Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Macros for manipulating and testing page->flags
3 */
4
5#ifndef PAGE_FLAGS_H
6#define PAGE_FLAGS_H
7
8#include <linux/types.h>
9#include <linux/bug.h>
10#include <linux/mmdebug.h>
11#ifndef __GENERATING_BOUNDS_H
12#include <linux/mm_types.h>
13#include <generated/bounds.h>
14#endif /* !__GENERATING_BOUNDS_H */
15
16/*
17 * Various page->flags bits:
18 *
19 * PG_reserved is set for special pages, which can never be swapped out. Some
20 * of them might not even exist (eg empty_bad_page)...
21 *
22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
23 * specific data (which is normally at page->private). It can be used by
24 * private allocations for its own usage.
25 *
26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28 * is set before writeback starts and cleared when it finishes.
29 *
30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
31 * while it is held.
32 *
33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34 * to become unlocked.
35 *
36 * PG_uptodate tells whether the page's contents is valid. When a read
37 * completes, the page becomes uptodate, unless a disk I/O error happened.
38 *
39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40 * file-backed pagecache (see mm/vmscan.c).
41 *
42 * PG_error is set to indicate that an I/O error occurred on this page.
43 *
44 * PG_arch_1 is an architecture specific page state bit. The generic code
45 * guarantees that this bit is cleared for a page when it first is entered into
46 * the page cache.
47 *
48 * PG_highmem pages are not permanently mapped into the kernel virtual address
49 * space, they need to be kmapped separately for doing IO on the pages. The
50 * struct page (these bits with information) are always mapped into kernel
51 * address space...
52 *
53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
54 * data with incorrect ECC bits that triggered a machine check. Accessing is
55 * not safe since it may cause another machine check. Don't touch!
56 */
57
58/*
59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
60 * locked- and dirty-page accounting.
61 *
62 * The page flags field is split into two parts, the main flags area
63 * which extends from the low bits upwards, and the fields area which
64 * extends from the high bits downwards.
65 *
66 * | FIELD | ... | FLAGS |
67 * N-1 ^ 0
68 * (NR_PAGEFLAGS)
69 *
70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73 */
74enum pageflags {
75 PG_locked, /* Page is locked. Don't touch. */
76 PG_error,
77 PG_referenced,
78 PG_uptodate,
79 PG_dirty,
80 PG_lru,
81 PG_active,
82 PG_slab,
83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
84 PG_arch_1,
85 PG_reserved,
86 PG_private, /* If pagecache, has fs-private data */
87 PG_private_2, /* If pagecache, has fs aux data */
88 PG_writeback, /* Page is under writeback */
89 PG_head, /* A head page */
90 PG_swapcache, /* Swap page: swp_entry_t in private */
91 PG_mappedtodisk, /* Has blocks allocated on-disk */
92 PG_reclaim, /* To be reclaimed asap */
93 PG_swapbacked, /* Page is backed by RAM/swap */
94 PG_unevictable, /* Page is "unevictable" */
95#ifdef CONFIG_MMU
96 PG_mlocked, /* Page is vma mlocked */
97#endif
98#ifdef CONFIG_ARCH_USES_PG_UNCACHED
99 PG_uncached, /* Page has been mapped as uncached */
100#endif
101#ifdef CONFIG_MEMORY_FAILURE
102 PG_hwpoison, /* hardware poisoned page. Don't touch */
103#endif
104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
105 PG_young,
106 PG_idle,
107#endif
108 __NR_PAGEFLAGS,
109
110 /* Filesystems */
111 PG_checked = PG_owner_priv_1,
112
113 /* Two page bits are conscripted by FS-Cache to maintain local caching
114 * state. These bits are set on pages belonging to the netfs's inodes
115 * when those inodes are being locally cached.
116 */
117 PG_fscache = PG_private_2, /* page backed by cache */
118
119 /* XEN */
120 /* Pinned in Xen as a read-only pagetable page. */
121 PG_pinned = PG_owner_priv_1,
122 /* Pinned as part of domain save (see xen_mm_pin_all()). */
123 PG_savepinned = PG_dirty,
124 /* Has a grant mapping of another (foreign) domain's page. */
125 PG_foreign = PG_owner_priv_1,
126
127 /* SLOB */
128 PG_slob_free = PG_private,
129
130 /* Compound pages. Stored in first tail page's flags */
131 PG_double_map = PG_private_2,
132};
133
134#ifndef __GENERATING_BOUNDS_H
135
136struct page; /* forward declaration */
137
138static inline struct page *compound_head(struct page *page)
139{
140 unsigned long head = READ_ONCE(page->compound_head);
141
142 if (unlikely(head & 1))
143 return (struct page *) (head - 1);
144 return page;
145}
146
147static __always_inline int PageTail(struct page *page)
148{
149 return READ_ONCE(page->compound_head) & 1;
150}
151
152static __always_inline int PageCompound(struct page *page)
153{
154 return test_bit(PG_head, &page->flags) || PageTail(page);
155}
156
157/*
158 * Page flags policies wrt compound pages
159 *
160 * PF_ANY:
161 * the page flag is relevant for small, head and tail pages.
162 *
163 * PF_HEAD:
164 * for compound page all operations related to the page flag applied to
165 * head page.
166 *
167 * PF_NO_TAIL:
168 * modifications of the page flag must be done on small or head pages,
169 * checks can be done on tail pages too.
170 *
171 * PF_NO_COMPOUND:
172 * the page flag is not relevant for compound pages.
173 */
174#define PF_ANY(page, enforce) page
175#define PF_HEAD(page, enforce) compound_head(page)
176#define PF_NO_TAIL(page, enforce) ({ \
177 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
178 compound_head(page);})
179#define PF_NO_COMPOUND(page, enforce) ({ \
180 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
181 page;})
182
183/*
184 * Macros to create function definitions for page flags
185 */
186#define TESTPAGEFLAG(uname, lname, policy) \
187static __always_inline int Page##uname(struct page *page) \
188 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
189
190#define SETPAGEFLAG(uname, lname, policy) \
191static __always_inline void SetPage##uname(struct page *page) \
192 { set_bit(PG_##lname, &policy(page, 1)->flags); }
193
194#define CLEARPAGEFLAG(uname, lname, policy) \
195static __always_inline void ClearPage##uname(struct page *page) \
196 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
197
198#define __SETPAGEFLAG(uname, lname, policy) \
199static __always_inline void __SetPage##uname(struct page *page) \
200 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
201
202#define __CLEARPAGEFLAG(uname, lname, policy) \
203static __always_inline void __ClearPage##uname(struct page *page) \
204 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
205
206#define TESTSETFLAG(uname, lname, policy) \
207static __always_inline int TestSetPage##uname(struct page *page) \
208 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
209
210#define TESTCLEARFLAG(uname, lname, policy) \
211static __always_inline int TestClearPage##uname(struct page *page) \
212 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
213
214#define PAGEFLAG(uname, lname, policy) \
215 TESTPAGEFLAG(uname, lname, policy) \
216 SETPAGEFLAG(uname, lname, policy) \
217 CLEARPAGEFLAG(uname, lname, policy)
218
219#define __PAGEFLAG(uname, lname, policy) \
220 TESTPAGEFLAG(uname, lname, policy) \
221 __SETPAGEFLAG(uname, lname, policy) \
222 __CLEARPAGEFLAG(uname, lname, policy)
223
224#define TESTSCFLAG(uname, lname, policy) \
225 TESTSETFLAG(uname, lname, policy) \
226 TESTCLEARFLAG(uname, lname, policy)
227
228#define TESTPAGEFLAG_FALSE(uname) \
229static inline int Page##uname(const struct page *page) { return 0; }
230
231#define SETPAGEFLAG_NOOP(uname) \
232static inline void SetPage##uname(struct page *page) { }
233
234#define CLEARPAGEFLAG_NOOP(uname) \
235static inline void ClearPage##uname(struct page *page) { }
236
237#define __CLEARPAGEFLAG_NOOP(uname) \
238static inline void __ClearPage##uname(struct page *page) { }
239
240#define TESTSETFLAG_FALSE(uname) \
241static inline int TestSetPage##uname(struct page *page) { return 0; }
242
243#define TESTCLEARFLAG_FALSE(uname) \
244static inline int TestClearPage##uname(struct page *page) { return 0; }
245
246#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
247 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
248
249#define TESTSCFLAG_FALSE(uname) \
250 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
251
252__PAGEFLAG(Locked, locked, PF_NO_TAIL)
253PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
254PAGEFLAG(Referenced, referenced, PF_HEAD)
255 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
256 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
257PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
258 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
259PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
260PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
261 TESTCLEARFLAG(Active, active, PF_HEAD)
262__PAGEFLAG(Slab, slab, PF_NO_TAIL)
263__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
264PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
265
266/* Xen */
267PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
268 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
269PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
270PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
271
272PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
273 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
274PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
275 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
276 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
277
278/*
279 * Private page markings that may be used by the filesystem that owns the page
280 * for its own purposes.
281 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
282 */
283PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
284 __CLEARPAGEFLAG(Private, private, PF_ANY)
285PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
286PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
287 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
288
289/*
290 * Only test-and-set exist for PG_writeback. The unconditional operators are
291 * risky: they bypass page accounting.
292 */
293TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
294 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
295PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND)
296
297/* PG_readahead is only used for reads; PG_reclaim is only for writes */
298PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND)
299 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND)
300PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
301 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
302
303#ifdef CONFIG_HIGHMEM
304/*
305 * Must use a macro here due to header dependency issues. page_zone() is not
306 * available at this point.
307 */
308#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
309#else
310PAGEFLAG_FALSE(HighMem)
311#endif
312
313#ifdef CONFIG_SWAP
314PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
315#else
316PAGEFLAG_FALSE(SwapCache)
317#endif
318
319PAGEFLAG(Unevictable, unevictable, PF_HEAD)
320 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
321 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
322
323#ifdef CONFIG_MMU
324PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
325 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
326 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
327#else
328PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
329 TESTSCFLAG_FALSE(Mlocked)
330#endif
331
332#ifdef CONFIG_ARCH_USES_PG_UNCACHED
333PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
334#else
335PAGEFLAG_FALSE(Uncached)
336#endif
337
338#ifdef CONFIG_MEMORY_FAILURE
339PAGEFLAG(HWPoison, hwpoison, PF_ANY)
340TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
341#define __PG_HWPOISON (1UL << PG_hwpoison)
342#else
343PAGEFLAG_FALSE(HWPoison)
344#define __PG_HWPOISON 0
345#endif
346
347#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
348TESTPAGEFLAG(Young, young, PF_ANY)
349SETPAGEFLAG(Young, young, PF_ANY)
350TESTCLEARFLAG(Young, young, PF_ANY)
351PAGEFLAG(Idle, idle, PF_ANY)
352#endif
353
354/*
355 * On an anonymous page mapped into a user virtual memory area,
356 * page->mapping points to its anon_vma, not to a struct address_space;
357 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
358 *
359 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
360 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
361 * and then page->mapping points, not to an anon_vma, but to a private
362 * structure which KSM associates with that merged page. See ksm.h.
363 *
364 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
365 *
366 * Please note that, confusingly, "page_mapping" refers to the inode
367 * address_space which maps the page from disk; whereas "page_mapped"
368 * refers to user virtual address space into which the page is mapped.
369 */
370#define PAGE_MAPPING_ANON 1
371#define PAGE_MAPPING_KSM 2
372#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
373
374static __always_inline int PageAnonHead(struct page *page)
375{
376 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
377}
378
379static __always_inline int PageAnon(struct page *page)
380{
381 page = compound_head(page);
382 return PageAnonHead(page);
383}
384
385#ifdef CONFIG_KSM
386/*
387 * A KSM page is one of those write-protected "shared pages" or "merged pages"
388 * which KSM maps into multiple mms, wherever identical anonymous page content
389 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
390 * anon_vma, but to that page's node of the stable tree.
391 */
392static __always_inline int PageKsm(struct page *page)
393{
394 page = compound_head(page);
395 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
396 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
397}
398#else
399TESTPAGEFLAG_FALSE(Ksm)
400#endif
401
402u64 stable_page_flags(struct page *page);
403
404static inline int PageUptodate(struct page *page)
405{
406 int ret;
407 page = compound_head(page);
408 ret = test_bit(PG_uptodate, &(page)->flags);
409 /*
410 * Must ensure that the data we read out of the page is loaded
411 * _after_ we've loaded page->flags to check for PageUptodate.
412 * We can skip the barrier if the page is not uptodate, because
413 * we wouldn't be reading anything from it.
414 *
415 * See SetPageUptodate() for the other side of the story.
416 */
417 if (ret)
418 smp_rmb();
419
420 return ret;
421}
422
423static __always_inline void __SetPageUptodate(struct page *page)
424{
425 VM_BUG_ON_PAGE(PageTail(page), page);
426 smp_wmb();
427 __set_bit(PG_uptodate, &page->flags);
428}
429
430static __always_inline void SetPageUptodate(struct page *page)
431{
432 VM_BUG_ON_PAGE(PageTail(page), page);
433 /*
434 * Memory barrier must be issued before setting the PG_uptodate bit,
435 * so that all previous stores issued in order to bring the page
436 * uptodate are actually visible before PageUptodate becomes true.
437 */
438 smp_wmb();
439 set_bit(PG_uptodate, &page->flags);
440}
441
442CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
443
444int test_clear_page_writeback(struct page *page);
445int __test_set_page_writeback(struct page *page, bool keep_write);
446
447#define test_set_page_writeback(page) \
448 __test_set_page_writeback(page, false)
449#define test_set_page_writeback_keepwrite(page) \
450 __test_set_page_writeback(page, true)
451
452static inline void set_page_writeback(struct page *page)
453{
454 test_set_page_writeback(page);
455}
456
457static inline void set_page_writeback_keepwrite(struct page *page)
458{
459 test_set_page_writeback_keepwrite(page);
460}
461
462__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
463
464static __always_inline void set_compound_head(struct page *page, struct page *head)
465{
466 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
467}
468
469static __always_inline void clear_compound_head(struct page *page)
470{
471 WRITE_ONCE(page->compound_head, 0);
472}
473
474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
475static inline void ClearPageCompound(struct page *page)
476{
477 BUG_ON(!PageHead(page));
478 ClearPageHead(page);
479}
480#endif
481
482#define PG_head_mask ((1UL << PG_head))
483
484#ifdef CONFIG_HUGETLB_PAGE
485int PageHuge(struct page *page);
486int PageHeadHuge(struct page *page);
487bool page_huge_active(struct page *page);
488#else
489TESTPAGEFLAG_FALSE(Huge)
490TESTPAGEFLAG_FALSE(HeadHuge)
491
492static inline bool page_huge_active(struct page *page)
493{
494 return 0;
495}
496#endif
497
498
499#ifdef CONFIG_TRANSPARENT_HUGEPAGE
500/*
501 * PageHuge() only returns true for hugetlbfs pages, but not for
502 * normal or transparent huge pages.
503 *
504 * PageTransHuge() returns true for both transparent huge and
505 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
506 * called only in the core VM paths where hugetlbfs pages can't exist.
507 */
508static inline int PageTransHuge(struct page *page)
509{
510 VM_BUG_ON_PAGE(PageTail(page), page);
511 return PageHead(page);
512}
513
514/*
515 * PageTransCompound returns true for both transparent huge pages
516 * and hugetlbfs pages, so it should only be called when it's known
517 * that hugetlbfs pages aren't involved.
518 */
519static inline int PageTransCompound(struct page *page)
520{
521 return PageCompound(page);
522}
523
524/*
525 * PageTransCompoundMap is the same as PageTransCompound, but it also
526 * guarantees the primary MMU has the entire compound page mapped
527 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
528 * can also map the entire compound page. This allows the secondary
529 * MMUs to call get_user_pages() only once for each compound page and
530 * to immediately map the entire compound page with a single secondary
531 * MMU fault. If there will be a pmd split later, the secondary MMUs
532 * will get an update through the MMU notifier invalidation through
533 * split_huge_pmd().
534 *
535 * Unlike PageTransCompound, this is safe to be called only while
536 * split_huge_pmd() cannot run from under us, like if protected by the
537 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
538 * positives.
539 */
540static inline int PageTransCompoundMap(struct page *page)
541{
542 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
543}
544
545/*
546 * PageTransTail returns true for both transparent huge pages
547 * and hugetlbfs pages, so it should only be called when it's known
548 * that hugetlbfs pages aren't involved.
549 */
550static inline int PageTransTail(struct page *page)
551{
552 return PageTail(page);
553}
554
555/*
556 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
557 * as PMDs.
558 *
559 * This is required for optimization of rmap operations for THP: we can postpone
560 * per small page mapcount accounting (and its overhead from atomic operations)
561 * until the first PMD split.
562 *
563 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
564 * by one. This reference will go away with last compound_mapcount.
565 *
566 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
567 */
568static inline int PageDoubleMap(struct page *page)
569{
570 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
571}
572
573static inline int TestSetPageDoubleMap(struct page *page)
574{
575 VM_BUG_ON_PAGE(!PageHead(page), page);
576 return test_and_set_bit(PG_double_map, &page[1].flags);
577}
578
579static inline int TestClearPageDoubleMap(struct page *page)
580{
581 VM_BUG_ON_PAGE(!PageHead(page), page);
582 return test_and_clear_bit(PG_double_map, &page[1].flags);
583}
584
585#else
586TESTPAGEFLAG_FALSE(TransHuge)
587TESTPAGEFLAG_FALSE(TransCompound)
588TESTPAGEFLAG_FALSE(TransCompoundMap)
589TESTPAGEFLAG_FALSE(TransTail)
590TESTPAGEFLAG_FALSE(DoubleMap)
591 TESTSETFLAG_FALSE(DoubleMap)
592 TESTCLEARFLAG_FALSE(DoubleMap)
593#endif
594
595/*
596 * PageBuddy() indicate that the page is free and in the buddy system
597 * (see mm/page_alloc.c).
598 *
599 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
600 * -2 so that an underflow of the page_mapcount() won't be mistaken
601 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
602 * efficiently by most CPU architectures.
603 */
604#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
605
606static inline int PageBuddy(struct page *page)
607{
608 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
609}
610
611static inline void __SetPageBuddy(struct page *page)
612{
613 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
614 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
615}
616
617static inline void __ClearPageBuddy(struct page *page)
618{
619 VM_BUG_ON_PAGE(!PageBuddy(page), page);
620 atomic_set(&page->_mapcount, -1);
621}
622
623extern bool is_free_buddy_page(struct page *page);
624
625#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
626
627static inline int PageBalloon(struct page *page)
628{
629 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
630}
631
632static inline void __SetPageBalloon(struct page *page)
633{
634 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
635 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
636}
637
638static inline void __ClearPageBalloon(struct page *page)
639{
640 VM_BUG_ON_PAGE(!PageBalloon(page), page);
641 atomic_set(&page->_mapcount, -1);
642}
643
644/*
645 * If network-based swap is enabled, sl*b must keep track of whether pages
646 * were allocated from pfmemalloc reserves.
647 */
648static inline int PageSlabPfmemalloc(struct page *page)
649{
650 VM_BUG_ON_PAGE(!PageSlab(page), page);
651 return PageActive(page);
652}
653
654static inline void SetPageSlabPfmemalloc(struct page *page)
655{
656 VM_BUG_ON_PAGE(!PageSlab(page), page);
657 SetPageActive(page);
658}
659
660static inline void __ClearPageSlabPfmemalloc(struct page *page)
661{
662 VM_BUG_ON_PAGE(!PageSlab(page), page);
663 __ClearPageActive(page);
664}
665
666static inline void ClearPageSlabPfmemalloc(struct page *page)
667{
668 VM_BUG_ON_PAGE(!PageSlab(page), page);
669 ClearPageActive(page);
670}
671
672#ifdef CONFIG_MMU
673#define __PG_MLOCKED (1UL << PG_mlocked)
674#else
675#define __PG_MLOCKED 0
676#endif
677
678/*
679 * Flags checked when a page is freed. Pages being freed should not have
680 * these flags set. It they are, there is a problem.
681 */
682#define PAGE_FLAGS_CHECK_AT_FREE \
683 (1UL << PG_lru | 1UL << PG_locked | \
684 1UL << PG_private | 1UL << PG_private_2 | \
685 1UL << PG_writeback | 1UL << PG_reserved | \
686 1UL << PG_slab | 1UL << PG_swapcache | 1UL << PG_active | \
687 1UL << PG_unevictable | __PG_MLOCKED)
688
689/*
690 * Flags checked when a page is prepped for return by the page allocator.
691 * Pages being prepped should not have these flags set. It they are set,
692 * there has been a kernel bug or struct page corruption.
693 *
694 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
695 * alloc-free cycle to prevent from reusing the page.
696 */
697#define PAGE_FLAGS_CHECK_AT_PREP \
698 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
699
700#define PAGE_FLAGS_PRIVATE \
701 (1UL << PG_private | 1UL << PG_private_2)
702/**
703 * page_has_private - Determine if page has private stuff
704 * @page: The page to be checked
705 *
706 * Determine if a page has private stuff, indicating that release routines
707 * should be invoked upon it.
708 */
709static inline int page_has_private(struct page *page)
710{
711 return !!(page->flags & PAGE_FLAGS_PRIVATE);
712}
713
714#undef PF_ANY
715#undef PF_HEAD
716#undef PF_NO_TAIL
717#undef PF_NO_COMPOUND
718#endif /* !__GENERATING_BOUNDS_H */
719
720#endif /* PAGE_FLAGS_H */