at v4.7 39 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 67extern char * const migratetype_names[MIGRATE_TYPES]; 68 69#ifdef CONFIG_CMA 70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 71#else 72# define is_migrate_cma(migratetype) false 73#endif 74 75#define for_each_migratetype_order(order, type) \ 76 for (order = 0; order < MAX_ORDER; order++) \ 77 for (type = 0; type < MIGRATE_TYPES; type++) 78 79extern int page_group_by_mobility_disabled; 80 81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 83 84#define get_pageblock_migratetype(page) \ 85 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 86 PB_migrate_end, MIGRATETYPE_MASK) 87 88struct free_area { 89 struct list_head free_list[MIGRATE_TYPES]; 90 unsigned long nr_free; 91}; 92 93struct pglist_data; 94 95/* 96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 97 * So add a wild amount of padding here to ensure that they fall into separate 98 * cachelines. There are very few zone structures in the machine, so space 99 * consumption is not a concern here. 100 */ 101#if defined(CONFIG_SMP) 102struct zone_padding { 103 char x[0]; 104} ____cacheline_internodealigned_in_smp; 105#define ZONE_PADDING(name) struct zone_padding name; 106#else 107#define ZONE_PADDING(name) 108#endif 109 110enum zone_stat_item { 111 /* First 128 byte cacheline (assuming 64 bit words) */ 112 NR_FREE_PAGES, 113 NR_ALLOC_BATCH, 114 NR_LRU_BASE, 115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 116 NR_ACTIVE_ANON, /* " " " " " */ 117 NR_INACTIVE_FILE, /* " " " " " */ 118 NR_ACTIVE_FILE, /* " " " " " */ 119 NR_UNEVICTABLE, /* " " " " " */ 120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 121 NR_ANON_PAGES, /* Mapped anonymous pages */ 122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 123 only modified from process context */ 124 NR_FILE_PAGES, 125 NR_FILE_DIRTY, 126 NR_WRITEBACK, 127 NR_SLAB_RECLAIMABLE, 128 NR_SLAB_UNRECLAIMABLE, 129 NR_PAGETABLE, /* used for pagetables */ 130 NR_KERNEL_STACK, 131 /* Second 128 byte cacheline */ 132 NR_UNSTABLE_NFS, /* NFS unstable pages */ 133 NR_BOUNCE, 134 NR_VMSCAN_WRITE, 135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 140 NR_DIRTIED, /* page dirtyings since bootup */ 141 NR_WRITTEN, /* page writings since bootup */ 142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 143#ifdef CONFIG_NUMA 144 NUMA_HIT, /* allocated in intended node */ 145 NUMA_MISS, /* allocated in non intended node */ 146 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 147 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 148 NUMA_LOCAL, /* allocation from local node */ 149 NUMA_OTHER, /* allocation from other node */ 150#endif 151 WORKINGSET_REFAULT, 152 WORKINGSET_ACTIVATE, 153 WORKINGSET_NODERECLAIM, 154 NR_ANON_TRANSPARENT_HUGEPAGES, 155 NR_FREE_CMA_PAGES, 156 NR_VM_ZONE_STAT_ITEMS }; 157 158/* 159 * We do arithmetic on the LRU lists in various places in the code, 160 * so it is important to keep the active lists LRU_ACTIVE higher in 161 * the array than the corresponding inactive lists, and to keep 162 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 163 * 164 * This has to be kept in sync with the statistics in zone_stat_item 165 * above and the descriptions in vmstat_text in mm/vmstat.c 166 */ 167#define LRU_BASE 0 168#define LRU_ACTIVE 1 169#define LRU_FILE 2 170 171enum lru_list { 172 LRU_INACTIVE_ANON = LRU_BASE, 173 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 174 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 175 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 176 LRU_UNEVICTABLE, 177 NR_LRU_LISTS 178}; 179 180#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 181 182#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 183 184static inline int is_file_lru(enum lru_list lru) 185{ 186 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 187} 188 189static inline int is_active_lru(enum lru_list lru) 190{ 191 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 192} 193 194struct zone_reclaim_stat { 195 /* 196 * The pageout code in vmscan.c keeps track of how many of the 197 * mem/swap backed and file backed pages are referenced. 198 * The higher the rotated/scanned ratio, the more valuable 199 * that cache is. 200 * 201 * The anon LRU stats live in [0], file LRU stats in [1] 202 */ 203 unsigned long recent_rotated[2]; 204 unsigned long recent_scanned[2]; 205}; 206 207struct lruvec { 208 struct list_head lists[NR_LRU_LISTS]; 209 struct zone_reclaim_stat reclaim_stat; 210 /* Evictions & activations on the inactive file list */ 211 atomic_long_t inactive_age; 212#ifdef CONFIG_MEMCG 213 struct zone *zone; 214#endif 215}; 216 217/* Mask used at gathering information at once (see memcontrol.c) */ 218#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 219#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 220#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 221 222/* Isolate clean file */ 223#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 224/* Isolate unmapped file */ 225#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 226/* Isolate for asynchronous migration */ 227#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 228/* Isolate unevictable pages */ 229#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 230 231/* LRU Isolation modes. */ 232typedef unsigned __bitwise__ isolate_mode_t; 233 234enum zone_watermarks { 235 WMARK_MIN, 236 WMARK_LOW, 237 WMARK_HIGH, 238 NR_WMARK 239}; 240 241#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 242#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 243#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 244 245struct per_cpu_pages { 246 int count; /* number of pages in the list */ 247 int high; /* high watermark, emptying needed */ 248 int batch; /* chunk size for buddy add/remove */ 249 250 /* Lists of pages, one per migrate type stored on the pcp-lists */ 251 struct list_head lists[MIGRATE_PCPTYPES]; 252}; 253 254struct per_cpu_pageset { 255 struct per_cpu_pages pcp; 256#ifdef CONFIG_NUMA 257 s8 expire; 258#endif 259#ifdef CONFIG_SMP 260 s8 stat_threshold; 261 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 262#endif 263}; 264 265#endif /* !__GENERATING_BOUNDS.H */ 266 267enum zone_type { 268#ifdef CONFIG_ZONE_DMA 269 /* 270 * ZONE_DMA is used when there are devices that are not able 271 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 272 * carve out the portion of memory that is needed for these devices. 273 * The range is arch specific. 274 * 275 * Some examples 276 * 277 * Architecture Limit 278 * --------------------------- 279 * parisc, ia64, sparc <4G 280 * s390 <2G 281 * arm Various 282 * alpha Unlimited or 0-16MB. 283 * 284 * i386, x86_64 and multiple other arches 285 * <16M. 286 */ 287 ZONE_DMA, 288#endif 289#ifdef CONFIG_ZONE_DMA32 290 /* 291 * x86_64 needs two ZONE_DMAs because it supports devices that are 292 * only able to do DMA to the lower 16M but also 32 bit devices that 293 * can only do DMA areas below 4G. 294 */ 295 ZONE_DMA32, 296#endif 297 /* 298 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 299 * performed on pages in ZONE_NORMAL if the DMA devices support 300 * transfers to all addressable memory. 301 */ 302 ZONE_NORMAL, 303#ifdef CONFIG_HIGHMEM 304 /* 305 * A memory area that is only addressable by the kernel through 306 * mapping portions into its own address space. This is for example 307 * used by i386 to allow the kernel to address the memory beyond 308 * 900MB. The kernel will set up special mappings (page 309 * table entries on i386) for each page that the kernel needs to 310 * access. 311 */ 312 ZONE_HIGHMEM, 313#endif 314 ZONE_MOVABLE, 315#ifdef CONFIG_ZONE_DEVICE 316 ZONE_DEVICE, 317#endif 318 __MAX_NR_ZONES 319 320}; 321 322#ifndef __GENERATING_BOUNDS_H 323 324struct zone { 325 /* Read-mostly fields */ 326 327 /* zone watermarks, access with *_wmark_pages(zone) macros */ 328 unsigned long watermark[NR_WMARK]; 329 330 unsigned long nr_reserved_highatomic; 331 332 /* 333 * We don't know if the memory that we're going to allocate will be 334 * freeable or/and it will be released eventually, so to avoid totally 335 * wasting several GB of ram we must reserve some of the lower zone 336 * memory (otherwise we risk to run OOM on the lower zones despite 337 * there being tons of freeable ram on the higher zones). This array is 338 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 339 * changes. 340 */ 341 long lowmem_reserve[MAX_NR_ZONES]; 342 343#ifdef CONFIG_NUMA 344 int node; 345#endif 346 347 /* 348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 349 * this zone's LRU. Maintained by the pageout code. 350 */ 351 unsigned int inactive_ratio; 352 353 struct pglist_data *zone_pgdat; 354 struct per_cpu_pageset __percpu *pageset; 355 356 /* 357 * This is a per-zone reserve of pages that are not available 358 * to userspace allocations. 359 */ 360 unsigned long totalreserve_pages; 361 362#ifndef CONFIG_SPARSEMEM 363 /* 364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 365 * In SPARSEMEM, this map is stored in struct mem_section 366 */ 367 unsigned long *pageblock_flags; 368#endif /* CONFIG_SPARSEMEM */ 369 370#ifdef CONFIG_NUMA 371 /* 372 * zone reclaim becomes active if more unmapped pages exist. 373 */ 374 unsigned long min_unmapped_pages; 375 unsigned long min_slab_pages; 376#endif /* CONFIG_NUMA */ 377 378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 379 unsigned long zone_start_pfn; 380 381 /* 382 * spanned_pages is the total pages spanned by the zone, including 383 * holes, which is calculated as: 384 * spanned_pages = zone_end_pfn - zone_start_pfn; 385 * 386 * present_pages is physical pages existing within the zone, which 387 * is calculated as: 388 * present_pages = spanned_pages - absent_pages(pages in holes); 389 * 390 * managed_pages is present pages managed by the buddy system, which 391 * is calculated as (reserved_pages includes pages allocated by the 392 * bootmem allocator): 393 * managed_pages = present_pages - reserved_pages; 394 * 395 * So present_pages may be used by memory hotplug or memory power 396 * management logic to figure out unmanaged pages by checking 397 * (present_pages - managed_pages). And managed_pages should be used 398 * by page allocator and vm scanner to calculate all kinds of watermarks 399 * and thresholds. 400 * 401 * Locking rules: 402 * 403 * zone_start_pfn and spanned_pages are protected by span_seqlock. 404 * It is a seqlock because it has to be read outside of zone->lock, 405 * and it is done in the main allocator path. But, it is written 406 * quite infrequently. 407 * 408 * The span_seq lock is declared along with zone->lock because it is 409 * frequently read in proximity to zone->lock. It's good to 410 * give them a chance of being in the same cacheline. 411 * 412 * Write access to present_pages at runtime should be protected by 413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 414 * present_pages should get_online_mems() to get a stable value. 415 * 416 * Read access to managed_pages should be safe because it's unsigned 417 * long. Write access to zone->managed_pages and totalram_pages are 418 * protected by managed_page_count_lock at runtime. Idealy only 419 * adjust_managed_page_count() should be used instead of directly 420 * touching zone->managed_pages and totalram_pages. 421 */ 422 unsigned long managed_pages; 423 unsigned long spanned_pages; 424 unsigned long present_pages; 425 426 const char *name; 427 428#ifdef CONFIG_MEMORY_ISOLATION 429 /* 430 * Number of isolated pageblock. It is used to solve incorrect 431 * freepage counting problem due to racy retrieving migratetype 432 * of pageblock. Protected by zone->lock. 433 */ 434 unsigned long nr_isolate_pageblock; 435#endif 436 437#ifdef CONFIG_MEMORY_HOTPLUG 438 /* see spanned/present_pages for more description */ 439 seqlock_t span_seqlock; 440#endif 441 442 /* 443 * wait_table -- the array holding the hash table 444 * wait_table_hash_nr_entries -- the size of the hash table array 445 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 446 * 447 * The purpose of all these is to keep track of the people 448 * waiting for a page to become available and make them 449 * runnable again when possible. The trouble is that this 450 * consumes a lot of space, especially when so few things 451 * wait on pages at a given time. So instead of using 452 * per-page waitqueues, we use a waitqueue hash table. 453 * 454 * The bucket discipline is to sleep on the same queue when 455 * colliding and wake all in that wait queue when removing. 456 * When something wakes, it must check to be sure its page is 457 * truly available, a la thundering herd. The cost of a 458 * collision is great, but given the expected load of the 459 * table, they should be so rare as to be outweighed by the 460 * benefits from the saved space. 461 * 462 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 463 * primary users of these fields, and in mm/page_alloc.c 464 * free_area_init_core() performs the initialization of them. 465 */ 466 wait_queue_head_t *wait_table; 467 unsigned long wait_table_hash_nr_entries; 468 unsigned long wait_table_bits; 469 470 ZONE_PADDING(_pad1_) 471 /* free areas of different sizes */ 472 struct free_area free_area[MAX_ORDER]; 473 474 /* zone flags, see below */ 475 unsigned long flags; 476 477 /* Write-intensive fields used from the page allocator */ 478 spinlock_t lock; 479 480 ZONE_PADDING(_pad2_) 481 482 /* Write-intensive fields used by page reclaim */ 483 484 /* Fields commonly accessed by the page reclaim scanner */ 485 spinlock_t lru_lock; 486 struct lruvec lruvec; 487 488 /* 489 * When free pages are below this point, additional steps are taken 490 * when reading the number of free pages to avoid per-cpu counter 491 * drift allowing watermarks to be breached 492 */ 493 unsigned long percpu_drift_mark; 494 495#if defined CONFIG_COMPACTION || defined CONFIG_CMA 496 /* pfn where compaction free scanner should start */ 497 unsigned long compact_cached_free_pfn; 498 /* pfn where async and sync compaction migration scanner should start */ 499 unsigned long compact_cached_migrate_pfn[2]; 500#endif 501 502#ifdef CONFIG_COMPACTION 503 /* 504 * On compaction failure, 1<<compact_defer_shift compactions 505 * are skipped before trying again. The number attempted since 506 * last failure is tracked with compact_considered. 507 */ 508 unsigned int compact_considered; 509 unsigned int compact_defer_shift; 510 int compact_order_failed; 511#endif 512 513#if defined CONFIG_COMPACTION || defined CONFIG_CMA 514 /* Set to true when the PG_migrate_skip bits should be cleared */ 515 bool compact_blockskip_flush; 516#endif 517 518 bool contiguous; 519 520 ZONE_PADDING(_pad3_) 521 /* Zone statistics */ 522 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 523} ____cacheline_internodealigned_in_smp; 524 525enum zone_flags { 526 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 527 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 528 ZONE_CONGESTED, /* zone has many dirty pages backed by 529 * a congested BDI 530 */ 531 ZONE_DIRTY, /* reclaim scanning has recently found 532 * many dirty file pages at the tail 533 * of the LRU. 534 */ 535 ZONE_WRITEBACK, /* reclaim scanning has recently found 536 * many pages under writeback 537 */ 538 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 539}; 540 541static inline unsigned long zone_end_pfn(const struct zone *zone) 542{ 543 return zone->zone_start_pfn + zone->spanned_pages; 544} 545 546static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 547{ 548 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 549} 550 551static inline bool zone_is_initialized(struct zone *zone) 552{ 553 return !!zone->wait_table; 554} 555 556static inline bool zone_is_empty(struct zone *zone) 557{ 558 return zone->spanned_pages == 0; 559} 560 561/* 562 * The "priority" of VM scanning is how much of the queues we will scan in one 563 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 564 * queues ("queue_length >> 12") during an aging round. 565 */ 566#define DEF_PRIORITY 12 567 568/* Maximum number of zones on a zonelist */ 569#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 570 571enum { 572 ZONELIST_FALLBACK, /* zonelist with fallback */ 573#ifdef CONFIG_NUMA 574 /* 575 * The NUMA zonelists are doubled because we need zonelists that 576 * restrict the allocations to a single node for __GFP_THISNODE. 577 */ 578 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 579#endif 580 MAX_ZONELISTS 581}; 582 583/* 584 * This struct contains information about a zone in a zonelist. It is stored 585 * here to avoid dereferences into large structures and lookups of tables 586 */ 587struct zoneref { 588 struct zone *zone; /* Pointer to actual zone */ 589 int zone_idx; /* zone_idx(zoneref->zone) */ 590}; 591 592/* 593 * One allocation request operates on a zonelist. A zonelist 594 * is a list of zones, the first one is the 'goal' of the 595 * allocation, the other zones are fallback zones, in decreasing 596 * priority. 597 * 598 * To speed the reading of the zonelist, the zonerefs contain the zone index 599 * of the entry being read. Helper functions to access information given 600 * a struct zoneref are 601 * 602 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 603 * zonelist_zone_idx() - Return the index of the zone for an entry 604 * zonelist_node_idx() - Return the index of the node for an entry 605 */ 606struct zonelist { 607 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 608}; 609 610#ifndef CONFIG_DISCONTIGMEM 611/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 612extern struct page *mem_map; 613#endif 614 615/* 616 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 617 * (mostly NUMA machines?) to denote a higher-level memory zone than the 618 * zone denotes. 619 * 620 * On NUMA machines, each NUMA node would have a pg_data_t to describe 621 * it's memory layout. 622 * 623 * Memory statistics and page replacement data structures are maintained on a 624 * per-zone basis. 625 */ 626struct bootmem_data; 627typedef struct pglist_data { 628 struct zone node_zones[MAX_NR_ZONES]; 629 struct zonelist node_zonelists[MAX_ZONELISTS]; 630 int nr_zones; 631#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 632 struct page *node_mem_map; 633#ifdef CONFIG_PAGE_EXTENSION 634 struct page_ext *node_page_ext; 635#endif 636#endif 637#ifndef CONFIG_NO_BOOTMEM 638 struct bootmem_data *bdata; 639#endif 640#ifdef CONFIG_MEMORY_HOTPLUG 641 /* 642 * Must be held any time you expect node_start_pfn, node_present_pages 643 * or node_spanned_pages stay constant. Holding this will also 644 * guarantee that any pfn_valid() stays that way. 645 * 646 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 647 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 648 * 649 * Nests above zone->lock and zone->span_seqlock 650 */ 651 spinlock_t node_size_lock; 652#endif 653 unsigned long node_start_pfn; 654 unsigned long node_present_pages; /* total number of physical pages */ 655 unsigned long node_spanned_pages; /* total size of physical page 656 range, including holes */ 657 int node_id; 658 wait_queue_head_t kswapd_wait; 659 wait_queue_head_t pfmemalloc_wait; 660 struct task_struct *kswapd; /* Protected by 661 mem_hotplug_begin/end() */ 662 int kswapd_max_order; 663 enum zone_type classzone_idx; 664#ifdef CONFIG_COMPACTION 665 int kcompactd_max_order; 666 enum zone_type kcompactd_classzone_idx; 667 wait_queue_head_t kcompactd_wait; 668 struct task_struct *kcompactd; 669#endif 670#ifdef CONFIG_NUMA_BALANCING 671 /* Lock serializing the migrate rate limiting window */ 672 spinlock_t numabalancing_migrate_lock; 673 674 /* Rate limiting time interval */ 675 unsigned long numabalancing_migrate_next_window; 676 677 /* Number of pages migrated during the rate limiting time interval */ 678 unsigned long numabalancing_migrate_nr_pages; 679#endif 680 681#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 682 /* 683 * If memory initialisation on large machines is deferred then this 684 * is the first PFN that needs to be initialised. 685 */ 686 unsigned long first_deferred_pfn; 687#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 688 689#ifdef CONFIG_TRANSPARENT_HUGEPAGE 690 spinlock_t split_queue_lock; 691 struct list_head split_queue; 692 unsigned long split_queue_len; 693#endif 694} pg_data_t; 695 696#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 697#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 698#ifdef CONFIG_FLAT_NODE_MEM_MAP 699#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 700#else 701#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 702#endif 703#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 704 705#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 706#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 707 708static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 709{ 710 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 711} 712 713static inline bool pgdat_is_empty(pg_data_t *pgdat) 714{ 715 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 716} 717 718static inline int zone_id(const struct zone *zone) 719{ 720 struct pglist_data *pgdat = zone->zone_pgdat; 721 722 return zone - pgdat->node_zones; 723} 724 725#ifdef CONFIG_ZONE_DEVICE 726static inline bool is_dev_zone(const struct zone *zone) 727{ 728 return zone_id(zone) == ZONE_DEVICE; 729} 730#else 731static inline bool is_dev_zone(const struct zone *zone) 732{ 733 return false; 734} 735#endif 736 737#include <linux/memory_hotplug.h> 738 739extern struct mutex zonelists_mutex; 740void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 741void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 742bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 743 int classzone_idx, unsigned int alloc_flags, 744 long free_pages); 745bool zone_watermark_ok(struct zone *z, unsigned int order, 746 unsigned long mark, int classzone_idx, 747 unsigned int alloc_flags); 748bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 749 unsigned long mark, int classzone_idx); 750enum memmap_context { 751 MEMMAP_EARLY, 752 MEMMAP_HOTPLUG, 753}; 754extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 755 unsigned long size); 756 757extern void lruvec_init(struct lruvec *lruvec); 758 759static inline struct zone *lruvec_zone(struct lruvec *lruvec) 760{ 761#ifdef CONFIG_MEMCG 762 return lruvec->zone; 763#else 764 return container_of(lruvec, struct zone, lruvec); 765#endif 766} 767 768extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru); 769 770#ifdef CONFIG_HAVE_MEMORY_PRESENT 771void memory_present(int nid, unsigned long start, unsigned long end); 772#else 773static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 774#endif 775 776#ifdef CONFIG_HAVE_MEMORYLESS_NODES 777int local_memory_node(int node_id); 778#else 779static inline int local_memory_node(int node_id) { return node_id; }; 780#endif 781 782#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 783unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 784#endif 785 786/* 787 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 788 */ 789#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 790 791static inline int populated_zone(struct zone *zone) 792{ 793 return (!!zone->present_pages); 794} 795 796extern int movable_zone; 797 798#ifdef CONFIG_HIGHMEM 799static inline int zone_movable_is_highmem(void) 800{ 801#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 802 return movable_zone == ZONE_HIGHMEM; 803#else 804 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 805#endif 806} 807#endif 808 809static inline int is_highmem_idx(enum zone_type idx) 810{ 811#ifdef CONFIG_HIGHMEM 812 return (idx == ZONE_HIGHMEM || 813 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 814#else 815 return 0; 816#endif 817} 818 819/** 820 * is_highmem - helper function to quickly check if a struct zone is a 821 * highmem zone or not. This is an attempt to keep references 822 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 823 * @zone - pointer to struct zone variable 824 */ 825static inline int is_highmem(struct zone *zone) 826{ 827#ifdef CONFIG_HIGHMEM 828 return is_highmem_idx(zone_idx(zone)); 829#else 830 return 0; 831#endif 832} 833 834/* These two functions are used to setup the per zone pages min values */ 835struct ctl_table; 836int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 837 void __user *, size_t *, loff_t *); 838int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 839 void __user *, size_t *, loff_t *); 840extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 841int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 842 void __user *, size_t *, loff_t *); 843int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 844 void __user *, size_t *, loff_t *); 845int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 846 void __user *, size_t *, loff_t *); 847int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 848 void __user *, size_t *, loff_t *); 849 850extern int numa_zonelist_order_handler(struct ctl_table *, int, 851 void __user *, size_t *, loff_t *); 852extern char numa_zonelist_order[]; 853#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 854 855#ifndef CONFIG_NEED_MULTIPLE_NODES 856 857extern struct pglist_data contig_page_data; 858#define NODE_DATA(nid) (&contig_page_data) 859#define NODE_MEM_MAP(nid) mem_map 860 861#else /* CONFIG_NEED_MULTIPLE_NODES */ 862 863#include <asm/mmzone.h> 864 865#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 866 867extern struct pglist_data *first_online_pgdat(void); 868extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 869extern struct zone *next_zone(struct zone *zone); 870 871/** 872 * for_each_online_pgdat - helper macro to iterate over all online nodes 873 * @pgdat - pointer to a pg_data_t variable 874 */ 875#define for_each_online_pgdat(pgdat) \ 876 for (pgdat = first_online_pgdat(); \ 877 pgdat; \ 878 pgdat = next_online_pgdat(pgdat)) 879/** 880 * for_each_zone - helper macro to iterate over all memory zones 881 * @zone - pointer to struct zone variable 882 * 883 * The user only needs to declare the zone variable, for_each_zone 884 * fills it in. 885 */ 886#define for_each_zone(zone) \ 887 for (zone = (first_online_pgdat())->node_zones; \ 888 zone; \ 889 zone = next_zone(zone)) 890 891#define for_each_populated_zone(zone) \ 892 for (zone = (first_online_pgdat())->node_zones; \ 893 zone; \ 894 zone = next_zone(zone)) \ 895 if (!populated_zone(zone)) \ 896 ; /* do nothing */ \ 897 else 898 899static inline struct zone *zonelist_zone(struct zoneref *zoneref) 900{ 901 return zoneref->zone; 902} 903 904static inline int zonelist_zone_idx(struct zoneref *zoneref) 905{ 906 return zoneref->zone_idx; 907} 908 909static inline int zonelist_node_idx(struct zoneref *zoneref) 910{ 911#ifdef CONFIG_NUMA 912 /* zone_to_nid not available in this context */ 913 return zoneref->zone->node; 914#else 915 return 0; 916#endif /* CONFIG_NUMA */ 917} 918 919struct zoneref *__next_zones_zonelist(struct zoneref *z, 920 enum zone_type highest_zoneidx, 921 nodemask_t *nodes); 922 923/** 924 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 925 * @z - The cursor used as a starting point for the search 926 * @highest_zoneidx - The zone index of the highest zone to return 927 * @nodes - An optional nodemask to filter the zonelist with 928 * 929 * This function returns the next zone at or below a given zone index that is 930 * within the allowed nodemask using a cursor as the starting point for the 931 * search. The zoneref returned is a cursor that represents the current zone 932 * being examined. It should be advanced by one before calling 933 * next_zones_zonelist again. 934 */ 935static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 936 enum zone_type highest_zoneidx, 937 nodemask_t *nodes) 938{ 939 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 940 return z; 941 return __next_zones_zonelist(z, highest_zoneidx, nodes); 942} 943 944/** 945 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 946 * @zonelist - The zonelist to search for a suitable zone 947 * @highest_zoneidx - The zone index of the highest zone to return 948 * @nodes - An optional nodemask to filter the zonelist with 949 * @zone - The first suitable zone found is returned via this parameter 950 * 951 * This function returns the first zone at or below a given zone index that is 952 * within the allowed nodemask. The zoneref returned is a cursor that can be 953 * used to iterate the zonelist with next_zones_zonelist by advancing it by 954 * one before calling. 955 */ 956static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 957 enum zone_type highest_zoneidx, 958 nodemask_t *nodes) 959{ 960 return next_zones_zonelist(zonelist->_zonerefs, 961 highest_zoneidx, nodes); 962} 963 964/** 965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 966 * @zone - The current zone in the iterator 967 * @z - The current pointer within zonelist->zones being iterated 968 * @zlist - The zonelist being iterated 969 * @highidx - The zone index of the highest zone to return 970 * @nodemask - Nodemask allowed by the allocator 971 * 972 * This iterator iterates though all zones at or below a given zone index and 973 * within a given nodemask 974 */ 975#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 976 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 977 zone; \ 978 z = next_zones_zonelist(++z, highidx, nodemask), \ 979 zone = zonelist_zone(z)) 980 981#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 982 for (zone = z->zone; \ 983 zone; \ 984 z = next_zones_zonelist(++z, highidx, nodemask), \ 985 zone = zonelist_zone(z)) 986 987 988/** 989 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 990 * @zone - The current zone in the iterator 991 * @z - The current pointer within zonelist->zones being iterated 992 * @zlist - The zonelist being iterated 993 * @highidx - The zone index of the highest zone to return 994 * 995 * This iterator iterates though all zones at or below a given zone index. 996 */ 997#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 998 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 999 1000#ifdef CONFIG_SPARSEMEM 1001#include <asm/sparsemem.h> 1002#endif 1003 1004#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1005 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1006static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1007{ 1008 return 0; 1009} 1010#endif 1011 1012#ifdef CONFIG_FLATMEM 1013#define pfn_to_nid(pfn) (0) 1014#endif 1015 1016#ifdef CONFIG_SPARSEMEM 1017 1018/* 1019 * SECTION_SHIFT #bits space required to store a section # 1020 * 1021 * PA_SECTION_SHIFT physical address to/from section number 1022 * PFN_SECTION_SHIFT pfn to/from section number 1023 */ 1024#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1025#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1026 1027#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1028 1029#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1030#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1031 1032#define SECTION_BLOCKFLAGS_BITS \ 1033 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1034 1035#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1036#error Allocator MAX_ORDER exceeds SECTION_SIZE 1037#endif 1038 1039#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1040#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1041 1042#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1043#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1044 1045struct page; 1046struct page_ext; 1047struct mem_section { 1048 /* 1049 * This is, logically, a pointer to an array of struct 1050 * pages. However, it is stored with some other magic. 1051 * (see sparse.c::sparse_init_one_section()) 1052 * 1053 * Additionally during early boot we encode node id of 1054 * the location of the section here to guide allocation. 1055 * (see sparse.c::memory_present()) 1056 * 1057 * Making it a UL at least makes someone do a cast 1058 * before using it wrong. 1059 */ 1060 unsigned long section_mem_map; 1061 1062 /* See declaration of similar field in struct zone */ 1063 unsigned long *pageblock_flags; 1064#ifdef CONFIG_PAGE_EXTENSION 1065 /* 1066 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1067 * section. (see page_ext.h about this.) 1068 */ 1069 struct page_ext *page_ext; 1070 unsigned long pad; 1071#endif 1072 /* 1073 * WARNING: mem_section must be a power-of-2 in size for the 1074 * calculation and use of SECTION_ROOT_MASK to make sense. 1075 */ 1076}; 1077 1078#ifdef CONFIG_SPARSEMEM_EXTREME 1079#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1080#else 1081#define SECTIONS_PER_ROOT 1 1082#endif 1083 1084#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1085#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1086#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1087 1088#ifdef CONFIG_SPARSEMEM_EXTREME 1089extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1090#else 1091extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1092#endif 1093 1094static inline struct mem_section *__nr_to_section(unsigned long nr) 1095{ 1096 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1097 return NULL; 1098 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1099} 1100extern int __section_nr(struct mem_section* ms); 1101extern unsigned long usemap_size(void); 1102 1103/* 1104 * We use the lower bits of the mem_map pointer to store 1105 * a little bit of information. There should be at least 1106 * 3 bits here due to 32-bit alignment. 1107 */ 1108#define SECTION_MARKED_PRESENT (1UL<<0) 1109#define SECTION_HAS_MEM_MAP (1UL<<1) 1110#define SECTION_MAP_LAST_BIT (1UL<<2) 1111#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1112#define SECTION_NID_SHIFT 2 1113 1114static inline struct page *__section_mem_map_addr(struct mem_section *section) 1115{ 1116 unsigned long map = section->section_mem_map; 1117 map &= SECTION_MAP_MASK; 1118 return (struct page *)map; 1119} 1120 1121static inline int present_section(struct mem_section *section) 1122{ 1123 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1124} 1125 1126static inline int present_section_nr(unsigned long nr) 1127{ 1128 return present_section(__nr_to_section(nr)); 1129} 1130 1131static inline int valid_section(struct mem_section *section) 1132{ 1133 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1134} 1135 1136static inline int valid_section_nr(unsigned long nr) 1137{ 1138 return valid_section(__nr_to_section(nr)); 1139} 1140 1141static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1142{ 1143 return __nr_to_section(pfn_to_section_nr(pfn)); 1144} 1145 1146#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1147static inline int pfn_valid(unsigned long pfn) 1148{ 1149 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1150 return 0; 1151 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1152} 1153#endif 1154 1155static inline int pfn_present(unsigned long pfn) 1156{ 1157 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1158 return 0; 1159 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1160} 1161 1162/* 1163 * These are _only_ used during initialisation, therefore they 1164 * can use __initdata ... They could have names to indicate 1165 * this restriction. 1166 */ 1167#ifdef CONFIG_NUMA 1168#define pfn_to_nid(pfn) \ 1169({ \ 1170 unsigned long __pfn_to_nid_pfn = (pfn); \ 1171 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1172}) 1173#else 1174#define pfn_to_nid(pfn) (0) 1175#endif 1176 1177#define early_pfn_valid(pfn) pfn_valid(pfn) 1178void sparse_init(void); 1179#else 1180#define sparse_init() do {} while (0) 1181#define sparse_index_init(_sec, _nid) do {} while (0) 1182#endif /* CONFIG_SPARSEMEM */ 1183 1184/* 1185 * During memory init memblocks map pfns to nids. The search is expensive and 1186 * this caches recent lookups. The implementation of __early_pfn_to_nid 1187 * may treat start/end as pfns or sections. 1188 */ 1189struct mminit_pfnnid_cache { 1190 unsigned long last_start; 1191 unsigned long last_end; 1192 int last_nid; 1193}; 1194 1195#ifndef early_pfn_valid 1196#define early_pfn_valid(pfn) (1) 1197#endif 1198 1199void memory_present(int nid, unsigned long start, unsigned long end); 1200unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1201 1202/* 1203 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1204 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1205 * pfn_valid_within() should be used in this case; we optimise this away 1206 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1207 */ 1208#ifdef CONFIG_HOLES_IN_ZONE 1209#define pfn_valid_within(pfn) pfn_valid(pfn) 1210#else 1211#define pfn_valid_within(pfn) (1) 1212#endif 1213 1214#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1215/* 1216 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1217 * associated with it or not. In FLATMEM, it is expected that holes always 1218 * have valid memmap as long as there is valid PFNs either side of the hole. 1219 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1220 * entire section. 1221 * 1222 * However, an ARM, and maybe other embedded architectures in the future 1223 * free memmap backing holes to save memory on the assumption the memmap is 1224 * never used. The page_zone linkages are then broken even though pfn_valid() 1225 * returns true. A walker of the full memmap must then do this additional 1226 * check to ensure the memmap they are looking at is sane by making sure 1227 * the zone and PFN linkages are still valid. This is expensive, but walkers 1228 * of the full memmap are extremely rare. 1229 */ 1230bool memmap_valid_within(unsigned long pfn, 1231 struct page *page, struct zone *zone); 1232#else 1233static inline bool memmap_valid_within(unsigned long pfn, 1234 struct page *page, struct zone *zone) 1235{ 1236 return true; 1237} 1238#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1239 1240#endif /* !__GENERATING_BOUNDS.H */ 1241#endif /* !__ASSEMBLY__ */ 1242#endif /* _LINUX_MMZONE_H */