at v4.7 50 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <linux/badblocks.h> 33#include <asm/uaccess.h> 34#include "internal.h" 35 36struct bdev_inode { 37 struct block_device bdev; 38 struct inode vfs_inode; 39}; 40 41static const struct address_space_operations def_blk_aops; 42 43static inline struct bdev_inode *BDEV_I(struct inode *inode) 44{ 45 return container_of(inode, struct bdev_inode, vfs_inode); 46} 47 48struct block_device *I_BDEV(struct inode *inode) 49{ 50 return &BDEV_I(inode)->bdev; 51} 52EXPORT_SYMBOL(I_BDEV); 53 54void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 55{ 56 struct va_format vaf; 57 va_list args; 58 59 va_start(args, fmt); 60 vaf.fmt = fmt; 61 vaf.va = &args; 62 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 63 va_end(args); 64} 65 66static void bdev_write_inode(struct block_device *bdev) 67{ 68 struct inode *inode = bdev->bd_inode; 69 int ret; 70 71 spin_lock(&inode->i_lock); 72 while (inode->i_state & I_DIRTY) { 73 spin_unlock(&inode->i_lock); 74 ret = write_inode_now(inode, true); 75 if (ret) { 76 char name[BDEVNAME_SIZE]; 77 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 78 "for block device %s (err=%d).\n", 79 bdevname(bdev, name), ret); 80 } 81 spin_lock(&inode->i_lock); 82 } 83 spin_unlock(&inode->i_lock); 84} 85 86/* Kill _all_ buffers and pagecache , dirty or not.. */ 87void kill_bdev(struct block_device *bdev) 88{ 89 struct address_space *mapping = bdev->bd_inode->i_mapping; 90 91 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 92 return; 93 94 invalidate_bh_lrus(); 95 truncate_inode_pages(mapping, 0); 96} 97EXPORT_SYMBOL(kill_bdev); 98 99/* Invalidate clean unused buffers and pagecache. */ 100void invalidate_bdev(struct block_device *bdev) 101{ 102 struct address_space *mapping = bdev->bd_inode->i_mapping; 103 104 if (mapping->nrpages == 0) 105 return; 106 107 invalidate_bh_lrus(); 108 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 109 invalidate_mapping_pages(mapping, 0, -1); 110 /* 99% of the time, we don't need to flush the cleancache on the bdev. 111 * But, for the strange corners, lets be cautious 112 */ 113 cleancache_invalidate_inode(mapping); 114} 115EXPORT_SYMBOL(invalidate_bdev); 116 117int set_blocksize(struct block_device *bdev, int size) 118{ 119 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 121 return -EINVAL; 122 123 /* Size cannot be smaller than the size supported by the device */ 124 if (size < bdev_logical_block_size(bdev)) 125 return -EINVAL; 126 127 /* Don't change the size if it is same as current */ 128 if (bdev->bd_block_size != size) { 129 sync_blockdev(bdev); 130 bdev->bd_block_size = size; 131 bdev->bd_inode->i_blkbits = blksize_bits(size); 132 kill_bdev(bdev); 133 } 134 return 0; 135} 136 137EXPORT_SYMBOL(set_blocksize); 138 139int sb_set_blocksize(struct super_block *sb, int size) 140{ 141 if (set_blocksize(sb->s_bdev, size)) 142 return 0; 143 /* If we get here, we know size is power of two 144 * and it's value is between 512 and PAGE_SIZE */ 145 sb->s_blocksize = size; 146 sb->s_blocksize_bits = blksize_bits(size); 147 return sb->s_blocksize; 148} 149 150EXPORT_SYMBOL(sb_set_blocksize); 151 152int sb_min_blocksize(struct super_block *sb, int size) 153{ 154 int minsize = bdev_logical_block_size(sb->s_bdev); 155 if (size < minsize) 156 size = minsize; 157 return sb_set_blocksize(sb, size); 158} 159 160EXPORT_SYMBOL(sb_min_blocksize); 161 162static int 163blkdev_get_block(struct inode *inode, sector_t iblock, 164 struct buffer_head *bh, int create) 165{ 166 bh->b_bdev = I_BDEV(inode); 167 bh->b_blocknr = iblock; 168 set_buffer_mapped(bh); 169 return 0; 170} 171 172static struct inode *bdev_file_inode(struct file *file) 173{ 174 return file->f_mapping->host; 175} 176 177static ssize_t 178blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 179{ 180 struct file *file = iocb->ki_filp; 181 struct inode *inode = bdev_file_inode(file); 182 183 if (IS_DAX(inode)) 184 return dax_do_io(iocb, inode, iter, blkdev_get_block, 185 NULL, DIO_SKIP_DIO_COUNT); 186 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, 187 blkdev_get_block, NULL, NULL, 188 DIO_SKIP_DIO_COUNT); 189} 190 191int __sync_blockdev(struct block_device *bdev, int wait) 192{ 193 if (!bdev) 194 return 0; 195 if (!wait) 196 return filemap_flush(bdev->bd_inode->i_mapping); 197 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 198} 199 200/* 201 * Write out and wait upon all the dirty data associated with a block 202 * device via its mapping. Does not take the superblock lock. 203 */ 204int sync_blockdev(struct block_device *bdev) 205{ 206 return __sync_blockdev(bdev, 1); 207} 208EXPORT_SYMBOL(sync_blockdev); 209 210/* 211 * Write out and wait upon all dirty data associated with this 212 * device. Filesystem data as well as the underlying block 213 * device. Takes the superblock lock. 214 */ 215int fsync_bdev(struct block_device *bdev) 216{ 217 struct super_block *sb = get_super(bdev); 218 if (sb) { 219 int res = sync_filesystem(sb); 220 drop_super(sb); 221 return res; 222 } 223 return sync_blockdev(bdev); 224} 225EXPORT_SYMBOL(fsync_bdev); 226 227/** 228 * freeze_bdev -- lock a filesystem and force it into a consistent state 229 * @bdev: blockdevice to lock 230 * 231 * If a superblock is found on this device, we take the s_umount semaphore 232 * on it to make sure nobody unmounts until the snapshot creation is done. 233 * The reference counter (bd_fsfreeze_count) guarantees that only the last 234 * unfreeze process can unfreeze the frozen filesystem actually when multiple 235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 237 * actually. 238 */ 239struct super_block *freeze_bdev(struct block_device *bdev) 240{ 241 struct super_block *sb; 242 int error = 0; 243 244 mutex_lock(&bdev->bd_fsfreeze_mutex); 245 if (++bdev->bd_fsfreeze_count > 1) { 246 /* 247 * We don't even need to grab a reference - the first call 248 * to freeze_bdev grab an active reference and only the last 249 * thaw_bdev drops it. 250 */ 251 sb = get_super(bdev); 252 drop_super(sb); 253 mutex_unlock(&bdev->bd_fsfreeze_mutex); 254 return sb; 255 } 256 257 sb = get_active_super(bdev); 258 if (!sb) 259 goto out; 260 if (sb->s_op->freeze_super) 261 error = sb->s_op->freeze_super(sb); 262 else 263 error = freeze_super(sb); 264 if (error) { 265 deactivate_super(sb); 266 bdev->bd_fsfreeze_count--; 267 mutex_unlock(&bdev->bd_fsfreeze_mutex); 268 return ERR_PTR(error); 269 } 270 deactivate_super(sb); 271 out: 272 sync_blockdev(bdev); 273 mutex_unlock(&bdev->bd_fsfreeze_mutex); 274 return sb; /* thaw_bdev releases s->s_umount */ 275} 276EXPORT_SYMBOL(freeze_bdev); 277 278/** 279 * thaw_bdev -- unlock filesystem 280 * @bdev: blockdevice to unlock 281 * @sb: associated superblock 282 * 283 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 284 */ 285int thaw_bdev(struct block_device *bdev, struct super_block *sb) 286{ 287 int error = -EINVAL; 288 289 mutex_lock(&bdev->bd_fsfreeze_mutex); 290 if (!bdev->bd_fsfreeze_count) 291 goto out; 292 293 error = 0; 294 if (--bdev->bd_fsfreeze_count > 0) 295 goto out; 296 297 if (!sb) 298 goto out; 299 300 if (sb->s_op->thaw_super) 301 error = sb->s_op->thaw_super(sb); 302 else 303 error = thaw_super(sb); 304 if (error) { 305 bdev->bd_fsfreeze_count++; 306 mutex_unlock(&bdev->bd_fsfreeze_mutex); 307 return error; 308 } 309out: 310 mutex_unlock(&bdev->bd_fsfreeze_mutex); 311 return 0; 312} 313EXPORT_SYMBOL(thaw_bdev); 314 315static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 316{ 317 return block_write_full_page(page, blkdev_get_block, wbc); 318} 319 320static int blkdev_readpage(struct file * file, struct page * page) 321{ 322 return block_read_full_page(page, blkdev_get_block); 323} 324 325static int blkdev_readpages(struct file *file, struct address_space *mapping, 326 struct list_head *pages, unsigned nr_pages) 327{ 328 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 329} 330 331static int blkdev_write_begin(struct file *file, struct address_space *mapping, 332 loff_t pos, unsigned len, unsigned flags, 333 struct page **pagep, void **fsdata) 334{ 335 return block_write_begin(mapping, pos, len, flags, pagep, 336 blkdev_get_block); 337} 338 339static int blkdev_write_end(struct file *file, struct address_space *mapping, 340 loff_t pos, unsigned len, unsigned copied, 341 struct page *page, void *fsdata) 342{ 343 int ret; 344 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 345 346 unlock_page(page); 347 put_page(page); 348 349 return ret; 350} 351 352/* 353 * private llseek: 354 * for a block special file file_inode(file)->i_size is zero 355 * so we compute the size by hand (just as in block_read/write above) 356 */ 357static loff_t block_llseek(struct file *file, loff_t offset, int whence) 358{ 359 struct inode *bd_inode = bdev_file_inode(file); 360 loff_t retval; 361 362 inode_lock(bd_inode); 363 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 364 inode_unlock(bd_inode); 365 return retval; 366} 367 368int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 369{ 370 struct inode *bd_inode = bdev_file_inode(filp); 371 struct block_device *bdev = I_BDEV(bd_inode); 372 int error; 373 374 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 375 if (error) 376 return error; 377 378 /* 379 * There is no need to serialise calls to blkdev_issue_flush with 380 * i_mutex and doing so causes performance issues with concurrent 381 * O_SYNC writers to a block device. 382 */ 383 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 384 if (error == -EOPNOTSUPP) 385 error = 0; 386 387 return error; 388} 389EXPORT_SYMBOL(blkdev_fsync); 390 391/** 392 * bdev_read_page() - Start reading a page from a block device 393 * @bdev: The device to read the page from 394 * @sector: The offset on the device to read the page to (need not be aligned) 395 * @page: The page to read 396 * 397 * On entry, the page should be locked. It will be unlocked when the page 398 * has been read. If the block driver implements rw_page synchronously, 399 * that will be true on exit from this function, but it need not be. 400 * 401 * Errors returned by this function are usually "soft", eg out of memory, or 402 * queue full; callers should try a different route to read this page rather 403 * than propagate an error back up the stack. 404 * 405 * Return: negative errno if an error occurs, 0 if submission was successful. 406 */ 407int bdev_read_page(struct block_device *bdev, sector_t sector, 408 struct page *page) 409{ 410 const struct block_device_operations *ops = bdev->bd_disk->fops; 411 int result = -EOPNOTSUPP; 412 413 if (!ops->rw_page || bdev_get_integrity(bdev)) 414 return result; 415 416 result = blk_queue_enter(bdev->bd_queue, false); 417 if (result) 418 return result; 419 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 420 blk_queue_exit(bdev->bd_queue); 421 return result; 422} 423EXPORT_SYMBOL_GPL(bdev_read_page); 424 425/** 426 * bdev_write_page() - Start writing a page to a block device 427 * @bdev: The device to write the page to 428 * @sector: The offset on the device to write the page to (need not be aligned) 429 * @page: The page to write 430 * @wbc: The writeback_control for the write 431 * 432 * On entry, the page should be locked and not currently under writeback. 433 * On exit, if the write started successfully, the page will be unlocked and 434 * under writeback. If the write failed already (eg the driver failed to 435 * queue the page to the device), the page will still be locked. If the 436 * caller is a ->writepage implementation, it will need to unlock the page. 437 * 438 * Errors returned by this function are usually "soft", eg out of memory, or 439 * queue full; callers should try a different route to write this page rather 440 * than propagate an error back up the stack. 441 * 442 * Return: negative errno if an error occurs, 0 if submission was successful. 443 */ 444int bdev_write_page(struct block_device *bdev, sector_t sector, 445 struct page *page, struct writeback_control *wbc) 446{ 447 int result; 448 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 449 const struct block_device_operations *ops = bdev->bd_disk->fops; 450 451 if (!ops->rw_page || bdev_get_integrity(bdev)) 452 return -EOPNOTSUPP; 453 result = blk_queue_enter(bdev->bd_queue, false); 454 if (result) 455 return result; 456 457 set_page_writeback(page); 458 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 459 if (result) 460 end_page_writeback(page); 461 else 462 unlock_page(page); 463 blk_queue_exit(bdev->bd_queue); 464 return result; 465} 466EXPORT_SYMBOL_GPL(bdev_write_page); 467 468/** 469 * bdev_direct_access() - Get the address for directly-accessibly memory 470 * @bdev: The device containing the memory 471 * @dax: control and output parameters for ->direct_access 472 * 473 * If a block device is made up of directly addressable memory, this function 474 * will tell the caller the PFN and the address of the memory. The address 475 * may be directly dereferenced within the kernel without the need to call 476 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 477 * page tables. 478 * 479 * Return: negative errno if an error occurs, otherwise the number of bytes 480 * accessible at this address. 481 */ 482long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 483{ 484 sector_t sector = dax->sector; 485 long avail, size = dax->size; 486 const struct block_device_operations *ops = bdev->bd_disk->fops; 487 488 /* 489 * The device driver is allowed to sleep, in order to make the 490 * memory directly accessible. 491 */ 492 might_sleep(); 493 494 if (size < 0) 495 return size; 496 if (!ops->direct_access) 497 return -EOPNOTSUPP; 498 if ((sector + DIV_ROUND_UP(size, 512)) > 499 part_nr_sects_read(bdev->bd_part)) 500 return -ERANGE; 501 sector += get_start_sect(bdev); 502 if (sector % (PAGE_SIZE / 512)) 503 return -EINVAL; 504 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size); 505 if (!avail) 506 return -ERANGE; 507 if (avail > 0 && avail & ~PAGE_MASK) 508 return -ENXIO; 509 return min(avail, size); 510} 511EXPORT_SYMBOL_GPL(bdev_direct_access); 512 513/** 514 * bdev_dax_supported() - Check if the device supports dax for filesystem 515 * @sb: The superblock of the device 516 * @blocksize: The block size of the device 517 * 518 * This is a library function for filesystems to check if the block device 519 * can be mounted with dax option. 520 * 521 * Return: negative errno if unsupported, 0 if supported. 522 */ 523int bdev_dax_supported(struct super_block *sb, int blocksize) 524{ 525 struct blk_dax_ctl dax = { 526 .sector = 0, 527 .size = PAGE_SIZE, 528 }; 529 int err; 530 531 if (blocksize != PAGE_SIZE) { 532 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax"); 533 return -EINVAL; 534 } 535 536 err = bdev_direct_access(sb->s_bdev, &dax); 537 if (err < 0) { 538 switch (err) { 539 case -EOPNOTSUPP: 540 vfs_msg(sb, KERN_ERR, 541 "error: device does not support dax"); 542 break; 543 case -EINVAL: 544 vfs_msg(sb, KERN_ERR, 545 "error: unaligned partition for dax"); 546 break; 547 default: 548 vfs_msg(sb, KERN_ERR, 549 "error: dax access failed (%d)", err); 550 } 551 return err; 552 } 553 554 return 0; 555} 556EXPORT_SYMBOL_GPL(bdev_dax_supported); 557 558/** 559 * bdev_dax_capable() - Return if the raw device is capable for dax 560 * @bdev: The device for raw block device access 561 */ 562bool bdev_dax_capable(struct block_device *bdev) 563{ 564 struct blk_dax_ctl dax = { 565 .size = PAGE_SIZE, 566 }; 567 568 if (!IS_ENABLED(CONFIG_FS_DAX)) 569 return false; 570 571 dax.sector = 0; 572 if (bdev_direct_access(bdev, &dax) < 0) 573 return false; 574 575 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512); 576 if (bdev_direct_access(bdev, &dax) < 0) 577 return false; 578 579 return true; 580} 581 582/* 583 * pseudo-fs 584 */ 585 586static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 587static struct kmem_cache * bdev_cachep __read_mostly; 588 589static struct inode *bdev_alloc_inode(struct super_block *sb) 590{ 591 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 592 if (!ei) 593 return NULL; 594 return &ei->vfs_inode; 595} 596 597static void bdev_i_callback(struct rcu_head *head) 598{ 599 struct inode *inode = container_of(head, struct inode, i_rcu); 600 struct bdev_inode *bdi = BDEV_I(inode); 601 602 kmem_cache_free(bdev_cachep, bdi); 603} 604 605static void bdev_destroy_inode(struct inode *inode) 606{ 607 call_rcu(&inode->i_rcu, bdev_i_callback); 608} 609 610static void init_once(void *foo) 611{ 612 struct bdev_inode *ei = (struct bdev_inode *) foo; 613 struct block_device *bdev = &ei->bdev; 614 615 memset(bdev, 0, sizeof(*bdev)); 616 mutex_init(&bdev->bd_mutex); 617 INIT_LIST_HEAD(&bdev->bd_inodes); 618 INIT_LIST_HEAD(&bdev->bd_list); 619#ifdef CONFIG_SYSFS 620 INIT_LIST_HEAD(&bdev->bd_holder_disks); 621#endif 622 inode_init_once(&ei->vfs_inode); 623 /* Initialize mutex for freeze. */ 624 mutex_init(&bdev->bd_fsfreeze_mutex); 625} 626 627static inline void __bd_forget(struct inode *inode) 628{ 629 list_del_init(&inode->i_devices); 630 inode->i_bdev = NULL; 631 inode->i_mapping = &inode->i_data; 632} 633 634static void bdev_evict_inode(struct inode *inode) 635{ 636 struct block_device *bdev = &BDEV_I(inode)->bdev; 637 struct list_head *p; 638 truncate_inode_pages_final(&inode->i_data); 639 invalidate_inode_buffers(inode); /* is it needed here? */ 640 clear_inode(inode); 641 spin_lock(&bdev_lock); 642 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 643 __bd_forget(list_entry(p, struct inode, i_devices)); 644 } 645 list_del_init(&bdev->bd_list); 646 spin_unlock(&bdev_lock); 647} 648 649static const struct super_operations bdev_sops = { 650 .statfs = simple_statfs, 651 .alloc_inode = bdev_alloc_inode, 652 .destroy_inode = bdev_destroy_inode, 653 .drop_inode = generic_delete_inode, 654 .evict_inode = bdev_evict_inode, 655}; 656 657static struct dentry *bd_mount(struct file_system_type *fs_type, 658 int flags, const char *dev_name, void *data) 659{ 660 struct dentry *dent; 661 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 662 if (dent) 663 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 664 return dent; 665} 666 667static struct file_system_type bd_type = { 668 .name = "bdev", 669 .mount = bd_mount, 670 .kill_sb = kill_anon_super, 671}; 672 673struct super_block *blockdev_superblock __read_mostly; 674EXPORT_SYMBOL_GPL(blockdev_superblock); 675 676void __init bdev_cache_init(void) 677{ 678 int err; 679 static struct vfsmount *bd_mnt; 680 681 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 682 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 683 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 684 init_once); 685 err = register_filesystem(&bd_type); 686 if (err) 687 panic("Cannot register bdev pseudo-fs"); 688 bd_mnt = kern_mount(&bd_type); 689 if (IS_ERR(bd_mnt)) 690 panic("Cannot create bdev pseudo-fs"); 691 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 692} 693 694/* 695 * Most likely _very_ bad one - but then it's hardly critical for small 696 * /dev and can be fixed when somebody will need really large one. 697 * Keep in mind that it will be fed through icache hash function too. 698 */ 699static inline unsigned long hash(dev_t dev) 700{ 701 return MAJOR(dev)+MINOR(dev); 702} 703 704static int bdev_test(struct inode *inode, void *data) 705{ 706 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 707} 708 709static int bdev_set(struct inode *inode, void *data) 710{ 711 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 712 return 0; 713} 714 715static LIST_HEAD(all_bdevs); 716 717struct block_device *bdget(dev_t dev) 718{ 719 struct block_device *bdev; 720 struct inode *inode; 721 722 inode = iget5_locked(blockdev_superblock, hash(dev), 723 bdev_test, bdev_set, &dev); 724 725 if (!inode) 726 return NULL; 727 728 bdev = &BDEV_I(inode)->bdev; 729 730 if (inode->i_state & I_NEW) { 731 bdev->bd_contains = NULL; 732 bdev->bd_super = NULL; 733 bdev->bd_inode = inode; 734 bdev->bd_block_size = (1 << inode->i_blkbits); 735 bdev->bd_part_count = 0; 736 bdev->bd_invalidated = 0; 737 inode->i_mode = S_IFBLK; 738 inode->i_rdev = dev; 739 inode->i_bdev = bdev; 740 inode->i_data.a_ops = &def_blk_aops; 741 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 742 spin_lock(&bdev_lock); 743 list_add(&bdev->bd_list, &all_bdevs); 744 spin_unlock(&bdev_lock); 745 unlock_new_inode(inode); 746 } 747 return bdev; 748} 749 750EXPORT_SYMBOL(bdget); 751 752/** 753 * bdgrab -- Grab a reference to an already referenced block device 754 * @bdev: Block device to grab a reference to. 755 */ 756struct block_device *bdgrab(struct block_device *bdev) 757{ 758 ihold(bdev->bd_inode); 759 return bdev; 760} 761EXPORT_SYMBOL(bdgrab); 762 763long nr_blockdev_pages(void) 764{ 765 struct block_device *bdev; 766 long ret = 0; 767 spin_lock(&bdev_lock); 768 list_for_each_entry(bdev, &all_bdevs, bd_list) { 769 ret += bdev->bd_inode->i_mapping->nrpages; 770 } 771 spin_unlock(&bdev_lock); 772 return ret; 773} 774 775void bdput(struct block_device *bdev) 776{ 777 iput(bdev->bd_inode); 778} 779 780EXPORT_SYMBOL(bdput); 781 782static struct block_device *bd_acquire(struct inode *inode) 783{ 784 struct block_device *bdev; 785 786 spin_lock(&bdev_lock); 787 bdev = inode->i_bdev; 788 if (bdev) { 789 bdgrab(bdev); 790 spin_unlock(&bdev_lock); 791 return bdev; 792 } 793 spin_unlock(&bdev_lock); 794 795 bdev = bdget(inode->i_rdev); 796 if (bdev) { 797 spin_lock(&bdev_lock); 798 if (!inode->i_bdev) { 799 /* 800 * We take an additional reference to bd_inode, 801 * and it's released in clear_inode() of inode. 802 * So, we can access it via ->i_mapping always 803 * without igrab(). 804 */ 805 bdgrab(bdev); 806 inode->i_bdev = bdev; 807 inode->i_mapping = bdev->bd_inode->i_mapping; 808 list_add(&inode->i_devices, &bdev->bd_inodes); 809 } 810 spin_unlock(&bdev_lock); 811 } 812 return bdev; 813} 814 815/* Call when you free inode */ 816 817void bd_forget(struct inode *inode) 818{ 819 struct block_device *bdev = NULL; 820 821 spin_lock(&bdev_lock); 822 if (!sb_is_blkdev_sb(inode->i_sb)) 823 bdev = inode->i_bdev; 824 __bd_forget(inode); 825 spin_unlock(&bdev_lock); 826 827 if (bdev) 828 bdput(bdev); 829} 830 831/** 832 * bd_may_claim - test whether a block device can be claimed 833 * @bdev: block device of interest 834 * @whole: whole block device containing @bdev, may equal @bdev 835 * @holder: holder trying to claim @bdev 836 * 837 * Test whether @bdev can be claimed by @holder. 838 * 839 * CONTEXT: 840 * spin_lock(&bdev_lock). 841 * 842 * RETURNS: 843 * %true if @bdev can be claimed, %false otherwise. 844 */ 845static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 846 void *holder) 847{ 848 if (bdev->bd_holder == holder) 849 return true; /* already a holder */ 850 else if (bdev->bd_holder != NULL) 851 return false; /* held by someone else */ 852 else if (bdev->bd_contains == bdev) 853 return true; /* is a whole device which isn't held */ 854 855 else if (whole->bd_holder == bd_may_claim) 856 return true; /* is a partition of a device that is being partitioned */ 857 else if (whole->bd_holder != NULL) 858 return false; /* is a partition of a held device */ 859 else 860 return true; /* is a partition of an un-held device */ 861} 862 863/** 864 * bd_prepare_to_claim - prepare to claim a block device 865 * @bdev: block device of interest 866 * @whole: the whole device containing @bdev, may equal @bdev 867 * @holder: holder trying to claim @bdev 868 * 869 * Prepare to claim @bdev. This function fails if @bdev is already 870 * claimed by another holder and waits if another claiming is in 871 * progress. This function doesn't actually claim. On successful 872 * return, the caller has ownership of bd_claiming and bd_holder[s]. 873 * 874 * CONTEXT: 875 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 876 * it multiple times. 877 * 878 * RETURNS: 879 * 0 if @bdev can be claimed, -EBUSY otherwise. 880 */ 881static int bd_prepare_to_claim(struct block_device *bdev, 882 struct block_device *whole, void *holder) 883{ 884retry: 885 /* if someone else claimed, fail */ 886 if (!bd_may_claim(bdev, whole, holder)) 887 return -EBUSY; 888 889 /* if claiming is already in progress, wait for it to finish */ 890 if (whole->bd_claiming) { 891 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 892 DEFINE_WAIT(wait); 893 894 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 895 spin_unlock(&bdev_lock); 896 schedule(); 897 finish_wait(wq, &wait); 898 spin_lock(&bdev_lock); 899 goto retry; 900 } 901 902 /* yay, all mine */ 903 return 0; 904} 905 906/** 907 * bd_start_claiming - start claiming a block device 908 * @bdev: block device of interest 909 * @holder: holder trying to claim @bdev 910 * 911 * @bdev is about to be opened exclusively. Check @bdev can be opened 912 * exclusively and mark that an exclusive open is in progress. Each 913 * successful call to this function must be matched with a call to 914 * either bd_finish_claiming() or bd_abort_claiming() (which do not 915 * fail). 916 * 917 * This function is used to gain exclusive access to the block device 918 * without actually causing other exclusive open attempts to fail. It 919 * should be used when the open sequence itself requires exclusive 920 * access but may subsequently fail. 921 * 922 * CONTEXT: 923 * Might sleep. 924 * 925 * RETURNS: 926 * Pointer to the block device containing @bdev on success, ERR_PTR() 927 * value on failure. 928 */ 929static struct block_device *bd_start_claiming(struct block_device *bdev, 930 void *holder) 931{ 932 struct gendisk *disk; 933 struct block_device *whole; 934 int partno, err; 935 936 might_sleep(); 937 938 /* 939 * @bdev might not have been initialized properly yet, look up 940 * and grab the outer block device the hard way. 941 */ 942 disk = get_gendisk(bdev->bd_dev, &partno); 943 if (!disk) 944 return ERR_PTR(-ENXIO); 945 946 /* 947 * Normally, @bdev should equal what's returned from bdget_disk() 948 * if partno is 0; however, some drivers (floppy) use multiple 949 * bdev's for the same physical device and @bdev may be one of the 950 * aliases. Keep @bdev if partno is 0. This means claimer 951 * tracking is broken for those devices but it has always been that 952 * way. 953 */ 954 if (partno) 955 whole = bdget_disk(disk, 0); 956 else 957 whole = bdgrab(bdev); 958 959 module_put(disk->fops->owner); 960 put_disk(disk); 961 if (!whole) 962 return ERR_PTR(-ENOMEM); 963 964 /* prepare to claim, if successful, mark claiming in progress */ 965 spin_lock(&bdev_lock); 966 967 err = bd_prepare_to_claim(bdev, whole, holder); 968 if (err == 0) { 969 whole->bd_claiming = holder; 970 spin_unlock(&bdev_lock); 971 return whole; 972 } else { 973 spin_unlock(&bdev_lock); 974 bdput(whole); 975 return ERR_PTR(err); 976 } 977} 978 979#ifdef CONFIG_SYSFS 980struct bd_holder_disk { 981 struct list_head list; 982 struct gendisk *disk; 983 int refcnt; 984}; 985 986static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 987 struct gendisk *disk) 988{ 989 struct bd_holder_disk *holder; 990 991 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 992 if (holder->disk == disk) 993 return holder; 994 return NULL; 995} 996 997static int add_symlink(struct kobject *from, struct kobject *to) 998{ 999 return sysfs_create_link(from, to, kobject_name(to)); 1000} 1001 1002static void del_symlink(struct kobject *from, struct kobject *to) 1003{ 1004 sysfs_remove_link(from, kobject_name(to)); 1005} 1006 1007/** 1008 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1009 * @bdev: the claimed slave bdev 1010 * @disk: the holding disk 1011 * 1012 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1013 * 1014 * This functions creates the following sysfs symlinks. 1015 * 1016 * - from "slaves" directory of the holder @disk to the claimed @bdev 1017 * - from "holders" directory of the @bdev to the holder @disk 1018 * 1019 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1020 * passed to bd_link_disk_holder(), then: 1021 * 1022 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1023 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1024 * 1025 * The caller must have claimed @bdev before calling this function and 1026 * ensure that both @bdev and @disk are valid during the creation and 1027 * lifetime of these symlinks. 1028 * 1029 * CONTEXT: 1030 * Might sleep. 1031 * 1032 * RETURNS: 1033 * 0 on success, -errno on failure. 1034 */ 1035int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1036{ 1037 struct bd_holder_disk *holder; 1038 int ret = 0; 1039 1040 mutex_lock(&bdev->bd_mutex); 1041 1042 WARN_ON_ONCE(!bdev->bd_holder); 1043 1044 /* FIXME: remove the following once add_disk() handles errors */ 1045 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1046 goto out_unlock; 1047 1048 holder = bd_find_holder_disk(bdev, disk); 1049 if (holder) { 1050 holder->refcnt++; 1051 goto out_unlock; 1052 } 1053 1054 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1055 if (!holder) { 1056 ret = -ENOMEM; 1057 goto out_unlock; 1058 } 1059 1060 INIT_LIST_HEAD(&holder->list); 1061 holder->disk = disk; 1062 holder->refcnt = 1; 1063 1064 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1065 if (ret) 1066 goto out_free; 1067 1068 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1069 if (ret) 1070 goto out_del; 1071 /* 1072 * bdev could be deleted beneath us which would implicitly destroy 1073 * the holder directory. Hold on to it. 1074 */ 1075 kobject_get(bdev->bd_part->holder_dir); 1076 1077 list_add(&holder->list, &bdev->bd_holder_disks); 1078 goto out_unlock; 1079 1080out_del: 1081 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1082out_free: 1083 kfree(holder); 1084out_unlock: 1085 mutex_unlock(&bdev->bd_mutex); 1086 return ret; 1087} 1088EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1089 1090/** 1091 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1092 * @bdev: the calimed slave bdev 1093 * @disk: the holding disk 1094 * 1095 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1096 * 1097 * CONTEXT: 1098 * Might sleep. 1099 */ 1100void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1101{ 1102 struct bd_holder_disk *holder; 1103 1104 mutex_lock(&bdev->bd_mutex); 1105 1106 holder = bd_find_holder_disk(bdev, disk); 1107 1108 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1109 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1110 del_symlink(bdev->bd_part->holder_dir, 1111 &disk_to_dev(disk)->kobj); 1112 kobject_put(bdev->bd_part->holder_dir); 1113 list_del_init(&holder->list); 1114 kfree(holder); 1115 } 1116 1117 mutex_unlock(&bdev->bd_mutex); 1118} 1119EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1120#endif 1121 1122/** 1123 * flush_disk - invalidates all buffer-cache entries on a disk 1124 * 1125 * @bdev: struct block device to be flushed 1126 * @kill_dirty: flag to guide handling of dirty inodes 1127 * 1128 * Invalidates all buffer-cache entries on a disk. It should be called 1129 * when a disk has been changed -- either by a media change or online 1130 * resize. 1131 */ 1132static void flush_disk(struct block_device *bdev, bool kill_dirty) 1133{ 1134 if (__invalidate_device(bdev, kill_dirty)) { 1135 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1136 "resized disk %s\n", 1137 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1138 } 1139 1140 if (!bdev->bd_disk) 1141 return; 1142 if (disk_part_scan_enabled(bdev->bd_disk)) 1143 bdev->bd_invalidated = 1; 1144} 1145 1146/** 1147 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1148 * @disk: struct gendisk to check 1149 * @bdev: struct bdev to adjust. 1150 * 1151 * This routine checks to see if the bdev size does not match the disk size 1152 * and adjusts it if it differs. 1153 */ 1154void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1155{ 1156 loff_t disk_size, bdev_size; 1157 1158 disk_size = (loff_t)get_capacity(disk) << 9; 1159 bdev_size = i_size_read(bdev->bd_inode); 1160 if (disk_size != bdev_size) { 1161 printk(KERN_INFO 1162 "%s: detected capacity change from %lld to %lld\n", 1163 disk->disk_name, bdev_size, disk_size); 1164 i_size_write(bdev->bd_inode, disk_size); 1165 flush_disk(bdev, false); 1166 } 1167} 1168EXPORT_SYMBOL(check_disk_size_change); 1169 1170/** 1171 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1172 * @disk: struct gendisk to be revalidated 1173 * 1174 * This routine is a wrapper for lower-level driver's revalidate_disk 1175 * call-backs. It is used to do common pre and post operations needed 1176 * for all revalidate_disk operations. 1177 */ 1178int revalidate_disk(struct gendisk *disk) 1179{ 1180 struct block_device *bdev; 1181 int ret = 0; 1182 1183 if (disk->fops->revalidate_disk) 1184 ret = disk->fops->revalidate_disk(disk); 1185 blk_integrity_revalidate(disk); 1186 bdev = bdget_disk(disk, 0); 1187 if (!bdev) 1188 return ret; 1189 1190 mutex_lock(&bdev->bd_mutex); 1191 check_disk_size_change(disk, bdev); 1192 bdev->bd_invalidated = 0; 1193 mutex_unlock(&bdev->bd_mutex); 1194 bdput(bdev); 1195 return ret; 1196} 1197EXPORT_SYMBOL(revalidate_disk); 1198 1199/* 1200 * This routine checks whether a removable media has been changed, 1201 * and invalidates all buffer-cache-entries in that case. This 1202 * is a relatively slow routine, so we have to try to minimize using 1203 * it. Thus it is called only upon a 'mount' or 'open'. This 1204 * is the best way of combining speed and utility, I think. 1205 * People changing diskettes in the middle of an operation deserve 1206 * to lose :-) 1207 */ 1208int check_disk_change(struct block_device *bdev) 1209{ 1210 struct gendisk *disk = bdev->bd_disk; 1211 const struct block_device_operations *bdops = disk->fops; 1212 unsigned int events; 1213 1214 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1215 DISK_EVENT_EJECT_REQUEST); 1216 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1217 return 0; 1218 1219 flush_disk(bdev, true); 1220 if (bdops->revalidate_disk) 1221 bdops->revalidate_disk(bdev->bd_disk); 1222 return 1; 1223} 1224 1225EXPORT_SYMBOL(check_disk_change); 1226 1227void bd_set_size(struct block_device *bdev, loff_t size) 1228{ 1229 unsigned bsize = bdev_logical_block_size(bdev); 1230 1231 inode_lock(bdev->bd_inode); 1232 i_size_write(bdev->bd_inode, size); 1233 inode_unlock(bdev->bd_inode); 1234 while (bsize < PAGE_SIZE) { 1235 if (size & bsize) 1236 break; 1237 bsize <<= 1; 1238 } 1239 bdev->bd_block_size = bsize; 1240 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1241} 1242EXPORT_SYMBOL(bd_set_size); 1243 1244static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1245 1246/* 1247 * bd_mutex locking: 1248 * 1249 * mutex_lock(part->bd_mutex) 1250 * mutex_lock_nested(whole->bd_mutex, 1) 1251 */ 1252 1253static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1254{ 1255 struct gendisk *disk; 1256 struct module *owner; 1257 int ret; 1258 int partno; 1259 int perm = 0; 1260 1261 if (mode & FMODE_READ) 1262 perm |= MAY_READ; 1263 if (mode & FMODE_WRITE) 1264 perm |= MAY_WRITE; 1265 /* 1266 * hooks: /n/, see "layering violations". 1267 */ 1268 if (!for_part) { 1269 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1270 if (ret != 0) { 1271 bdput(bdev); 1272 return ret; 1273 } 1274 } 1275 1276 restart: 1277 1278 ret = -ENXIO; 1279 disk = get_gendisk(bdev->bd_dev, &partno); 1280 if (!disk) 1281 goto out; 1282 owner = disk->fops->owner; 1283 1284 disk_block_events(disk); 1285 mutex_lock_nested(&bdev->bd_mutex, for_part); 1286 if (!bdev->bd_openers) { 1287 bdev->bd_disk = disk; 1288 bdev->bd_queue = disk->queue; 1289 bdev->bd_contains = bdev; 1290 if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access) 1291 bdev->bd_inode->i_flags = S_DAX; 1292 else 1293 bdev->bd_inode->i_flags = 0; 1294 1295 if (!partno) { 1296 ret = -ENXIO; 1297 bdev->bd_part = disk_get_part(disk, partno); 1298 if (!bdev->bd_part) 1299 goto out_clear; 1300 1301 ret = 0; 1302 if (disk->fops->open) { 1303 ret = disk->fops->open(bdev, mode); 1304 if (ret == -ERESTARTSYS) { 1305 /* Lost a race with 'disk' being 1306 * deleted, try again. 1307 * See md.c 1308 */ 1309 disk_put_part(bdev->bd_part); 1310 bdev->bd_part = NULL; 1311 bdev->bd_disk = NULL; 1312 bdev->bd_queue = NULL; 1313 mutex_unlock(&bdev->bd_mutex); 1314 disk_unblock_events(disk); 1315 put_disk(disk); 1316 module_put(owner); 1317 goto restart; 1318 } 1319 } 1320 1321 if (!ret) { 1322 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1323 if (!bdev_dax_capable(bdev)) 1324 bdev->bd_inode->i_flags &= ~S_DAX; 1325 } 1326 1327 /* 1328 * If the device is invalidated, rescan partition 1329 * if open succeeded or failed with -ENOMEDIUM. 1330 * The latter is necessary to prevent ghost 1331 * partitions on a removed medium. 1332 */ 1333 if (bdev->bd_invalidated) { 1334 if (!ret) 1335 rescan_partitions(disk, bdev); 1336 else if (ret == -ENOMEDIUM) 1337 invalidate_partitions(disk, bdev); 1338 } 1339 1340 if (ret) 1341 goto out_clear; 1342 } else { 1343 struct block_device *whole; 1344 whole = bdget_disk(disk, 0); 1345 ret = -ENOMEM; 1346 if (!whole) 1347 goto out_clear; 1348 BUG_ON(for_part); 1349 ret = __blkdev_get(whole, mode, 1); 1350 if (ret) 1351 goto out_clear; 1352 bdev->bd_contains = whole; 1353 bdev->bd_part = disk_get_part(disk, partno); 1354 if (!(disk->flags & GENHD_FL_UP) || 1355 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1356 ret = -ENXIO; 1357 goto out_clear; 1358 } 1359 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1360 if (!bdev_dax_capable(bdev)) 1361 bdev->bd_inode->i_flags &= ~S_DAX; 1362 } 1363 } else { 1364 if (bdev->bd_contains == bdev) { 1365 ret = 0; 1366 if (bdev->bd_disk->fops->open) 1367 ret = bdev->bd_disk->fops->open(bdev, mode); 1368 /* the same as first opener case, read comment there */ 1369 if (bdev->bd_invalidated) { 1370 if (!ret) 1371 rescan_partitions(bdev->bd_disk, bdev); 1372 else if (ret == -ENOMEDIUM) 1373 invalidate_partitions(bdev->bd_disk, bdev); 1374 } 1375 if (ret) 1376 goto out_unlock_bdev; 1377 } 1378 /* only one opener holds refs to the module and disk */ 1379 put_disk(disk); 1380 module_put(owner); 1381 } 1382 bdev->bd_openers++; 1383 if (for_part) 1384 bdev->bd_part_count++; 1385 mutex_unlock(&bdev->bd_mutex); 1386 disk_unblock_events(disk); 1387 return 0; 1388 1389 out_clear: 1390 disk_put_part(bdev->bd_part); 1391 bdev->bd_disk = NULL; 1392 bdev->bd_part = NULL; 1393 bdev->bd_queue = NULL; 1394 if (bdev != bdev->bd_contains) 1395 __blkdev_put(bdev->bd_contains, mode, 1); 1396 bdev->bd_contains = NULL; 1397 out_unlock_bdev: 1398 mutex_unlock(&bdev->bd_mutex); 1399 disk_unblock_events(disk); 1400 put_disk(disk); 1401 module_put(owner); 1402 out: 1403 bdput(bdev); 1404 1405 return ret; 1406} 1407 1408/** 1409 * blkdev_get - open a block device 1410 * @bdev: block_device to open 1411 * @mode: FMODE_* mask 1412 * @holder: exclusive holder identifier 1413 * 1414 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1415 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1416 * @holder is invalid. Exclusive opens may nest for the same @holder. 1417 * 1418 * On success, the reference count of @bdev is unchanged. On failure, 1419 * @bdev is put. 1420 * 1421 * CONTEXT: 1422 * Might sleep. 1423 * 1424 * RETURNS: 1425 * 0 on success, -errno on failure. 1426 */ 1427int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1428{ 1429 struct block_device *whole = NULL; 1430 int res; 1431 1432 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1433 1434 if ((mode & FMODE_EXCL) && holder) { 1435 whole = bd_start_claiming(bdev, holder); 1436 if (IS_ERR(whole)) { 1437 bdput(bdev); 1438 return PTR_ERR(whole); 1439 } 1440 } 1441 1442 res = __blkdev_get(bdev, mode, 0); 1443 1444 if (whole) { 1445 struct gendisk *disk = whole->bd_disk; 1446 1447 /* finish claiming */ 1448 mutex_lock(&bdev->bd_mutex); 1449 spin_lock(&bdev_lock); 1450 1451 if (!res) { 1452 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1453 /* 1454 * Note that for a whole device bd_holders 1455 * will be incremented twice, and bd_holder 1456 * will be set to bd_may_claim before being 1457 * set to holder 1458 */ 1459 whole->bd_holders++; 1460 whole->bd_holder = bd_may_claim; 1461 bdev->bd_holders++; 1462 bdev->bd_holder = holder; 1463 } 1464 1465 /* tell others that we're done */ 1466 BUG_ON(whole->bd_claiming != holder); 1467 whole->bd_claiming = NULL; 1468 wake_up_bit(&whole->bd_claiming, 0); 1469 1470 spin_unlock(&bdev_lock); 1471 1472 /* 1473 * Block event polling for write claims if requested. Any 1474 * write holder makes the write_holder state stick until 1475 * all are released. This is good enough and tracking 1476 * individual writeable reference is too fragile given the 1477 * way @mode is used in blkdev_get/put(). 1478 */ 1479 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1480 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1481 bdev->bd_write_holder = true; 1482 disk_block_events(disk); 1483 } 1484 1485 mutex_unlock(&bdev->bd_mutex); 1486 bdput(whole); 1487 } 1488 1489 return res; 1490} 1491EXPORT_SYMBOL(blkdev_get); 1492 1493/** 1494 * blkdev_get_by_path - open a block device by name 1495 * @path: path to the block device to open 1496 * @mode: FMODE_* mask 1497 * @holder: exclusive holder identifier 1498 * 1499 * Open the blockdevice described by the device file at @path. @mode 1500 * and @holder are identical to blkdev_get(). 1501 * 1502 * On success, the returned block_device has reference count of one. 1503 * 1504 * CONTEXT: 1505 * Might sleep. 1506 * 1507 * RETURNS: 1508 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1509 */ 1510struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1511 void *holder) 1512{ 1513 struct block_device *bdev; 1514 int err; 1515 1516 bdev = lookup_bdev(path); 1517 if (IS_ERR(bdev)) 1518 return bdev; 1519 1520 err = blkdev_get(bdev, mode, holder); 1521 if (err) 1522 return ERR_PTR(err); 1523 1524 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1525 blkdev_put(bdev, mode); 1526 return ERR_PTR(-EACCES); 1527 } 1528 1529 return bdev; 1530} 1531EXPORT_SYMBOL(blkdev_get_by_path); 1532 1533/** 1534 * blkdev_get_by_dev - open a block device by device number 1535 * @dev: device number of block device to open 1536 * @mode: FMODE_* mask 1537 * @holder: exclusive holder identifier 1538 * 1539 * Open the blockdevice described by device number @dev. @mode and 1540 * @holder are identical to blkdev_get(). 1541 * 1542 * Use it ONLY if you really do not have anything better - i.e. when 1543 * you are behind a truly sucky interface and all you are given is a 1544 * device number. _Never_ to be used for internal purposes. If you 1545 * ever need it - reconsider your API. 1546 * 1547 * On success, the returned block_device has reference count of one. 1548 * 1549 * CONTEXT: 1550 * Might sleep. 1551 * 1552 * RETURNS: 1553 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1554 */ 1555struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1556{ 1557 struct block_device *bdev; 1558 int err; 1559 1560 bdev = bdget(dev); 1561 if (!bdev) 1562 return ERR_PTR(-ENOMEM); 1563 1564 err = blkdev_get(bdev, mode, holder); 1565 if (err) 1566 return ERR_PTR(err); 1567 1568 return bdev; 1569} 1570EXPORT_SYMBOL(blkdev_get_by_dev); 1571 1572static int blkdev_open(struct inode * inode, struct file * filp) 1573{ 1574 struct block_device *bdev; 1575 1576 /* 1577 * Preserve backwards compatibility and allow large file access 1578 * even if userspace doesn't ask for it explicitly. Some mkfs 1579 * binary needs it. We might want to drop this workaround 1580 * during an unstable branch. 1581 */ 1582 filp->f_flags |= O_LARGEFILE; 1583 1584 if (filp->f_flags & O_NDELAY) 1585 filp->f_mode |= FMODE_NDELAY; 1586 if (filp->f_flags & O_EXCL) 1587 filp->f_mode |= FMODE_EXCL; 1588 if ((filp->f_flags & O_ACCMODE) == 3) 1589 filp->f_mode |= FMODE_WRITE_IOCTL; 1590 1591 bdev = bd_acquire(inode); 1592 if (bdev == NULL) 1593 return -ENOMEM; 1594 1595 filp->f_mapping = bdev->bd_inode->i_mapping; 1596 1597 return blkdev_get(bdev, filp->f_mode, filp); 1598} 1599 1600static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1601{ 1602 struct gendisk *disk = bdev->bd_disk; 1603 struct block_device *victim = NULL; 1604 1605 mutex_lock_nested(&bdev->bd_mutex, for_part); 1606 if (for_part) 1607 bdev->bd_part_count--; 1608 1609 if (!--bdev->bd_openers) { 1610 WARN_ON_ONCE(bdev->bd_holders); 1611 sync_blockdev(bdev); 1612 kill_bdev(bdev); 1613 1614 bdev_write_inode(bdev); 1615 /* 1616 * Detaching bdev inode from its wb in __destroy_inode() 1617 * is too late: the queue which embeds its bdi (along with 1618 * root wb) can be gone as soon as we put_disk() below. 1619 */ 1620 inode_detach_wb(bdev->bd_inode); 1621 } 1622 if (bdev->bd_contains == bdev) { 1623 if (disk->fops->release) 1624 disk->fops->release(disk, mode); 1625 } 1626 if (!bdev->bd_openers) { 1627 struct module *owner = disk->fops->owner; 1628 1629 disk_put_part(bdev->bd_part); 1630 bdev->bd_part = NULL; 1631 bdev->bd_disk = NULL; 1632 if (bdev != bdev->bd_contains) 1633 victim = bdev->bd_contains; 1634 bdev->bd_contains = NULL; 1635 1636 put_disk(disk); 1637 module_put(owner); 1638 } 1639 mutex_unlock(&bdev->bd_mutex); 1640 bdput(bdev); 1641 if (victim) 1642 __blkdev_put(victim, mode, 1); 1643} 1644 1645void blkdev_put(struct block_device *bdev, fmode_t mode) 1646{ 1647 mutex_lock(&bdev->bd_mutex); 1648 1649 if (mode & FMODE_EXCL) { 1650 bool bdev_free; 1651 1652 /* 1653 * Release a claim on the device. The holder fields 1654 * are protected with bdev_lock. bd_mutex is to 1655 * synchronize disk_holder unlinking. 1656 */ 1657 spin_lock(&bdev_lock); 1658 1659 WARN_ON_ONCE(--bdev->bd_holders < 0); 1660 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1661 1662 /* bd_contains might point to self, check in a separate step */ 1663 if ((bdev_free = !bdev->bd_holders)) 1664 bdev->bd_holder = NULL; 1665 if (!bdev->bd_contains->bd_holders) 1666 bdev->bd_contains->bd_holder = NULL; 1667 1668 spin_unlock(&bdev_lock); 1669 1670 /* 1671 * If this was the last claim, remove holder link and 1672 * unblock evpoll if it was a write holder. 1673 */ 1674 if (bdev_free && bdev->bd_write_holder) { 1675 disk_unblock_events(bdev->bd_disk); 1676 bdev->bd_write_holder = false; 1677 } 1678 } 1679 1680 /* 1681 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1682 * event. This is to ensure detection of media removal commanded 1683 * from userland - e.g. eject(1). 1684 */ 1685 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1686 1687 mutex_unlock(&bdev->bd_mutex); 1688 1689 __blkdev_put(bdev, mode, 0); 1690} 1691EXPORT_SYMBOL(blkdev_put); 1692 1693static int blkdev_close(struct inode * inode, struct file * filp) 1694{ 1695 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1696 blkdev_put(bdev, filp->f_mode); 1697 return 0; 1698} 1699 1700static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1701{ 1702 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1703 fmode_t mode = file->f_mode; 1704 1705 /* 1706 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1707 * to updated it before every ioctl. 1708 */ 1709 if (file->f_flags & O_NDELAY) 1710 mode |= FMODE_NDELAY; 1711 else 1712 mode &= ~FMODE_NDELAY; 1713 1714 return blkdev_ioctl(bdev, mode, cmd, arg); 1715} 1716 1717/* 1718 * Write data to the block device. Only intended for the block device itself 1719 * and the raw driver which basically is a fake block device. 1720 * 1721 * Does not take i_mutex for the write and thus is not for general purpose 1722 * use. 1723 */ 1724ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1725{ 1726 struct file *file = iocb->ki_filp; 1727 struct inode *bd_inode = bdev_file_inode(file); 1728 loff_t size = i_size_read(bd_inode); 1729 struct blk_plug plug; 1730 ssize_t ret; 1731 1732 if (bdev_read_only(I_BDEV(bd_inode))) 1733 return -EPERM; 1734 1735 if (!iov_iter_count(from)) 1736 return 0; 1737 1738 if (iocb->ki_pos >= size) 1739 return -ENOSPC; 1740 1741 iov_iter_truncate(from, size - iocb->ki_pos); 1742 1743 blk_start_plug(&plug); 1744 ret = __generic_file_write_iter(iocb, from); 1745 if (ret > 0) 1746 ret = generic_write_sync(iocb, ret); 1747 blk_finish_plug(&plug); 1748 return ret; 1749} 1750EXPORT_SYMBOL_GPL(blkdev_write_iter); 1751 1752ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1753{ 1754 struct file *file = iocb->ki_filp; 1755 struct inode *bd_inode = bdev_file_inode(file); 1756 loff_t size = i_size_read(bd_inode); 1757 loff_t pos = iocb->ki_pos; 1758 1759 if (pos >= size) 1760 return 0; 1761 1762 size -= pos; 1763 iov_iter_truncate(to, size); 1764 return generic_file_read_iter(iocb, to); 1765} 1766EXPORT_SYMBOL_GPL(blkdev_read_iter); 1767 1768/* 1769 * Try to release a page associated with block device when the system 1770 * is under memory pressure. 1771 */ 1772static int blkdev_releasepage(struct page *page, gfp_t wait) 1773{ 1774 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1775 1776 if (super && super->s_op->bdev_try_to_free_page) 1777 return super->s_op->bdev_try_to_free_page(super, page, wait); 1778 1779 return try_to_free_buffers(page); 1780} 1781 1782static int blkdev_writepages(struct address_space *mapping, 1783 struct writeback_control *wbc) 1784{ 1785 if (dax_mapping(mapping)) { 1786 struct block_device *bdev = I_BDEV(mapping->host); 1787 1788 return dax_writeback_mapping_range(mapping, bdev, wbc); 1789 } 1790 return generic_writepages(mapping, wbc); 1791} 1792 1793static const struct address_space_operations def_blk_aops = { 1794 .readpage = blkdev_readpage, 1795 .readpages = blkdev_readpages, 1796 .writepage = blkdev_writepage, 1797 .write_begin = blkdev_write_begin, 1798 .write_end = blkdev_write_end, 1799 .writepages = blkdev_writepages, 1800 .releasepage = blkdev_releasepage, 1801 .direct_IO = blkdev_direct_IO, 1802 .is_dirty_writeback = buffer_check_dirty_writeback, 1803}; 1804 1805const struct file_operations def_blk_fops = { 1806 .open = blkdev_open, 1807 .release = blkdev_close, 1808 .llseek = block_llseek, 1809 .read_iter = blkdev_read_iter, 1810 .write_iter = blkdev_write_iter, 1811 .mmap = generic_file_mmap, 1812 .fsync = blkdev_fsync, 1813 .unlocked_ioctl = block_ioctl, 1814#ifdef CONFIG_COMPAT 1815 .compat_ioctl = compat_blkdev_ioctl, 1816#endif 1817 .splice_read = generic_file_splice_read, 1818 .splice_write = iter_file_splice_write, 1819}; 1820 1821int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1822{ 1823 int res; 1824 mm_segment_t old_fs = get_fs(); 1825 set_fs(KERNEL_DS); 1826 res = blkdev_ioctl(bdev, 0, cmd, arg); 1827 set_fs(old_fs); 1828 return res; 1829} 1830 1831EXPORT_SYMBOL(ioctl_by_bdev); 1832 1833/** 1834 * lookup_bdev - lookup a struct block_device by name 1835 * @pathname: special file representing the block device 1836 * 1837 * Get a reference to the blockdevice at @pathname in the current 1838 * namespace if possible and return it. Return ERR_PTR(error) 1839 * otherwise. 1840 */ 1841struct block_device *lookup_bdev(const char *pathname) 1842{ 1843 struct block_device *bdev; 1844 struct inode *inode; 1845 struct path path; 1846 int error; 1847 1848 if (!pathname || !*pathname) 1849 return ERR_PTR(-EINVAL); 1850 1851 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1852 if (error) 1853 return ERR_PTR(error); 1854 1855 inode = d_backing_inode(path.dentry); 1856 error = -ENOTBLK; 1857 if (!S_ISBLK(inode->i_mode)) 1858 goto fail; 1859 error = -EACCES; 1860 if (path.mnt->mnt_flags & MNT_NODEV) 1861 goto fail; 1862 error = -ENOMEM; 1863 bdev = bd_acquire(inode); 1864 if (!bdev) 1865 goto fail; 1866out: 1867 path_put(&path); 1868 return bdev; 1869fail: 1870 bdev = ERR_PTR(error); 1871 goto out; 1872} 1873EXPORT_SYMBOL(lookup_bdev); 1874 1875int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1876{ 1877 struct super_block *sb = get_super(bdev); 1878 int res = 0; 1879 1880 if (sb) { 1881 /* 1882 * no need to lock the super, get_super holds the 1883 * read mutex so the filesystem cannot go away 1884 * under us (->put_super runs with the write lock 1885 * hold). 1886 */ 1887 shrink_dcache_sb(sb); 1888 res = invalidate_inodes(sb, kill_dirty); 1889 drop_super(sb); 1890 } 1891 invalidate_bdev(bdev); 1892 return res; 1893} 1894EXPORT_SYMBOL(__invalidate_device); 1895 1896void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1897{ 1898 struct inode *inode, *old_inode = NULL; 1899 1900 spin_lock(&blockdev_superblock->s_inode_list_lock); 1901 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1902 struct address_space *mapping = inode->i_mapping; 1903 1904 spin_lock(&inode->i_lock); 1905 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1906 mapping->nrpages == 0) { 1907 spin_unlock(&inode->i_lock); 1908 continue; 1909 } 1910 __iget(inode); 1911 spin_unlock(&inode->i_lock); 1912 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1913 /* 1914 * We hold a reference to 'inode' so it couldn't have been 1915 * removed from s_inodes list while we dropped the 1916 * s_inode_list_lock We cannot iput the inode now as we can 1917 * be holding the last reference and we cannot iput it under 1918 * s_inode_list_lock. So we keep the reference and iput it 1919 * later. 1920 */ 1921 iput(old_inode); 1922 old_inode = inode; 1923 1924 func(I_BDEV(inode), arg); 1925 1926 spin_lock(&blockdev_superblock->s_inode_list_lock); 1927 } 1928 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1929 iput(old_inode); 1930}