at v4.7 23 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mmzone.h> 30#include <linux/writeback.h> 31#include <linux/page-flags.h> 32 33struct mem_cgroup; 34struct page; 35struct mm_struct; 36struct kmem_cache; 37 38/* 39 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 40 * These two lists should keep in accord with each other. 41 */ 42enum mem_cgroup_stat_index { 43 /* 44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 45 */ 46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 47 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 48 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 49 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 50 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */ 51 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 52 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 53 MEM_CGROUP_STAT_NSTATS, 54 /* default hierarchy stats */ 55 MEMCG_KERNEL_STACK = MEM_CGROUP_STAT_NSTATS, 56 MEMCG_SLAB_RECLAIMABLE, 57 MEMCG_SLAB_UNRECLAIMABLE, 58 MEMCG_SOCK, 59 MEMCG_NR_STAT, 60}; 61 62struct mem_cgroup_reclaim_cookie { 63 struct zone *zone; 64 int priority; 65 unsigned int generation; 66}; 67 68enum mem_cgroup_events_index { 69 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 70 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 71 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 72 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 73 MEM_CGROUP_EVENTS_NSTATS, 74 /* default hierarchy events */ 75 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS, 76 MEMCG_HIGH, 77 MEMCG_MAX, 78 MEMCG_OOM, 79 MEMCG_NR_EVENTS, 80}; 81 82/* 83 * Per memcg event counter is incremented at every pagein/pageout. With THP, 84 * it will be incremated by the number of pages. This counter is used for 85 * for trigger some periodic events. This is straightforward and better 86 * than using jiffies etc. to handle periodic memcg event. 87 */ 88enum mem_cgroup_events_target { 89 MEM_CGROUP_TARGET_THRESH, 90 MEM_CGROUP_TARGET_SOFTLIMIT, 91 MEM_CGROUP_TARGET_NUMAINFO, 92 MEM_CGROUP_NTARGETS, 93}; 94 95#ifdef CONFIG_MEMCG 96 97#define MEM_CGROUP_ID_SHIFT 16 98#define MEM_CGROUP_ID_MAX USHRT_MAX 99 100struct mem_cgroup_id { 101 int id; 102 atomic_t ref; 103}; 104 105struct mem_cgroup_stat_cpu { 106 long count[MEMCG_NR_STAT]; 107 unsigned long events[MEMCG_NR_EVENTS]; 108 unsigned long nr_page_events; 109 unsigned long targets[MEM_CGROUP_NTARGETS]; 110}; 111 112struct mem_cgroup_reclaim_iter { 113 struct mem_cgroup *position; 114 /* scan generation, increased every round-trip */ 115 unsigned int generation; 116}; 117 118/* 119 * per-zone information in memory controller. 120 */ 121struct mem_cgroup_per_zone { 122 struct lruvec lruvec; 123 unsigned long lru_size[NR_LRU_LISTS]; 124 125 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 126 127 struct rb_node tree_node; /* RB tree node */ 128 unsigned long usage_in_excess;/* Set to the value by which */ 129 /* the soft limit is exceeded*/ 130 bool on_tree; 131 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 132 /* use container_of */ 133}; 134 135struct mem_cgroup_per_node { 136 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 137}; 138 139struct mem_cgroup_threshold { 140 struct eventfd_ctx *eventfd; 141 unsigned long threshold; 142}; 143 144/* For threshold */ 145struct mem_cgroup_threshold_ary { 146 /* An array index points to threshold just below or equal to usage. */ 147 int current_threshold; 148 /* Size of entries[] */ 149 unsigned int size; 150 /* Array of thresholds */ 151 struct mem_cgroup_threshold entries[0]; 152}; 153 154struct mem_cgroup_thresholds { 155 /* Primary thresholds array */ 156 struct mem_cgroup_threshold_ary *primary; 157 /* 158 * Spare threshold array. 159 * This is needed to make mem_cgroup_unregister_event() "never fail". 160 * It must be able to store at least primary->size - 1 entries. 161 */ 162 struct mem_cgroup_threshold_ary *spare; 163}; 164 165enum memcg_kmem_state { 166 KMEM_NONE, 167 KMEM_ALLOCATED, 168 KMEM_ONLINE, 169}; 170 171/* 172 * The memory controller data structure. The memory controller controls both 173 * page cache and RSS per cgroup. We would eventually like to provide 174 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 175 * to help the administrator determine what knobs to tune. 176 */ 177struct mem_cgroup { 178 struct cgroup_subsys_state css; 179 180 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 181 struct mem_cgroup_id id; 182 183 /* Accounted resources */ 184 struct page_counter memory; 185 struct page_counter swap; 186 187 /* Legacy consumer-oriented counters */ 188 struct page_counter memsw; 189 struct page_counter kmem; 190 struct page_counter tcpmem; 191 192 /* Normal memory consumption range */ 193 unsigned long low; 194 unsigned long high; 195 196 /* Range enforcement for interrupt charges */ 197 struct work_struct high_work; 198 199 unsigned long soft_limit; 200 201 /* vmpressure notifications */ 202 struct vmpressure vmpressure; 203 204 /* 205 * Should the accounting and control be hierarchical, per subtree? 206 */ 207 bool use_hierarchy; 208 209 /* protected by memcg_oom_lock */ 210 bool oom_lock; 211 int under_oom; 212 213 int swappiness; 214 /* OOM-Killer disable */ 215 int oom_kill_disable; 216 217 /* handle for "memory.events" */ 218 struct cgroup_file events_file; 219 220 /* protect arrays of thresholds */ 221 struct mutex thresholds_lock; 222 223 /* thresholds for memory usage. RCU-protected */ 224 struct mem_cgroup_thresholds thresholds; 225 226 /* thresholds for mem+swap usage. RCU-protected */ 227 struct mem_cgroup_thresholds memsw_thresholds; 228 229 /* For oom notifier event fd */ 230 struct list_head oom_notify; 231 232 /* 233 * Should we move charges of a task when a task is moved into this 234 * mem_cgroup ? And what type of charges should we move ? 235 */ 236 unsigned long move_charge_at_immigrate; 237 /* 238 * set > 0 if pages under this cgroup are moving to other cgroup. 239 */ 240 atomic_t moving_account; 241 /* taken only while moving_account > 0 */ 242 spinlock_t move_lock; 243 struct task_struct *move_lock_task; 244 unsigned long move_lock_flags; 245 /* 246 * percpu counter. 247 */ 248 struct mem_cgroup_stat_cpu __percpu *stat; 249 250 unsigned long socket_pressure; 251 252 /* Legacy tcp memory accounting */ 253 bool tcpmem_active; 254 int tcpmem_pressure; 255 256#ifndef CONFIG_SLOB 257 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 258 int kmemcg_id; 259 enum memcg_kmem_state kmem_state; 260#endif 261 262 int last_scanned_node; 263#if MAX_NUMNODES > 1 264 nodemask_t scan_nodes; 265 atomic_t numainfo_events; 266 atomic_t numainfo_updating; 267#endif 268 269#ifdef CONFIG_CGROUP_WRITEBACK 270 struct list_head cgwb_list; 271 struct wb_domain cgwb_domain; 272#endif 273 274 /* List of events which userspace want to receive */ 275 struct list_head event_list; 276 spinlock_t event_list_lock; 277 278 struct mem_cgroup_per_node *nodeinfo[0]; 279 /* WARNING: nodeinfo must be the last member here */ 280}; 281 282extern struct mem_cgroup *root_mem_cgroup; 283 284static inline bool mem_cgroup_disabled(void) 285{ 286 return !cgroup_subsys_enabled(memory_cgrp_subsys); 287} 288 289/** 290 * mem_cgroup_events - count memory events against a cgroup 291 * @memcg: the memory cgroup 292 * @idx: the event index 293 * @nr: the number of events to account for 294 */ 295static inline void mem_cgroup_events(struct mem_cgroup *memcg, 296 enum mem_cgroup_events_index idx, 297 unsigned int nr) 298{ 299 this_cpu_add(memcg->stat->events[idx], nr); 300 cgroup_file_notify(&memcg->events_file); 301} 302 303bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 304 305int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 306 gfp_t gfp_mask, struct mem_cgroup **memcgp, 307 bool compound); 308void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 309 bool lrucare, bool compound); 310void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 311 bool compound); 312void mem_cgroup_uncharge(struct page *page); 313void mem_cgroup_uncharge_list(struct list_head *page_list); 314 315void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 316 317struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 318struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 319 320bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 321struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 322 323static inline 324struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 325 return css ? container_of(css, struct mem_cgroup, css) : NULL; 326} 327 328#define mem_cgroup_from_counter(counter, member) \ 329 container_of(counter, struct mem_cgroup, member) 330 331struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 332 struct mem_cgroup *, 333 struct mem_cgroup_reclaim_cookie *); 334void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 335 336static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 337{ 338 if (mem_cgroup_disabled()) 339 return 0; 340 341 return memcg->id.id; 342} 343struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 344 345/** 346 * parent_mem_cgroup - find the accounting parent of a memcg 347 * @memcg: memcg whose parent to find 348 * 349 * Returns the parent memcg, or NULL if this is the root or the memory 350 * controller is in legacy no-hierarchy mode. 351 */ 352static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 353{ 354 if (!memcg->memory.parent) 355 return NULL; 356 return mem_cgroup_from_counter(memcg->memory.parent, memory); 357} 358 359static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 360 struct mem_cgroup *root) 361{ 362 if (root == memcg) 363 return true; 364 if (!root->use_hierarchy) 365 return false; 366 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 367} 368 369static inline bool mm_match_cgroup(struct mm_struct *mm, 370 struct mem_cgroup *memcg) 371{ 372 struct mem_cgroup *task_memcg; 373 bool match = false; 374 375 rcu_read_lock(); 376 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 377 if (task_memcg) 378 match = mem_cgroup_is_descendant(task_memcg, memcg); 379 rcu_read_unlock(); 380 return match; 381} 382 383struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 384ino_t page_cgroup_ino(struct page *page); 385 386static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 387{ 388 if (mem_cgroup_disabled()) 389 return true; 390 return !!(memcg->css.flags & CSS_ONLINE); 391} 392 393/* 394 * For memory reclaim. 395 */ 396int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 397 398void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 399 int nr_pages); 400 401unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 402 int nid, unsigned int lru_mask); 403 404static inline 405unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 406{ 407 struct mem_cgroup_per_zone *mz; 408 409 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 410 return mz->lru_size[lru]; 411} 412 413void mem_cgroup_handle_over_high(void); 414 415void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 416 struct task_struct *p); 417 418static inline void mem_cgroup_oom_enable(void) 419{ 420 WARN_ON(current->memcg_may_oom); 421 current->memcg_may_oom = 1; 422} 423 424static inline void mem_cgroup_oom_disable(void) 425{ 426 WARN_ON(!current->memcg_may_oom); 427 current->memcg_may_oom = 0; 428} 429 430static inline bool task_in_memcg_oom(struct task_struct *p) 431{ 432 return p->memcg_in_oom; 433} 434 435bool mem_cgroup_oom_synchronize(bool wait); 436 437#ifdef CONFIG_MEMCG_SWAP 438extern int do_swap_account; 439#endif 440 441void lock_page_memcg(struct page *page); 442void unlock_page_memcg(struct page *page); 443 444/** 445 * mem_cgroup_update_page_stat - update page state statistics 446 * @page: the page 447 * @idx: page state item to account 448 * @val: number of pages (positive or negative) 449 * 450 * The @page must be locked or the caller must use lock_page_memcg() 451 * to prevent double accounting when the page is concurrently being 452 * moved to another memcg: 453 * 454 * lock_page(page) or lock_page_memcg(page) 455 * if (TestClearPageState(page)) 456 * mem_cgroup_update_page_stat(page, state, -1); 457 * unlock_page(page) or unlock_page_memcg(page) 458 */ 459static inline void mem_cgroup_update_page_stat(struct page *page, 460 enum mem_cgroup_stat_index idx, int val) 461{ 462 VM_BUG_ON(!(rcu_read_lock_held() || PageLocked(page))); 463 464 if (page->mem_cgroup) 465 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 466} 467 468static inline void mem_cgroup_inc_page_stat(struct page *page, 469 enum mem_cgroup_stat_index idx) 470{ 471 mem_cgroup_update_page_stat(page, idx, 1); 472} 473 474static inline void mem_cgroup_dec_page_stat(struct page *page, 475 enum mem_cgroup_stat_index idx) 476{ 477 mem_cgroup_update_page_stat(page, idx, -1); 478} 479 480unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 481 gfp_t gfp_mask, 482 unsigned long *total_scanned); 483 484static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 485 enum vm_event_item idx) 486{ 487 struct mem_cgroup *memcg; 488 489 if (mem_cgroup_disabled()) 490 return; 491 492 rcu_read_lock(); 493 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 494 if (unlikely(!memcg)) 495 goto out; 496 497 switch (idx) { 498 case PGFAULT: 499 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 500 break; 501 case PGMAJFAULT: 502 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 503 break; 504 default: 505 BUG(); 506 } 507out: 508 rcu_read_unlock(); 509} 510#ifdef CONFIG_TRANSPARENT_HUGEPAGE 511void mem_cgroup_split_huge_fixup(struct page *head); 512#endif 513 514#else /* CONFIG_MEMCG */ 515 516#define MEM_CGROUP_ID_SHIFT 0 517#define MEM_CGROUP_ID_MAX 0 518 519struct mem_cgroup; 520 521static inline bool mem_cgroup_disabled(void) 522{ 523 return true; 524} 525 526static inline void mem_cgroup_events(struct mem_cgroup *memcg, 527 enum mem_cgroup_events_index idx, 528 unsigned int nr) 529{ 530} 531 532static inline bool mem_cgroup_low(struct mem_cgroup *root, 533 struct mem_cgroup *memcg) 534{ 535 return false; 536} 537 538static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 539 gfp_t gfp_mask, 540 struct mem_cgroup **memcgp, 541 bool compound) 542{ 543 *memcgp = NULL; 544 return 0; 545} 546 547static inline void mem_cgroup_commit_charge(struct page *page, 548 struct mem_cgroup *memcg, 549 bool lrucare, bool compound) 550{ 551} 552 553static inline void mem_cgroup_cancel_charge(struct page *page, 554 struct mem_cgroup *memcg, 555 bool compound) 556{ 557} 558 559static inline void mem_cgroup_uncharge(struct page *page) 560{ 561} 562 563static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 564{ 565} 566 567static inline void mem_cgroup_migrate(struct page *old, struct page *new) 568{ 569} 570 571static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 572 struct mem_cgroup *memcg) 573{ 574 return &zone->lruvec; 575} 576 577static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 578 struct zone *zone) 579{ 580 return &zone->lruvec; 581} 582 583static inline bool mm_match_cgroup(struct mm_struct *mm, 584 struct mem_cgroup *memcg) 585{ 586 return true; 587} 588 589static inline bool task_in_mem_cgroup(struct task_struct *task, 590 const struct mem_cgroup *memcg) 591{ 592 return true; 593} 594 595static inline struct mem_cgroup * 596mem_cgroup_iter(struct mem_cgroup *root, 597 struct mem_cgroup *prev, 598 struct mem_cgroup_reclaim_cookie *reclaim) 599{ 600 return NULL; 601} 602 603static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 604 struct mem_cgroup *prev) 605{ 606} 607 608static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 609{ 610 return 0; 611} 612 613static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 614{ 615 WARN_ON_ONCE(id); 616 /* XXX: This should always return root_mem_cgroup */ 617 return NULL; 618} 619 620static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 621{ 622 return true; 623} 624 625static inline unsigned long 626mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 627{ 628 return 0; 629} 630 631static inline unsigned long 632mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 633 int nid, unsigned int lru_mask) 634{ 635 return 0; 636} 637 638static inline void 639mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 640{ 641} 642 643static inline void lock_page_memcg(struct page *page) 644{ 645} 646 647static inline void unlock_page_memcg(struct page *page) 648{ 649} 650 651static inline void mem_cgroup_handle_over_high(void) 652{ 653} 654 655static inline void mem_cgroup_oom_enable(void) 656{ 657} 658 659static inline void mem_cgroup_oom_disable(void) 660{ 661} 662 663static inline bool task_in_memcg_oom(struct task_struct *p) 664{ 665 return false; 666} 667 668static inline bool mem_cgroup_oom_synchronize(bool wait) 669{ 670 return false; 671} 672 673static inline void mem_cgroup_inc_page_stat(struct page *page, 674 enum mem_cgroup_stat_index idx) 675{ 676} 677 678static inline void mem_cgroup_dec_page_stat(struct page *page, 679 enum mem_cgroup_stat_index idx) 680{ 681} 682 683static inline 684unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 685 gfp_t gfp_mask, 686 unsigned long *total_scanned) 687{ 688 return 0; 689} 690 691static inline void mem_cgroup_split_huge_fixup(struct page *head) 692{ 693} 694 695static inline 696void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 697{ 698} 699#endif /* CONFIG_MEMCG */ 700 701#ifdef CONFIG_CGROUP_WRITEBACK 702 703struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 704struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 705void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 706 unsigned long *pheadroom, unsigned long *pdirty, 707 unsigned long *pwriteback); 708 709#else /* CONFIG_CGROUP_WRITEBACK */ 710 711static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 712{ 713 return NULL; 714} 715 716static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 717 unsigned long *pfilepages, 718 unsigned long *pheadroom, 719 unsigned long *pdirty, 720 unsigned long *pwriteback) 721{ 722} 723 724#endif /* CONFIG_CGROUP_WRITEBACK */ 725 726struct sock; 727void sock_update_memcg(struct sock *sk); 728void sock_release_memcg(struct sock *sk); 729bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 730void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 731#ifdef CONFIG_MEMCG 732extern struct static_key_false memcg_sockets_enabled_key; 733#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 734static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 735{ 736 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 737 return true; 738 do { 739 if (time_before(jiffies, memcg->socket_pressure)) 740 return true; 741 } while ((memcg = parent_mem_cgroup(memcg))); 742 return false; 743} 744#else 745#define mem_cgroup_sockets_enabled 0 746static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 747{ 748 return false; 749} 750#endif 751 752#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 753extern struct static_key_false memcg_kmem_enabled_key; 754 755extern int memcg_nr_cache_ids; 756void memcg_get_cache_ids(void); 757void memcg_put_cache_ids(void); 758 759/* 760 * Helper macro to loop through all memcg-specific caches. Callers must still 761 * check if the cache is valid (it is either valid or NULL). 762 * the slab_mutex must be held when looping through those caches 763 */ 764#define for_each_memcg_cache_index(_idx) \ 765 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 766 767static inline bool memcg_kmem_enabled(void) 768{ 769 return static_branch_unlikely(&memcg_kmem_enabled_key); 770} 771 772/* 773 * In general, we'll do everything in our power to not incur in any overhead 774 * for non-memcg users for the kmem functions. Not even a function call, if we 775 * can avoid it. 776 * 777 * Therefore, we'll inline all those functions so that in the best case, we'll 778 * see that kmemcg is off for everybody and proceed quickly. If it is on, 779 * we'll still do most of the flag checking inline. We check a lot of 780 * conditions, but because they are pretty simple, they are expected to be 781 * fast. 782 */ 783int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 784 struct mem_cgroup *memcg); 785int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 786void __memcg_kmem_uncharge(struct page *page, int order); 787 788/* 789 * helper for accessing a memcg's index. It will be used as an index in the 790 * child cache array in kmem_cache, and also to derive its name. This function 791 * will return -1 when this is not a kmem-limited memcg. 792 */ 793static inline int memcg_cache_id(struct mem_cgroup *memcg) 794{ 795 return memcg ? memcg->kmemcg_id : -1; 796} 797 798struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 799void __memcg_kmem_put_cache(struct kmem_cache *cachep); 800 801static inline bool __memcg_kmem_bypass(void) 802{ 803 if (!memcg_kmem_enabled()) 804 return true; 805 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 806 return true; 807 return false; 808} 809 810/** 811 * memcg_kmem_charge: charge a kmem page 812 * @page: page to charge 813 * @gfp: reclaim mode 814 * @order: allocation order 815 * 816 * Returns 0 on success, an error code on failure. 817 */ 818static __always_inline int memcg_kmem_charge(struct page *page, 819 gfp_t gfp, int order) 820{ 821 if (__memcg_kmem_bypass()) 822 return 0; 823 if (!(gfp & __GFP_ACCOUNT)) 824 return 0; 825 return __memcg_kmem_charge(page, gfp, order); 826} 827 828/** 829 * memcg_kmem_uncharge: uncharge a kmem page 830 * @page: page to uncharge 831 * @order: allocation order 832 */ 833static __always_inline void memcg_kmem_uncharge(struct page *page, int order) 834{ 835 if (memcg_kmem_enabled()) 836 __memcg_kmem_uncharge(page, order); 837} 838 839/** 840 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 841 * @cachep: the original global kmem cache 842 * 843 * All memory allocated from a per-memcg cache is charged to the owner memcg. 844 */ 845static __always_inline struct kmem_cache * 846memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 847{ 848 if (__memcg_kmem_bypass()) 849 return cachep; 850 return __memcg_kmem_get_cache(cachep, gfp); 851} 852 853static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 854{ 855 if (memcg_kmem_enabled()) 856 __memcg_kmem_put_cache(cachep); 857} 858 859/** 860 * memcg_kmem_update_page_stat - update kmem page state statistics 861 * @page: the page 862 * @idx: page state item to account 863 * @val: number of pages (positive or negative) 864 */ 865static inline void memcg_kmem_update_page_stat(struct page *page, 866 enum mem_cgroup_stat_index idx, int val) 867{ 868 if (memcg_kmem_enabled() && page->mem_cgroup) 869 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 870} 871 872#else 873#define for_each_memcg_cache_index(_idx) \ 874 for (; NULL; ) 875 876static inline bool memcg_kmem_enabled(void) 877{ 878 return false; 879} 880 881static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 882{ 883 return 0; 884} 885 886static inline void memcg_kmem_uncharge(struct page *page, int order) 887{ 888} 889 890static inline int memcg_cache_id(struct mem_cgroup *memcg) 891{ 892 return -1; 893} 894 895static inline void memcg_get_cache_ids(void) 896{ 897} 898 899static inline void memcg_put_cache_ids(void) 900{ 901} 902 903static inline struct kmem_cache * 904memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 905{ 906 return cachep; 907} 908 909static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 910{ 911} 912 913static inline void memcg_kmem_update_page_stat(struct page *page, 914 enum mem_cgroup_stat_index idx, int val) 915{ 916} 917#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 918 919#endif /* _LINUX_MEMCONTROL_H */