at v4.7 23 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#include <linux/pfn.h> 5 6#ifndef __ASSEMBLY__ 7#ifdef CONFIG_MMU 8 9#include <linux/mm_types.h> 10#include <linux/bug.h> 11#include <linux/errno.h> 12 13#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \ 14 CONFIG_PGTABLE_LEVELS 15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED 16#endif 17 18/* 19 * On almost all architectures and configurations, 0 can be used as the 20 * upper ceiling to free_pgtables(): on many architectures it has the same 21 * effect as using TASK_SIZE. However, there is one configuration which 22 * must impose a more careful limit, to avoid freeing kernel pgtables. 23 */ 24#ifndef USER_PGTABLES_CEILING 25#define USER_PGTABLES_CEILING 0UL 26#endif 27 28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 29extern int ptep_set_access_flags(struct vm_area_struct *vma, 30 unsigned long address, pte_t *ptep, 31 pte_t entry, int dirty); 32#endif 33 34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE 36extern int pmdp_set_access_flags(struct vm_area_struct *vma, 37 unsigned long address, pmd_t *pmdp, 38 pmd_t entry, int dirty); 39#else 40static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 41 unsigned long address, pmd_t *pmdp, 42 pmd_t entry, int dirty) 43{ 44 BUILD_BUG(); 45 return 0; 46} 47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 48#endif 49 50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 51static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 52 unsigned long address, 53 pte_t *ptep) 54{ 55 pte_t pte = *ptep; 56 int r = 1; 57 if (!pte_young(pte)) 58 r = 0; 59 else 60 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 61 return r; 62} 63#endif 64 65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 66#ifdef CONFIG_TRANSPARENT_HUGEPAGE 67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 68 unsigned long address, 69 pmd_t *pmdp) 70{ 71 pmd_t pmd = *pmdp; 72 int r = 1; 73 if (!pmd_young(pmd)) 74 r = 0; 75 else 76 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 77 return r; 78} 79#else 80static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 81 unsigned long address, 82 pmd_t *pmdp) 83{ 84 BUILD_BUG(); 85 return 0; 86} 87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 88#endif 89 90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 91int ptep_clear_flush_young(struct vm_area_struct *vma, 92 unsigned long address, pte_t *ptep); 93#endif 94 95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 96#ifdef CONFIG_TRANSPARENT_HUGEPAGE 97extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 98 unsigned long address, pmd_t *pmdp); 99#else 100/* 101 * Despite relevant to THP only, this API is called from generic rmap code 102 * under PageTransHuge(), hence needs a dummy implementation for !THP 103 */ 104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 105 unsigned long address, pmd_t *pmdp) 106{ 107 BUILD_BUG(); 108 return 0; 109} 110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 111#endif 112 113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 114static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 115 unsigned long address, 116 pte_t *ptep) 117{ 118 pte_t pte = *ptep; 119 pte_clear(mm, address, ptep); 120 return pte; 121} 122#endif 123 124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 125#ifdef CONFIG_TRANSPARENT_HUGEPAGE 126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 127 unsigned long address, 128 pmd_t *pmdp) 129{ 130 pmd_t pmd = *pmdp; 131 pmd_clear(pmdp); 132 return pmd; 133} 134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 135#endif 136 137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 138#ifdef CONFIG_TRANSPARENT_HUGEPAGE 139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 140 unsigned long address, pmd_t *pmdp, 141 int full) 142{ 143 return pmdp_huge_get_and_clear(mm, address, pmdp); 144} 145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 146#endif 147 148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 150 unsigned long address, pte_t *ptep, 151 int full) 152{ 153 pte_t pte; 154 pte = ptep_get_and_clear(mm, address, ptep); 155 return pte; 156} 157#endif 158 159/* 160 * Some architectures may be able to avoid expensive synchronization 161 * primitives when modifications are made to PTE's which are already 162 * not present, or in the process of an address space destruction. 163 */ 164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 165static inline void pte_clear_not_present_full(struct mm_struct *mm, 166 unsigned long address, 167 pte_t *ptep, 168 int full) 169{ 170 pte_clear(mm, address, ptep); 171} 172#endif 173 174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 175extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 176 unsigned long address, 177 pte_t *ptep); 178#endif 179 180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 182 unsigned long address, 183 pmd_t *pmdp); 184#endif 185 186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 187struct mm_struct; 188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 189{ 190 pte_t old_pte = *ptep; 191 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 192} 193#endif 194 195#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE 197static inline void pmdp_set_wrprotect(struct mm_struct *mm, 198 unsigned long address, pmd_t *pmdp) 199{ 200 pmd_t old_pmd = *pmdp; 201 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 202} 203#else 204static inline void pmdp_set_wrprotect(struct mm_struct *mm, 205 unsigned long address, pmd_t *pmdp) 206{ 207 BUILD_BUG(); 208} 209#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 210#endif 211 212#ifndef pmdp_collapse_flush 213#ifdef CONFIG_TRANSPARENT_HUGEPAGE 214extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 215 unsigned long address, pmd_t *pmdp); 216#else 217static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 218 unsigned long address, 219 pmd_t *pmdp) 220{ 221 BUILD_BUG(); 222 return *pmdp; 223} 224#define pmdp_collapse_flush pmdp_collapse_flush 225#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 226#endif 227 228#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 229extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 230 pgtable_t pgtable); 231#endif 232 233#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 234extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 235#endif 236 237#ifndef __HAVE_ARCH_PMDP_INVALIDATE 238extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 239 pmd_t *pmdp); 240#endif 241 242#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE 243static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma, 244 unsigned long address, pmd_t *pmdp) 245{ 246 247} 248#endif 249 250#ifndef __HAVE_ARCH_PTE_SAME 251static inline int pte_same(pte_t pte_a, pte_t pte_b) 252{ 253 return pte_val(pte_a) == pte_val(pte_b); 254} 255#endif 256 257#ifndef __HAVE_ARCH_PTE_UNUSED 258/* 259 * Some architectures provide facilities to virtualization guests 260 * so that they can flag allocated pages as unused. This allows the 261 * host to transparently reclaim unused pages. This function returns 262 * whether the pte's page is unused. 263 */ 264static inline int pte_unused(pte_t pte) 265{ 266 return 0; 267} 268#endif 269 270#ifndef __HAVE_ARCH_PMD_SAME 271#ifdef CONFIG_TRANSPARENT_HUGEPAGE 272static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 273{ 274 return pmd_val(pmd_a) == pmd_val(pmd_b); 275} 276#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 277static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 278{ 279 BUILD_BUG(); 280 return 0; 281} 282#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 283#endif 284 285#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 286#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 287#endif 288 289#ifndef __HAVE_ARCH_MOVE_PTE 290#define move_pte(pte, prot, old_addr, new_addr) (pte) 291#endif 292 293#ifndef pte_accessible 294# define pte_accessible(mm, pte) ((void)(pte), 1) 295#endif 296 297#ifndef flush_tlb_fix_spurious_fault 298#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 299#endif 300 301#ifndef pgprot_noncached 302#define pgprot_noncached(prot) (prot) 303#endif 304 305#ifndef pgprot_writecombine 306#define pgprot_writecombine pgprot_noncached 307#endif 308 309#ifndef pgprot_writethrough 310#define pgprot_writethrough pgprot_noncached 311#endif 312 313#ifndef pgprot_device 314#define pgprot_device pgprot_noncached 315#endif 316 317#ifndef pgprot_modify 318#define pgprot_modify pgprot_modify 319static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 320{ 321 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 322 newprot = pgprot_noncached(newprot); 323 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 324 newprot = pgprot_writecombine(newprot); 325 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 326 newprot = pgprot_device(newprot); 327 return newprot; 328} 329#endif 330 331/* 332 * When walking page tables, get the address of the next boundary, 333 * or the end address of the range if that comes earlier. Although no 334 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 335 */ 336 337#define pgd_addr_end(addr, end) \ 338({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 339 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 340}) 341 342#ifndef pud_addr_end 343#define pud_addr_end(addr, end) \ 344({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 345 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 346}) 347#endif 348 349#ifndef pmd_addr_end 350#define pmd_addr_end(addr, end) \ 351({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 352 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 353}) 354#endif 355 356/* 357 * When walking page tables, we usually want to skip any p?d_none entries; 358 * and any p?d_bad entries - reporting the error before resetting to none. 359 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 360 */ 361void pgd_clear_bad(pgd_t *); 362void pud_clear_bad(pud_t *); 363void pmd_clear_bad(pmd_t *); 364 365static inline int pgd_none_or_clear_bad(pgd_t *pgd) 366{ 367 if (pgd_none(*pgd)) 368 return 1; 369 if (unlikely(pgd_bad(*pgd))) { 370 pgd_clear_bad(pgd); 371 return 1; 372 } 373 return 0; 374} 375 376static inline int pud_none_or_clear_bad(pud_t *pud) 377{ 378 if (pud_none(*pud)) 379 return 1; 380 if (unlikely(pud_bad(*pud))) { 381 pud_clear_bad(pud); 382 return 1; 383 } 384 return 0; 385} 386 387static inline int pmd_none_or_clear_bad(pmd_t *pmd) 388{ 389 if (pmd_none(*pmd)) 390 return 1; 391 if (unlikely(pmd_bad(*pmd))) { 392 pmd_clear_bad(pmd); 393 return 1; 394 } 395 return 0; 396} 397 398static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 399 unsigned long addr, 400 pte_t *ptep) 401{ 402 /* 403 * Get the current pte state, but zero it out to make it 404 * non-present, preventing the hardware from asynchronously 405 * updating it. 406 */ 407 return ptep_get_and_clear(mm, addr, ptep); 408} 409 410static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 411 unsigned long addr, 412 pte_t *ptep, pte_t pte) 413{ 414 /* 415 * The pte is non-present, so there's no hardware state to 416 * preserve. 417 */ 418 set_pte_at(mm, addr, ptep, pte); 419} 420 421#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 422/* 423 * Start a pte protection read-modify-write transaction, which 424 * protects against asynchronous hardware modifications to the pte. 425 * The intention is not to prevent the hardware from making pte 426 * updates, but to prevent any updates it may make from being lost. 427 * 428 * This does not protect against other software modifications of the 429 * pte; the appropriate pte lock must be held over the transation. 430 * 431 * Note that this interface is intended to be batchable, meaning that 432 * ptep_modify_prot_commit may not actually update the pte, but merely 433 * queue the update to be done at some later time. The update must be 434 * actually committed before the pte lock is released, however. 435 */ 436static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 437 unsigned long addr, 438 pte_t *ptep) 439{ 440 return __ptep_modify_prot_start(mm, addr, ptep); 441} 442 443/* 444 * Commit an update to a pte, leaving any hardware-controlled bits in 445 * the PTE unmodified. 446 */ 447static inline void ptep_modify_prot_commit(struct mm_struct *mm, 448 unsigned long addr, 449 pte_t *ptep, pte_t pte) 450{ 451 __ptep_modify_prot_commit(mm, addr, ptep, pte); 452} 453#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 454#endif /* CONFIG_MMU */ 455 456/* 457 * A facility to provide lazy MMU batching. This allows PTE updates and 458 * page invalidations to be delayed until a call to leave lazy MMU mode 459 * is issued. Some architectures may benefit from doing this, and it is 460 * beneficial for both shadow and direct mode hypervisors, which may batch 461 * the PTE updates which happen during this window. Note that using this 462 * interface requires that read hazards be removed from the code. A read 463 * hazard could result in the direct mode hypervisor case, since the actual 464 * write to the page tables may not yet have taken place, so reads though 465 * a raw PTE pointer after it has been modified are not guaranteed to be 466 * up to date. This mode can only be entered and left under the protection of 467 * the page table locks for all page tables which may be modified. In the UP 468 * case, this is required so that preemption is disabled, and in the SMP case, 469 * it must synchronize the delayed page table writes properly on other CPUs. 470 */ 471#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 472#define arch_enter_lazy_mmu_mode() do {} while (0) 473#define arch_leave_lazy_mmu_mode() do {} while (0) 474#define arch_flush_lazy_mmu_mode() do {} while (0) 475#endif 476 477/* 478 * A facility to provide batching of the reload of page tables and 479 * other process state with the actual context switch code for 480 * paravirtualized guests. By convention, only one of the batched 481 * update (lazy) modes (CPU, MMU) should be active at any given time, 482 * entry should never be nested, and entry and exits should always be 483 * paired. This is for sanity of maintaining and reasoning about the 484 * kernel code. In this case, the exit (end of the context switch) is 485 * in architecture-specific code, and so doesn't need a generic 486 * definition. 487 */ 488#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 489#define arch_start_context_switch(prev) do {} while (0) 490#endif 491 492#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY 493static inline int pte_soft_dirty(pte_t pte) 494{ 495 return 0; 496} 497 498static inline int pmd_soft_dirty(pmd_t pmd) 499{ 500 return 0; 501} 502 503static inline pte_t pte_mksoft_dirty(pte_t pte) 504{ 505 return pte; 506} 507 508static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 509{ 510 return pmd; 511} 512 513static inline pte_t pte_clear_soft_dirty(pte_t pte) 514{ 515 return pte; 516} 517 518static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 519{ 520 return pmd; 521} 522 523static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 524{ 525 return pte; 526} 527 528static inline int pte_swp_soft_dirty(pte_t pte) 529{ 530 return 0; 531} 532 533static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 534{ 535 return pte; 536} 537#endif 538 539#ifndef __HAVE_PFNMAP_TRACKING 540/* 541 * Interfaces that can be used by architecture code to keep track of 542 * memory type of pfn mappings specified by the remap_pfn_range, 543 * vm_insert_pfn. 544 */ 545 546/* 547 * track_pfn_remap is called when a _new_ pfn mapping is being established 548 * by remap_pfn_range() for physical range indicated by pfn and size. 549 */ 550static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 551 unsigned long pfn, unsigned long addr, 552 unsigned long size) 553{ 554 return 0; 555} 556 557/* 558 * track_pfn_insert is called when a _new_ single pfn is established 559 * by vm_insert_pfn(). 560 */ 561static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 562 pfn_t pfn) 563{ 564 return 0; 565} 566 567/* 568 * track_pfn_copy is called when vma that is covering the pfnmap gets 569 * copied through copy_page_range(). 570 */ 571static inline int track_pfn_copy(struct vm_area_struct *vma) 572{ 573 return 0; 574} 575 576/* 577 * untrack_pfn is called while unmapping a pfnmap for a region. 578 * untrack can be called for a specific region indicated by pfn and size or 579 * can be for the entire vma (in which case pfn, size are zero). 580 */ 581static inline void untrack_pfn(struct vm_area_struct *vma, 582 unsigned long pfn, unsigned long size) 583{ 584} 585 586/* 587 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 588 */ 589static inline void untrack_pfn_moved(struct vm_area_struct *vma) 590{ 591} 592#else 593extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 594 unsigned long pfn, unsigned long addr, 595 unsigned long size); 596extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 597 pfn_t pfn); 598extern int track_pfn_copy(struct vm_area_struct *vma); 599extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 600 unsigned long size); 601extern void untrack_pfn_moved(struct vm_area_struct *vma); 602#endif 603 604#ifdef __HAVE_COLOR_ZERO_PAGE 605static inline int is_zero_pfn(unsigned long pfn) 606{ 607 extern unsigned long zero_pfn; 608 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 609 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 610} 611 612#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 613 614#else 615static inline int is_zero_pfn(unsigned long pfn) 616{ 617 extern unsigned long zero_pfn; 618 return pfn == zero_pfn; 619} 620 621static inline unsigned long my_zero_pfn(unsigned long addr) 622{ 623 extern unsigned long zero_pfn; 624 return zero_pfn; 625} 626#endif 627 628#ifdef CONFIG_MMU 629 630#ifndef CONFIG_TRANSPARENT_HUGEPAGE 631static inline int pmd_trans_huge(pmd_t pmd) 632{ 633 return 0; 634} 635#ifndef __HAVE_ARCH_PMD_WRITE 636static inline int pmd_write(pmd_t pmd) 637{ 638 BUG(); 639 return 0; 640} 641#endif /* __HAVE_ARCH_PMD_WRITE */ 642#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 643 644#ifndef pmd_read_atomic 645static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 646{ 647 /* 648 * Depend on compiler for an atomic pmd read. NOTE: this is 649 * only going to work, if the pmdval_t isn't larger than 650 * an unsigned long. 651 */ 652 return *pmdp; 653} 654#endif 655 656#ifndef pmd_move_must_withdraw 657static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 658 spinlock_t *old_pmd_ptl) 659{ 660 /* 661 * With split pmd lock we also need to move preallocated 662 * PTE page table if new_pmd is on different PMD page table. 663 */ 664 return new_pmd_ptl != old_pmd_ptl; 665} 666#endif 667 668/* 669 * This function is meant to be used by sites walking pagetables with 670 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 671 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 672 * into a null pmd and the transhuge page fault can convert a null pmd 673 * into an hugepmd or into a regular pmd (if the hugepage allocation 674 * fails). While holding the mmap_sem in read mode the pmd becomes 675 * stable and stops changing under us only if it's not null and not a 676 * transhuge pmd. When those races occurs and this function makes a 677 * difference vs the standard pmd_none_or_clear_bad, the result is 678 * undefined so behaving like if the pmd was none is safe (because it 679 * can return none anyway). The compiler level barrier() is critically 680 * important to compute the two checks atomically on the same pmdval. 681 * 682 * For 32bit kernels with a 64bit large pmd_t this automatically takes 683 * care of reading the pmd atomically to avoid SMP race conditions 684 * against pmd_populate() when the mmap_sem is hold for reading by the 685 * caller (a special atomic read not done by "gcc" as in the generic 686 * version above, is also needed when THP is disabled because the page 687 * fault can populate the pmd from under us). 688 */ 689static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 690{ 691 pmd_t pmdval = pmd_read_atomic(pmd); 692 /* 693 * The barrier will stabilize the pmdval in a register or on 694 * the stack so that it will stop changing under the code. 695 * 696 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 697 * pmd_read_atomic is allowed to return a not atomic pmdval 698 * (for example pointing to an hugepage that has never been 699 * mapped in the pmd). The below checks will only care about 700 * the low part of the pmd with 32bit PAE x86 anyway, with the 701 * exception of pmd_none(). So the important thing is that if 702 * the low part of the pmd is found null, the high part will 703 * be also null or the pmd_none() check below would be 704 * confused. 705 */ 706#ifdef CONFIG_TRANSPARENT_HUGEPAGE 707 barrier(); 708#endif 709 if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) 710 return 1; 711 if (unlikely(pmd_bad(pmdval))) { 712 pmd_clear_bad(pmd); 713 return 1; 714 } 715 return 0; 716} 717 718/* 719 * This is a noop if Transparent Hugepage Support is not built into 720 * the kernel. Otherwise it is equivalent to 721 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 722 * places that already verified the pmd is not none and they want to 723 * walk ptes while holding the mmap sem in read mode (write mode don't 724 * need this). If THP is not enabled, the pmd can't go away under the 725 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 726 * run a pmd_trans_unstable before walking the ptes after 727 * split_huge_page_pmd returns (because it may have run when the pmd 728 * become null, but then a page fault can map in a THP and not a 729 * regular page). 730 */ 731static inline int pmd_trans_unstable(pmd_t *pmd) 732{ 733#ifdef CONFIG_TRANSPARENT_HUGEPAGE 734 return pmd_none_or_trans_huge_or_clear_bad(pmd); 735#else 736 return 0; 737#endif 738} 739 740#ifndef CONFIG_NUMA_BALANCING 741/* 742 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 743 * the only case the kernel cares is for NUMA balancing and is only ever set 744 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 745 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 746 * is the responsibility of the caller to distinguish between PROT_NONE 747 * protections and NUMA hinting fault protections. 748 */ 749static inline int pte_protnone(pte_t pte) 750{ 751 return 0; 752} 753 754static inline int pmd_protnone(pmd_t pmd) 755{ 756 return 0; 757} 758#endif /* CONFIG_NUMA_BALANCING */ 759 760#endif /* CONFIG_MMU */ 761 762#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 763int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 764int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 765int pud_clear_huge(pud_t *pud); 766int pmd_clear_huge(pmd_t *pmd); 767#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 768static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 769{ 770 return 0; 771} 772static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 773{ 774 return 0; 775} 776static inline int pud_clear_huge(pud_t *pud) 777{ 778 return 0; 779} 780static inline int pmd_clear_huge(pmd_t *pmd) 781{ 782 return 0; 783} 784#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 785 786#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 787#ifdef CONFIG_TRANSPARENT_HUGEPAGE 788/* 789 * ARCHes with special requirements for evicting THP backing TLB entries can 790 * implement this. Otherwise also, it can help optimize normal TLB flush in 791 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 792 * entire TLB TLB if flush span is greater than a threshold, which will 793 * likely be true for a single huge page. Thus a single thp flush will 794 * invalidate the entire TLB which is not desitable. 795 * e.g. see arch/arc: flush_pmd_tlb_range 796 */ 797#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 798#else 799#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 800#endif 801#endif 802 803#endif /* !__ASSEMBLY__ */ 804 805#ifndef io_remap_pfn_range 806#define io_remap_pfn_range remap_pfn_range 807#endif 808 809#ifndef has_transparent_hugepage 810#ifdef CONFIG_TRANSPARENT_HUGEPAGE 811#define has_transparent_hugepage() 1 812#else 813#define has_transparent_hugepage() 0 814#endif 815#endif 816 817#endif /* _ASM_GENERIC_PGTABLE_H */