 1413} 1414 1415static void rp_start(struct tty_struct *tty) 1416{ 1417 struct r_port *info = tty->driver_data; 1418 1419#ifdef ROCKET_DEBUG_FLOW 1420 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1421 info->xmit_cnt, info->xmit_fifo_room); 1422#endif 1423 1424 if (rocket_paranoia_check(info, "rp_stop")) 1425 return; 1426 1427 sEnTransmit(&info->channel); 1428 set_bit((info->aiop * 8) + info->chan, 1429 (void *) &xmit_flags[info->board]); 1430} 1431 1432/* 1433 * rp_wait_until_sent() --- wait until the transmitter is empty 1434 */ 1435static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1436{ 1437 struct r_port *info = tty->driver_data; 1438 CHANNEL_t *cp; 1439 unsigned long orig_jiffies; 1440 int check_time, exit_time; 1441 int txcnt; 1442 1443 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1444 return; 1445 1446 cp = &info->channel; 1447 1448 orig_jiffies = jiffies; 1449#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1450 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout, 1451 jiffies); 1452 printk(KERN_INFO "cps=%d...\n", info->cps); 1453#endif 1454 while (1) { 1455 txcnt = sGetTxCnt(cp); 1456 if (!txcnt) { 1457 if (sGetChanStatusLo(cp) & TXSHRMT) 1458 break; 1459 check_time = (HZ / info->cps) / 5; 1460 } else { 1461 check_time = HZ * txcnt / info->cps; 1462 } 1463 if (timeout) { 1464 exit_time = orig_jiffies + timeout - jiffies; 1465 if (exit_time <= 0) 1466 break; 1467 if (exit_time < check_time) 1468 check_time = exit_time; 1469 } 1470 if (check_time == 0) 1471 check_time = 1; 1472#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1473 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1474 jiffies, check_time); 1475#endif 1476 msleep_interruptible(jiffies_to_msecs(check_time)); 1477 if (signal_pending(current)) 1478 break; 1479 } 1480 __set_current_state(TASK_RUNNING); 1481#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1482 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1483#endif 1484} 1485 1486/* 1487 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1488 */ 1489static void rp_hangup(struct tty_struct *tty) 1490{ 1491 CHANNEL_t *cp; 1492 struct r_port *info = tty->driver_data; 1493 unsigned long flags; 1494 1495 if (rocket_paranoia_check(info, "rp_hangup")) 1496 return; 1497 1498#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1499 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1500#endif 1501 rp_flush_buffer(tty); 1502 spin_lock_irqsave(&info->port.lock, flags); 1503 if (info->port.count) 1504 atomic_dec(&rp_num_ports_open); 1505 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1506 spin_unlock_irqrestore(&info->port.lock, flags); 1507 1508 tty_port_hangup(&info->port); 1509 1510 cp = &info->channel; 1511 sDisRxFIFO(cp); 1512 sDisTransmit(cp); 1513 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1514 sDisCTSFlowCtl(cp); 1515 sDisTxSoftFlowCtl(cp); 1516 sClrTxXOFF(cp); 1517 tty_port_set_initialized(&info->port, 0); 1518 1519 wake_up_interruptible(&info->port.open_wait); 1520} 1521 1522/* 1523 * Exception handler - write char routine. The RocketPort driver uses a 1524 * double-buffering strategy, with the twist that if the in-memory CPU 1525 * buffer is empty, and there's space in the transmit FIFO, the 1526 * writing routines will write directly to transmit FIFO. 1527 * Write buffer and counters protected by spinlocks 1528 */ 1529static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1530{ 1531 struct r_port *info = tty->driver_data; 1532 CHANNEL_t *cp; 1533 unsigned long flags; 1534 1535 if (rocket_paranoia_check(info, "rp_put_char")) 1536 return 0; 1537 1538 /* 1539 * Grab the port write mutex, locking out other processes that try to 1540 * write to this port 1541 */ 1542 mutex_lock(&info->write_mtx); 1543 1544#ifdef ROCKET_DEBUG_WRITE 1545 printk(KERN_INFO "rp_put_char %c...\n", ch); 1546#endif 1547 1548 spin_lock_irqsave(&info->slock, flags); 1549 cp = &info->channel; 1550 1551 if (!tty->stopped && info->xmit_fifo_room == 0) 1552 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1553 1554 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1555 info->xmit_buf[info->xmit_head++] = ch; 1556 info->xmit_head &= XMIT_BUF_SIZE - 1; 1557 info->xmit_cnt++; 1558 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1559 } else { 1560 sOutB(sGetTxRxDataIO(cp), ch); 1561 info->xmit_fifo_room--; 1562 } 1563 spin_unlock_irqrestore(&info->slock, flags); 1564 mutex_unlock(&info->write_mtx); 1565 return 1; 1566} 1567 1568/* 1569 * Exception handler - write routine, called when user app writes to the device. 1570 * A per port write mutex is used to protect from another process writing to 1571 * this port at the same time. This other process could be running on the other CPU 1572 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1573 * Spinlocks protect the info xmit members. 1574 */ 1575static int rp_write(struct tty_struct *tty, 1576 const unsigned char *buf, int count) 1577{ 1578 struct r_port *info = tty->driver_data; 1579 CHANNEL_t *cp; 1580 const unsigned char *b; 1581 int c, retval = 0; 1582 unsigned long flags; 1583 1584 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1585 return 0; 1586 1587 if (mutex_lock_interruptible(&info->write_mtx)) 1588 return -ERESTARTSYS; 1589 1590#ifdef ROCKET_DEBUG_WRITE 1591 printk(KERN_INFO "rp_write %d chars...\n", count); 1592#endif 1593 cp = &info->channel; 1594 1595 if (!tty->stopped && info->xmit_fifo_room < count) 1596 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1597 1598 /* 1599 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1600 * into FIFO. Use the write queue for temp storage. 1601 */ 1602 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1603 c = min(count, info->xmit_fifo_room); 1604 b = buf; 1605 1606 /* Push data into FIFO, 2 bytes at a time */ 1607 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1608 1609 /* If there is a byte remaining, write it */ 1610 if (c & 1) 1611 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1612 1613 retval += c; 1614 buf += c; 1615 count -= c; 1616 1617 spin_lock_irqsave(&info->slock, flags); 1618 info->xmit_fifo_room -= c; 1619 spin_unlock_irqrestore(&info->slock, flags); 1620 } 1621 1622 /* If count is zero, we wrote it all and are done */ 1623 if (!count) 1624 goto end; 1625 1626 /* Write remaining data into the port's xmit_buf */ 1627 while (1) { 1628 /* Hung up ? */ 1629 if (!tty_port_active(&info->port)) 1630 goto end; 1631 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1632 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1633 if (c <= 0) 1634 break; 1635 1636 b = buf; 1637 memcpy(info->xmit_buf + info->xmit_head, b, c); 1638 1639 spin_lock_irqsave(&info->slock, flags); 1640 info->xmit_head = 1641 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1642 info->xmit_cnt += c; 1643 spin_unlock_irqrestore(&info->slock, flags); 1644 1645 buf += c; 1646 count -= c; 1647 retval += c; 1648 } 1649 1650 if ((retval > 0) && !tty->stopped) 1651 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1652 1653end: 1654 if (info->xmit_cnt < WAKEUP_CHARS) { 1655 tty_wakeup(tty); 1656#ifdef ROCKETPORT_HAVE_POLL_WAIT 1657 wake_up_interruptible(&tty->poll_wait); 1658#endif 1659 } 1660 mutex_unlock(&info->write_mtx); 1661 return retval; 1662} 1663 1664/* 1665 * Return the number of characters that can be sent. We estimate 1666 * only using the in-memory transmit buffer only, and ignore the 1667 * potential space in the transmit FIFO. 1668 */ 1669static int rp_write_room(struct tty_struct *tty) 1670{ 1671 struct r_port *info = tty->driver_data; 1672 int ret; 1673 1674 if (rocket_paranoia_check(info, "rp_write_room")) 1675 return 0; 1676 1677 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1678 if (ret < 0) 1679 ret = 0; 1680#ifdef ROCKET_DEBUG_WRITE 1681 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1682#endif 1683 return ret; 1684} 1685 1686/* 1687 * Return the number of characters in the buffer. Again, this only 1688 * counts those characters in the in-memory transmit buffer. 1689 */ 1690static int rp_chars_in_buffer(struct tty_struct *tty) 1691{ 1692 struct r_port *info = tty->driver_data; 1693 1694 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1695 return 0; 1696 1697#ifdef ROCKET_DEBUG_WRITE 1698 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1699#endif 1700 return info->xmit_cnt; 1701} 1702 1703/* 1704 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1705 * r_port struct for the port. Note that spinlock are used to protect info members, 1706 * do not call this function if the spinlock is already held. 1707 */ 1708static void rp_flush_buffer(struct tty_struct *tty) 1709{ 1710 struct r_port *info = tty->driver_data; 1711 CHANNEL_t *cp; 1712 unsigned long flags; 1713 1714 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1715 return; 1716 1717 spin_lock_irqsave(&info->slock, flags); 1718 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1719 spin_unlock_irqrestore(&info->slock, flags); 1720 1721#ifdef ROCKETPORT_HAVE_POLL_WAIT 1722 wake_up_interruptible(&tty->poll_wait); 1723#endif 1724 tty_wakeup(tty); 1725 1726 cp = &info->channel; 1727 sFlushTxFIFO(cp); 1728} 1729 1730#ifdef CONFIG_PCI 1731 1732static const struct pci_device_id rocket_pci_ids[] = { 1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1739 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1740 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1741 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1742 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1743 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1744 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1745 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1746 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1747 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1751 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1752 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1753 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1754 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1755 { } 1756}; 1757MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1758 1759/* Resets the speaker controller on RocketModem II and III devices */ 1760static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 1761{ 1762 ByteIO_t addr; 1763 1764 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 1765 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 1766 addr = CtlP->AiopIO[0] + 0x4F; 1767 sOutB(addr, 0); 1768 } 1769 1770 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 1771 if ((model == MODEL_UPCI_RM3_8PORT) 1772 || (model == MODEL_UPCI_RM3_4PORT)) { 1773 addr = CtlP->AiopIO[0] + 0x88; 1774 sOutB(addr, 0); 1775 } 1776} 1777 1778/*************************************************************************** 1779Function: sPCIInitController 1780Purpose: Initialization of controller global registers and controller 1781 structure. 1782Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 1783 IRQNum,Frequency,PeriodicOnly) 1784 CONTROLLER_T *CtlP; Ptr to controller structure 1785 int CtlNum; Controller number 1786 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 1787 This list must be in the order the AIOPs will be found on the 1788 controller. Once an AIOP in the list is not found, it is 1789 assumed that there are no more AIOPs on the controller. 1790 int AiopIOListSize; Number of addresses in AiopIOList 1791 int IRQNum; Interrupt Request number. Can be any of the following: 1792 0: Disable global interrupts 1793 3: IRQ 3 1794 4: IRQ 4 1795 5: IRQ 5 1796 9: IRQ 9 1797 10: IRQ 10 1798 11: IRQ 11 1799 12: IRQ 12 1800 15: IRQ 15 1801 Byte_t Frequency: A flag identifying the frequency 1802 of the periodic interrupt, can be any one of the following: 1803 FREQ_DIS - periodic interrupt disabled 1804 FREQ_137HZ - 137 Hertz 1805 FREQ_69HZ - 69 Hertz 1806 FREQ_34HZ - 34 Hertz 1807 FREQ_17HZ - 17 Hertz 1808 FREQ_9HZ - 9 Hertz 1809 FREQ_4HZ - 4 Hertz 1810 If IRQNum is set to 0 the Frequency parameter is 1811 overidden, it is forced to a value of FREQ_DIS. 1812 int PeriodicOnly: 1 if all interrupts except the periodic 1813 interrupt are to be blocked. 1814 0 is both the periodic interrupt and 1815 other channel interrupts are allowed. 1816 If IRQNum is set to 0 the PeriodicOnly parameter is 1817 overidden, it is forced to a value of 0. 1818Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 1819 initialization failed. 1820 1821Comments: 1822 If periodic interrupts are to be disabled but AIOP interrupts 1823 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 1824 1825 If interrupts are to be completely disabled set IRQNum to 0. 1826 1827 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 1828 invalid combination. 1829 1830 This function performs initialization of global interrupt modes, 1831 but it does not actually enable global interrupts. To enable 1832 and disable global interrupts use functions sEnGlobalInt() and 1833 sDisGlobalInt(). Enabling of global interrupts is normally not 1834 done until all other initializations are complete. 1835 1836 Even if interrupts are globally enabled, they must also be 1837 individually enabled for each channel that is to generate 1838 interrupts. 1839 1840Warnings: No range checking on any of the parameters is done. 1841 1842 No context switches are allowed while executing this function. 1843 1844 After this function all AIOPs on the controller are disabled, 1845 they can be enabled with sEnAiop(). 1846*/ 1847static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 1848 ByteIO_t * AiopIOList, int AiopIOListSize, 1849 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 1850 int PeriodicOnly, int altChanRingIndicator, 1851 int UPCIRingInd) 1852{ 1853 int i; 1854 ByteIO_t io; 1855 1856 CtlP->AltChanRingIndicator = altChanRingIndicator; 1857 CtlP->UPCIRingInd = UPCIRingInd; 1858 CtlP->CtlNum = CtlNum; 1859 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 1860 CtlP->BusType = isPCI; /* controller release 1 */ 1861 1862 if (ConfigIO) { 1863 CtlP->isUPCI = 1; 1864 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 1865 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 1866 CtlP->AiopIntrBits = upci_aiop_intr_bits; 1867 } else { 1868 CtlP->isUPCI = 0; 1869 CtlP->PCIIO = 1870 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 1871 CtlP->AiopIntrBits = aiop_intr_bits; 1872 } 1873 1874 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 1875 /* Init AIOPs */ 1876 CtlP->NumAiop = 0; 1877 for (i = 0; i < AiopIOListSize; i++) { 1878 io = AiopIOList[i]; 1879 CtlP->AiopIO[i] = (WordIO_t) io; 1880 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 1881 1882 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 1883 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 1884 break; /* done looking for AIOPs */ 1885 1886 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 1887 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 1888 sOutB(io + _INDX_DATA, sClockPrescale); 1889 CtlP->NumAiop++; /* bump count of AIOPs */ 1890 } 1891 1892 if (CtlP->NumAiop == 0) 1893 return (-1); 1894 else 1895 return (CtlP->NumAiop); 1896} 1897 1898/* 1899 * Called when a PCI card is found. Retrieves and stores model information, 1900 * init's aiopic and serial port hardware. 1901 * Inputs: i is the board number (0-n) 1902 */ 1903static __init int register_PCI(int i, struct pci_dev *dev) 1904{ 1905 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1906 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1907 CONTROLLER_t *ctlp; 1908 1909 int fast_clock = 0; 1910 int altChanRingIndicator = 0; 1911 int ports_per_aiop = 8; 1912 WordIO_t ConfigIO = 0; 1913 ByteIO_t UPCIRingInd = 0; 1914 1915 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1916 pci_enable_device(dev)) 1917 return 0; 1918 1919 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1920 1921 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1922 rocketModel[i].loadrm2 = 0; 1923 rocketModel[i].startingPortNumber = nextLineNumber; 1924 1925 /* Depending on the model, set up some config variables */ 1926 switch (dev->device) { 1927 case PCI_DEVICE_ID_RP4QUAD: 1928 max_num_aiops = 1; 1929 ports_per_aiop = 4; 1930 rocketModel[i].model = MODEL_RP4QUAD; 1931 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1932 rocketModel[i].numPorts = 4; 1933 break; 1934 case PCI_DEVICE_ID_RP8OCTA: 1935 max_num_aiops = 1; 1936 rocketModel[i].model = MODEL_RP8OCTA; 1937 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1938 rocketModel[i].numPorts = 8; 1939 break; 1940 case PCI_DEVICE_ID_URP8OCTA: 1941 max_num_aiops = 1; 1942 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1943 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1944 rocketModel[i].numPorts = 8; 1945 break; 1946 case PCI_DEVICE_ID_RP8INTF: 1947 max_num_aiops = 1; 1948 rocketModel[i].model = MODEL_RP8INTF; 1949 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1950 rocketModel[i].numPorts = 8; 1951 break; 1952 case PCI_DEVICE_ID_URP8INTF: 1953 max_num_aiops = 1; 1954 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1955 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1956 rocketModel[i].numPorts = 8; 1957 break; 1958 case PCI_DEVICE_ID_RP8J: 1959 max_num_aiops = 1; 1960 rocketModel[i].model = MODEL_RP8J; 1961 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1962 rocketModel[i].numPorts = 8; 1963 break; 1964 case PCI_DEVICE_ID_RP4J: 1965 max_num_aiops = 1; 1966 ports_per_aiop = 4; 1967 rocketModel[i].model = MODEL_RP4J; 1968 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1969 rocketModel[i].numPorts = 4; 1970 break; 1971 case PCI_DEVICE_ID_RP8SNI: 1972 max_num_aiops = 1; 1973 rocketModel[i].model = MODEL_RP8SNI; 1974 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1975 rocketModel[i].numPorts = 8; 1976 break; 1977 case PCI_DEVICE_ID_RP16SNI: 1978 max_num_aiops = 2; 1979 rocketModel[i].model = MODEL_RP16SNI; 1980 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1981 rocketModel[i].numPorts = 16; 1982 break; 1983 case PCI_DEVICE_ID_RP16INTF: 1984 max_num_aiops = 2; 1985 rocketModel[i].model = MODEL_RP16INTF; 1986 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1987 rocketModel[i].numPorts = 16; 1988 break; 1989 case PCI_DEVICE_ID_URP16INTF: 1990 max_num_aiops = 2; 1991 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1992 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1993 rocketModel[i].numPorts = 16; 1994 break; 1995 case PCI_DEVICE_ID_CRP16INTF: 1996 max_num_aiops = 2; 1997 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1998 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1999 rocketModel[i].numPorts = 16; 2000 break; 2001 case PCI_DEVICE_ID_RP32INTF: 2002 max_num_aiops = 4; 2003 rocketModel[i].model = MODEL_RP32INTF; 2004 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 2005 rocketModel[i].numPorts = 32; 2006 break; 2007 case PCI_DEVICE_ID_URP32INTF: 2008 max_num_aiops = 4; 2009 rocketModel[i].model = MODEL_UPCI_RP32INTF; 2010 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 2011 rocketModel[i].numPorts = 32; 2012 break; 2013 case PCI_DEVICE_ID_RPP4: 2014 max_num_aiops = 1; 2015 ports_per_aiop = 4; 2016 altChanRingIndicator++; 2017 fast_clock++; 2018 rocketModel[i].model = MODEL_RPP4; 2019 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 2020 rocketModel[i].numPorts = 4; 2021 break; 2022 case PCI_DEVICE_ID_RPP8: 2023 max_num_aiops = 2; 2024 ports_per_aiop = 4; 2025 altChanRingIndicator++; 2026 fast_clock++; 2027 rocketModel[i].model = MODEL_RPP8; 2028 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 2029 rocketModel[i].numPorts = 8; 2030 break; 2031 case PCI_DEVICE_ID_RP2_232: 2032 max_num_aiops = 1; 2033 ports_per_aiop = 2; 2034 altChanRingIndicator++; 2035 fast_clock++; 2036 rocketModel[i].model = MODEL_RP2_232; 2037 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2038 rocketModel[i].numPorts = 2; 2039 break; 2040 case PCI_DEVICE_ID_RP2_422: 2041 max_num_aiops = 1; 2042 ports_per_aiop = 2; 2043 altChanRingIndicator++; 2044 fast_clock++; 2045 rocketModel[i].model = MODEL_RP2_422; 2046 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2047 rocketModel[i].numPorts = 2; 2048 break; 2049 case PCI_DEVICE_ID_RP6M: 2050 2051 max_num_aiops = 1; 2052 ports_per_aiop = 6; 2053 2054 /* If revision is 1, the rocketmodem flash must be loaded. 2055 * If it is 2 it is a "socketed" version. */ 2056 if (dev->revision == 1) { 2057 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2058 rocketModel[i].loadrm2 = 1; 2059 } else { 2060 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2061 } 2062 2063 rocketModel[i].model = MODEL_RP6M; 2064 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2065 rocketModel[i].numPorts = 6; 2066 break; 2067 case PCI_DEVICE_ID_RP4M: 2068 max_num_aiops = 1; 2069 ports_per_aiop = 4; 2070 if (dev->revision == 1) { 2071 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2072 rocketModel[i].loadrm2 = 1; 2073 } else { 2074 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2075 } 2076 2077 rocketModel[i].model = MODEL_RP4M; 2078 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2079 rocketModel[i].numPorts = 4; 2080 break; 2081 default: 2082 max_num_aiops = 0; 2083 break; 2084 } 2085 2086 /* 2087 * Check for UPCI boards. 2088 */ 2089 2090 switch (dev->device) { 2091 case PCI_DEVICE_ID_URP32INTF: 2092 case PCI_DEVICE_ID_URP8INTF: 2093 case PCI_DEVICE_ID_URP16INTF: 2094 case PCI_DEVICE_ID_CRP16INTF: 2095 case PCI_DEVICE_ID_URP8OCTA: 2096 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2097 ConfigIO = pci_resource_start(dev, 1); 2098 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2099 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2100 2101 /* 2102 * Check for octa or quad cable. 2103 */ 2104 if (! 2105 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2106 PCI_GPIO_CTRL_8PORT)) { 2107 ports_per_aiop = 4; 2108 rocketModel[i].numPorts = 4; 2109 } 2110 } 2111 break; 2112 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2113 max_num_aiops = 1; 2114 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2115 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2116 rocketModel[i].numPorts = 8; 2117 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2118 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2119 ConfigIO = pci_resource_start(dev, 1); 2120 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2121 break; 2122 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2123 max_num_aiops = 1; 2124 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2125 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2126 rocketModel[i].numPorts = 4; 2127 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2128 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2129 ConfigIO = pci_resource_start(dev, 1); 2130 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2131 break; 2132 default: 2133 break; 2134 } 2135 2136 if (fast_clock) { 2137 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2138 rp_baud_base[i] = 921600; 2139 } else { 2140 /* 2141 * If support_low_speed is set, use the slow clock 2142 * prescale, which supports 50 bps 2143 */ 2144 if (support_low_speed) { 2145 /* mod 9 (divide by 10) prescale */ 2146 sClockPrescale = 0x19; 2147 rp_baud_base[i] = 230400; 2148 } else { 2149 /* mod 4 (divide by 5) prescale */ 2150 sClockPrescale = 0x14; 2151 rp_baud_base[i] = 460800; 2152 } 2153 } 2154 2155 for (aiop = 0; aiop < max_num_aiops; aiop++) 2156 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2157 ctlp = sCtlNumToCtlPtr(i); 2158 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2159 for (aiop = 0; aiop < max_num_aiops; aiop++) 2160 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2161 2162 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2163 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2164 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2165 rocketModel[i].startingPortNumber, 2166 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2167 2168 if (num_aiops <= 0) { 2169 rcktpt_io_addr[i] = 0; 2170 return (0); 2171 } 2172 is_PCI[i] = 1; 2173 2174 /* Reset the AIOPIC, init the serial ports */ 2175 for (aiop = 0; aiop < num_aiops; aiop++) { 2176 sResetAiopByNum(ctlp, aiop); 2177 num_chan = ports_per_aiop; 2178 for (chan = 0; chan < num_chan; chan++) 2179 init_r_port(i, aiop, chan, dev); 2180 } 2181 2182 /* Rocket modems must be reset */ 2183 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2184 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2185 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2186 num_chan = ports_per_aiop; 2187 for (chan = 0; chan < num_chan; chan++) 2188 sPCIModemReset(ctlp, chan, 1); 2189 msleep(500); 2190 for (chan = 0; chan < num_chan; chan++) 2191 sPCIModemReset(ctlp, chan, 0); 2192 msleep(500); 2193 rmSpeakerReset(ctlp, rocketModel[i].model); 2194 } 2195 return (1); 2196} 2197 2198/* 2199 * Probes for PCI cards, inits them if found 2200 * Input: board_found = number of ISA boards already found, or the 2201 * starting board number 2202 * Returns: Number of PCI boards found 2203 */ 2204static int __init init_PCI(int boards_found) 2205{ 2206 struct pci_dev *dev = NULL; 2207 int count = 0; 2208 2209 /* Work through the PCI device list, pulling out ours */ 2210 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2211 if (register_PCI(count + boards_found, dev)) 2212 count++; 2213 } 2214 return (count); 2215} 2216 2217#endif /* CONFIG_PCI */ 2218 2219/* 2220 * Probes for ISA cards 2221 * Input: i = the board number to look for 2222 * Returns: 1 if board found, 0 else 2223 */ 2224static int __init init_ISA(int i) 2225{ 2226 int num_aiops, num_chan = 0, total_num_chan = 0; 2227 int aiop, chan; 2228 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2229 CONTROLLER_t *ctlp; 2230 char *type_string; 2231 2232 /* If io_addr is zero, no board configured */ 2233 if (rcktpt_io_addr[i] == 0) 2234 return (0); 2235 2236 /* Reserve the IO region */ 2237 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2238 printk(KERN_ERR "Unable to reserve IO region for configured " 2239 "ISA RocketPort at address 0x%lx, board not " 2240 "installed...\n", rcktpt_io_addr[i]); 2241 rcktpt_io_addr[i] = 0; 2242 return (0); 2243 } 2244 2245 ctlp = sCtlNumToCtlPtr(i); 2246 2247 ctlp->boardType = rcktpt_type[i]; 2248 2249 switch (rcktpt_type[i]) { 2250 case ROCKET_TYPE_PC104: 2251 type_string = "(PC104)"; 2252 break; 2253 case ROCKET_TYPE_MODEM: 2254 type_string = "(RocketModem)"; 2255 break; 2256 case ROCKET_TYPE_MODEMII: 2257 type_string = "(RocketModem II)"; 2258 break; 2259 default: 2260 type_string = ""; 2261 break; 2262 } 2263 2264 /* 2265 * If support_low_speed is set, use the slow clock prescale, 2266 * which supports 50 bps 2267 */ 2268 if (support_low_speed) { 2269 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2270 rp_baud_base[i] = 230400; 2271 } else { 2272 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2273 rp_baud_base[i] = 460800; 2274 } 2275 2276 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2277 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2278 2279 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2280 2281 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2282 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2283 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2284 } 2285 2286 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2287 if (num_aiops <= 0) { 2288 release_region(rcktpt_io_addr[i], 64); 2289 rcktpt_io_addr[i] = 0; 2290 return (0); 2291 } 2292 2293 rocketModel[i].startingPortNumber = nextLineNumber; 2294 2295 for (aiop = 0; aiop < num_aiops; aiop++) { 2296 sResetAiopByNum(ctlp, aiop); 2297 sEnAiop(ctlp, aiop); 2298 num_chan = sGetAiopNumChan(ctlp, aiop); 2299 total_num_chan += num_chan; 2300 for (chan = 0; chan < num_chan; chan++) 2301 init_r_port(i, aiop, chan, NULL); 2302 } 2303 is_PCI[i] = 0; 2304 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2305 num_chan = sGetAiopNumChan(ctlp, 0); 2306 total_num_chan = num_chan; 2307 for (chan = 0; chan < num_chan; chan++) 2308 sModemReset(ctlp, chan, 1); 2309 msleep(500); 2310 for (chan = 0; chan < num_chan; chan++) 2311 sModemReset(ctlp, chan, 0); 2312 msleep(500); 2313 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2314 } else { 2315 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2316 } 2317 rocketModel[i].numPorts = total_num_chan; 2318 rocketModel[i].model = MODEL_ISA; 2319 2320 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2321 i, rcktpt_io_addr[i], num_aiops, type_string); 2322 2323 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2324 rocketModel[i].modelString, 2325 rocketModel[i].startingPortNumber, 2326 rocketModel[i].startingPortNumber + 2327 rocketModel[i].numPorts - 1); 2328 2329 return (1); 2330} 2331 2332static const struct tty_operations rocket_ops = { 2333 .open = rp_open, 2334 .close = rp_close, 2335 .write = rp_write, 2336 .put_char = rp_put_char, 2337 .write_room = rp_write_room, 2338 .chars_in_buffer = rp_chars_in_buffer, 2339 .flush_buffer = rp_flush_buffer, 2340 .ioctl = rp_ioctl, 2341 .throttle = rp_throttle, 2342 .unthrottle = rp_unthrottle, 2343 .set_termios = rp_set_termios, 2344 .stop = rp_stop, 2345 .start = rp_start, 2346 .hangup = rp_hangup, 2347 .break_ctl = rp_break, 2348 .send_xchar = rp_send_xchar, 2349 .wait_until_sent = rp_wait_until_sent, 2350 .tiocmget = rp_tiocmget, 2351 .tiocmset = rp_tiocmset, 2352}; 2353 2354static const struct tty_port_operations rocket_port_ops = { 2355 .carrier_raised = carrier_raised, 2356 .dtr_rts = dtr_rts, 2357}; 2358 2359/* 2360 * The module "startup" routine; it's run when the module is loaded. 2361 */ 2362static int __init rp_init(void) 2363{ 2364 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2365 2366 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2367 ROCKET_VERSION, ROCKET_DATE); 2368 2369 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2370 if (!rocket_driver) 2371 goto err; 2372 2373 /* 2374 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2375 * zero, use the default controller IO address of board1 + 0x40. 2376 */ 2377 if (board1) { 2378 if (controller == 0) 2379 controller = board1 + 0x40; 2380 } else { 2381 controller = 0; /* Used as a flag, meaning no ISA boards */ 2382 } 2383 2384 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2385 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2386 printk(KERN_ERR "Unable to reserve IO region for first " 2387 "configured ISA RocketPort controller 0x%lx. " 2388 "Driver exiting\n", controller); 2389 ret = -EBUSY; 2390 goto err_tty; 2391 } 2392 2393 /* Store ISA variable retrieved from command line or .conf file. */ 2394 rcktpt_io_addr[0] = board1; 2395 rcktpt_io_addr[1] = board2; 2396 rcktpt_io_addr[2] = board3; 2397 rcktpt_io_addr[3] = board4; 2398 2399 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2400 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2401 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2402 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2403 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2404 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2405 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2406 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2407 2408 /* 2409 * Set up the tty driver structure and then register this 2410 * driver with the tty layer. 2411 */ 2412 2413 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2414 rocket_driver->name = "ttyR"; 2415 rocket_driver->driver_name = "Comtrol RocketPort"; 2416 rocket_driver->major = TTY_ROCKET_MAJOR; 2417 rocket_driver->minor_start = 0; 2418 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2419 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2420 rocket_driver->init_termios = tty_std_termios; 2421 rocket_driver->init_termios.c_cflag = 2422 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2423 rocket_driver->init_termios.c_ispeed = 9600; 2424 rocket_driver->init_termios.c_ospeed = 9600; 2425#ifdef ROCKET_SOFT_FLOW 2426 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2427#endif 2428 tty_set_operations(rocket_driver, &rocket_ops); 2429 2430 ret = tty_register_driver(rocket_driver); 2431 if (ret < 0) { 2432 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2433 goto err_controller; 2434 } 2435 2436#ifdef ROCKET_DEBUG_OPEN 2437 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2438#endif 2439 2440 /* 2441 * OK, let's probe each of the controllers looking for boards. Any boards found 2442 * will be initialized here. 2443 */ 2444 isa_boards_found = 0; 2445 pci_boards_found = 0; 2446 2447 for (i = 0; i < NUM_BOARDS; i++) { 2448 if (init_ISA(i)) 2449 isa_boards_found++; 2450 } 2451 2452#ifdef CONFIG_PCI 2453 if (isa_boards_found < NUM_BOARDS) 2454 pci_boards_found = init_PCI(isa_boards_found); 2455#endif 2456 2457 max_board = pci_boards_found + isa_boards_found; 2458 2459 if (max_board == 0) { 2460 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2461 ret = -ENXIO; 2462 goto err_ttyu; 2463 } 2464 2465 return 0; 2466err_ttyu: 2467 tty_unregister_driver(rocket_driver); 2468err_controller: 2469 if (controller) 2470 release_region(controller, 4); 2471err_tty: 2472 put_tty_driver(rocket_driver); 2473err: 2474 return ret; 2475} 2476 2477 2478static void rp_cleanup_module(void) 2479{ 2480 int retval; 2481 int i; 2482 2483 del_timer_sync(&rocket_timer); 2484 2485 retval = tty_unregister_driver(rocket_driver); 2486 if (retval) 2487 printk(KERN_ERR "Error %d while trying to unregister " 2488 "rocketport driver\n", -retval); 2489 2490 for (i = 0; i < MAX_RP_PORTS; i++) 2491 if (rp_table[i]) { 2492 tty_unregister_device(rocket_driver, i); 2493 tty_port_destroy(&rp_table[i]->port); 2494 kfree(rp_table[i]); 2495 } 2496 2497 put_tty_driver(rocket_driver); 2498 2499 for (i = 0; i < NUM_BOARDS; i++) { 2500 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2501 continue; 2502 release_region(rcktpt_io_addr[i], 64); 2503 } 2504 if (controller) 2505 release_region(controller, 4); 2506} 2507 2508/*************************************************************************** 2509Function: sInitController 2510Purpose: Initialization of controller global registers and controller 2511 structure. 2512Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2513 IRQNum,Frequency,PeriodicOnly) 2514 CONTROLLER_T *CtlP; Ptr to controller structure 2515 int CtlNum; Controller number 2516 ByteIO_t MudbacIO; Mudbac base I/O address. 2517 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2518 This list must be in the order the AIOPs will be found on the 2519 controller. Once an AIOP in the list is not found, it is 2520 assumed that there are no more AIOPs on the controller. 2521 int AiopIOListSize; Number of addresses in AiopIOList 2522 int IRQNum; Interrupt Request number. Can be any of the following: 2523 0: Disable global interrupts 2524 3: IRQ 3 2525 4: IRQ 4 2526 5: IRQ 5 2527 9: IRQ 9 2528 10: IRQ 10 2529 11: IRQ 11 2530 12: IRQ 12 2531 15: IRQ 15 2532 Byte_t Frequency: A flag identifying the frequency 2533 of the periodic interrupt, can be any one of the following: 2534 FREQ_DIS - periodic interrupt disabled 2535 FREQ_137HZ - 137 Hertz 2536 FREQ_69HZ - 69 Hertz 2537 FREQ_34HZ - 34 Hertz 2538 FREQ_17HZ - 17 Hertz 2539 FREQ_9HZ - 9 Hertz 2540 FREQ_4HZ - 4 Hertz 2541 If IRQNum is set to 0 the Frequency parameter is 2542 overidden, it is forced to a value of FREQ_DIS. 2543 int PeriodicOnly: 1 if all interrupts except the periodic 2544 interrupt are to be blocked. 2545 0 is both the periodic interrupt and 2546 other channel interrupts are allowed. 2547 If IRQNum is set to 0 the PeriodicOnly parameter is 2548 overidden, it is forced to a value of 0. 2549Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2550 initialization failed. 2551 2552Comments: 2553 If periodic interrupts are to be disabled but AIOP interrupts 2554 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2555 2556 If interrupts are to be completely disabled set IRQNum to 0. 2557 2558 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2559 invalid combination. 2560 2561 This function performs initialization of global interrupt modes, 2562 but it does not actually enable global interrupts. To enable 2563 and disable global interrupts use functions sEnGlobalInt() and 2564 sDisGlobalInt(). Enabling of global interrupts is normally not 2565 done until all other initializations are complete. 2566 2567 Even if interrupts are globally enabled, they must also be 2568 individually enabled for each channel that is to generate 2569 interrupts. 2570 2571Warnings: No range checking on any of the parameters is done. 2572 2573 No context switches are allowed while executing this function. 2574 2575 After this function all AIOPs on the controller are disabled, 2576 they can be enabled with sEnAiop(). 2577*/ 2578static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2579 ByteIO_t * AiopIOList, int AiopIOListSize, 2580 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2581{ 2582 int i; 2583 ByteIO_t io; 2584 int done; 2585 2586 CtlP->AiopIntrBits = aiop_intr_bits; 2587 CtlP->AltChanRingIndicator = 0; 2588 CtlP->CtlNum = CtlNum; 2589 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2590 CtlP->BusType = isISA; 2591 CtlP->MBaseIO = MudbacIO; 2592 CtlP->MReg1IO = MudbacIO + 1; 2593 CtlP->MReg2IO = MudbacIO + 2; 2594 CtlP->MReg3IO = MudbacIO + 3; 2595#if 1 2596 CtlP->MReg2 = 0; /* interrupt disable */ 2597 CtlP->MReg3 = 0; /* no periodic interrupts */ 2598#else 2599 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2600 CtlP->MReg2 = 0; /* interrupt disable */ 2601 CtlP->MReg3 = 0; /* no periodic interrupts */ 2602 } else { 2603 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2604 CtlP->MReg3 = Frequency; /* set frequency */ 2605 if (PeriodicOnly) { /* periodic interrupt only */ 2606 CtlP->MReg3 |= PERIODIC_ONLY; 2607 } 2608 } 2609#endif 2610 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2611 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2612 sControllerEOI(CtlP); /* clear EOI if warm init */ 2613 /* Init AIOPs */ 2614 CtlP->NumAiop = 0; 2615 for (i = done = 0; i < AiopIOListSize; i++) { 2616 io = AiopIOList[i]; 2617 CtlP->AiopIO[i] = (WordIO_t) io; 2618 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2619 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2620 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2621 if (done) 2622 continue; 2623 sEnAiop(CtlP, i); /* enable the AIOP */ 2624 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2625 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2626 done = 1; /* done looking for AIOPs */ 2627 else { 2628 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2629 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2630 sOutB(io + _INDX_DATA, sClockPrescale); 2631 CtlP->NumAiop++; /* bump count of AIOPs */ 2632 } 2633 sDisAiop(CtlP, i); /* disable AIOP */ 2634 } 2635 2636 if (CtlP->NumAiop == 0) 2637 return (-1); 2638 else 2639 return (CtlP->NumAiop); 2640} 2641 2642/*************************************************************************** 2643Function: sReadAiopID 2644Purpose: Read the AIOP idenfication number directly from an AIOP. 2645Call: sReadAiopID(io) 2646 ByteIO_t io: AIOP base I/O address 2647Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2648 is replace by an identifying number. 2649 Flag AIOPID_NULL if no valid AIOP is found 2650Warnings: No context switches are allowed while executing this function. 2651 2652*/ 2653static int sReadAiopID(ByteIO_t io) 2654{ 2655 Byte_t AiopID; /* ID byte from AIOP */ 2656 2657 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2658 sOutB(io + _CMD_REG, 0x0); 2659 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2660 if (AiopID == 0x06) 2661 return (1); 2662 else /* AIOP does not exist */ 2663 return (-1); 2664} 2665 2666/*************************************************************************** 2667Function: sReadAiopNumChan 2668Purpose: Read the number of channels available in an AIOP directly from 2669 an AIOP. 2670Call: sReadAiopNumChan(io) 2671 WordIO_t io: AIOP base I/O address 2672Return: int: The number of channels available 2673Comments: The number of channels is determined by write/reads from identical 2674 offsets within the SRAM address spaces for channels 0 and 4. 2675 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2676 AIOP, otherwise it is an 8 channel. 2677Warnings: No context switches are allowed while executing this function. 2678*/ 2679static int sReadAiopNumChan(WordIO_t io) 2680{ 2681 Word_t x; 2682 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2683 2684 /* write to chan 0 SRAM */ 2685 out32((DWordIO_t) io + _INDX_ADDR, R); 2686 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2687 x = sInW(io + _INDX_DATA); 2688 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2689 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2690 return (8); 2691 else 2692 return (4); 2693} 2694 2695/*************************************************************************** 2696Function: sInitChan 2697Purpose: Initialization of a channel and channel structure 2698Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2699 CONTROLLER_T *CtlP; Ptr to controller structure 2700 CHANNEL_T *ChP; Ptr to channel structure 2701 int AiopNum; AIOP number within controller 2702 int ChanNum; Channel number within AIOP 2703Return: int: 1 if initialization succeeded, 0 if it fails because channel 2704 number exceeds number of channels available in AIOP. 2705Comments: This function must be called before a channel can be used. 2706Warnings: No range checking on any of the parameters is done. 2707 2708 No context switches are allowed while executing this function. 2709*/ 2710static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2711 int ChanNum) 2712{ 2713 int i; 2714 WordIO_t AiopIO; 2715 WordIO_t ChIOOff; 2716 Byte_t *ChR; 2717 Word_t ChOff; 2718 static Byte_t R[4]; 2719 int brd9600; 2720 2721 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2722 return 0; /* exceeds num chans in AIOP */ 2723 2724 /* Channel, AIOP, and controller identifiers */ 2725 ChP->CtlP = CtlP; 2726 ChP->ChanID = CtlP->AiopID[AiopNum]; 2727 ChP->AiopNum = AiopNum; 2728 ChP->ChanNum = ChanNum; 2729 2730 /* Global direct addresses */ 2731 AiopIO = CtlP->AiopIO[AiopNum]; 2732 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2733 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2734 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2735 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2736 ChP->IndexData = AiopIO + _INDX_DATA; 2737 2738 /* Channel direct addresses */ 2739 ChIOOff = AiopIO + ChP->ChanNum * 2; 2740 ChP->TxRxData = ChIOOff + _TD0; 2741 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2742 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2743 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2744 2745 /* Initialize the channel from the RData array */ 2746 for (i = 0; i < RDATASIZE; i += 4) { 2747 R[0] = RData[i]; 2748 R[1] = RData[i + 1] + 0x10 * ChanNum; 2749 R[2] = RData[i + 2]; 2750 R[3] = RData[i + 3]; 2751 out32(ChP->IndexAddr, R); 2752 } 2753 2754 ChR = ChP->R; 2755 for (i = 0; i < RREGDATASIZE; i += 4) { 2756 ChR[i] = RRegData[i]; 2757 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2758 ChR[i + 2] = RRegData[i + 2]; 2759 ChR[i + 3] = RRegData[i + 3]; 2760 } 2761 2762 /* Indexed registers */ 2763 ChOff = (Word_t) ChanNum *0x1000; 2764 2765 if (sClockPrescale == 0x14) 2766 brd9600 = 47; 2767 else 2768 brd9600 = 23; 2769 2770 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2771 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2772 ChP->BaudDiv[2] = (Byte_t) brd9600; 2773 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2774 out32(ChP->IndexAddr, ChP->BaudDiv); 2775 2776 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2777 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2778 ChP->TxControl[2] = 0; 2779 ChP->TxControl[3] = 0; 2780 out32(ChP->IndexAddr, ChP->TxControl); 2781 2782 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2783 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2784 ChP->RxControl[2] = 0; 2785 ChP->RxControl[3] = 0; 2786 out32(ChP->IndexAddr, ChP->RxControl); 2787 2788 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2789 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2790 ChP->TxEnables[2] = 0; 2791 ChP->TxEnables[3] = 0; 2792 out32(ChP->IndexAddr, ChP->TxEnables); 2793 2794 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2795 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2796 ChP->TxCompare[2] = 0; 2797 ChP->TxCompare[3] = 0; 2798 out32(ChP->IndexAddr, ChP->TxCompare); 2799 2800 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2801 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2802 ChP->TxReplace1[2] = 0; 2803 ChP->TxReplace1[3] = 0; 2804 out32(ChP->IndexAddr, ChP->TxReplace1); 2805 2806 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2807 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2808 ChP->TxReplace2[2] = 0; 2809 ChP->TxReplace2[3] = 0; 2810 out32(ChP->IndexAddr, ChP->TxReplace2); 2811 2812 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2813 ChP->TxFIFO = ChOff + _TX_FIFO; 2814 2815 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2816 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2817 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2818 sOutW(ChP->IndexData, 0); 2819 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2820 ChP->RxFIFO = ChOff + _RX_FIFO; 2821 2822 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2823 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2824 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2825 sOutW(ChP->IndexData, 0); 2826 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2827 sOutW(ChP->IndexData, 0); 2828 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2829 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2830 sOutB(ChP->IndexData, 0); 2831 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2832 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2833 sOutB(ChP->IndexData, 0); 2834 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2835 sEnRxProcessor(ChP); /* start the Rx processor */ 2836 2837 return 1; 2838} 2839 2840/*************************************************************************** 2841Function: sStopRxProcessor 2842Purpose: Stop the receive processor from processing a channel. 2843Call: sStopRxProcessor(ChP) 2844 CHANNEL_T *ChP; Ptr to channel structure 2845 2846Comments: The receive processor can be started again with sStartRxProcessor(). 2847 This function causes the receive processor to skip over the 2848 stopped channel. It does not stop it from processing other channels. 2849 2850Warnings: No context switches are allowed while executing this function. 2851 2852 Do not leave the receive processor stopped for more than one 2853 character time. 2854 2855 After calling this function a delay of 4 uS is required to ensure 2856 that the receive processor is no longer processing this channel. 2857*/ 2858static void sStopRxProcessor(CHANNEL_T * ChP) 2859{ 2860 Byte_t R[4]; 2861 2862 R[0] = ChP->R[0]; 2863 R[1] = ChP->R[1]; 2864 R[2] = 0x0a; 2865 R[3] = ChP->R[3]; 2866 out32(ChP->IndexAddr, R); 2867} 2868 2869/*************************************************************************** 2870Function: sFlushRxFIFO 2871Purpose: Flush the Rx FIFO 2872Call: sFlushRxFIFO(ChP) 2873 CHANNEL_T *ChP; Ptr to channel structure 2874Return: void 2875Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2876 while it is being flushed the receive processor is stopped 2877 and the transmitter is disabled. After these operations a 2878 4 uS delay is done before clearing the pointers to allow 2879 the receive processor to stop. These items are handled inside 2880 this function. 2881Warnings: No context switches are allowed while executing this function. 2882*/ 2883static void sFlushRxFIFO(CHANNEL_T * ChP) 2884{ 2885 int i; 2886 Byte_t Ch; /* channel number within AIOP */ 2887 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2888 2889 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2890 return; /* don't need to flush */ 2891 2892 RxFIFOEnabled = 0; 2893 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2894 RxFIFOEnabled = 1; 2895 sDisRxFIFO(ChP); /* disable it */ 2896 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2897 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2898 } 2899 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2900 Ch = (Byte_t) sGetChanNum(ChP); 2901 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2902 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2903 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2904 sOutW(ChP->IndexData, 0); 2905 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2906 sOutW(ChP->IndexData, 0); 2907 if (RxFIFOEnabled) 2908 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2909} 2910 2911/*************************************************************************** 2912Function: sFlushTxFIFO 2913Purpose: Flush the Tx FIFO 2914Call: sFlushTxFIFO(ChP) 2915 CHANNEL_T *ChP; Ptr to channel structure 2916Return: void 2917Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2918 while it is being flushed the receive processor is stopped 2919 and the transmitter is disabled. After these operations a 2920 4 uS delay is done before clearing the pointers to allow 2921 the receive processor to stop. These items are handled inside 2922 this function. 2923Warnings: No context switches are allowed while executing this function. 2924*/ 2925static void sFlushTxFIFO(CHANNEL_T * ChP) 2926{ 2927 int i; 2928 Byte_t Ch; /* channel number within AIOP */ 2929 int TxEnabled; /* 1 if transmitter enabled */ 2930 2931 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2932 return; /* don't need to flush */ 2933 2934 TxEnabled = 0; 2935 if (ChP->TxControl[3] & TX_ENABLE) { 2936 TxEnabled = 1; 2937 sDisTransmit(ChP); /* disable transmitter */ 2938 } 2939 sStopRxProcessor(ChP); /* stop Rx processor */ 2940 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2941 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2942 Ch = (Byte_t) sGetChanNum(ChP); 2943 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2944 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2945 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2946 sOutW(ChP->IndexData, 0); 2947 if (TxEnabled) 2948 sEnTransmit(ChP); /* enable transmitter */ 2949 sStartRxProcessor(ChP); /* restart Rx processor */ 2950} 2951 2952/*************************************************************************** 2953Function: sWriteTxPrioByte 2954Purpose: Write a byte of priority transmit data to a channel 2955Call: sWriteTxPrioByte(ChP,Data) 2956 CHANNEL_T *ChP; Ptr to channel structure 2957 Byte_t Data; The transmit data byte 2958 2959Return: int: 1 if the bytes is successfully written, otherwise 0. 2960 2961Comments: The priority byte is transmitted before any data in the Tx FIFO. 2962 2963Warnings: No context switches are allowed while executing this function. 2964*/ 2965static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2966{ 2967 Byte_t DWBuf[4]; /* buffer for double word writes */ 2968 Word_t *WordPtr; /* must be far because Win SS != DS */ 2969 register DWordIO_t IndexAddr; 2970 2971 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2972 IndexAddr = ChP->IndexAddr; 2973 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2974 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2975 return (0); /* nothing sent */ 2976 2977 WordPtr = (Word_t *) (&DWBuf[0]); 2978 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2979 2980 DWBuf[2] = Data; /* data byte value */ 2981 out32(IndexAddr, DWBuf); /* write it out */ 2982 2983 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2984 2985 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2986 DWBuf[3] = 0; /* priority buffer pointer */ 2987 out32(IndexAddr, DWBuf); /* write it out */ 2988 } else { /* write it to Tx FIFO */ 2989 2990 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2991 } 2992 return (1); /* 1 byte sent */ 2993} 2994 2995/*************************************************************************** 2996Function: sEnInterrupts 2997Purpose: Enable one or more interrupts for a channel 2998Call: sEnInterrupts(ChP,Flags) 2999 CHANNEL_T *ChP; Ptr to channel structure 3000 Word_t Flags: Interrupt enable flags, can be any combination 3001 of the following flags: 3002 TXINT_EN: Interrupt on Tx FIFO empty 3003 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3004 sSetRxTrigger()) 3005 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3006 MCINT_EN: Interrupt on modem input change 3007 CHANINT_EN: Allow channel interrupt signal to the AIOP's 3008 Interrupt Channel Register. 3009Return: void 3010Comments: If an interrupt enable flag is set in Flags, that interrupt will be 3011 enabled. If an interrupt enable flag is not set in Flags, that 3012 interrupt will not be changed. Interrupts can be disabled with 3013 function sDisInterrupts(). 3014 3015 This function sets the appropriate bit for the channel in the AIOP's 3016 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3017 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3018 3019 Interrupts must also be globally enabled before channel interrupts 3020 will be passed on to the host. This is done with function 3021 sEnGlobalInt(). 3022 3023 In some cases it may be desirable to disable interrupts globally but 3024 enable channel interrupts. This would allow the global interrupt 3025 status register to be used to determine which AIOPs need service. 3026*/ 3027static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3028{ 3029 Byte_t Mask; /* Interrupt Mask Register */ 3030 3031 ChP->RxControl[2] |= 3032 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3033 3034 out32(ChP->IndexAddr, ChP->RxControl); 3035 3036 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3037 3038 out32(ChP->IndexAddr, ChP->TxControl); 3039 3040 if (Flags & CHANINT_EN) { 3041 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3042 sOutB(ChP->IntMask, Mask); 3043 } 3044} 3045 3046/*************************************************************************** 3047Function: sDisInterrupts 3048Purpose: Disable one or more interrupts for a channel 3049Call: sDisInterrupts(ChP,Flags) 3050 CHANNEL_T *ChP; Ptr to channel structure 3051 Word_t Flags: Interrupt flags, can be any combination 3052 of the following flags: 3053 TXINT_EN: Interrupt on Tx FIFO empty 3054 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3055 sSetRxTrigger()) 3056 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3057 MCINT_EN: Interrupt on modem input change 3058 CHANINT_EN: Disable channel interrupt signal to the 3059 AIOP's Interrupt Channel Register. 3060Return: void 3061Comments: If an interrupt flag is set in Flags, that interrupt will be 3062 disabled. If an interrupt flag is not set in Flags, that 3063 interrupt will not be changed. Interrupts can be enabled with 3064 function sEnInterrupts(). 3065 3066 This function clears the appropriate bit for the channel in the AIOP's 3067 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3068 this channel's bit from being set in the AIOP's Interrupt Channel 3069 Register. 3070*/ 3071static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3072{ 3073 Byte_t Mask; /* Interrupt Mask Register */ 3074 3075 ChP->RxControl[2] &= 3076 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3077 out32(ChP->IndexAddr, ChP->RxControl); 3078 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3079 out32(ChP->IndexAddr, ChP->TxControl); 3080 3081 if (Flags & CHANINT_EN) { 3082 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3083 sOutB(ChP->IntMask, Mask); 3084 } 3085} 3086 3087static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3088{ 3089 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3090} 3091 3092/* 3093 * Not an official SSCI function, but how to reset RocketModems. 3094 * ISA bus version 3095 */ 3096static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3097{ 3098 ByteIO_t addr; 3099 Byte_t val; 3100 3101 addr = CtlP->AiopIO[0] + 0x400; 3102 val = sInB(CtlP->MReg3IO); 3103 /* if AIOP[1] is not enabled, enable it */ 3104 if ((val & 2) == 0) { 3105 val = sInB(CtlP->MReg2IO); 3106 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3107 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3108 } 3109 3110 sEnAiop(CtlP, 1); 3111 if (!on) 3112 addr += 8; 3113 sOutB(addr + chan, 0); /* apply or remove reset */ 3114 sDisAiop(CtlP, 1); 3115} 3116 3117/* 3118 * Not an official SSCI function, but how to reset RocketModems. 3119 * PCI bus version 3120 */ 3121static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3122{ 3123 ByteIO_t addr; 3124 3125 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3126 if (!on) 3127 addr += 8; 3128 sOutB(addr + chan, 0); /* apply or remove reset */ 3129} 3130 3131/* Returns the line number given the controller (board), aiop and channel number */ 3132static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3133{ 3134 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3135} 3136 3137/* 3138 * Stores the line number associated with a given controller (board), aiop 3139 * and channel number. 3140 * Returns: The line number assigned 3141 */ 3142static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3143{ 3144 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3145 return (nextLineNumber - 1); 3146}