at v4.7 22 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#include <linux/bug.h> 10#include <linux/mmdebug.h> 11#ifndef __GENERATING_BOUNDS_H 12#include <linux/mm_types.h> 13#include <generated/bounds.h> 14#endif /* !__GENERATING_BOUNDS_H */ 15 16/* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58/* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89 PG_head, /* A head page */ 90 PG_swapcache, /* Swap page: swp_entry_t in private */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95#ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97#endif 98#ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100#endif 101#ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103#endif 104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107#endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* Two page bits are conscripted by FS-Cache to maintain local caching 114 * state. These bits are set on pages belonging to the netfs's inodes 115 * when those inodes are being locally cached. 116 */ 117 PG_fscache = PG_private_2, /* page backed by cache */ 118 119 /* XEN */ 120 /* Pinned in Xen as a read-only pagetable page. */ 121 PG_pinned = PG_owner_priv_1, 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 123 PG_savepinned = PG_dirty, 124 /* Has a grant mapping of another (foreign) domain's page. */ 125 PG_foreign = PG_owner_priv_1, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129 130 /* Compound pages. Stored in first tail page's flags */ 131 PG_double_map = PG_private_2, 132}; 133 134#ifndef __GENERATING_BOUNDS_H 135 136struct page; /* forward declaration */ 137 138static inline struct page *compound_head(struct page *page) 139{ 140 unsigned long head = READ_ONCE(page->compound_head); 141 142 if (unlikely(head & 1)) 143 return (struct page *) (head - 1); 144 return page; 145} 146 147static __always_inline int PageTail(struct page *page) 148{ 149 return READ_ONCE(page->compound_head) & 1; 150} 151 152static __always_inline int PageCompound(struct page *page) 153{ 154 return test_bit(PG_head, &page->flags) || PageTail(page); 155} 156 157/* 158 * Page flags policies wrt compound pages 159 * 160 * PF_ANY: 161 * the page flag is relevant for small, head and tail pages. 162 * 163 * PF_HEAD: 164 * for compound page all operations related to the page flag applied to 165 * head page. 166 * 167 * PF_NO_TAIL: 168 * modifications of the page flag must be done on small or head pages, 169 * checks can be done on tail pages too. 170 * 171 * PF_NO_COMPOUND: 172 * the page flag is not relevant for compound pages. 173 */ 174#define PF_ANY(page, enforce) page 175#define PF_HEAD(page, enforce) compound_head(page) 176#define PF_NO_TAIL(page, enforce) ({ \ 177 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 178 compound_head(page);}) 179#define PF_NO_COMPOUND(page, enforce) ({ \ 180 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 181 page;}) 182 183/* 184 * Macros to create function definitions for page flags 185 */ 186#define TESTPAGEFLAG(uname, lname, policy) \ 187static __always_inline int Page##uname(struct page *page) \ 188 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 189 190#define SETPAGEFLAG(uname, lname, policy) \ 191static __always_inline void SetPage##uname(struct page *page) \ 192 { set_bit(PG_##lname, &policy(page, 1)->flags); } 193 194#define CLEARPAGEFLAG(uname, lname, policy) \ 195static __always_inline void ClearPage##uname(struct page *page) \ 196 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 197 198#define __SETPAGEFLAG(uname, lname, policy) \ 199static __always_inline void __SetPage##uname(struct page *page) \ 200 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 201 202#define __CLEARPAGEFLAG(uname, lname, policy) \ 203static __always_inline void __ClearPage##uname(struct page *page) \ 204 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 205 206#define TESTSETFLAG(uname, lname, policy) \ 207static __always_inline int TestSetPage##uname(struct page *page) \ 208 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 209 210#define TESTCLEARFLAG(uname, lname, policy) \ 211static __always_inline int TestClearPage##uname(struct page *page) \ 212 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 213 214#define PAGEFLAG(uname, lname, policy) \ 215 TESTPAGEFLAG(uname, lname, policy) \ 216 SETPAGEFLAG(uname, lname, policy) \ 217 CLEARPAGEFLAG(uname, lname, policy) 218 219#define __PAGEFLAG(uname, lname, policy) \ 220 TESTPAGEFLAG(uname, lname, policy) \ 221 __SETPAGEFLAG(uname, lname, policy) \ 222 __CLEARPAGEFLAG(uname, lname, policy) 223 224#define TESTSCFLAG(uname, lname, policy) \ 225 TESTSETFLAG(uname, lname, policy) \ 226 TESTCLEARFLAG(uname, lname, policy) 227 228#define TESTPAGEFLAG_FALSE(uname) \ 229static inline int Page##uname(const struct page *page) { return 0; } 230 231#define SETPAGEFLAG_NOOP(uname) \ 232static inline void SetPage##uname(struct page *page) { } 233 234#define CLEARPAGEFLAG_NOOP(uname) \ 235static inline void ClearPage##uname(struct page *page) { } 236 237#define __CLEARPAGEFLAG_NOOP(uname) \ 238static inline void __ClearPage##uname(struct page *page) { } 239 240#define TESTSETFLAG_FALSE(uname) \ 241static inline int TestSetPage##uname(struct page *page) { return 0; } 242 243#define TESTCLEARFLAG_FALSE(uname) \ 244static inline int TestClearPage##uname(struct page *page) { return 0; } 245 246#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 247 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 248 249#define TESTSCFLAG_FALSE(uname) \ 250 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 251 252__PAGEFLAG(Locked, locked, PF_NO_TAIL) 253PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 254PAGEFLAG(Referenced, referenced, PF_HEAD) 255 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 256 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 257PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 258 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 259PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 260PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 261 TESTCLEARFLAG(Active, active, PF_HEAD) 262__PAGEFLAG(Slab, slab, PF_NO_TAIL) 263__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 264PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 265 266/* Xen */ 267PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 268 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 269PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 270PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 271 272PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 273 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 274PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 275 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 276 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 277 278/* 279 * Private page markings that may be used by the filesystem that owns the page 280 * for its own purposes. 281 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 282 */ 283PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 284 __CLEARPAGEFLAG(Private, private, PF_ANY) 285PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 286PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 287 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 288 289/* 290 * Only test-and-set exist for PG_writeback. The unconditional operators are 291 * risky: they bypass page accounting. 292 */ 293TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 294 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 295PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND) 296 297/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 298PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND) 299 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND) 300PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 301 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 302 303#ifdef CONFIG_HIGHMEM 304/* 305 * Must use a macro here due to header dependency issues. page_zone() is not 306 * available at this point. 307 */ 308#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 309#else 310PAGEFLAG_FALSE(HighMem) 311#endif 312 313#ifdef CONFIG_SWAP 314PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 315#else 316PAGEFLAG_FALSE(SwapCache) 317#endif 318 319PAGEFLAG(Unevictable, unevictable, PF_HEAD) 320 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 321 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 322 323#ifdef CONFIG_MMU 324PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 325 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 326 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 327#else 328PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 329 TESTSCFLAG_FALSE(Mlocked) 330#endif 331 332#ifdef CONFIG_ARCH_USES_PG_UNCACHED 333PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 334#else 335PAGEFLAG_FALSE(Uncached) 336#endif 337 338#ifdef CONFIG_MEMORY_FAILURE 339PAGEFLAG(HWPoison, hwpoison, PF_ANY) 340TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 341#define __PG_HWPOISON (1UL << PG_hwpoison) 342#else 343PAGEFLAG_FALSE(HWPoison) 344#define __PG_HWPOISON 0 345#endif 346 347#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 348TESTPAGEFLAG(Young, young, PF_ANY) 349SETPAGEFLAG(Young, young, PF_ANY) 350TESTCLEARFLAG(Young, young, PF_ANY) 351PAGEFLAG(Idle, idle, PF_ANY) 352#endif 353 354/* 355 * On an anonymous page mapped into a user virtual memory area, 356 * page->mapping points to its anon_vma, not to a struct address_space; 357 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 358 * 359 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 360 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 361 * and then page->mapping points, not to an anon_vma, but to a private 362 * structure which KSM associates with that merged page. See ksm.h. 363 * 364 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 365 * 366 * Please note that, confusingly, "page_mapping" refers to the inode 367 * address_space which maps the page from disk; whereas "page_mapped" 368 * refers to user virtual address space into which the page is mapped. 369 */ 370#define PAGE_MAPPING_ANON 1 371#define PAGE_MAPPING_KSM 2 372#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 373 374static __always_inline int PageAnonHead(struct page *page) 375{ 376 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 377} 378 379static __always_inline int PageAnon(struct page *page) 380{ 381 page = compound_head(page); 382 return PageAnonHead(page); 383} 384 385#ifdef CONFIG_KSM 386/* 387 * A KSM page is one of those write-protected "shared pages" or "merged pages" 388 * which KSM maps into multiple mms, wherever identical anonymous page content 389 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 390 * anon_vma, but to that page's node of the stable tree. 391 */ 392static __always_inline int PageKsm(struct page *page) 393{ 394 page = compound_head(page); 395 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 396 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 397} 398#else 399TESTPAGEFLAG_FALSE(Ksm) 400#endif 401 402u64 stable_page_flags(struct page *page); 403 404static inline int PageUptodate(struct page *page) 405{ 406 int ret; 407 page = compound_head(page); 408 ret = test_bit(PG_uptodate, &(page)->flags); 409 /* 410 * Must ensure that the data we read out of the page is loaded 411 * _after_ we've loaded page->flags to check for PageUptodate. 412 * We can skip the barrier if the page is not uptodate, because 413 * we wouldn't be reading anything from it. 414 * 415 * See SetPageUptodate() for the other side of the story. 416 */ 417 if (ret) 418 smp_rmb(); 419 420 return ret; 421} 422 423static __always_inline void __SetPageUptodate(struct page *page) 424{ 425 VM_BUG_ON_PAGE(PageTail(page), page); 426 smp_wmb(); 427 __set_bit(PG_uptodate, &page->flags); 428} 429 430static __always_inline void SetPageUptodate(struct page *page) 431{ 432 VM_BUG_ON_PAGE(PageTail(page), page); 433 /* 434 * Memory barrier must be issued before setting the PG_uptodate bit, 435 * so that all previous stores issued in order to bring the page 436 * uptodate are actually visible before PageUptodate becomes true. 437 */ 438 smp_wmb(); 439 set_bit(PG_uptodate, &page->flags); 440} 441 442CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 443 444int test_clear_page_writeback(struct page *page); 445int __test_set_page_writeback(struct page *page, bool keep_write); 446 447#define test_set_page_writeback(page) \ 448 __test_set_page_writeback(page, false) 449#define test_set_page_writeback_keepwrite(page) \ 450 __test_set_page_writeback(page, true) 451 452static inline void set_page_writeback(struct page *page) 453{ 454 test_set_page_writeback(page); 455} 456 457static inline void set_page_writeback_keepwrite(struct page *page) 458{ 459 test_set_page_writeback_keepwrite(page); 460} 461 462__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 463 464static __always_inline void set_compound_head(struct page *page, struct page *head) 465{ 466 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 467} 468 469static __always_inline void clear_compound_head(struct page *page) 470{ 471 WRITE_ONCE(page->compound_head, 0); 472} 473 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE 475static inline void ClearPageCompound(struct page *page) 476{ 477 BUG_ON(!PageHead(page)); 478 ClearPageHead(page); 479} 480#endif 481 482#define PG_head_mask ((1UL << PG_head)) 483 484#ifdef CONFIG_HUGETLB_PAGE 485int PageHuge(struct page *page); 486int PageHeadHuge(struct page *page); 487bool page_huge_active(struct page *page); 488#else 489TESTPAGEFLAG_FALSE(Huge) 490TESTPAGEFLAG_FALSE(HeadHuge) 491 492static inline bool page_huge_active(struct page *page) 493{ 494 return 0; 495} 496#endif 497 498 499#ifdef CONFIG_TRANSPARENT_HUGEPAGE 500/* 501 * PageHuge() only returns true for hugetlbfs pages, but not for 502 * normal or transparent huge pages. 503 * 504 * PageTransHuge() returns true for both transparent huge and 505 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 506 * called only in the core VM paths where hugetlbfs pages can't exist. 507 */ 508static inline int PageTransHuge(struct page *page) 509{ 510 VM_BUG_ON_PAGE(PageTail(page), page); 511 return PageHead(page); 512} 513 514/* 515 * PageTransCompound returns true for both transparent huge pages 516 * and hugetlbfs pages, so it should only be called when it's known 517 * that hugetlbfs pages aren't involved. 518 */ 519static inline int PageTransCompound(struct page *page) 520{ 521 return PageCompound(page); 522} 523 524/* 525 * PageTransCompoundMap is the same as PageTransCompound, but it also 526 * guarantees the primary MMU has the entire compound page mapped 527 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 528 * can also map the entire compound page. This allows the secondary 529 * MMUs to call get_user_pages() only once for each compound page and 530 * to immediately map the entire compound page with a single secondary 531 * MMU fault. If there will be a pmd split later, the secondary MMUs 532 * will get an update through the MMU notifier invalidation through 533 * split_huge_pmd(). 534 * 535 * Unlike PageTransCompound, this is safe to be called only while 536 * split_huge_pmd() cannot run from under us, like if protected by the 537 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 538 * positives. 539 */ 540static inline int PageTransCompoundMap(struct page *page) 541{ 542 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 543} 544 545/* 546 * PageTransTail returns true for both transparent huge pages 547 * and hugetlbfs pages, so it should only be called when it's known 548 * that hugetlbfs pages aren't involved. 549 */ 550static inline int PageTransTail(struct page *page) 551{ 552 return PageTail(page); 553} 554 555/* 556 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 557 * as PMDs. 558 * 559 * This is required for optimization of rmap operations for THP: we can postpone 560 * per small page mapcount accounting (and its overhead from atomic operations) 561 * until the first PMD split. 562 * 563 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 564 * by one. This reference will go away with last compound_mapcount. 565 * 566 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 567 */ 568static inline int PageDoubleMap(struct page *page) 569{ 570 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 571} 572 573static inline int TestSetPageDoubleMap(struct page *page) 574{ 575 VM_BUG_ON_PAGE(!PageHead(page), page); 576 return test_and_set_bit(PG_double_map, &page[1].flags); 577} 578 579static inline int TestClearPageDoubleMap(struct page *page) 580{ 581 VM_BUG_ON_PAGE(!PageHead(page), page); 582 return test_and_clear_bit(PG_double_map, &page[1].flags); 583} 584 585#else 586TESTPAGEFLAG_FALSE(TransHuge) 587TESTPAGEFLAG_FALSE(TransCompound) 588TESTPAGEFLAG_FALSE(TransCompoundMap) 589TESTPAGEFLAG_FALSE(TransTail) 590TESTPAGEFLAG_FALSE(DoubleMap) 591 TESTSETFLAG_FALSE(DoubleMap) 592 TESTCLEARFLAG_FALSE(DoubleMap) 593#endif 594 595/* 596 * PageBuddy() indicate that the page is free and in the buddy system 597 * (see mm/page_alloc.c). 598 * 599 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 600 * -2 so that an underflow of the page_mapcount() won't be mistaken 601 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 602 * efficiently by most CPU architectures. 603 */ 604#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 605 606static inline int PageBuddy(struct page *page) 607{ 608 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 609} 610 611static inline void __SetPageBuddy(struct page *page) 612{ 613 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 614 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 615} 616 617static inline void __ClearPageBuddy(struct page *page) 618{ 619 VM_BUG_ON_PAGE(!PageBuddy(page), page); 620 atomic_set(&page->_mapcount, -1); 621} 622 623extern bool is_free_buddy_page(struct page *page); 624 625#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 626 627static inline int PageBalloon(struct page *page) 628{ 629 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 630} 631 632static inline void __SetPageBalloon(struct page *page) 633{ 634 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 635 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 636} 637 638static inline void __ClearPageBalloon(struct page *page) 639{ 640 VM_BUG_ON_PAGE(!PageBalloon(page), page); 641 atomic_set(&page->_mapcount, -1); 642} 643 644/* 645 * If network-based swap is enabled, sl*b must keep track of whether pages 646 * were allocated from pfmemalloc reserves. 647 */ 648static inline int PageSlabPfmemalloc(struct page *page) 649{ 650 VM_BUG_ON_PAGE(!PageSlab(page), page); 651 return PageActive(page); 652} 653 654static inline void SetPageSlabPfmemalloc(struct page *page) 655{ 656 VM_BUG_ON_PAGE(!PageSlab(page), page); 657 SetPageActive(page); 658} 659 660static inline void __ClearPageSlabPfmemalloc(struct page *page) 661{ 662 VM_BUG_ON_PAGE(!PageSlab(page), page); 663 __ClearPageActive(page); 664} 665 666static inline void ClearPageSlabPfmemalloc(struct page *page) 667{ 668 VM_BUG_ON_PAGE(!PageSlab(page), page); 669 ClearPageActive(page); 670} 671 672#ifdef CONFIG_MMU 673#define __PG_MLOCKED (1UL << PG_mlocked) 674#else 675#define __PG_MLOCKED 0 676#endif 677 678/* 679 * Flags checked when a page is freed. Pages being freed should not have 680 * these flags set. It they are, there is a problem. 681 */ 682#define PAGE_FLAGS_CHECK_AT_FREE \ 683 (1UL << PG_lru | 1UL << PG_locked | \ 684 1UL << PG_private | 1UL << PG_private_2 | \ 685 1UL << PG_writeback | 1UL << PG_reserved | \ 686 1UL << PG_slab | 1UL << PG_swapcache | 1UL << PG_active | \ 687 1UL << PG_unevictable | __PG_MLOCKED) 688 689/* 690 * Flags checked when a page is prepped for return by the page allocator. 691 * Pages being prepped should not have these flags set. It they are set, 692 * there has been a kernel bug or struct page corruption. 693 * 694 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 695 * alloc-free cycle to prevent from reusing the page. 696 */ 697#define PAGE_FLAGS_CHECK_AT_PREP \ 698 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 699 700#define PAGE_FLAGS_PRIVATE \ 701 (1UL << PG_private | 1UL << PG_private_2) 702/** 703 * page_has_private - Determine if page has private stuff 704 * @page: The page to be checked 705 * 706 * Determine if a page has private stuff, indicating that release routines 707 * should be invoked upon it. 708 */ 709static inline int page_has_private(struct page *page) 710{ 711 return !!(page->flags & PAGE_FLAGS_PRIVATE); 712} 713 714#undef PF_ANY 715#undef PF_HEAD 716#undef PF_NO_TAIL 717#undef PF_NO_COMPOUND 718#endif /* !__GENERATING_BOUNDS_H */ 719 720#endif /* PAGE_FLAGS_H */