at v4.8-rc1 49 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <linux/badblocks.h> 33#include <asm/uaccess.h> 34#include "internal.h" 35 36struct bdev_inode { 37 struct block_device bdev; 38 struct inode vfs_inode; 39}; 40 41static const struct address_space_operations def_blk_aops; 42 43static inline struct bdev_inode *BDEV_I(struct inode *inode) 44{ 45 return container_of(inode, struct bdev_inode, vfs_inode); 46} 47 48struct block_device *I_BDEV(struct inode *inode) 49{ 50 return &BDEV_I(inode)->bdev; 51} 52EXPORT_SYMBOL(I_BDEV); 53 54void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 55{ 56 struct va_format vaf; 57 va_list args; 58 59 va_start(args, fmt); 60 vaf.fmt = fmt; 61 vaf.va = &args; 62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 63 va_end(args); 64} 65 66static void bdev_write_inode(struct block_device *bdev) 67{ 68 struct inode *inode = bdev->bd_inode; 69 int ret; 70 71 spin_lock(&inode->i_lock); 72 while (inode->i_state & I_DIRTY) { 73 spin_unlock(&inode->i_lock); 74 ret = write_inode_now(inode, true); 75 if (ret) { 76 char name[BDEVNAME_SIZE]; 77 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 78 "for block device %s (err=%d).\n", 79 bdevname(bdev, name), ret); 80 } 81 spin_lock(&inode->i_lock); 82 } 83 spin_unlock(&inode->i_lock); 84} 85 86/* Kill _all_ buffers and pagecache , dirty or not.. */ 87void kill_bdev(struct block_device *bdev) 88{ 89 struct address_space *mapping = bdev->bd_inode->i_mapping; 90 91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 92 return; 93 94 invalidate_bh_lrus(); 95 truncate_inode_pages(mapping, 0); 96} 97EXPORT_SYMBOL(kill_bdev); 98 99/* Invalidate clean unused buffers and pagecache. */ 100void invalidate_bdev(struct block_device *bdev) 101{ 102 struct address_space *mapping = bdev->bd_inode->i_mapping; 103 104 if (mapping->nrpages == 0) 105 return; 106 107 invalidate_bh_lrus(); 108 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 109 invalidate_mapping_pages(mapping, 0, -1); 110 /* 99% of the time, we don't need to flush the cleancache on the bdev. 111 * But, for the strange corners, lets be cautious 112 */ 113 cleancache_invalidate_inode(mapping); 114} 115EXPORT_SYMBOL(invalidate_bdev); 116 117int set_blocksize(struct block_device *bdev, int size) 118{ 119 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 121 return -EINVAL; 122 123 /* Size cannot be smaller than the size supported by the device */ 124 if (size < bdev_logical_block_size(bdev)) 125 return -EINVAL; 126 127 /* Don't change the size if it is same as current */ 128 if (bdev->bd_block_size != size) { 129 sync_blockdev(bdev); 130 bdev->bd_block_size = size; 131 bdev->bd_inode->i_blkbits = blksize_bits(size); 132 kill_bdev(bdev); 133 } 134 return 0; 135} 136 137EXPORT_SYMBOL(set_blocksize); 138 139int sb_set_blocksize(struct super_block *sb, int size) 140{ 141 if (set_blocksize(sb->s_bdev, size)) 142 return 0; 143 /* If we get here, we know size is power of two 144 * and it's value is between 512 and PAGE_SIZE */ 145 sb->s_blocksize = size; 146 sb->s_blocksize_bits = blksize_bits(size); 147 return sb->s_blocksize; 148} 149 150EXPORT_SYMBOL(sb_set_blocksize); 151 152int sb_min_blocksize(struct super_block *sb, int size) 153{ 154 int minsize = bdev_logical_block_size(sb->s_bdev); 155 if (size < minsize) 156 size = minsize; 157 return sb_set_blocksize(sb, size); 158} 159 160EXPORT_SYMBOL(sb_min_blocksize); 161 162static int 163blkdev_get_block(struct inode *inode, sector_t iblock, 164 struct buffer_head *bh, int create) 165{ 166 bh->b_bdev = I_BDEV(inode); 167 bh->b_blocknr = iblock; 168 set_buffer_mapped(bh); 169 return 0; 170} 171 172static struct inode *bdev_file_inode(struct file *file) 173{ 174 return file->f_mapping->host; 175} 176 177static ssize_t 178blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 179{ 180 struct file *file = iocb->ki_filp; 181 struct inode *inode = bdev_file_inode(file); 182 183 if (IS_DAX(inode)) 184 return dax_do_io(iocb, inode, iter, blkdev_get_block, 185 NULL, DIO_SKIP_DIO_COUNT); 186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, 187 blkdev_get_block, NULL, NULL, 188 DIO_SKIP_DIO_COUNT); 189} 190 191int __sync_blockdev(struct block_device *bdev, int wait) 192{ 193 if (!bdev) 194 return 0; 195 if (!wait) 196 return filemap_flush(bdev->bd_inode->i_mapping); 197 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 198} 199 200/* 201 * Write out and wait upon all the dirty data associated with a block 202 * device via its mapping. Does not take the superblock lock. 203 */ 204int sync_blockdev(struct block_device *bdev) 205{ 206 return __sync_blockdev(bdev, 1); 207} 208EXPORT_SYMBOL(sync_blockdev); 209 210/* 211 * Write out and wait upon all dirty data associated with this 212 * device. Filesystem data as well as the underlying block 213 * device. Takes the superblock lock. 214 */ 215int fsync_bdev(struct block_device *bdev) 216{ 217 struct super_block *sb = get_super(bdev); 218 if (sb) { 219 int res = sync_filesystem(sb); 220 drop_super(sb); 221 return res; 222 } 223 return sync_blockdev(bdev); 224} 225EXPORT_SYMBOL(fsync_bdev); 226 227/** 228 * freeze_bdev -- lock a filesystem and force it into a consistent state 229 * @bdev: blockdevice to lock 230 * 231 * If a superblock is found on this device, we take the s_umount semaphore 232 * on it to make sure nobody unmounts until the snapshot creation is done. 233 * The reference counter (bd_fsfreeze_count) guarantees that only the last 234 * unfreeze process can unfreeze the frozen filesystem actually when multiple 235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 237 * actually. 238 */ 239struct super_block *freeze_bdev(struct block_device *bdev) 240{ 241 struct super_block *sb; 242 int error = 0; 243 244 mutex_lock(&bdev->bd_fsfreeze_mutex); 245 if (++bdev->bd_fsfreeze_count > 1) { 246 /* 247 * We don't even need to grab a reference - the first call 248 * to freeze_bdev grab an active reference and only the last 249 * thaw_bdev drops it. 250 */ 251 sb = get_super(bdev); 252 drop_super(sb); 253 mutex_unlock(&bdev->bd_fsfreeze_mutex); 254 return sb; 255 } 256 257 sb = get_active_super(bdev); 258 if (!sb) 259 goto out; 260 if (sb->s_op->freeze_super) 261 error = sb->s_op->freeze_super(sb); 262 else 263 error = freeze_super(sb); 264 if (error) { 265 deactivate_super(sb); 266 bdev->bd_fsfreeze_count--; 267 mutex_unlock(&bdev->bd_fsfreeze_mutex); 268 return ERR_PTR(error); 269 } 270 deactivate_super(sb); 271 out: 272 sync_blockdev(bdev); 273 mutex_unlock(&bdev->bd_fsfreeze_mutex); 274 return sb; /* thaw_bdev releases s->s_umount */ 275} 276EXPORT_SYMBOL(freeze_bdev); 277 278/** 279 * thaw_bdev -- unlock filesystem 280 * @bdev: blockdevice to unlock 281 * @sb: associated superblock 282 * 283 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 284 */ 285int thaw_bdev(struct block_device *bdev, struct super_block *sb) 286{ 287 int error = -EINVAL; 288 289 mutex_lock(&bdev->bd_fsfreeze_mutex); 290 if (!bdev->bd_fsfreeze_count) 291 goto out; 292 293 error = 0; 294 if (--bdev->bd_fsfreeze_count > 0) 295 goto out; 296 297 if (!sb) 298 goto out; 299 300 if (sb->s_op->thaw_super) 301 error = sb->s_op->thaw_super(sb); 302 else 303 error = thaw_super(sb); 304 if (error) { 305 bdev->bd_fsfreeze_count++; 306 mutex_unlock(&bdev->bd_fsfreeze_mutex); 307 return error; 308 } 309out: 310 mutex_unlock(&bdev->bd_fsfreeze_mutex); 311 return 0; 312} 313EXPORT_SYMBOL(thaw_bdev); 314 315static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 316{ 317 return block_write_full_page(page, blkdev_get_block, wbc); 318} 319 320static int blkdev_readpage(struct file * file, struct page * page) 321{ 322 return block_read_full_page(page, blkdev_get_block); 323} 324 325static int blkdev_readpages(struct file *file, struct address_space *mapping, 326 struct list_head *pages, unsigned nr_pages) 327{ 328 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 329} 330 331static int blkdev_write_begin(struct file *file, struct address_space *mapping, 332 loff_t pos, unsigned len, unsigned flags, 333 struct page **pagep, void **fsdata) 334{ 335 return block_write_begin(mapping, pos, len, flags, pagep, 336 blkdev_get_block); 337} 338 339static int blkdev_write_end(struct file *file, struct address_space *mapping, 340 loff_t pos, unsigned len, unsigned copied, 341 struct page *page, void *fsdata) 342{ 343 int ret; 344 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 345 346 unlock_page(page); 347 put_page(page); 348 349 return ret; 350} 351 352/* 353 * private llseek: 354 * for a block special file file_inode(file)->i_size is zero 355 * so we compute the size by hand (just as in block_read/write above) 356 */ 357static loff_t block_llseek(struct file *file, loff_t offset, int whence) 358{ 359 struct inode *bd_inode = bdev_file_inode(file); 360 loff_t retval; 361 362 inode_lock(bd_inode); 363 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 364 inode_unlock(bd_inode); 365 return retval; 366} 367 368int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 369{ 370 struct inode *bd_inode = bdev_file_inode(filp); 371 struct block_device *bdev = I_BDEV(bd_inode); 372 int error; 373 374 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 375 if (error) 376 return error; 377 378 /* 379 * There is no need to serialise calls to blkdev_issue_flush with 380 * i_mutex and doing so causes performance issues with concurrent 381 * O_SYNC writers to a block device. 382 */ 383 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 384 if (error == -EOPNOTSUPP) 385 error = 0; 386 387 return error; 388} 389EXPORT_SYMBOL(blkdev_fsync); 390 391/** 392 * bdev_read_page() - Start reading a page from a block device 393 * @bdev: The device to read the page from 394 * @sector: The offset on the device to read the page to (need not be aligned) 395 * @page: The page to read 396 * 397 * On entry, the page should be locked. It will be unlocked when the page 398 * has been read. If the block driver implements rw_page synchronously, 399 * that will be true on exit from this function, but it need not be. 400 * 401 * Errors returned by this function are usually "soft", eg out of memory, or 402 * queue full; callers should try a different route to read this page rather 403 * than propagate an error back up the stack. 404 * 405 * Return: negative errno if an error occurs, 0 if submission was successful. 406 */ 407int bdev_read_page(struct block_device *bdev, sector_t sector, 408 struct page *page) 409{ 410 const struct block_device_operations *ops = bdev->bd_disk->fops; 411 int result = -EOPNOTSUPP; 412 413 if (!ops->rw_page || bdev_get_integrity(bdev)) 414 return result; 415 416 result = blk_queue_enter(bdev->bd_queue, false); 417 if (result) 418 return result; 419 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 420 blk_queue_exit(bdev->bd_queue); 421 return result; 422} 423EXPORT_SYMBOL_GPL(bdev_read_page); 424 425/** 426 * bdev_write_page() - Start writing a page to a block device 427 * @bdev: The device to write the page to 428 * @sector: The offset on the device to write the page to (need not be aligned) 429 * @page: The page to write 430 * @wbc: The writeback_control for the write 431 * 432 * On entry, the page should be locked and not currently under writeback. 433 * On exit, if the write started successfully, the page will be unlocked and 434 * under writeback. If the write failed already (eg the driver failed to 435 * queue the page to the device), the page will still be locked. If the 436 * caller is a ->writepage implementation, it will need to unlock the page. 437 * 438 * Errors returned by this function are usually "soft", eg out of memory, or 439 * queue full; callers should try a different route to write this page rather 440 * than propagate an error back up the stack. 441 * 442 * Return: negative errno if an error occurs, 0 if submission was successful. 443 */ 444int bdev_write_page(struct block_device *bdev, sector_t sector, 445 struct page *page, struct writeback_control *wbc) 446{ 447 int result; 448 const struct block_device_operations *ops = bdev->bd_disk->fops; 449 450 if (!ops->rw_page || bdev_get_integrity(bdev)) 451 return -EOPNOTSUPP; 452 result = blk_queue_enter(bdev->bd_queue, false); 453 if (result) 454 return result; 455 456 set_page_writeback(page); 457 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 458 if (result) 459 end_page_writeback(page); 460 else 461 unlock_page(page); 462 blk_queue_exit(bdev->bd_queue); 463 return result; 464} 465EXPORT_SYMBOL_GPL(bdev_write_page); 466 467/** 468 * bdev_direct_access() - Get the address for directly-accessibly memory 469 * @bdev: The device containing the memory 470 * @dax: control and output parameters for ->direct_access 471 * 472 * If a block device is made up of directly addressable memory, this function 473 * will tell the caller the PFN and the address of the memory. The address 474 * may be directly dereferenced within the kernel without the need to call 475 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 476 * page tables. 477 * 478 * Return: negative errno if an error occurs, otherwise the number of bytes 479 * accessible at this address. 480 */ 481long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 482{ 483 sector_t sector = dax->sector; 484 long avail, size = dax->size; 485 const struct block_device_operations *ops = bdev->bd_disk->fops; 486 487 /* 488 * The device driver is allowed to sleep, in order to make the 489 * memory directly accessible. 490 */ 491 might_sleep(); 492 493 if (size < 0) 494 return size; 495 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access) 496 return -EOPNOTSUPP; 497 if ((sector + DIV_ROUND_UP(size, 512)) > 498 part_nr_sects_read(bdev->bd_part)) 499 return -ERANGE; 500 sector += get_start_sect(bdev); 501 if (sector % (PAGE_SIZE / 512)) 502 return -EINVAL; 503 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size); 504 if (!avail) 505 return -ERANGE; 506 if (avail > 0 && avail & ~PAGE_MASK) 507 return -ENXIO; 508 return min(avail, size); 509} 510EXPORT_SYMBOL_GPL(bdev_direct_access); 511 512/** 513 * bdev_dax_supported() - Check if the device supports dax for filesystem 514 * @sb: The superblock of the device 515 * @blocksize: The block size of the device 516 * 517 * This is a library function for filesystems to check if the block device 518 * can be mounted with dax option. 519 * 520 * Return: negative errno if unsupported, 0 if supported. 521 */ 522int bdev_dax_supported(struct super_block *sb, int blocksize) 523{ 524 struct blk_dax_ctl dax = { 525 .sector = 0, 526 .size = PAGE_SIZE, 527 }; 528 int err; 529 530 if (blocksize != PAGE_SIZE) { 531 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax"); 532 return -EINVAL; 533 } 534 535 err = bdev_direct_access(sb->s_bdev, &dax); 536 if (err < 0) { 537 switch (err) { 538 case -EOPNOTSUPP: 539 vfs_msg(sb, KERN_ERR, 540 "error: device does not support dax"); 541 break; 542 case -EINVAL: 543 vfs_msg(sb, KERN_ERR, 544 "error: unaligned partition for dax"); 545 break; 546 default: 547 vfs_msg(sb, KERN_ERR, 548 "error: dax access failed (%d)", err); 549 } 550 return err; 551 } 552 553 return 0; 554} 555EXPORT_SYMBOL_GPL(bdev_dax_supported); 556 557/** 558 * bdev_dax_capable() - Return if the raw device is capable for dax 559 * @bdev: The device for raw block device access 560 */ 561bool bdev_dax_capable(struct block_device *bdev) 562{ 563 struct blk_dax_ctl dax = { 564 .size = PAGE_SIZE, 565 }; 566 567 if (!IS_ENABLED(CONFIG_FS_DAX)) 568 return false; 569 570 dax.sector = 0; 571 if (bdev_direct_access(bdev, &dax) < 0) 572 return false; 573 574 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512); 575 if (bdev_direct_access(bdev, &dax) < 0) 576 return false; 577 578 return true; 579} 580 581/* 582 * pseudo-fs 583 */ 584 585static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 586static struct kmem_cache * bdev_cachep __read_mostly; 587 588static struct inode *bdev_alloc_inode(struct super_block *sb) 589{ 590 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 591 if (!ei) 592 return NULL; 593 return &ei->vfs_inode; 594} 595 596static void bdev_i_callback(struct rcu_head *head) 597{ 598 struct inode *inode = container_of(head, struct inode, i_rcu); 599 struct bdev_inode *bdi = BDEV_I(inode); 600 601 kmem_cache_free(bdev_cachep, bdi); 602} 603 604static void bdev_destroy_inode(struct inode *inode) 605{ 606 call_rcu(&inode->i_rcu, bdev_i_callback); 607} 608 609static void init_once(void *foo) 610{ 611 struct bdev_inode *ei = (struct bdev_inode *) foo; 612 struct block_device *bdev = &ei->bdev; 613 614 memset(bdev, 0, sizeof(*bdev)); 615 mutex_init(&bdev->bd_mutex); 616 INIT_LIST_HEAD(&bdev->bd_list); 617#ifdef CONFIG_SYSFS 618 INIT_LIST_HEAD(&bdev->bd_holder_disks); 619#endif 620 inode_init_once(&ei->vfs_inode); 621 /* Initialize mutex for freeze. */ 622 mutex_init(&bdev->bd_fsfreeze_mutex); 623} 624 625static void bdev_evict_inode(struct inode *inode) 626{ 627 struct block_device *bdev = &BDEV_I(inode)->bdev; 628 truncate_inode_pages_final(&inode->i_data); 629 invalidate_inode_buffers(inode); /* is it needed here? */ 630 clear_inode(inode); 631 spin_lock(&bdev_lock); 632 list_del_init(&bdev->bd_list); 633 spin_unlock(&bdev_lock); 634} 635 636static const struct super_operations bdev_sops = { 637 .statfs = simple_statfs, 638 .alloc_inode = bdev_alloc_inode, 639 .destroy_inode = bdev_destroy_inode, 640 .drop_inode = generic_delete_inode, 641 .evict_inode = bdev_evict_inode, 642}; 643 644static struct dentry *bd_mount(struct file_system_type *fs_type, 645 int flags, const char *dev_name, void *data) 646{ 647 struct dentry *dent; 648 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 649 if (dent) 650 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 651 return dent; 652} 653 654static struct file_system_type bd_type = { 655 .name = "bdev", 656 .mount = bd_mount, 657 .kill_sb = kill_anon_super, 658}; 659 660struct super_block *blockdev_superblock __read_mostly; 661EXPORT_SYMBOL_GPL(blockdev_superblock); 662 663void __init bdev_cache_init(void) 664{ 665 int err; 666 static struct vfsmount *bd_mnt; 667 668 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 669 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 670 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 671 init_once); 672 err = register_filesystem(&bd_type); 673 if (err) 674 panic("Cannot register bdev pseudo-fs"); 675 bd_mnt = kern_mount(&bd_type); 676 if (IS_ERR(bd_mnt)) 677 panic("Cannot create bdev pseudo-fs"); 678 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 679} 680 681/* 682 * Most likely _very_ bad one - but then it's hardly critical for small 683 * /dev and can be fixed when somebody will need really large one. 684 * Keep in mind that it will be fed through icache hash function too. 685 */ 686static inline unsigned long hash(dev_t dev) 687{ 688 return MAJOR(dev)+MINOR(dev); 689} 690 691static int bdev_test(struct inode *inode, void *data) 692{ 693 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 694} 695 696static int bdev_set(struct inode *inode, void *data) 697{ 698 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 699 return 0; 700} 701 702static LIST_HEAD(all_bdevs); 703 704struct block_device *bdget(dev_t dev) 705{ 706 struct block_device *bdev; 707 struct inode *inode; 708 709 inode = iget5_locked(blockdev_superblock, hash(dev), 710 bdev_test, bdev_set, &dev); 711 712 if (!inode) 713 return NULL; 714 715 bdev = &BDEV_I(inode)->bdev; 716 717 if (inode->i_state & I_NEW) { 718 bdev->bd_contains = NULL; 719 bdev->bd_super = NULL; 720 bdev->bd_inode = inode; 721 bdev->bd_block_size = (1 << inode->i_blkbits); 722 bdev->bd_part_count = 0; 723 bdev->bd_invalidated = 0; 724 inode->i_mode = S_IFBLK; 725 inode->i_rdev = dev; 726 inode->i_bdev = bdev; 727 inode->i_data.a_ops = &def_blk_aops; 728 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 729 spin_lock(&bdev_lock); 730 list_add(&bdev->bd_list, &all_bdevs); 731 spin_unlock(&bdev_lock); 732 unlock_new_inode(inode); 733 } 734 return bdev; 735} 736 737EXPORT_SYMBOL(bdget); 738 739/** 740 * bdgrab -- Grab a reference to an already referenced block device 741 * @bdev: Block device to grab a reference to. 742 */ 743struct block_device *bdgrab(struct block_device *bdev) 744{ 745 ihold(bdev->bd_inode); 746 return bdev; 747} 748EXPORT_SYMBOL(bdgrab); 749 750long nr_blockdev_pages(void) 751{ 752 struct block_device *bdev; 753 long ret = 0; 754 spin_lock(&bdev_lock); 755 list_for_each_entry(bdev, &all_bdevs, bd_list) { 756 ret += bdev->bd_inode->i_mapping->nrpages; 757 } 758 spin_unlock(&bdev_lock); 759 return ret; 760} 761 762void bdput(struct block_device *bdev) 763{ 764 iput(bdev->bd_inode); 765} 766 767EXPORT_SYMBOL(bdput); 768 769static struct block_device *bd_acquire(struct inode *inode) 770{ 771 struct block_device *bdev; 772 773 spin_lock(&bdev_lock); 774 bdev = inode->i_bdev; 775 if (bdev) { 776 bdgrab(bdev); 777 spin_unlock(&bdev_lock); 778 return bdev; 779 } 780 spin_unlock(&bdev_lock); 781 782 bdev = bdget(inode->i_rdev); 783 if (bdev) { 784 spin_lock(&bdev_lock); 785 if (!inode->i_bdev) { 786 /* 787 * We take an additional reference to bd_inode, 788 * and it's released in clear_inode() of inode. 789 * So, we can access it via ->i_mapping always 790 * without igrab(). 791 */ 792 bdgrab(bdev); 793 inode->i_bdev = bdev; 794 inode->i_mapping = bdev->bd_inode->i_mapping; 795 } 796 spin_unlock(&bdev_lock); 797 } 798 return bdev; 799} 800 801/* Call when you free inode */ 802 803void bd_forget(struct inode *inode) 804{ 805 struct block_device *bdev = NULL; 806 807 spin_lock(&bdev_lock); 808 if (!sb_is_blkdev_sb(inode->i_sb)) 809 bdev = inode->i_bdev; 810 inode->i_bdev = NULL; 811 inode->i_mapping = &inode->i_data; 812 spin_unlock(&bdev_lock); 813 814 if (bdev) 815 bdput(bdev); 816} 817 818/** 819 * bd_may_claim - test whether a block device can be claimed 820 * @bdev: block device of interest 821 * @whole: whole block device containing @bdev, may equal @bdev 822 * @holder: holder trying to claim @bdev 823 * 824 * Test whether @bdev can be claimed by @holder. 825 * 826 * CONTEXT: 827 * spin_lock(&bdev_lock). 828 * 829 * RETURNS: 830 * %true if @bdev can be claimed, %false otherwise. 831 */ 832static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 833 void *holder) 834{ 835 if (bdev->bd_holder == holder) 836 return true; /* already a holder */ 837 else if (bdev->bd_holder != NULL) 838 return false; /* held by someone else */ 839 else if (bdev->bd_contains == bdev) 840 return true; /* is a whole device which isn't held */ 841 842 else if (whole->bd_holder == bd_may_claim) 843 return true; /* is a partition of a device that is being partitioned */ 844 else if (whole->bd_holder != NULL) 845 return false; /* is a partition of a held device */ 846 else 847 return true; /* is a partition of an un-held device */ 848} 849 850/** 851 * bd_prepare_to_claim - prepare to claim a block device 852 * @bdev: block device of interest 853 * @whole: the whole device containing @bdev, may equal @bdev 854 * @holder: holder trying to claim @bdev 855 * 856 * Prepare to claim @bdev. This function fails if @bdev is already 857 * claimed by another holder and waits if another claiming is in 858 * progress. This function doesn't actually claim. On successful 859 * return, the caller has ownership of bd_claiming and bd_holder[s]. 860 * 861 * CONTEXT: 862 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 863 * it multiple times. 864 * 865 * RETURNS: 866 * 0 if @bdev can be claimed, -EBUSY otherwise. 867 */ 868static int bd_prepare_to_claim(struct block_device *bdev, 869 struct block_device *whole, void *holder) 870{ 871retry: 872 /* if someone else claimed, fail */ 873 if (!bd_may_claim(bdev, whole, holder)) 874 return -EBUSY; 875 876 /* if claiming is already in progress, wait for it to finish */ 877 if (whole->bd_claiming) { 878 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 879 DEFINE_WAIT(wait); 880 881 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 882 spin_unlock(&bdev_lock); 883 schedule(); 884 finish_wait(wq, &wait); 885 spin_lock(&bdev_lock); 886 goto retry; 887 } 888 889 /* yay, all mine */ 890 return 0; 891} 892 893/** 894 * bd_start_claiming - start claiming a block device 895 * @bdev: block device of interest 896 * @holder: holder trying to claim @bdev 897 * 898 * @bdev is about to be opened exclusively. Check @bdev can be opened 899 * exclusively and mark that an exclusive open is in progress. Each 900 * successful call to this function must be matched with a call to 901 * either bd_finish_claiming() or bd_abort_claiming() (which do not 902 * fail). 903 * 904 * This function is used to gain exclusive access to the block device 905 * without actually causing other exclusive open attempts to fail. It 906 * should be used when the open sequence itself requires exclusive 907 * access but may subsequently fail. 908 * 909 * CONTEXT: 910 * Might sleep. 911 * 912 * RETURNS: 913 * Pointer to the block device containing @bdev on success, ERR_PTR() 914 * value on failure. 915 */ 916static struct block_device *bd_start_claiming(struct block_device *bdev, 917 void *holder) 918{ 919 struct gendisk *disk; 920 struct block_device *whole; 921 int partno, err; 922 923 might_sleep(); 924 925 /* 926 * @bdev might not have been initialized properly yet, look up 927 * and grab the outer block device the hard way. 928 */ 929 disk = get_gendisk(bdev->bd_dev, &partno); 930 if (!disk) 931 return ERR_PTR(-ENXIO); 932 933 /* 934 * Normally, @bdev should equal what's returned from bdget_disk() 935 * if partno is 0; however, some drivers (floppy) use multiple 936 * bdev's for the same physical device and @bdev may be one of the 937 * aliases. Keep @bdev if partno is 0. This means claimer 938 * tracking is broken for those devices but it has always been that 939 * way. 940 */ 941 if (partno) 942 whole = bdget_disk(disk, 0); 943 else 944 whole = bdgrab(bdev); 945 946 module_put(disk->fops->owner); 947 put_disk(disk); 948 if (!whole) 949 return ERR_PTR(-ENOMEM); 950 951 /* prepare to claim, if successful, mark claiming in progress */ 952 spin_lock(&bdev_lock); 953 954 err = bd_prepare_to_claim(bdev, whole, holder); 955 if (err == 0) { 956 whole->bd_claiming = holder; 957 spin_unlock(&bdev_lock); 958 return whole; 959 } else { 960 spin_unlock(&bdev_lock); 961 bdput(whole); 962 return ERR_PTR(err); 963 } 964} 965 966#ifdef CONFIG_SYSFS 967struct bd_holder_disk { 968 struct list_head list; 969 struct gendisk *disk; 970 int refcnt; 971}; 972 973static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 974 struct gendisk *disk) 975{ 976 struct bd_holder_disk *holder; 977 978 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 979 if (holder->disk == disk) 980 return holder; 981 return NULL; 982} 983 984static int add_symlink(struct kobject *from, struct kobject *to) 985{ 986 return sysfs_create_link(from, to, kobject_name(to)); 987} 988 989static void del_symlink(struct kobject *from, struct kobject *to) 990{ 991 sysfs_remove_link(from, kobject_name(to)); 992} 993 994/** 995 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 996 * @bdev: the claimed slave bdev 997 * @disk: the holding disk 998 * 999 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1000 * 1001 * This functions creates the following sysfs symlinks. 1002 * 1003 * - from "slaves" directory of the holder @disk to the claimed @bdev 1004 * - from "holders" directory of the @bdev to the holder @disk 1005 * 1006 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1007 * passed to bd_link_disk_holder(), then: 1008 * 1009 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1010 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1011 * 1012 * The caller must have claimed @bdev before calling this function and 1013 * ensure that both @bdev and @disk are valid during the creation and 1014 * lifetime of these symlinks. 1015 * 1016 * CONTEXT: 1017 * Might sleep. 1018 * 1019 * RETURNS: 1020 * 0 on success, -errno on failure. 1021 */ 1022int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1023{ 1024 struct bd_holder_disk *holder; 1025 int ret = 0; 1026 1027 mutex_lock(&bdev->bd_mutex); 1028 1029 WARN_ON_ONCE(!bdev->bd_holder); 1030 1031 /* FIXME: remove the following once add_disk() handles errors */ 1032 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1033 goto out_unlock; 1034 1035 holder = bd_find_holder_disk(bdev, disk); 1036 if (holder) { 1037 holder->refcnt++; 1038 goto out_unlock; 1039 } 1040 1041 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1042 if (!holder) { 1043 ret = -ENOMEM; 1044 goto out_unlock; 1045 } 1046 1047 INIT_LIST_HEAD(&holder->list); 1048 holder->disk = disk; 1049 holder->refcnt = 1; 1050 1051 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1052 if (ret) 1053 goto out_free; 1054 1055 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1056 if (ret) 1057 goto out_del; 1058 /* 1059 * bdev could be deleted beneath us which would implicitly destroy 1060 * the holder directory. Hold on to it. 1061 */ 1062 kobject_get(bdev->bd_part->holder_dir); 1063 1064 list_add(&holder->list, &bdev->bd_holder_disks); 1065 goto out_unlock; 1066 1067out_del: 1068 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1069out_free: 1070 kfree(holder); 1071out_unlock: 1072 mutex_unlock(&bdev->bd_mutex); 1073 return ret; 1074} 1075EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1076 1077/** 1078 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1079 * @bdev: the calimed slave bdev 1080 * @disk: the holding disk 1081 * 1082 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1083 * 1084 * CONTEXT: 1085 * Might sleep. 1086 */ 1087void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1088{ 1089 struct bd_holder_disk *holder; 1090 1091 mutex_lock(&bdev->bd_mutex); 1092 1093 holder = bd_find_holder_disk(bdev, disk); 1094 1095 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1096 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1097 del_symlink(bdev->bd_part->holder_dir, 1098 &disk_to_dev(disk)->kobj); 1099 kobject_put(bdev->bd_part->holder_dir); 1100 list_del_init(&holder->list); 1101 kfree(holder); 1102 } 1103 1104 mutex_unlock(&bdev->bd_mutex); 1105} 1106EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1107#endif 1108 1109/** 1110 * flush_disk - invalidates all buffer-cache entries on a disk 1111 * 1112 * @bdev: struct block device to be flushed 1113 * @kill_dirty: flag to guide handling of dirty inodes 1114 * 1115 * Invalidates all buffer-cache entries on a disk. It should be called 1116 * when a disk has been changed -- either by a media change or online 1117 * resize. 1118 */ 1119static void flush_disk(struct block_device *bdev, bool kill_dirty) 1120{ 1121 if (__invalidate_device(bdev, kill_dirty)) { 1122 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1123 "resized disk %s\n", 1124 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1125 } 1126 1127 if (!bdev->bd_disk) 1128 return; 1129 if (disk_part_scan_enabled(bdev->bd_disk)) 1130 bdev->bd_invalidated = 1; 1131} 1132 1133/** 1134 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1135 * @disk: struct gendisk to check 1136 * @bdev: struct bdev to adjust. 1137 * 1138 * This routine checks to see if the bdev size does not match the disk size 1139 * and adjusts it if it differs. 1140 */ 1141void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1142{ 1143 loff_t disk_size, bdev_size; 1144 1145 disk_size = (loff_t)get_capacity(disk) << 9; 1146 bdev_size = i_size_read(bdev->bd_inode); 1147 if (disk_size != bdev_size) { 1148 printk(KERN_INFO 1149 "%s: detected capacity change from %lld to %lld\n", 1150 disk->disk_name, bdev_size, disk_size); 1151 i_size_write(bdev->bd_inode, disk_size); 1152 flush_disk(bdev, false); 1153 } 1154} 1155EXPORT_SYMBOL(check_disk_size_change); 1156 1157/** 1158 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1159 * @disk: struct gendisk to be revalidated 1160 * 1161 * This routine is a wrapper for lower-level driver's revalidate_disk 1162 * call-backs. It is used to do common pre and post operations needed 1163 * for all revalidate_disk operations. 1164 */ 1165int revalidate_disk(struct gendisk *disk) 1166{ 1167 struct block_device *bdev; 1168 int ret = 0; 1169 1170 if (disk->fops->revalidate_disk) 1171 ret = disk->fops->revalidate_disk(disk); 1172 blk_integrity_revalidate(disk); 1173 bdev = bdget_disk(disk, 0); 1174 if (!bdev) 1175 return ret; 1176 1177 mutex_lock(&bdev->bd_mutex); 1178 check_disk_size_change(disk, bdev); 1179 bdev->bd_invalidated = 0; 1180 mutex_unlock(&bdev->bd_mutex); 1181 bdput(bdev); 1182 return ret; 1183} 1184EXPORT_SYMBOL(revalidate_disk); 1185 1186/* 1187 * This routine checks whether a removable media has been changed, 1188 * and invalidates all buffer-cache-entries in that case. This 1189 * is a relatively slow routine, so we have to try to minimize using 1190 * it. Thus it is called only upon a 'mount' or 'open'. This 1191 * is the best way of combining speed and utility, I think. 1192 * People changing diskettes in the middle of an operation deserve 1193 * to lose :-) 1194 */ 1195int check_disk_change(struct block_device *bdev) 1196{ 1197 struct gendisk *disk = bdev->bd_disk; 1198 const struct block_device_operations *bdops = disk->fops; 1199 unsigned int events; 1200 1201 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1202 DISK_EVENT_EJECT_REQUEST); 1203 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1204 return 0; 1205 1206 flush_disk(bdev, true); 1207 if (bdops->revalidate_disk) 1208 bdops->revalidate_disk(bdev->bd_disk); 1209 return 1; 1210} 1211 1212EXPORT_SYMBOL(check_disk_change); 1213 1214void bd_set_size(struct block_device *bdev, loff_t size) 1215{ 1216 unsigned bsize = bdev_logical_block_size(bdev); 1217 1218 inode_lock(bdev->bd_inode); 1219 i_size_write(bdev->bd_inode, size); 1220 inode_unlock(bdev->bd_inode); 1221 while (bsize < PAGE_SIZE) { 1222 if (size & bsize) 1223 break; 1224 bsize <<= 1; 1225 } 1226 bdev->bd_block_size = bsize; 1227 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1228} 1229EXPORT_SYMBOL(bd_set_size); 1230 1231static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1232 1233/* 1234 * bd_mutex locking: 1235 * 1236 * mutex_lock(part->bd_mutex) 1237 * mutex_lock_nested(whole->bd_mutex, 1) 1238 */ 1239 1240static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1241{ 1242 struct gendisk *disk; 1243 struct module *owner; 1244 int ret; 1245 int partno; 1246 int perm = 0; 1247 1248 if (mode & FMODE_READ) 1249 perm |= MAY_READ; 1250 if (mode & FMODE_WRITE) 1251 perm |= MAY_WRITE; 1252 /* 1253 * hooks: /n/, see "layering violations". 1254 */ 1255 if (!for_part) { 1256 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1257 if (ret != 0) { 1258 bdput(bdev); 1259 return ret; 1260 } 1261 } 1262 1263 restart: 1264 1265 ret = -ENXIO; 1266 disk = get_gendisk(bdev->bd_dev, &partno); 1267 if (!disk) 1268 goto out; 1269 owner = disk->fops->owner; 1270 1271 disk_block_events(disk); 1272 mutex_lock_nested(&bdev->bd_mutex, for_part); 1273 if (!bdev->bd_openers) { 1274 bdev->bd_disk = disk; 1275 bdev->bd_queue = disk->queue; 1276 bdev->bd_contains = bdev; 1277 bdev->bd_inode->i_flags = 0; 1278 1279 if (!partno) { 1280 ret = -ENXIO; 1281 bdev->bd_part = disk_get_part(disk, partno); 1282 if (!bdev->bd_part) 1283 goto out_clear; 1284 1285 ret = 0; 1286 if (disk->fops->open) { 1287 ret = disk->fops->open(bdev, mode); 1288 if (ret == -ERESTARTSYS) { 1289 /* Lost a race with 'disk' being 1290 * deleted, try again. 1291 * See md.c 1292 */ 1293 disk_put_part(bdev->bd_part); 1294 bdev->bd_part = NULL; 1295 bdev->bd_disk = NULL; 1296 bdev->bd_queue = NULL; 1297 mutex_unlock(&bdev->bd_mutex); 1298 disk_unblock_events(disk); 1299 put_disk(disk); 1300 module_put(owner); 1301 goto restart; 1302 } 1303 } 1304 1305 if (!ret) { 1306 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1307 if (!bdev_dax_capable(bdev)) 1308 bdev->bd_inode->i_flags &= ~S_DAX; 1309 } 1310 1311 /* 1312 * If the device is invalidated, rescan partition 1313 * if open succeeded or failed with -ENOMEDIUM. 1314 * The latter is necessary to prevent ghost 1315 * partitions on a removed medium. 1316 */ 1317 if (bdev->bd_invalidated) { 1318 if (!ret) 1319 rescan_partitions(disk, bdev); 1320 else if (ret == -ENOMEDIUM) 1321 invalidate_partitions(disk, bdev); 1322 } 1323 1324 if (ret) 1325 goto out_clear; 1326 } else { 1327 struct block_device *whole; 1328 whole = bdget_disk(disk, 0); 1329 ret = -ENOMEM; 1330 if (!whole) 1331 goto out_clear; 1332 BUG_ON(for_part); 1333 ret = __blkdev_get(whole, mode, 1); 1334 if (ret) 1335 goto out_clear; 1336 bdev->bd_contains = whole; 1337 bdev->bd_part = disk_get_part(disk, partno); 1338 if (!(disk->flags & GENHD_FL_UP) || 1339 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1340 ret = -ENXIO; 1341 goto out_clear; 1342 } 1343 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1344 if (!bdev_dax_capable(bdev)) 1345 bdev->bd_inode->i_flags &= ~S_DAX; 1346 } 1347 } else { 1348 if (bdev->bd_contains == bdev) { 1349 ret = 0; 1350 if (bdev->bd_disk->fops->open) 1351 ret = bdev->bd_disk->fops->open(bdev, mode); 1352 /* the same as first opener case, read comment there */ 1353 if (bdev->bd_invalidated) { 1354 if (!ret) 1355 rescan_partitions(bdev->bd_disk, bdev); 1356 else if (ret == -ENOMEDIUM) 1357 invalidate_partitions(bdev->bd_disk, bdev); 1358 } 1359 if (ret) 1360 goto out_unlock_bdev; 1361 } 1362 /* only one opener holds refs to the module and disk */ 1363 put_disk(disk); 1364 module_put(owner); 1365 } 1366 bdev->bd_openers++; 1367 if (for_part) 1368 bdev->bd_part_count++; 1369 mutex_unlock(&bdev->bd_mutex); 1370 disk_unblock_events(disk); 1371 return 0; 1372 1373 out_clear: 1374 disk_put_part(bdev->bd_part); 1375 bdev->bd_disk = NULL; 1376 bdev->bd_part = NULL; 1377 bdev->bd_queue = NULL; 1378 if (bdev != bdev->bd_contains) 1379 __blkdev_put(bdev->bd_contains, mode, 1); 1380 bdev->bd_contains = NULL; 1381 out_unlock_bdev: 1382 mutex_unlock(&bdev->bd_mutex); 1383 disk_unblock_events(disk); 1384 put_disk(disk); 1385 module_put(owner); 1386 out: 1387 bdput(bdev); 1388 1389 return ret; 1390} 1391 1392/** 1393 * blkdev_get - open a block device 1394 * @bdev: block_device to open 1395 * @mode: FMODE_* mask 1396 * @holder: exclusive holder identifier 1397 * 1398 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1399 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1400 * @holder is invalid. Exclusive opens may nest for the same @holder. 1401 * 1402 * On success, the reference count of @bdev is unchanged. On failure, 1403 * @bdev is put. 1404 * 1405 * CONTEXT: 1406 * Might sleep. 1407 * 1408 * RETURNS: 1409 * 0 on success, -errno on failure. 1410 */ 1411int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1412{ 1413 struct block_device *whole = NULL; 1414 int res; 1415 1416 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1417 1418 if ((mode & FMODE_EXCL) && holder) { 1419 whole = bd_start_claiming(bdev, holder); 1420 if (IS_ERR(whole)) { 1421 bdput(bdev); 1422 return PTR_ERR(whole); 1423 } 1424 } 1425 1426 res = __blkdev_get(bdev, mode, 0); 1427 1428 if (whole) { 1429 struct gendisk *disk = whole->bd_disk; 1430 1431 /* finish claiming */ 1432 mutex_lock(&bdev->bd_mutex); 1433 spin_lock(&bdev_lock); 1434 1435 if (!res) { 1436 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1437 /* 1438 * Note that for a whole device bd_holders 1439 * will be incremented twice, and bd_holder 1440 * will be set to bd_may_claim before being 1441 * set to holder 1442 */ 1443 whole->bd_holders++; 1444 whole->bd_holder = bd_may_claim; 1445 bdev->bd_holders++; 1446 bdev->bd_holder = holder; 1447 } 1448 1449 /* tell others that we're done */ 1450 BUG_ON(whole->bd_claiming != holder); 1451 whole->bd_claiming = NULL; 1452 wake_up_bit(&whole->bd_claiming, 0); 1453 1454 spin_unlock(&bdev_lock); 1455 1456 /* 1457 * Block event polling for write claims if requested. Any 1458 * write holder makes the write_holder state stick until 1459 * all are released. This is good enough and tracking 1460 * individual writeable reference is too fragile given the 1461 * way @mode is used in blkdev_get/put(). 1462 */ 1463 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1464 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1465 bdev->bd_write_holder = true; 1466 disk_block_events(disk); 1467 } 1468 1469 mutex_unlock(&bdev->bd_mutex); 1470 bdput(whole); 1471 } 1472 1473 return res; 1474} 1475EXPORT_SYMBOL(blkdev_get); 1476 1477/** 1478 * blkdev_get_by_path - open a block device by name 1479 * @path: path to the block device to open 1480 * @mode: FMODE_* mask 1481 * @holder: exclusive holder identifier 1482 * 1483 * Open the blockdevice described by the device file at @path. @mode 1484 * and @holder are identical to blkdev_get(). 1485 * 1486 * On success, the returned block_device has reference count of one. 1487 * 1488 * CONTEXT: 1489 * Might sleep. 1490 * 1491 * RETURNS: 1492 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1493 */ 1494struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1495 void *holder) 1496{ 1497 struct block_device *bdev; 1498 int err; 1499 1500 bdev = lookup_bdev(path); 1501 if (IS_ERR(bdev)) 1502 return bdev; 1503 1504 err = blkdev_get(bdev, mode, holder); 1505 if (err) 1506 return ERR_PTR(err); 1507 1508 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1509 blkdev_put(bdev, mode); 1510 return ERR_PTR(-EACCES); 1511 } 1512 1513 return bdev; 1514} 1515EXPORT_SYMBOL(blkdev_get_by_path); 1516 1517/** 1518 * blkdev_get_by_dev - open a block device by device number 1519 * @dev: device number of block device to open 1520 * @mode: FMODE_* mask 1521 * @holder: exclusive holder identifier 1522 * 1523 * Open the blockdevice described by device number @dev. @mode and 1524 * @holder are identical to blkdev_get(). 1525 * 1526 * Use it ONLY if you really do not have anything better - i.e. when 1527 * you are behind a truly sucky interface and all you are given is a 1528 * device number. _Never_ to be used for internal purposes. If you 1529 * ever need it - reconsider your API. 1530 * 1531 * On success, the returned block_device has reference count of one. 1532 * 1533 * CONTEXT: 1534 * Might sleep. 1535 * 1536 * RETURNS: 1537 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1538 */ 1539struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1540{ 1541 struct block_device *bdev; 1542 int err; 1543 1544 bdev = bdget(dev); 1545 if (!bdev) 1546 return ERR_PTR(-ENOMEM); 1547 1548 err = blkdev_get(bdev, mode, holder); 1549 if (err) 1550 return ERR_PTR(err); 1551 1552 return bdev; 1553} 1554EXPORT_SYMBOL(blkdev_get_by_dev); 1555 1556static int blkdev_open(struct inode * inode, struct file * filp) 1557{ 1558 struct block_device *bdev; 1559 1560 /* 1561 * Preserve backwards compatibility and allow large file access 1562 * even if userspace doesn't ask for it explicitly. Some mkfs 1563 * binary needs it. We might want to drop this workaround 1564 * during an unstable branch. 1565 */ 1566 filp->f_flags |= O_LARGEFILE; 1567 1568 if (filp->f_flags & O_NDELAY) 1569 filp->f_mode |= FMODE_NDELAY; 1570 if (filp->f_flags & O_EXCL) 1571 filp->f_mode |= FMODE_EXCL; 1572 if ((filp->f_flags & O_ACCMODE) == 3) 1573 filp->f_mode |= FMODE_WRITE_IOCTL; 1574 1575 bdev = bd_acquire(inode); 1576 if (bdev == NULL) 1577 return -ENOMEM; 1578 1579 filp->f_mapping = bdev->bd_inode->i_mapping; 1580 1581 return blkdev_get(bdev, filp->f_mode, filp); 1582} 1583 1584static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1585{ 1586 struct gendisk *disk = bdev->bd_disk; 1587 struct block_device *victim = NULL; 1588 1589 mutex_lock_nested(&bdev->bd_mutex, for_part); 1590 if (for_part) 1591 bdev->bd_part_count--; 1592 1593 if (!--bdev->bd_openers) { 1594 WARN_ON_ONCE(bdev->bd_holders); 1595 sync_blockdev(bdev); 1596 kill_bdev(bdev); 1597 1598 bdev_write_inode(bdev); 1599 /* 1600 * Detaching bdev inode from its wb in __destroy_inode() 1601 * is too late: the queue which embeds its bdi (along with 1602 * root wb) can be gone as soon as we put_disk() below. 1603 */ 1604 inode_detach_wb(bdev->bd_inode); 1605 } 1606 if (bdev->bd_contains == bdev) { 1607 if (disk->fops->release) 1608 disk->fops->release(disk, mode); 1609 } 1610 if (!bdev->bd_openers) { 1611 struct module *owner = disk->fops->owner; 1612 1613 disk_put_part(bdev->bd_part); 1614 bdev->bd_part = NULL; 1615 bdev->bd_disk = NULL; 1616 if (bdev != bdev->bd_contains) 1617 victim = bdev->bd_contains; 1618 bdev->bd_contains = NULL; 1619 1620 put_disk(disk); 1621 module_put(owner); 1622 } 1623 mutex_unlock(&bdev->bd_mutex); 1624 bdput(bdev); 1625 if (victim) 1626 __blkdev_put(victim, mode, 1); 1627} 1628 1629void blkdev_put(struct block_device *bdev, fmode_t mode) 1630{ 1631 mutex_lock(&bdev->bd_mutex); 1632 1633 if (mode & FMODE_EXCL) { 1634 bool bdev_free; 1635 1636 /* 1637 * Release a claim on the device. The holder fields 1638 * are protected with bdev_lock. bd_mutex is to 1639 * synchronize disk_holder unlinking. 1640 */ 1641 spin_lock(&bdev_lock); 1642 1643 WARN_ON_ONCE(--bdev->bd_holders < 0); 1644 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1645 1646 /* bd_contains might point to self, check in a separate step */ 1647 if ((bdev_free = !bdev->bd_holders)) 1648 bdev->bd_holder = NULL; 1649 if (!bdev->bd_contains->bd_holders) 1650 bdev->bd_contains->bd_holder = NULL; 1651 1652 spin_unlock(&bdev_lock); 1653 1654 /* 1655 * If this was the last claim, remove holder link and 1656 * unblock evpoll if it was a write holder. 1657 */ 1658 if (bdev_free && bdev->bd_write_holder) { 1659 disk_unblock_events(bdev->bd_disk); 1660 bdev->bd_write_holder = false; 1661 } 1662 } 1663 1664 /* 1665 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1666 * event. This is to ensure detection of media removal commanded 1667 * from userland - e.g. eject(1). 1668 */ 1669 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1670 1671 mutex_unlock(&bdev->bd_mutex); 1672 1673 __blkdev_put(bdev, mode, 0); 1674} 1675EXPORT_SYMBOL(blkdev_put); 1676 1677static int blkdev_close(struct inode * inode, struct file * filp) 1678{ 1679 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1680 blkdev_put(bdev, filp->f_mode); 1681 return 0; 1682} 1683 1684static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1685{ 1686 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1687 fmode_t mode = file->f_mode; 1688 1689 /* 1690 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1691 * to updated it before every ioctl. 1692 */ 1693 if (file->f_flags & O_NDELAY) 1694 mode |= FMODE_NDELAY; 1695 else 1696 mode &= ~FMODE_NDELAY; 1697 1698 return blkdev_ioctl(bdev, mode, cmd, arg); 1699} 1700 1701/* 1702 * Write data to the block device. Only intended for the block device itself 1703 * and the raw driver which basically is a fake block device. 1704 * 1705 * Does not take i_mutex for the write and thus is not for general purpose 1706 * use. 1707 */ 1708ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1709{ 1710 struct file *file = iocb->ki_filp; 1711 struct inode *bd_inode = bdev_file_inode(file); 1712 loff_t size = i_size_read(bd_inode); 1713 struct blk_plug plug; 1714 ssize_t ret; 1715 1716 if (bdev_read_only(I_BDEV(bd_inode))) 1717 return -EPERM; 1718 1719 if (!iov_iter_count(from)) 1720 return 0; 1721 1722 if (iocb->ki_pos >= size) 1723 return -ENOSPC; 1724 1725 iov_iter_truncate(from, size - iocb->ki_pos); 1726 1727 blk_start_plug(&plug); 1728 ret = __generic_file_write_iter(iocb, from); 1729 if (ret > 0) 1730 ret = generic_write_sync(iocb, ret); 1731 blk_finish_plug(&plug); 1732 return ret; 1733} 1734EXPORT_SYMBOL_GPL(blkdev_write_iter); 1735 1736ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1737{ 1738 struct file *file = iocb->ki_filp; 1739 struct inode *bd_inode = bdev_file_inode(file); 1740 loff_t size = i_size_read(bd_inode); 1741 loff_t pos = iocb->ki_pos; 1742 1743 if (pos >= size) 1744 return 0; 1745 1746 size -= pos; 1747 iov_iter_truncate(to, size); 1748 return generic_file_read_iter(iocb, to); 1749} 1750EXPORT_SYMBOL_GPL(blkdev_read_iter); 1751 1752/* 1753 * Try to release a page associated with block device when the system 1754 * is under memory pressure. 1755 */ 1756static int blkdev_releasepage(struct page *page, gfp_t wait) 1757{ 1758 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1759 1760 if (super && super->s_op->bdev_try_to_free_page) 1761 return super->s_op->bdev_try_to_free_page(super, page, wait); 1762 1763 return try_to_free_buffers(page); 1764} 1765 1766static int blkdev_writepages(struct address_space *mapping, 1767 struct writeback_control *wbc) 1768{ 1769 if (dax_mapping(mapping)) { 1770 struct block_device *bdev = I_BDEV(mapping->host); 1771 1772 return dax_writeback_mapping_range(mapping, bdev, wbc); 1773 } 1774 return generic_writepages(mapping, wbc); 1775} 1776 1777static const struct address_space_operations def_blk_aops = { 1778 .readpage = blkdev_readpage, 1779 .readpages = blkdev_readpages, 1780 .writepage = blkdev_writepage, 1781 .write_begin = blkdev_write_begin, 1782 .write_end = blkdev_write_end, 1783 .writepages = blkdev_writepages, 1784 .releasepage = blkdev_releasepage, 1785 .direct_IO = blkdev_direct_IO, 1786 .is_dirty_writeback = buffer_check_dirty_writeback, 1787}; 1788 1789const struct file_operations def_blk_fops = { 1790 .open = blkdev_open, 1791 .release = blkdev_close, 1792 .llseek = block_llseek, 1793 .read_iter = blkdev_read_iter, 1794 .write_iter = blkdev_write_iter, 1795 .mmap = generic_file_mmap, 1796 .fsync = blkdev_fsync, 1797 .unlocked_ioctl = block_ioctl, 1798#ifdef CONFIG_COMPAT 1799 .compat_ioctl = compat_blkdev_ioctl, 1800#endif 1801 .splice_read = generic_file_splice_read, 1802 .splice_write = iter_file_splice_write, 1803}; 1804 1805int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1806{ 1807 int res; 1808 mm_segment_t old_fs = get_fs(); 1809 set_fs(KERNEL_DS); 1810 res = blkdev_ioctl(bdev, 0, cmd, arg); 1811 set_fs(old_fs); 1812 return res; 1813} 1814 1815EXPORT_SYMBOL(ioctl_by_bdev); 1816 1817/** 1818 * lookup_bdev - lookup a struct block_device by name 1819 * @pathname: special file representing the block device 1820 * 1821 * Get a reference to the blockdevice at @pathname in the current 1822 * namespace if possible and return it. Return ERR_PTR(error) 1823 * otherwise. 1824 */ 1825struct block_device *lookup_bdev(const char *pathname) 1826{ 1827 struct block_device *bdev; 1828 struct inode *inode; 1829 struct path path; 1830 int error; 1831 1832 if (!pathname || !*pathname) 1833 return ERR_PTR(-EINVAL); 1834 1835 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1836 if (error) 1837 return ERR_PTR(error); 1838 1839 inode = d_backing_inode(path.dentry); 1840 error = -ENOTBLK; 1841 if (!S_ISBLK(inode->i_mode)) 1842 goto fail; 1843 error = -EACCES; 1844 if (!may_open_dev(&path)) 1845 goto fail; 1846 error = -ENOMEM; 1847 bdev = bd_acquire(inode); 1848 if (!bdev) 1849 goto fail; 1850out: 1851 path_put(&path); 1852 return bdev; 1853fail: 1854 bdev = ERR_PTR(error); 1855 goto out; 1856} 1857EXPORT_SYMBOL(lookup_bdev); 1858 1859int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1860{ 1861 struct super_block *sb = get_super(bdev); 1862 int res = 0; 1863 1864 if (sb) { 1865 /* 1866 * no need to lock the super, get_super holds the 1867 * read mutex so the filesystem cannot go away 1868 * under us (->put_super runs with the write lock 1869 * hold). 1870 */ 1871 shrink_dcache_sb(sb); 1872 res = invalidate_inodes(sb, kill_dirty); 1873 drop_super(sb); 1874 } 1875 invalidate_bdev(bdev); 1876 return res; 1877} 1878EXPORT_SYMBOL(__invalidate_device); 1879 1880void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1881{ 1882 struct inode *inode, *old_inode = NULL; 1883 1884 spin_lock(&blockdev_superblock->s_inode_list_lock); 1885 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1886 struct address_space *mapping = inode->i_mapping; 1887 1888 spin_lock(&inode->i_lock); 1889 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1890 mapping->nrpages == 0) { 1891 spin_unlock(&inode->i_lock); 1892 continue; 1893 } 1894 __iget(inode); 1895 spin_unlock(&inode->i_lock); 1896 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1897 /* 1898 * We hold a reference to 'inode' so it couldn't have been 1899 * removed from s_inodes list while we dropped the 1900 * s_inode_list_lock We cannot iput the inode now as we can 1901 * be holding the last reference and we cannot iput it under 1902 * s_inode_list_lock. So we keep the reference and iput it 1903 * later. 1904 */ 1905 iput(old_inode); 1906 old_inode = inode; 1907 1908 func(I_BDEV(inode), arg); 1909 1910 spin_lock(&blockdev_superblock->s_inode_list_lock); 1911 } 1912 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1913 iput(old_inode); 1914}