at v4.7 16382 lines 468 kB view raw
1/* 2 * Copyright © 2006-2007 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eric Anholt <eric@anholt.net> 25 */ 26 27#include <linux/dmi.h> 28#include <linux/module.h> 29#include <linux/input.h> 30#include <linux/i2c.h> 31#include <linux/kernel.h> 32#include <linux/slab.h> 33#include <linux/vgaarb.h> 34#include <drm/drm_edid.h> 35#include <drm/drmP.h> 36#include "intel_drv.h" 37#include <drm/i915_drm.h> 38#include "i915_drv.h" 39#include "intel_dsi.h" 40#include "i915_trace.h" 41#include <drm/drm_atomic.h> 42#include <drm/drm_atomic_helper.h> 43#include <drm/drm_dp_helper.h> 44#include <drm/drm_crtc_helper.h> 45#include <drm/drm_plane_helper.h> 46#include <drm/drm_rect.h> 47#include <linux/dma_remapping.h> 48#include <linux/reservation.h> 49#include <linux/dma-buf.h> 50 51/* Primary plane formats for gen <= 3 */ 52static const uint32_t i8xx_primary_formats[] = { 53 DRM_FORMAT_C8, 54 DRM_FORMAT_RGB565, 55 DRM_FORMAT_XRGB1555, 56 DRM_FORMAT_XRGB8888, 57}; 58 59/* Primary plane formats for gen >= 4 */ 60static const uint32_t i965_primary_formats[] = { 61 DRM_FORMAT_C8, 62 DRM_FORMAT_RGB565, 63 DRM_FORMAT_XRGB8888, 64 DRM_FORMAT_XBGR8888, 65 DRM_FORMAT_XRGB2101010, 66 DRM_FORMAT_XBGR2101010, 67}; 68 69static const uint32_t skl_primary_formats[] = { 70 DRM_FORMAT_C8, 71 DRM_FORMAT_RGB565, 72 DRM_FORMAT_XRGB8888, 73 DRM_FORMAT_XBGR8888, 74 DRM_FORMAT_ARGB8888, 75 DRM_FORMAT_ABGR8888, 76 DRM_FORMAT_XRGB2101010, 77 DRM_FORMAT_XBGR2101010, 78 DRM_FORMAT_YUYV, 79 DRM_FORMAT_YVYU, 80 DRM_FORMAT_UYVY, 81 DRM_FORMAT_VYUY, 82}; 83 84/* Cursor formats */ 85static const uint32_t intel_cursor_formats[] = { 86 DRM_FORMAT_ARGB8888, 87}; 88 89static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 90 struct intel_crtc_state *pipe_config); 91static void ironlake_pch_clock_get(struct intel_crtc *crtc, 92 struct intel_crtc_state *pipe_config); 93 94static int intel_framebuffer_init(struct drm_device *dev, 95 struct intel_framebuffer *ifb, 96 struct drm_mode_fb_cmd2 *mode_cmd, 97 struct drm_i915_gem_object *obj); 98static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc); 99static void intel_set_pipe_timings(struct intel_crtc *intel_crtc); 100static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc); 101static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, 102 struct intel_link_m_n *m_n, 103 struct intel_link_m_n *m2_n2); 104static void ironlake_set_pipeconf(struct drm_crtc *crtc); 105static void haswell_set_pipeconf(struct drm_crtc *crtc); 106static void haswell_set_pipemisc(struct drm_crtc *crtc); 107static void vlv_prepare_pll(struct intel_crtc *crtc, 108 const struct intel_crtc_state *pipe_config); 109static void chv_prepare_pll(struct intel_crtc *crtc, 110 const struct intel_crtc_state *pipe_config); 111static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *); 112static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *); 113static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc, 114 struct intel_crtc_state *crtc_state); 115static void skylake_pfit_enable(struct intel_crtc *crtc); 116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force); 117static void ironlake_pfit_enable(struct intel_crtc *crtc); 118static void intel_modeset_setup_hw_state(struct drm_device *dev); 119static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc); 120 121typedef struct { 122 int min, max; 123} intel_range_t; 124 125typedef struct { 126 int dot_limit; 127 int p2_slow, p2_fast; 128} intel_p2_t; 129 130typedef struct intel_limit intel_limit_t; 131struct intel_limit { 132 intel_range_t dot, vco, n, m, m1, m2, p, p1; 133 intel_p2_t p2; 134}; 135 136/* returns HPLL frequency in kHz */ 137static int valleyview_get_vco(struct drm_i915_private *dev_priv) 138{ 139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; 140 141 /* Obtain SKU information */ 142 mutex_lock(&dev_priv->sb_lock); 143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & 144 CCK_FUSE_HPLL_FREQ_MASK; 145 mutex_unlock(&dev_priv->sb_lock); 146 147 return vco_freq[hpll_freq] * 1000; 148} 149 150int vlv_get_cck_clock(struct drm_i915_private *dev_priv, 151 const char *name, u32 reg, int ref_freq) 152{ 153 u32 val; 154 int divider; 155 156 mutex_lock(&dev_priv->sb_lock); 157 val = vlv_cck_read(dev_priv, reg); 158 mutex_unlock(&dev_priv->sb_lock); 159 160 divider = val & CCK_FREQUENCY_VALUES; 161 162 WARN((val & CCK_FREQUENCY_STATUS) != 163 (divider << CCK_FREQUENCY_STATUS_SHIFT), 164 "%s change in progress\n", name); 165 166 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); 167} 168 169static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, 170 const char *name, u32 reg) 171{ 172 if (dev_priv->hpll_freq == 0) 173 dev_priv->hpll_freq = valleyview_get_vco(dev_priv); 174 175 return vlv_get_cck_clock(dev_priv, name, reg, 176 dev_priv->hpll_freq); 177} 178 179static int 180intel_pch_rawclk(struct drm_i915_private *dev_priv) 181{ 182 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000; 183} 184 185static int 186intel_vlv_hrawclk(struct drm_i915_private *dev_priv) 187{ 188 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk", 189 CCK_DISPLAY_REF_CLOCK_CONTROL); 190} 191 192static int 193intel_g4x_hrawclk(struct drm_i915_private *dev_priv) 194{ 195 uint32_t clkcfg; 196 197 /* hrawclock is 1/4 the FSB frequency */ 198 clkcfg = I915_READ(CLKCFG); 199 switch (clkcfg & CLKCFG_FSB_MASK) { 200 case CLKCFG_FSB_400: 201 return 100000; 202 case CLKCFG_FSB_533: 203 return 133333; 204 case CLKCFG_FSB_667: 205 return 166667; 206 case CLKCFG_FSB_800: 207 return 200000; 208 case CLKCFG_FSB_1067: 209 return 266667; 210 case CLKCFG_FSB_1333: 211 return 333333; 212 /* these two are just a guess; one of them might be right */ 213 case CLKCFG_FSB_1600: 214 case CLKCFG_FSB_1600_ALT: 215 return 400000; 216 default: 217 return 133333; 218 } 219} 220 221static void intel_update_rawclk(struct drm_i915_private *dev_priv) 222{ 223 if (HAS_PCH_SPLIT(dev_priv)) 224 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv); 225 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 226 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv); 227 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv)) 228 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv); 229 else 230 return; /* no rawclk on other platforms, or no need to know it */ 231 232 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq); 233} 234 235static void intel_update_czclk(struct drm_i915_private *dev_priv) 236{ 237 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) 238 return; 239 240 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", 241 CCK_CZ_CLOCK_CONTROL); 242 243 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq); 244} 245 246static inline u32 /* units of 100MHz */ 247intel_fdi_link_freq(struct drm_i915_private *dev_priv, 248 const struct intel_crtc_state *pipe_config) 249{ 250 if (HAS_DDI(dev_priv)) 251 return pipe_config->port_clock; /* SPLL */ 252 else if (IS_GEN5(dev_priv)) 253 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000; 254 else 255 return 270000; 256} 257 258static const intel_limit_t intel_limits_i8xx_dac = { 259 .dot = { .min = 25000, .max = 350000 }, 260 .vco = { .min = 908000, .max = 1512000 }, 261 .n = { .min = 2, .max = 16 }, 262 .m = { .min = 96, .max = 140 }, 263 .m1 = { .min = 18, .max = 26 }, 264 .m2 = { .min = 6, .max = 16 }, 265 .p = { .min = 4, .max = 128 }, 266 .p1 = { .min = 2, .max = 33 }, 267 .p2 = { .dot_limit = 165000, 268 .p2_slow = 4, .p2_fast = 2 }, 269}; 270 271static const intel_limit_t intel_limits_i8xx_dvo = { 272 .dot = { .min = 25000, .max = 350000 }, 273 .vco = { .min = 908000, .max = 1512000 }, 274 .n = { .min = 2, .max = 16 }, 275 .m = { .min = 96, .max = 140 }, 276 .m1 = { .min = 18, .max = 26 }, 277 .m2 = { .min = 6, .max = 16 }, 278 .p = { .min = 4, .max = 128 }, 279 .p1 = { .min = 2, .max = 33 }, 280 .p2 = { .dot_limit = 165000, 281 .p2_slow = 4, .p2_fast = 4 }, 282}; 283 284static const intel_limit_t intel_limits_i8xx_lvds = { 285 .dot = { .min = 25000, .max = 350000 }, 286 .vco = { .min = 908000, .max = 1512000 }, 287 .n = { .min = 2, .max = 16 }, 288 .m = { .min = 96, .max = 140 }, 289 .m1 = { .min = 18, .max = 26 }, 290 .m2 = { .min = 6, .max = 16 }, 291 .p = { .min = 4, .max = 128 }, 292 .p1 = { .min = 1, .max = 6 }, 293 .p2 = { .dot_limit = 165000, 294 .p2_slow = 14, .p2_fast = 7 }, 295}; 296 297static const intel_limit_t intel_limits_i9xx_sdvo = { 298 .dot = { .min = 20000, .max = 400000 }, 299 .vco = { .min = 1400000, .max = 2800000 }, 300 .n = { .min = 1, .max = 6 }, 301 .m = { .min = 70, .max = 120 }, 302 .m1 = { .min = 8, .max = 18 }, 303 .m2 = { .min = 3, .max = 7 }, 304 .p = { .min = 5, .max = 80 }, 305 .p1 = { .min = 1, .max = 8 }, 306 .p2 = { .dot_limit = 200000, 307 .p2_slow = 10, .p2_fast = 5 }, 308}; 309 310static const intel_limit_t intel_limits_i9xx_lvds = { 311 .dot = { .min = 20000, .max = 400000 }, 312 .vco = { .min = 1400000, .max = 2800000 }, 313 .n = { .min = 1, .max = 6 }, 314 .m = { .min = 70, .max = 120 }, 315 .m1 = { .min = 8, .max = 18 }, 316 .m2 = { .min = 3, .max = 7 }, 317 .p = { .min = 7, .max = 98 }, 318 .p1 = { .min = 1, .max = 8 }, 319 .p2 = { .dot_limit = 112000, 320 .p2_slow = 14, .p2_fast = 7 }, 321}; 322 323 324static const intel_limit_t intel_limits_g4x_sdvo = { 325 .dot = { .min = 25000, .max = 270000 }, 326 .vco = { .min = 1750000, .max = 3500000}, 327 .n = { .min = 1, .max = 4 }, 328 .m = { .min = 104, .max = 138 }, 329 .m1 = { .min = 17, .max = 23 }, 330 .m2 = { .min = 5, .max = 11 }, 331 .p = { .min = 10, .max = 30 }, 332 .p1 = { .min = 1, .max = 3}, 333 .p2 = { .dot_limit = 270000, 334 .p2_slow = 10, 335 .p2_fast = 10 336 }, 337}; 338 339static const intel_limit_t intel_limits_g4x_hdmi = { 340 .dot = { .min = 22000, .max = 400000 }, 341 .vco = { .min = 1750000, .max = 3500000}, 342 .n = { .min = 1, .max = 4 }, 343 .m = { .min = 104, .max = 138 }, 344 .m1 = { .min = 16, .max = 23 }, 345 .m2 = { .min = 5, .max = 11 }, 346 .p = { .min = 5, .max = 80 }, 347 .p1 = { .min = 1, .max = 8}, 348 .p2 = { .dot_limit = 165000, 349 .p2_slow = 10, .p2_fast = 5 }, 350}; 351 352static const intel_limit_t intel_limits_g4x_single_channel_lvds = { 353 .dot = { .min = 20000, .max = 115000 }, 354 .vco = { .min = 1750000, .max = 3500000 }, 355 .n = { .min = 1, .max = 3 }, 356 .m = { .min = 104, .max = 138 }, 357 .m1 = { .min = 17, .max = 23 }, 358 .m2 = { .min = 5, .max = 11 }, 359 .p = { .min = 28, .max = 112 }, 360 .p1 = { .min = 2, .max = 8 }, 361 .p2 = { .dot_limit = 0, 362 .p2_slow = 14, .p2_fast = 14 363 }, 364}; 365 366static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { 367 .dot = { .min = 80000, .max = 224000 }, 368 .vco = { .min = 1750000, .max = 3500000 }, 369 .n = { .min = 1, .max = 3 }, 370 .m = { .min = 104, .max = 138 }, 371 .m1 = { .min = 17, .max = 23 }, 372 .m2 = { .min = 5, .max = 11 }, 373 .p = { .min = 14, .max = 42 }, 374 .p1 = { .min = 2, .max = 6 }, 375 .p2 = { .dot_limit = 0, 376 .p2_slow = 7, .p2_fast = 7 377 }, 378}; 379 380static const intel_limit_t intel_limits_pineview_sdvo = { 381 .dot = { .min = 20000, .max = 400000}, 382 .vco = { .min = 1700000, .max = 3500000 }, 383 /* Pineview's Ncounter is a ring counter */ 384 .n = { .min = 3, .max = 6 }, 385 .m = { .min = 2, .max = 256 }, 386 /* Pineview only has one combined m divider, which we treat as m2. */ 387 .m1 = { .min = 0, .max = 0 }, 388 .m2 = { .min = 0, .max = 254 }, 389 .p = { .min = 5, .max = 80 }, 390 .p1 = { .min = 1, .max = 8 }, 391 .p2 = { .dot_limit = 200000, 392 .p2_slow = 10, .p2_fast = 5 }, 393}; 394 395static const intel_limit_t intel_limits_pineview_lvds = { 396 .dot = { .min = 20000, .max = 400000 }, 397 .vco = { .min = 1700000, .max = 3500000 }, 398 .n = { .min = 3, .max = 6 }, 399 .m = { .min = 2, .max = 256 }, 400 .m1 = { .min = 0, .max = 0 }, 401 .m2 = { .min = 0, .max = 254 }, 402 .p = { .min = 7, .max = 112 }, 403 .p1 = { .min = 1, .max = 8 }, 404 .p2 = { .dot_limit = 112000, 405 .p2_slow = 14, .p2_fast = 14 }, 406}; 407 408/* Ironlake / Sandybridge 409 * 410 * We calculate clock using (register_value + 2) for N/M1/M2, so here 411 * the range value for them is (actual_value - 2). 412 */ 413static const intel_limit_t intel_limits_ironlake_dac = { 414 .dot = { .min = 25000, .max = 350000 }, 415 .vco = { .min = 1760000, .max = 3510000 }, 416 .n = { .min = 1, .max = 5 }, 417 .m = { .min = 79, .max = 127 }, 418 .m1 = { .min = 12, .max = 22 }, 419 .m2 = { .min = 5, .max = 9 }, 420 .p = { .min = 5, .max = 80 }, 421 .p1 = { .min = 1, .max = 8 }, 422 .p2 = { .dot_limit = 225000, 423 .p2_slow = 10, .p2_fast = 5 }, 424}; 425 426static const intel_limit_t intel_limits_ironlake_single_lvds = { 427 .dot = { .min = 25000, .max = 350000 }, 428 .vco = { .min = 1760000, .max = 3510000 }, 429 .n = { .min = 1, .max = 3 }, 430 .m = { .min = 79, .max = 118 }, 431 .m1 = { .min = 12, .max = 22 }, 432 .m2 = { .min = 5, .max = 9 }, 433 .p = { .min = 28, .max = 112 }, 434 .p1 = { .min = 2, .max = 8 }, 435 .p2 = { .dot_limit = 225000, 436 .p2_slow = 14, .p2_fast = 14 }, 437}; 438 439static const intel_limit_t intel_limits_ironlake_dual_lvds = { 440 .dot = { .min = 25000, .max = 350000 }, 441 .vco = { .min = 1760000, .max = 3510000 }, 442 .n = { .min = 1, .max = 3 }, 443 .m = { .min = 79, .max = 127 }, 444 .m1 = { .min = 12, .max = 22 }, 445 .m2 = { .min = 5, .max = 9 }, 446 .p = { .min = 14, .max = 56 }, 447 .p1 = { .min = 2, .max = 8 }, 448 .p2 = { .dot_limit = 225000, 449 .p2_slow = 7, .p2_fast = 7 }, 450}; 451 452/* LVDS 100mhz refclk limits. */ 453static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { 454 .dot = { .min = 25000, .max = 350000 }, 455 .vco = { .min = 1760000, .max = 3510000 }, 456 .n = { .min = 1, .max = 2 }, 457 .m = { .min = 79, .max = 126 }, 458 .m1 = { .min = 12, .max = 22 }, 459 .m2 = { .min = 5, .max = 9 }, 460 .p = { .min = 28, .max = 112 }, 461 .p1 = { .min = 2, .max = 8 }, 462 .p2 = { .dot_limit = 225000, 463 .p2_slow = 14, .p2_fast = 14 }, 464}; 465 466static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { 467 .dot = { .min = 25000, .max = 350000 }, 468 .vco = { .min = 1760000, .max = 3510000 }, 469 .n = { .min = 1, .max = 3 }, 470 .m = { .min = 79, .max = 126 }, 471 .m1 = { .min = 12, .max = 22 }, 472 .m2 = { .min = 5, .max = 9 }, 473 .p = { .min = 14, .max = 42 }, 474 .p1 = { .min = 2, .max = 6 }, 475 .p2 = { .dot_limit = 225000, 476 .p2_slow = 7, .p2_fast = 7 }, 477}; 478 479static const intel_limit_t intel_limits_vlv = { 480 /* 481 * These are the data rate limits (measured in fast clocks) 482 * since those are the strictest limits we have. The fast 483 * clock and actual rate limits are more relaxed, so checking 484 * them would make no difference. 485 */ 486 .dot = { .min = 25000 * 5, .max = 270000 * 5 }, 487 .vco = { .min = 4000000, .max = 6000000 }, 488 .n = { .min = 1, .max = 7 }, 489 .m1 = { .min = 2, .max = 3 }, 490 .m2 = { .min = 11, .max = 156 }, 491 .p1 = { .min = 2, .max = 3 }, 492 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ 493}; 494 495static const intel_limit_t intel_limits_chv = { 496 /* 497 * These are the data rate limits (measured in fast clocks) 498 * since those are the strictest limits we have. The fast 499 * clock and actual rate limits are more relaxed, so checking 500 * them would make no difference. 501 */ 502 .dot = { .min = 25000 * 5, .max = 540000 * 5}, 503 .vco = { .min = 4800000, .max = 6480000 }, 504 .n = { .min = 1, .max = 1 }, 505 .m1 = { .min = 2, .max = 2 }, 506 .m2 = { .min = 24 << 22, .max = 175 << 22 }, 507 .p1 = { .min = 2, .max = 4 }, 508 .p2 = { .p2_slow = 1, .p2_fast = 14 }, 509}; 510 511static const intel_limit_t intel_limits_bxt = { 512 /* FIXME: find real dot limits */ 513 .dot = { .min = 0, .max = INT_MAX }, 514 .vco = { .min = 4800000, .max = 6700000 }, 515 .n = { .min = 1, .max = 1 }, 516 .m1 = { .min = 2, .max = 2 }, 517 /* FIXME: find real m2 limits */ 518 .m2 = { .min = 2 << 22, .max = 255 << 22 }, 519 .p1 = { .min = 2, .max = 4 }, 520 .p2 = { .p2_slow = 1, .p2_fast = 20 }, 521}; 522 523static bool 524needs_modeset(struct drm_crtc_state *state) 525{ 526 return drm_atomic_crtc_needs_modeset(state); 527} 528 529/** 530 * Returns whether any output on the specified pipe is of the specified type 531 */ 532bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type) 533{ 534 struct drm_device *dev = crtc->base.dev; 535 struct intel_encoder *encoder; 536 537 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 538 if (encoder->type == type) 539 return true; 540 541 return false; 542} 543 544/** 545 * Returns whether any output on the specified pipe will have the specified 546 * type after a staged modeset is complete, i.e., the same as 547 * intel_pipe_has_type() but looking at encoder->new_crtc instead of 548 * encoder->crtc. 549 */ 550static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state, 551 int type) 552{ 553 struct drm_atomic_state *state = crtc_state->base.state; 554 struct drm_connector *connector; 555 struct drm_connector_state *connector_state; 556 struct intel_encoder *encoder; 557 int i, num_connectors = 0; 558 559 for_each_connector_in_state(state, connector, connector_state, i) { 560 if (connector_state->crtc != crtc_state->base.crtc) 561 continue; 562 563 num_connectors++; 564 565 encoder = to_intel_encoder(connector_state->best_encoder); 566 if (encoder->type == type) 567 return true; 568 } 569 570 WARN_ON(num_connectors == 0); 571 572 return false; 573} 574 575/* 576 * Platform specific helpers to calculate the port PLL loopback- (clock.m), 577 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast 578 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. 579 * The helpers' return value is the rate of the clock that is fed to the 580 * display engine's pipe which can be the above fast dot clock rate or a 581 * divided-down version of it. 582 */ 583/* m1 is reserved as 0 in Pineview, n is a ring counter */ 584static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock) 585{ 586 clock->m = clock->m2 + 2; 587 clock->p = clock->p1 * clock->p2; 588 if (WARN_ON(clock->n == 0 || clock->p == 0)) 589 return 0; 590 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 591 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 592 593 return clock->dot; 594} 595 596static uint32_t i9xx_dpll_compute_m(struct dpll *dpll) 597{ 598 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); 599} 600 601static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock) 602{ 603 clock->m = i9xx_dpll_compute_m(clock); 604 clock->p = clock->p1 * clock->p2; 605 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) 606 return 0; 607 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); 608 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 609 610 return clock->dot; 611} 612 613static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock) 614{ 615 clock->m = clock->m1 * clock->m2; 616 clock->p = clock->p1 * clock->p2; 617 if (WARN_ON(clock->n == 0 || clock->p == 0)) 618 return 0; 619 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); 620 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 621 622 return clock->dot / 5; 623} 624 625int chv_calc_dpll_params(int refclk, intel_clock_t *clock) 626{ 627 clock->m = clock->m1 * clock->m2; 628 clock->p = clock->p1 * clock->p2; 629 if (WARN_ON(clock->n == 0 || clock->p == 0)) 630 return 0; 631 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m, 632 clock->n << 22); 633 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); 634 635 return clock->dot / 5; 636} 637 638#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) 639/** 640 * Returns whether the given set of divisors are valid for a given refclk with 641 * the given connectors. 642 */ 643 644static bool intel_PLL_is_valid(struct drm_device *dev, 645 const intel_limit_t *limit, 646 const intel_clock_t *clock) 647{ 648 if (clock->n < limit->n.min || limit->n.max < clock->n) 649 INTELPllInvalid("n out of range\n"); 650 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) 651 INTELPllInvalid("p1 out of range\n"); 652 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) 653 INTELPllInvalid("m2 out of range\n"); 654 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) 655 INTELPllInvalid("m1 out of range\n"); 656 657 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && 658 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) 659 if (clock->m1 <= clock->m2) 660 INTELPllInvalid("m1 <= m2\n"); 661 662 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) { 663 if (clock->p < limit->p.min || limit->p.max < clock->p) 664 INTELPllInvalid("p out of range\n"); 665 if (clock->m < limit->m.min || limit->m.max < clock->m) 666 INTELPllInvalid("m out of range\n"); 667 } 668 669 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) 670 INTELPllInvalid("vco out of range\n"); 671 /* XXX: We may need to be checking "Dot clock" depending on the multiplier, 672 * connector, etc., rather than just a single range. 673 */ 674 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) 675 INTELPllInvalid("dot out of range\n"); 676 677 return true; 678} 679 680static int 681i9xx_select_p2_div(const intel_limit_t *limit, 682 const struct intel_crtc_state *crtc_state, 683 int target) 684{ 685 struct drm_device *dev = crtc_state->base.crtc->dev; 686 687 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 688 /* 689 * For LVDS just rely on its current settings for dual-channel. 690 * We haven't figured out how to reliably set up different 691 * single/dual channel state, if we even can. 692 */ 693 if (intel_is_dual_link_lvds(dev)) 694 return limit->p2.p2_fast; 695 else 696 return limit->p2.p2_slow; 697 } else { 698 if (target < limit->p2.dot_limit) 699 return limit->p2.p2_slow; 700 else 701 return limit->p2.p2_fast; 702 } 703} 704 705/* 706 * Returns a set of divisors for the desired target clock with the given 707 * refclk, or FALSE. The returned values represent the clock equation: 708 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 709 * 710 * Target and reference clocks are specified in kHz. 711 * 712 * If match_clock is provided, then best_clock P divider must match the P 713 * divider from @match_clock used for LVDS downclocking. 714 */ 715static bool 716i9xx_find_best_dpll(const intel_limit_t *limit, 717 struct intel_crtc_state *crtc_state, 718 int target, int refclk, intel_clock_t *match_clock, 719 intel_clock_t *best_clock) 720{ 721 struct drm_device *dev = crtc_state->base.crtc->dev; 722 intel_clock_t clock; 723 int err = target; 724 725 memset(best_clock, 0, sizeof(*best_clock)); 726 727 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 728 729 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 730 clock.m1++) { 731 for (clock.m2 = limit->m2.min; 732 clock.m2 <= limit->m2.max; clock.m2++) { 733 if (clock.m2 >= clock.m1) 734 break; 735 for (clock.n = limit->n.min; 736 clock.n <= limit->n.max; clock.n++) { 737 for (clock.p1 = limit->p1.min; 738 clock.p1 <= limit->p1.max; clock.p1++) { 739 int this_err; 740 741 i9xx_calc_dpll_params(refclk, &clock); 742 if (!intel_PLL_is_valid(dev, limit, 743 &clock)) 744 continue; 745 if (match_clock && 746 clock.p != match_clock->p) 747 continue; 748 749 this_err = abs(clock.dot - target); 750 if (this_err < err) { 751 *best_clock = clock; 752 err = this_err; 753 } 754 } 755 } 756 } 757 } 758 759 return (err != target); 760} 761 762/* 763 * Returns a set of divisors for the desired target clock with the given 764 * refclk, or FALSE. The returned values represent the clock equation: 765 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 766 * 767 * Target and reference clocks are specified in kHz. 768 * 769 * If match_clock is provided, then best_clock P divider must match the P 770 * divider from @match_clock used for LVDS downclocking. 771 */ 772static bool 773pnv_find_best_dpll(const intel_limit_t *limit, 774 struct intel_crtc_state *crtc_state, 775 int target, int refclk, intel_clock_t *match_clock, 776 intel_clock_t *best_clock) 777{ 778 struct drm_device *dev = crtc_state->base.crtc->dev; 779 intel_clock_t clock; 780 int err = target; 781 782 memset(best_clock, 0, sizeof(*best_clock)); 783 784 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 785 786 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; 787 clock.m1++) { 788 for (clock.m2 = limit->m2.min; 789 clock.m2 <= limit->m2.max; clock.m2++) { 790 for (clock.n = limit->n.min; 791 clock.n <= limit->n.max; clock.n++) { 792 for (clock.p1 = limit->p1.min; 793 clock.p1 <= limit->p1.max; clock.p1++) { 794 int this_err; 795 796 pnv_calc_dpll_params(refclk, &clock); 797 if (!intel_PLL_is_valid(dev, limit, 798 &clock)) 799 continue; 800 if (match_clock && 801 clock.p != match_clock->p) 802 continue; 803 804 this_err = abs(clock.dot - target); 805 if (this_err < err) { 806 *best_clock = clock; 807 err = this_err; 808 } 809 } 810 } 811 } 812 } 813 814 return (err != target); 815} 816 817/* 818 * Returns a set of divisors for the desired target clock with the given 819 * refclk, or FALSE. The returned values represent the clock equation: 820 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 821 * 822 * Target and reference clocks are specified in kHz. 823 * 824 * If match_clock is provided, then best_clock P divider must match the P 825 * divider from @match_clock used for LVDS downclocking. 826 */ 827static bool 828g4x_find_best_dpll(const intel_limit_t *limit, 829 struct intel_crtc_state *crtc_state, 830 int target, int refclk, intel_clock_t *match_clock, 831 intel_clock_t *best_clock) 832{ 833 struct drm_device *dev = crtc_state->base.crtc->dev; 834 intel_clock_t clock; 835 int max_n; 836 bool found = false; 837 /* approximately equals target * 0.00585 */ 838 int err_most = (target >> 8) + (target >> 9); 839 840 memset(best_clock, 0, sizeof(*best_clock)); 841 842 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); 843 844 max_n = limit->n.max; 845 /* based on hardware requirement, prefer smaller n to precision */ 846 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 847 /* based on hardware requirement, prefere larger m1,m2 */ 848 for (clock.m1 = limit->m1.max; 849 clock.m1 >= limit->m1.min; clock.m1--) { 850 for (clock.m2 = limit->m2.max; 851 clock.m2 >= limit->m2.min; clock.m2--) { 852 for (clock.p1 = limit->p1.max; 853 clock.p1 >= limit->p1.min; clock.p1--) { 854 int this_err; 855 856 i9xx_calc_dpll_params(refclk, &clock); 857 if (!intel_PLL_is_valid(dev, limit, 858 &clock)) 859 continue; 860 861 this_err = abs(clock.dot - target); 862 if (this_err < err_most) { 863 *best_clock = clock; 864 err_most = this_err; 865 max_n = clock.n; 866 found = true; 867 } 868 } 869 } 870 } 871 } 872 return found; 873} 874 875/* 876 * Check if the calculated PLL configuration is more optimal compared to the 877 * best configuration and error found so far. Return the calculated error. 878 */ 879static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, 880 const intel_clock_t *calculated_clock, 881 const intel_clock_t *best_clock, 882 unsigned int best_error_ppm, 883 unsigned int *error_ppm) 884{ 885 /* 886 * For CHV ignore the error and consider only the P value. 887 * Prefer a bigger P value based on HW requirements. 888 */ 889 if (IS_CHERRYVIEW(dev)) { 890 *error_ppm = 0; 891 892 return calculated_clock->p > best_clock->p; 893 } 894 895 if (WARN_ON_ONCE(!target_freq)) 896 return false; 897 898 *error_ppm = div_u64(1000000ULL * 899 abs(target_freq - calculated_clock->dot), 900 target_freq); 901 /* 902 * Prefer a better P value over a better (smaller) error if the error 903 * is small. Ensure this preference for future configurations too by 904 * setting the error to 0. 905 */ 906 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { 907 *error_ppm = 0; 908 909 return true; 910 } 911 912 return *error_ppm + 10 < best_error_ppm; 913} 914 915/* 916 * Returns a set of divisors for the desired target clock with the given 917 * refclk, or FALSE. The returned values represent the clock equation: 918 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 919 */ 920static bool 921vlv_find_best_dpll(const intel_limit_t *limit, 922 struct intel_crtc_state *crtc_state, 923 int target, int refclk, intel_clock_t *match_clock, 924 intel_clock_t *best_clock) 925{ 926 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 927 struct drm_device *dev = crtc->base.dev; 928 intel_clock_t clock; 929 unsigned int bestppm = 1000000; 930 /* min update 19.2 MHz */ 931 int max_n = min(limit->n.max, refclk / 19200); 932 bool found = false; 933 934 target *= 5; /* fast clock */ 935 936 memset(best_clock, 0, sizeof(*best_clock)); 937 938 /* based on hardware requirement, prefer smaller n to precision */ 939 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { 940 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 941 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; 942 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 943 clock.p = clock.p1 * clock.p2; 944 /* based on hardware requirement, prefer bigger m1,m2 values */ 945 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { 946 unsigned int ppm; 947 948 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, 949 refclk * clock.m1); 950 951 vlv_calc_dpll_params(refclk, &clock); 952 953 if (!intel_PLL_is_valid(dev, limit, 954 &clock)) 955 continue; 956 957 if (!vlv_PLL_is_optimal(dev, target, 958 &clock, 959 best_clock, 960 bestppm, &ppm)) 961 continue; 962 963 *best_clock = clock; 964 bestppm = ppm; 965 found = true; 966 } 967 } 968 } 969 } 970 971 return found; 972} 973 974/* 975 * Returns a set of divisors for the desired target clock with the given 976 * refclk, or FALSE. The returned values represent the clock equation: 977 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. 978 */ 979static bool 980chv_find_best_dpll(const intel_limit_t *limit, 981 struct intel_crtc_state *crtc_state, 982 int target, int refclk, intel_clock_t *match_clock, 983 intel_clock_t *best_clock) 984{ 985 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); 986 struct drm_device *dev = crtc->base.dev; 987 unsigned int best_error_ppm; 988 intel_clock_t clock; 989 uint64_t m2; 990 int found = false; 991 992 memset(best_clock, 0, sizeof(*best_clock)); 993 best_error_ppm = 1000000; 994 995 /* 996 * Based on hardware doc, the n always set to 1, and m1 always 997 * set to 2. If requires to support 200Mhz refclk, we need to 998 * revisit this because n may not 1 anymore. 999 */ 1000 clock.n = 1, clock.m1 = 2; 1001 target *= 5; /* fast clock */ 1002 1003 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { 1004 for (clock.p2 = limit->p2.p2_fast; 1005 clock.p2 >= limit->p2.p2_slow; 1006 clock.p2 -= clock.p2 > 10 ? 2 : 1) { 1007 unsigned int error_ppm; 1008 1009 clock.p = clock.p1 * clock.p2; 1010 1011 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p * 1012 clock.n) << 22, refclk * clock.m1); 1013 1014 if (m2 > INT_MAX/clock.m1) 1015 continue; 1016 1017 clock.m2 = m2; 1018 1019 chv_calc_dpll_params(refclk, &clock); 1020 1021 if (!intel_PLL_is_valid(dev, limit, &clock)) 1022 continue; 1023 1024 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, 1025 best_error_ppm, &error_ppm)) 1026 continue; 1027 1028 *best_clock = clock; 1029 best_error_ppm = error_ppm; 1030 found = true; 1031 } 1032 } 1033 1034 return found; 1035} 1036 1037bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock, 1038 intel_clock_t *best_clock) 1039{ 1040 int refclk = 100000; 1041 const intel_limit_t *limit = &intel_limits_bxt; 1042 1043 return chv_find_best_dpll(limit, crtc_state, 1044 target_clock, refclk, NULL, best_clock); 1045} 1046 1047bool intel_crtc_active(struct drm_crtc *crtc) 1048{ 1049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1050 1051 /* Be paranoid as we can arrive here with only partial 1052 * state retrieved from the hardware during setup. 1053 * 1054 * We can ditch the adjusted_mode.crtc_clock check as soon 1055 * as Haswell has gained clock readout/fastboot support. 1056 * 1057 * We can ditch the crtc->primary->fb check as soon as we can 1058 * properly reconstruct framebuffers. 1059 * 1060 * FIXME: The intel_crtc->active here should be switched to 1061 * crtc->state->active once we have proper CRTC states wired up 1062 * for atomic. 1063 */ 1064 return intel_crtc->active && crtc->primary->state->fb && 1065 intel_crtc->config->base.adjusted_mode.crtc_clock; 1066} 1067 1068enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, 1069 enum pipe pipe) 1070{ 1071 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 1072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1073 1074 return intel_crtc->config->cpu_transcoder; 1075} 1076 1077static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe) 1078{ 1079 struct drm_i915_private *dev_priv = dev->dev_private; 1080 i915_reg_t reg = PIPEDSL(pipe); 1081 u32 line1, line2; 1082 u32 line_mask; 1083 1084 if (IS_GEN2(dev)) 1085 line_mask = DSL_LINEMASK_GEN2; 1086 else 1087 line_mask = DSL_LINEMASK_GEN3; 1088 1089 line1 = I915_READ(reg) & line_mask; 1090 msleep(5); 1091 line2 = I915_READ(reg) & line_mask; 1092 1093 return line1 == line2; 1094} 1095 1096/* 1097 * intel_wait_for_pipe_off - wait for pipe to turn off 1098 * @crtc: crtc whose pipe to wait for 1099 * 1100 * After disabling a pipe, we can't wait for vblank in the usual way, 1101 * spinning on the vblank interrupt status bit, since we won't actually 1102 * see an interrupt when the pipe is disabled. 1103 * 1104 * On Gen4 and above: 1105 * wait for the pipe register state bit to turn off 1106 * 1107 * Otherwise: 1108 * wait for the display line value to settle (it usually 1109 * ends up stopping at the start of the next frame). 1110 * 1111 */ 1112static void intel_wait_for_pipe_off(struct intel_crtc *crtc) 1113{ 1114 struct drm_device *dev = crtc->base.dev; 1115 struct drm_i915_private *dev_priv = dev->dev_private; 1116 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; 1117 enum pipe pipe = crtc->pipe; 1118 1119 if (INTEL_INFO(dev)->gen >= 4) { 1120 i915_reg_t reg = PIPECONF(cpu_transcoder); 1121 1122 /* Wait for the Pipe State to go off */ 1123 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 1124 100)) 1125 WARN(1, "pipe_off wait timed out\n"); 1126 } else { 1127 /* Wait for the display line to settle */ 1128 if (wait_for(pipe_dsl_stopped(dev, pipe), 100)) 1129 WARN(1, "pipe_off wait timed out\n"); 1130 } 1131} 1132 1133/* Only for pre-ILK configs */ 1134void assert_pll(struct drm_i915_private *dev_priv, 1135 enum pipe pipe, bool state) 1136{ 1137 u32 val; 1138 bool cur_state; 1139 1140 val = I915_READ(DPLL(pipe)); 1141 cur_state = !!(val & DPLL_VCO_ENABLE); 1142 I915_STATE_WARN(cur_state != state, 1143 "PLL state assertion failure (expected %s, current %s)\n", 1144 onoff(state), onoff(cur_state)); 1145} 1146 1147/* XXX: the dsi pll is shared between MIPI DSI ports */ 1148void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) 1149{ 1150 u32 val; 1151 bool cur_state; 1152 1153 mutex_lock(&dev_priv->sb_lock); 1154 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); 1155 mutex_unlock(&dev_priv->sb_lock); 1156 1157 cur_state = val & DSI_PLL_VCO_EN; 1158 I915_STATE_WARN(cur_state != state, 1159 "DSI PLL state assertion failure (expected %s, current %s)\n", 1160 onoff(state), onoff(cur_state)); 1161} 1162 1163static void assert_fdi_tx(struct drm_i915_private *dev_priv, 1164 enum pipe pipe, bool state) 1165{ 1166 bool cur_state; 1167 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1168 pipe); 1169 1170 if (HAS_DDI(dev_priv)) { 1171 /* DDI does not have a specific FDI_TX register */ 1172 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)); 1173 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); 1174 } else { 1175 u32 val = I915_READ(FDI_TX_CTL(pipe)); 1176 cur_state = !!(val & FDI_TX_ENABLE); 1177 } 1178 I915_STATE_WARN(cur_state != state, 1179 "FDI TX state assertion failure (expected %s, current %s)\n", 1180 onoff(state), onoff(cur_state)); 1181} 1182#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) 1183#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) 1184 1185static void assert_fdi_rx(struct drm_i915_private *dev_priv, 1186 enum pipe pipe, bool state) 1187{ 1188 u32 val; 1189 bool cur_state; 1190 1191 val = I915_READ(FDI_RX_CTL(pipe)); 1192 cur_state = !!(val & FDI_RX_ENABLE); 1193 I915_STATE_WARN(cur_state != state, 1194 "FDI RX state assertion failure (expected %s, current %s)\n", 1195 onoff(state), onoff(cur_state)); 1196} 1197#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) 1198#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) 1199 1200static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, 1201 enum pipe pipe) 1202{ 1203 u32 val; 1204 1205 /* ILK FDI PLL is always enabled */ 1206 if (INTEL_INFO(dev_priv)->gen == 5) 1207 return; 1208 1209 /* On Haswell, DDI ports are responsible for the FDI PLL setup */ 1210 if (HAS_DDI(dev_priv)) 1211 return; 1212 1213 val = I915_READ(FDI_TX_CTL(pipe)); 1214 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); 1215} 1216 1217void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, 1218 enum pipe pipe, bool state) 1219{ 1220 u32 val; 1221 bool cur_state; 1222 1223 val = I915_READ(FDI_RX_CTL(pipe)); 1224 cur_state = !!(val & FDI_RX_PLL_ENABLE); 1225 I915_STATE_WARN(cur_state != state, 1226 "FDI RX PLL assertion failure (expected %s, current %s)\n", 1227 onoff(state), onoff(cur_state)); 1228} 1229 1230void assert_panel_unlocked(struct drm_i915_private *dev_priv, 1231 enum pipe pipe) 1232{ 1233 struct drm_device *dev = dev_priv->dev; 1234 i915_reg_t pp_reg; 1235 u32 val; 1236 enum pipe panel_pipe = PIPE_A; 1237 bool locked = true; 1238 1239 if (WARN_ON(HAS_DDI(dev))) 1240 return; 1241 1242 if (HAS_PCH_SPLIT(dev)) { 1243 u32 port_sel; 1244 1245 pp_reg = PCH_PP_CONTROL; 1246 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK; 1247 1248 if (port_sel == PANEL_PORT_SELECT_LVDS && 1249 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT) 1250 panel_pipe = PIPE_B; 1251 /* XXX: else fix for eDP */ 1252 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 1253 /* presumably write lock depends on pipe, not port select */ 1254 pp_reg = VLV_PIPE_PP_CONTROL(pipe); 1255 panel_pipe = pipe; 1256 } else { 1257 pp_reg = PP_CONTROL; 1258 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT) 1259 panel_pipe = PIPE_B; 1260 } 1261 1262 val = I915_READ(pp_reg); 1263 if (!(val & PANEL_POWER_ON) || 1264 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) 1265 locked = false; 1266 1267 I915_STATE_WARN(panel_pipe == pipe && locked, 1268 "panel assertion failure, pipe %c regs locked\n", 1269 pipe_name(pipe)); 1270} 1271 1272static void assert_cursor(struct drm_i915_private *dev_priv, 1273 enum pipe pipe, bool state) 1274{ 1275 struct drm_device *dev = dev_priv->dev; 1276 bool cur_state; 1277 1278 if (IS_845G(dev) || IS_I865G(dev)) 1279 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE; 1280 else 1281 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; 1282 1283 I915_STATE_WARN(cur_state != state, 1284 "cursor on pipe %c assertion failure (expected %s, current %s)\n", 1285 pipe_name(pipe), onoff(state), onoff(cur_state)); 1286} 1287#define assert_cursor_enabled(d, p) assert_cursor(d, p, true) 1288#define assert_cursor_disabled(d, p) assert_cursor(d, p, false) 1289 1290void assert_pipe(struct drm_i915_private *dev_priv, 1291 enum pipe pipe, bool state) 1292{ 1293 bool cur_state; 1294 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, 1295 pipe); 1296 enum intel_display_power_domain power_domain; 1297 1298 /* if we need the pipe quirk it must be always on */ 1299 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || 1300 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) 1301 state = true; 1302 1303 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 1304 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) { 1305 u32 val = I915_READ(PIPECONF(cpu_transcoder)); 1306 cur_state = !!(val & PIPECONF_ENABLE); 1307 1308 intel_display_power_put(dev_priv, power_domain); 1309 } else { 1310 cur_state = false; 1311 } 1312 1313 I915_STATE_WARN(cur_state != state, 1314 "pipe %c assertion failure (expected %s, current %s)\n", 1315 pipe_name(pipe), onoff(state), onoff(cur_state)); 1316} 1317 1318static void assert_plane(struct drm_i915_private *dev_priv, 1319 enum plane plane, bool state) 1320{ 1321 u32 val; 1322 bool cur_state; 1323 1324 val = I915_READ(DSPCNTR(plane)); 1325 cur_state = !!(val & DISPLAY_PLANE_ENABLE); 1326 I915_STATE_WARN(cur_state != state, 1327 "plane %c assertion failure (expected %s, current %s)\n", 1328 plane_name(plane), onoff(state), onoff(cur_state)); 1329} 1330 1331#define assert_plane_enabled(d, p) assert_plane(d, p, true) 1332#define assert_plane_disabled(d, p) assert_plane(d, p, false) 1333 1334static void assert_planes_disabled(struct drm_i915_private *dev_priv, 1335 enum pipe pipe) 1336{ 1337 struct drm_device *dev = dev_priv->dev; 1338 int i; 1339 1340 /* Primary planes are fixed to pipes on gen4+ */ 1341 if (INTEL_INFO(dev)->gen >= 4) { 1342 u32 val = I915_READ(DSPCNTR(pipe)); 1343 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE, 1344 "plane %c assertion failure, should be disabled but not\n", 1345 plane_name(pipe)); 1346 return; 1347 } 1348 1349 /* Need to check both planes against the pipe */ 1350 for_each_pipe(dev_priv, i) { 1351 u32 val = I915_READ(DSPCNTR(i)); 1352 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> 1353 DISPPLANE_SEL_PIPE_SHIFT; 1354 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, 1355 "plane %c assertion failure, should be off on pipe %c but is still active\n", 1356 plane_name(i), pipe_name(pipe)); 1357 } 1358} 1359 1360static void assert_sprites_disabled(struct drm_i915_private *dev_priv, 1361 enum pipe pipe) 1362{ 1363 struct drm_device *dev = dev_priv->dev; 1364 int sprite; 1365 1366 if (INTEL_INFO(dev)->gen >= 9) { 1367 for_each_sprite(dev_priv, pipe, sprite) { 1368 u32 val = I915_READ(PLANE_CTL(pipe, sprite)); 1369 I915_STATE_WARN(val & PLANE_CTL_ENABLE, 1370 "plane %d assertion failure, should be off on pipe %c but is still active\n", 1371 sprite, pipe_name(pipe)); 1372 } 1373 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 1374 for_each_sprite(dev_priv, pipe, sprite) { 1375 u32 val = I915_READ(SPCNTR(pipe, sprite)); 1376 I915_STATE_WARN(val & SP_ENABLE, 1377 "sprite %c assertion failure, should be off on pipe %c but is still active\n", 1378 sprite_name(pipe, sprite), pipe_name(pipe)); 1379 } 1380 } else if (INTEL_INFO(dev)->gen >= 7) { 1381 u32 val = I915_READ(SPRCTL(pipe)); 1382 I915_STATE_WARN(val & SPRITE_ENABLE, 1383 "sprite %c assertion failure, should be off on pipe %c but is still active\n", 1384 plane_name(pipe), pipe_name(pipe)); 1385 } else if (INTEL_INFO(dev)->gen >= 5) { 1386 u32 val = I915_READ(DVSCNTR(pipe)); 1387 I915_STATE_WARN(val & DVS_ENABLE, 1388 "sprite %c assertion failure, should be off on pipe %c but is still active\n", 1389 plane_name(pipe), pipe_name(pipe)); 1390 } 1391} 1392 1393static void assert_vblank_disabled(struct drm_crtc *crtc) 1394{ 1395 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) 1396 drm_crtc_vblank_put(crtc); 1397} 1398 1399void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, 1400 enum pipe pipe) 1401{ 1402 u32 val; 1403 bool enabled; 1404 1405 val = I915_READ(PCH_TRANSCONF(pipe)); 1406 enabled = !!(val & TRANS_ENABLE); 1407 I915_STATE_WARN(enabled, 1408 "transcoder assertion failed, should be off on pipe %c but is still active\n", 1409 pipe_name(pipe)); 1410} 1411 1412static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, 1413 enum pipe pipe, u32 port_sel, u32 val) 1414{ 1415 if ((val & DP_PORT_EN) == 0) 1416 return false; 1417 1418 if (HAS_PCH_CPT(dev_priv)) { 1419 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe)); 1420 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) 1421 return false; 1422 } else if (IS_CHERRYVIEW(dev_priv)) { 1423 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe)) 1424 return false; 1425 } else { 1426 if ((val & DP_PIPE_MASK) != (pipe << 30)) 1427 return false; 1428 } 1429 return true; 1430} 1431 1432static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, 1433 enum pipe pipe, u32 val) 1434{ 1435 if ((val & SDVO_ENABLE) == 0) 1436 return false; 1437 1438 if (HAS_PCH_CPT(dev_priv)) { 1439 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe)) 1440 return false; 1441 } else if (IS_CHERRYVIEW(dev_priv)) { 1442 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe)) 1443 return false; 1444 } else { 1445 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe)) 1446 return false; 1447 } 1448 return true; 1449} 1450 1451static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, 1452 enum pipe pipe, u32 val) 1453{ 1454 if ((val & LVDS_PORT_EN) == 0) 1455 return false; 1456 1457 if (HAS_PCH_CPT(dev_priv)) { 1458 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) 1459 return false; 1460 } else { 1461 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) 1462 return false; 1463 } 1464 return true; 1465} 1466 1467static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, 1468 enum pipe pipe, u32 val) 1469{ 1470 if ((val & ADPA_DAC_ENABLE) == 0) 1471 return false; 1472 if (HAS_PCH_CPT(dev_priv)) { 1473 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) 1474 return false; 1475 } else { 1476 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) 1477 return false; 1478 } 1479 return true; 1480} 1481 1482static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, 1483 enum pipe pipe, i915_reg_t reg, 1484 u32 port_sel) 1485{ 1486 u32 val = I915_READ(reg); 1487 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), 1488 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", 1489 i915_mmio_reg_offset(reg), pipe_name(pipe)); 1490 1491 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0 1492 && (val & DP_PIPEB_SELECT), 1493 "IBX PCH dp port still using transcoder B\n"); 1494} 1495 1496static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, 1497 enum pipe pipe, i915_reg_t reg) 1498{ 1499 u32 val = I915_READ(reg); 1500 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val), 1501 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", 1502 i915_mmio_reg_offset(reg), pipe_name(pipe)); 1503 1504 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0 1505 && (val & SDVO_PIPE_B_SELECT), 1506 "IBX PCH hdmi port still using transcoder B\n"); 1507} 1508 1509static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, 1510 enum pipe pipe) 1511{ 1512 u32 val; 1513 1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); 1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); 1516 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); 1517 1518 val = I915_READ(PCH_ADPA); 1519 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val), 1520 "PCH VGA enabled on transcoder %c, should be disabled\n", 1521 pipe_name(pipe)); 1522 1523 val = I915_READ(PCH_LVDS); 1524 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val), 1525 "PCH LVDS enabled on transcoder %c, should be disabled\n", 1526 pipe_name(pipe)); 1527 1528 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB); 1529 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC); 1530 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID); 1531} 1532 1533static void _vlv_enable_pll(struct intel_crtc *crtc, 1534 const struct intel_crtc_state *pipe_config) 1535{ 1536 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1537 enum pipe pipe = crtc->pipe; 1538 1539 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1540 POSTING_READ(DPLL(pipe)); 1541 udelay(150); 1542 1543 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) 1544 DRM_ERROR("DPLL %d failed to lock\n", pipe); 1545} 1546 1547static void vlv_enable_pll(struct intel_crtc *crtc, 1548 const struct intel_crtc_state *pipe_config) 1549{ 1550 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1551 enum pipe pipe = crtc->pipe; 1552 1553 assert_pipe_disabled(dev_priv, pipe); 1554 1555 /* PLL is protected by panel, make sure we can write it */ 1556 assert_panel_unlocked(dev_priv, pipe); 1557 1558 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1559 _vlv_enable_pll(crtc, pipe_config); 1560 1561 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1562 POSTING_READ(DPLL_MD(pipe)); 1563} 1564 1565 1566static void _chv_enable_pll(struct intel_crtc *crtc, 1567 const struct intel_crtc_state *pipe_config) 1568{ 1569 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1570 enum pipe pipe = crtc->pipe; 1571 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1572 u32 tmp; 1573 1574 mutex_lock(&dev_priv->sb_lock); 1575 1576 /* Enable back the 10bit clock to display controller */ 1577 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1578 tmp |= DPIO_DCLKP_EN; 1579 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); 1580 1581 mutex_unlock(&dev_priv->sb_lock); 1582 1583 /* 1584 * Need to wait > 100ns between dclkp clock enable bit and PLL enable. 1585 */ 1586 udelay(1); 1587 1588 /* Enable PLL */ 1589 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); 1590 1591 /* Check PLL is locked */ 1592 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) 1593 DRM_ERROR("PLL %d failed to lock\n", pipe); 1594} 1595 1596static void chv_enable_pll(struct intel_crtc *crtc, 1597 const struct intel_crtc_state *pipe_config) 1598{ 1599 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1600 enum pipe pipe = crtc->pipe; 1601 1602 assert_pipe_disabled(dev_priv, pipe); 1603 1604 /* PLL is protected by panel, make sure we can write it */ 1605 assert_panel_unlocked(dev_priv, pipe); 1606 1607 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) 1608 _chv_enable_pll(crtc, pipe_config); 1609 1610 if (pipe != PIPE_A) { 1611 /* 1612 * WaPixelRepeatModeFixForC0:chv 1613 * 1614 * DPLLCMD is AWOL. Use chicken bits to propagate 1615 * the value from DPLLBMD to either pipe B or C. 1616 */ 1617 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C); 1618 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md); 1619 I915_WRITE(CBR4_VLV, 0); 1620 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md; 1621 1622 /* 1623 * DPLLB VGA mode also seems to cause problems. 1624 * We should always have it disabled. 1625 */ 1626 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0); 1627 } else { 1628 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); 1629 POSTING_READ(DPLL_MD(pipe)); 1630 } 1631} 1632 1633static int intel_num_dvo_pipes(struct drm_device *dev) 1634{ 1635 struct intel_crtc *crtc; 1636 int count = 0; 1637 1638 for_each_intel_crtc(dev, crtc) 1639 count += crtc->base.state->active && 1640 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO); 1641 1642 return count; 1643} 1644 1645static void i9xx_enable_pll(struct intel_crtc *crtc) 1646{ 1647 struct drm_device *dev = crtc->base.dev; 1648 struct drm_i915_private *dev_priv = dev->dev_private; 1649 i915_reg_t reg = DPLL(crtc->pipe); 1650 u32 dpll = crtc->config->dpll_hw_state.dpll; 1651 1652 assert_pipe_disabled(dev_priv, crtc->pipe); 1653 1654 /* PLL is protected by panel, make sure we can write it */ 1655 if (IS_MOBILE(dev) && !IS_I830(dev)) 1656 assert_panel_unlocked(dev_priv, crtc->pipe); 1657 1658 /* Enable DVO 2x clock on both PLLs if necessary */ 1659 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) { 1660 /* 1661 * It appears to be important that we don't enable this 1662 * for the current pipe before otherwise configuring the 1663 * PLL. No idea how this should be handled if multiple 1664 * DVO outputs are enabled simultaneosly. 1665 */ 1666 dpll |= DPLL_DVO_2X_MODE; 1667 I915_WRITE(DPLL(!crtc->pipe), 1668 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE); 1669 } 1670 1671 /* 1672 * Apparently we need to have VGA mode enabled prior to changing 1673 * the P1/P2 dividers. Otherwise the DPLL will keep using the old 1674 * dividers, even though the register value does change. 1675 */ 1676 I915_WRITE(reg, 0); 1677 1678 I915_WRITE(reg, dpll); 1679 1680 /* Wait for the clocks to stabilize. */ 1681 POSTING_READ(reg); 1682 udelay(150); 1683 1684 if (INTEL_INFO(dev)->gen >= 4) { 1685 I915_WRITE(DPLL_MD(crtc->pipe), 1686 crtc->config->dpll_hw_state.dpll_md); 1687 } else { 1688 /* The pixel multiplier can only be updated once the 1689 * DPLL is enabled and the clocks are stable. 1690 * 1691 * So write it again. 1692 */ 1693 I915_WRITE(reg, dpll); 1694 } 1695 1696 /* We do this three times for luck */ 1697 I915_WRITE(reg, dpll); 1698 POSTING_READ(reg); 1699 udelay(150); /* wait for warmup */ 1700 I915_WRITE(reg, dpll); 1701 POSTING_READ(reg); 1702 udelay(150); /* wait for warmup */ 1703 I915_WRITE(reg, dpll); 1704 POSTING_READ(reg); 1705 udelay(150); /* wait for warmup */ 1706} 1707 1708/** 1709 * i9xx_disable_pll - disable a PLL 1710 * @dev_priv: i915 private structure 1711 * @pipe: pipe PLL to disable 1712 * 1713 * Disable the PLL for @pipe, making sure the pipe is off first. 1714 * 1715 * Note! This is for pre-ILK only. 1716 */ 1717static void i9xx_disable_pll(struct intel_crtc *crtc) 1718{ 1719 struct drm_device *dev = crtc->base.dev; 1720 struct drm_i915_private *dev_priv = dev->dev_private; 1721 enum pipe pipe = crtc->pipe; 1722 1723 /* Disable DVO 2x clock on both PLLs if necessary */ 1724 if (IS_I830(dev) && 1725 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) && 1726 !intel_num_dvo_pipes(dev)) { 1727 I915_WRITE(DPLL(PIPE_B), 1728 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE); 1729 I915_WRITE(DPLL(PIPE_A), 1730 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE); 1731 } 1732 1733 /* Don't disable pipe or pipe PLLs if needed */ 1734 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || 1735 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) 1736 return; 1737 1738 /* Make sure the pipe isn't still relying on us */ 1739 assert_pipe_disabled(dev_priv, pipe); 1740 1741 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS); 1742 POSTING_READ(DPLL(pipe)); 1743} 1744 1745static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1746{ 1747 u32 val; 1748 1749 /* Make sure the pipe isn't still relying on us */ 1750 assert_pipe_disabled(dev_priv, pipe); 1751 1752 val = DPLL_INTEGRATED_REF_CLK_VLV | 1753 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1754 if (pipe != PIPE_A) 1755 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1756 1757 I915_WRITE(DPLL(pipe), val); 1758 POSTING_READ(DPLL(pipe)); 1759} 1760 1761static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) 1762{ 1763 enum dpio_channel port = vlv_pipe_to_channel(pipe); 1764 u32 val; 1765 1766 /* Make sure the pipe isn't still relying on us */ 1767 assert_pipe_disabled(dev_priv, pipe); 1768 1769 val = DPLL_SSC_REF_CLK_CHV | 1770 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 1771 if (pipe != PIPE_A) 1772 val |= DPLL_INTEGRATED_CRI_CLK_VLV; 1773 1774 I915_WRITE(DPLL(pipe), val); 1775 POSTING_READ(DPLL(pipe)); 1776 1777 mutex_lock(&dev_priv->sb_lock); 1778 1779 /* Disable 10bit clock to display controller */ 1780 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); 1781 val &= ~DPIO_DCLKP_EN; 1782 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); 1783 1784 mutex_unlock(&dev_priv->sb_lock); 1785} 1786 1787void vlv_wait_port_ready(struct drm_i915_private *dev_priv, 1788 struct intel_digital_port *dport, 1789 unsigned int expected_mask) 1790{ 1791 u32 port_mask; 1792 i915_reg_t dpll_reg; 1793 1794 switch (dport->port) { 1795 case PORT_B: 1796 port_mask = DPLL_PORTB_READY_MASK; 1797 dpll_reg = DPLL(0); 1798 break; 1799 case PORT_C: 1800 port_mask = DPLL_PORTC_READY_MASK; 1801 dpll_reg = DPLL(0); 1802 expected_mask <<= 4; 1803 break; 1804 case PORT_D: 1805 port_mask = DPLL_PORTD_READY_MASK; 1806 dpll_reg = DPIO_PHY_STATUS; 1807 break; 1808 default: 1809 BUG(); 1810 } 1811 1812 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000)) 1813 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n", 1814 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask); 1815} 1816 1817static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1818 enum pipe pipe) 1819{ 1820 struct drm_device *dev = dev_priv->dev; 1821 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 1822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1823 i915_reg_t reg; 1824 uint32_t val, pipeconf_val; 1825 1826 /* Make sure PCH DPLL is enabled */ 1827 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll); 1828 1829 /* FDI must be feeding us bits for PCH ports */ 1830 assert_fdi_tx_enabled(dev_priv, pipe); 1831 assert_fdi_rx_enabled(dev_priv, pipe); 1832 1833 if (HAS_PCH_CPT(dev)) { 1834 /* Workaround: Set the timing override bit before enabling the 1835 * pch transcoder. */ 1836 reg = TRANS_CHICKEN2(pipe); 1837 val = I915_READ(reg); 1838 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1839 I915_WRITE(reg, val); 1840 } 1841 1842 reg = PCH_TRANSCONF(pipe); 1843 val = I915_READ(reg); 1844 pipeconf_val = I915_READ(PIPECONF(pipe)); 1845 1846 if (HAS_PCH_IBX(dev_priv)) { 1847 /* 1848 * Make the BPC in transcoder be consistent with 1849 * that in pipeconf reg. For HDMI we must use 8bpc 1850 * here for both 8bpc and 12bpc. 1851 */ 1852 val &= ~PIPECONF_BPC_MASK; 1853 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI)) 1854 val |= PIPECONF_8BPC; 1855 else 1856 val |= pipeconf_val & PIPECONF_BPC_MASK; 1857 } 1858 1859 val &= ~TRANS_INTERLACE_MASK; 1860 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) 1861 if (HAS_PCH_IBX(dev_priv) && 1862 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) 1863 val |= TRANS_LEGACY_INTERLACED_ILK; 1864 else 1865 val |= TRANS_INTERLACED; 1866 else 1867 val |= TRANS_PROGRESSIVE; 1868 1869 I915_WRITE(reg, val | TRANS_ENABLE); 1870 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) 1871 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); 1872} 1873 1874static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, 1875 enum transcoder cpu_transcoder) 1876{ 1877 u32 val, pipeconf_val; 1878 1879 /* FDI must be feeding us bits for PCH ports */ 1880 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); 1881 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); 1882 1883 /* Workaround: set timing override bit. */ 1884 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1885 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 1886 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1887 1888 val = TRANS_ENABLE; 1889 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); 1890 1891 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == 1892 PIPECONF_INTERLACED_ILK) 1893 val |= TRANS_INTERLACED; 1894 else 1895 val |= TRANS_PROGRESSIVE; 1896 1897 I915_WRITE(LPT_TRANSCONF, val); 1898 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100)) 1899 DRM_ERROR("Failed to enable PCH transcoder\n"); 1900} 1901 1902static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, 1903 enum pipe pipe) 1904{ 1905 struct drm_device *dev = dev_priv->dev; 1906 i915_reg_t reg; 1907 uint32_t val; 1908 1909 /* FDI relies on the transcoder */ 1910 assert_fdi_tx_disabled(dev_priv, pipe); 1911 assert_fdi_rx_disabled(dev_priv, pipe); 1912 1913 /* Ports must be off as well */ 1914 assert_pch_ports_disabled(dev_priv, pipe); 1915 1916 reg = PCH_TRANSCONF(pipe); 1917 val = I915_READ(reg); 1918 val &= ~TRANS_ENABLE; 1919 I915_WRITE(reg, val); 1920 /* wait for PCH transcoder off, transcoder state */ 1921 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) 1922 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); 1923 1924 if (HAS_PCH_CPT(dev)) { 1925 /* Workaround: Clear the timing override chicken bit again. */ 1926 reg = TRANS_CHICKEN2(pipe); 1927 val = I915_READ(reg); 1928 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1929 I915_WRITE(reg, val); 1930 } 1931} 1932 1933static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) 1934{ 1935 u32 val; 1936 1937 val = I915_READ(LPT_TRANSCONF); 1938 val &= ~TRANS_ENABLE; 1939 I915_WRITE(LPT_TRANSCONF, val); 1940 /* wait for PCH transcoder off, transcoder state */ 1941 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50)) 1942 DRM_ERROR("Failed to disable PCH transcoder\n"); 1943 1944 /* Workaround: clear timing override bit. */ 1945 val = I915_READ(TRANS_CHICKEN2(PIPE_A)); 1946 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; 1947 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val); 1948} 1949 1950/** 1951 * intel_enable_pipe - enable a pipe, asserting requirements 1952 * @crtc: crtc responsible for the pipe 1953 * 1954 * Enable @crtc's pipe, making sure that various hardware specific requirements 1955 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. 1956 */ 1957static void intel_enable_pipe(struct intel_crtc *crtc) 1958{ 1959 struct drm_device *dev = crtc->base.dev; 1960 struct drm_i915_private *dev_priv = dev->dev_private; 1961 enum pipe pipe = crtc->pipe; 1962 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; 1963 enum pipe pch_transcoder; 1964 i915_reg_t reg; 1965 u32 val; 1966 1967 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe)); 1968 1969 assert_planes_disabled(dev_priv, pipe); 1970 assert_cursor_disabled(dev_priv, pipe); 1971 assert_sprites_disabled(dev_priv, pipe); 1972 1973 if (HAS_PCH_LPT(dev_priv)) 1974 pch_transcoder = TRANSCODER_A; 1975 else 1976 pch_transcoder = pipe; 1977 1978 /* 1979 * A pipe without a PLL won't actually be able to drive bits from 1980 * a plane. On ILK+ the pipe PLLs are integrated, so we don't 1981 * need the check. 1982 */ 1983 if (HAS_GMCH_DISPLAY(dev_priv)) 1984 if (crtc->config->has_dsi_encoder) 1985 assert_dsi_pll_enabled(dev_priv); 1986 else 1987 assert_pll_enabled(dev_priv, pipe); 1988 else { 1989 if (crtc->config->has_pch_encoder) { 1990 /* if driving the PCH, we need FDI enabled */ 1991 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); 1992 assert_fdi_tx_pll_enabled(dev_priv, 1993 (enum pipe) cpu_transcoder); 1994 } 1995 /* FIXME: assert CPU port conditions for SNB+ */ 1996 } 1997 1998 reg = PIPECONF(cpu_transcoder); 1999 val = I915_READ(reg); 2000 if (val & PIPECONF_ENABLE) { 2001 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || 2002 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))); 2003 return; 2004 } 2005 2006 I915_WRITE(reg, val | PIPECONF_ENABLE); 2007 POSTING_READ(reg); 2008 2009 /* 2010 * Until the pipe starts DSL will read as 0, which would cause 2011 * an apparent vblank timestamp jump, which messes up also the 2012 * frame count when it's derived from the timestamps. So let's 2013 * wait for the pipe to start properly before we call 2014 * drm_crtc_vblank_on() 2015 */ 2016 if (dev->max_vblank_count == 0 && 2017 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50)) 2018 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe)); 2019} 2020 2021/** 2022 * intel_disable_pipe - disable a pipe, asserting requirements 2023 * @crtc: crtc whose pipes is to be disabled 2024 * 2025 * Disable the pipe of @crtc, making sure that various hardware 2026 * specific requirements are met, if applicable, e.g. plane 2027 * disabled, panel fitter off, etc. 2028 * 2029 * Will wait until the pipe has shut down before returning. 2030 */ 2031static void intel_disable_pipe(struct intel_crtc *crtc) 2032{ 2033 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; 2034 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; 2035 enum pipe pipe = crtc->pipe; 2036 i915_reg_t reg; 2037 u32 val; 2038 2039 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe)); 2040 2041 /* 2042 * Make sure planes won't keep trying to pump pixels to us, 2043 * or we might hang the display. 2044 */ 2045 assert_planes_disabled(dev_priv, pipe); 2046 assert_cursor_disabled(dev_priv, pipe); 2047 assert_sprites_disabled(dev_priv, pipe); 2048 2049 reg = PIPECONF(cpu_transcoder); 2050 val = I915_READ(reg); 2051 if ((val & PIPECONF_ENABLE) == 0) 2052 return; 2053 2054 /* 2055 * Double wide has implications for planes 2056 * so best keep it disabled when not needed. 2057 */ 2058 if (crtc->config->double_wide) 2059 val &= ~PIPECONF_DOUBLE_WIDE; 2060 2061 /* Don't disable pipe or pipe PLLs if needed */ 2062 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) && 2063 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) 2064 val &= ~PIPECONF_ENABLE; 2065 2066 I915_WRITE(reg, val); 2067 if ((val & PIPECONF_ENABLE) == 0) 2068 intel_wait_for_pipe_off(crtc); 2069} 2070 2071static bool need_vtd_wa(struct drm_device *dev) 2072{ 2073#ifdef CONFIG_INTEL_IOMMU 2074 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped) 2075 return true; 2076#endif 2077 return false; 2078} 2079 2080static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv) 2081{ 2082 return IS_GEN2(dev_priv) ? 2048 : 4096; 2083} 2084 2085static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv, 2086 uint64_t fb_modifier, unsigned int cpp) 2087{ 2088 switch (fb_modifier) { 2089 case DRM_FORMAT_MOD_NONE: 2090 return cpp; 2091 case I915_FORMAT_MOD_X_TILED: 2092 if (IS_GEN2(dev_priv)) 2093 return 128; 2094 else 2095 return 512; 2096 case I915_FORMAT_MOD_Y_TILED: 2097 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv)) 2098 return 128; 2099 else 2100 return 512; 2101 case I915_FORMAT_MOD_Yf_TILED: 2102 switch (cpp) { 2103 case 1: 2104 return 64; 2105 case 2: 2106 case 4: 2107 return 128; 2108 case 8: 2109 case 16: 2110 return 256; 2111 default: 2112 MISSING_CASE(cpp); 2113 return cpp; 2114 } 2115 break; 2116 default: 2117 MISSING_CASE(fb_modifier); 2118 return cpp; 2119 } 2120} 2121 2122unsigned int intel_tile_height(const struct drm_i915_private *dev_priv, 2123 uint64_t fb_modifier, unsigned int cpp) 2124{ 2125 if (fb_modifier == DRM_FORMAT_MOD_NONE) 2126 return 1; 2127 else 2128 return intel_tile_size(dev_priv) / 2129 intel_tile_width_bytes(dev_priv, fb_modifier, cpp); 2130} 2131 2132/* Return the tile dimensions in pixel units */ 2133static void intel_tile_dims(const struct drm_i915_private *dev_priv, 2134 unsigned int *tile_width, 2135 unsigned int *tile_height, 2136 uint64_t fb_modifier, 2137 unsigned int cpp) 2138{ 2139 unsigned int tile_width_bytes = 2140 intel_tile_width_bytes(dev_priv, fb_modifier, cpp); 2141 2142 *tile_width = tile_width_bytes / cpp; 2143 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes; 2144} 2145 2146unsigned int 2147intel_fb_align_height(struct drm_device *dev, unsigned int height, 2148 uint32_t pixel_format, uint64_t fb_modifier) 2149{ 2150 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0); 2151 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp); 2152 2153 return ALIGN(height, tile_height); 2154} 2155 2156unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) 2157{ 2158 unsigned int size = 0; 2159 int i; 2160 2161 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 2162 size += rot_info->plane[i].width * rot_info->plane[i].height; 2163 2164 return size; 2165} 2166 2167static void 2168intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, 2169 const struct drm_framebuffer *fb, 2170 unsigned int rotation) 2171{ 2172 if (intel_rotation_90_or_270(rotation)) { 2173 *view = i915_ggtt_view_rotated; 2174 view->params.rotated = to_intel_framebuffer(fb)->rot_info; 2175 } else { 2176 *view = i915_ggtt_view_normal; 2177 } 2178} 2179 2180static void 2181intel_fill_fb_info(struct drm_i915_private *dev_priv, 2182 struct drm_framebuffer *fb) 2183{ 2184 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info; 2185 unsigned int tile_size, tile_width, tile_height, cpp; 2186 2187 tile_size = intel_tile_size(dev_priv); 2188 2189 cpp = drm_format_plane_cpp(fb->pixel_format, 0); 2190 intel_tile_dims(dev_priv, &tile_width, &tile_height, 2191 fb->modifier[0], cpp); 2192 2193 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp); 2194 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height); 2195 2196 if (info->pixel_format == DRM_FORMAT_NV12) { 2197 cpp = drm_format_plane_cpp(fb->pixel_format, 1); 2198 intel_tile_dims(dev_priv, &tile_width, &tile_height, 2199 fb->modifier[1], cpp); 2200 2201 info->uv_offset = fb->offsets[1]; 2202 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp); 2203 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height); 2204 } 2205} 2206 2207static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) 2208{ 2209 if (INTEL_INFO(dev_priv)->gen >= 9) 2210 return 256 * 1024; 2211 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) || 2212 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 2213 return 128 * 1024; 2214 else if (INTEL_INFO(dev_priv)->gen >= 4) 2215 return 4 * 1024; 2216 else 2217 return 0; 2218} 2219 2220static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv, 2221 uint64_t fb_modifier) 2222{ 2223 switch (fb_modifier) { 2224 case DRM_FORMAT_MOD_NONE: 2225 return intel_linear_alignment(dev_priv); 2226 case I915_FORMAT_MOD_X_TILED: 2227 if (INTEL_INFO(dev_priv)->gen >= 9) 2228 return 256 * 1024; 2229 return 0; 2230 case I915_FORMAT_MOD_Y_TILED: 2231 case I915_FORMAT_MOD_Yf_TILED: 2232 return 1 * 1024 * 1024; 2233 default: 2234 MISSING_CASE(fb_modifier); 2235 return 0; 2236 } 2237} 2238 2239int 2240intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, 2241 unsigned int rotation) 2242{ 2243 struct drm_device *dev = fb->dev; 2244 struct drm_i915_private *dev_priv = dev->dev_private; 2245 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2246 struct i915_ggtt_view view; 2247 u32 alignment; 2248 int ret; 2249 2250 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 2251 2252 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]); 2253 2254 intel_fill_fb_ggtt_view(&view, fb, rotation); 2255 2256 /* Note that the w/a also requires 64 PTE of padding following the 2257 * bo. We currently fill all unused PTE with the shadow page and so 2258 * we should always have valid PTE following the scanout preventing 2259 * the VT-d warning. 2260 */ 2261 if (need_vtd_wa(dev) && alignment < 256 * 1024) 2262 alignment = 256 * 1024; 2263 2264 /* 2265 * Global gtt pte registers are special registers which actually forward 2266 * writes to a chunk of system memory. Which means that there is no risk 2267 * that the register values disappear as soon as we call 2268 * intel_runtime_pm_put(), so it is correct to wrap only the 2269 * pin/unpin/fence and not more. 2270 */ 2271 intel_runtime_pm_get(dev_priv); 2272 2273 ret = i915_gem_object_pin_to_display_plane(obj, alignment, 2274 &view); 2275 if (ret) 2276 goto err_pm; 2277 2278 /* Install a fence for tiled scan-out. Pre-i965 always needs a 2279 * fence, whereas 965+ only requires a fence if using 2280 * framebuffer compression. For simplicity, we always install 2281 * a fence as the cost is not that onerous. 2282 */ 2283 if (view.type == I915_GGTT_VIEW_NORMAL) { 2284 ret = i915_gem_object_get_fence(obj); 2285 if (ret == -EDEADLK) { 2286 /* 2287 * -EDEADLK means there are no free fences 2288 * no pending flips. 2289 * 2290 * This is propagated to atomic, but it uses 2291 * -EDEADLK to force a locking recovery, so 2292 * change the returned error to -EBUSY. 2293 */ 2294 ret = -EBUSY; 2295 goto err_unpin; 2296 } else if (ret) 2297 goto err_unpin; 2298 2299 i915_gem_object_pin_fence(obj); 2300 } 2301 2302 intel_runtime_pm_put(dev_priv); 2303 return 0; 2304 2305err_unpin: 2306 i915_gem_object_unpin_from_display_plane(obj, &view); 2307err_pm: 2308 intel_runtime_pm_put(dev_priv); 2309 return ret; 2310} 2311 2312static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation) 2313{ 2314 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2315 struct i915_ggtt_view view; 2316 2317 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex)); 2318 2319 intel_fill_fb_ggtt_view(&view, fb, rotation); 2320 2321 if (view.type == I915_GGTT_VIEW_NORMAL) 2322 i915_gem_object_unpin_fence(obj); 2323 2324 i915_gem_object_unpin_from_display_plane(obj, &view); 2325} 2326 2327/* 2328 * Adjust the tile offset by moving the difference into 2329 * the x/y offsets. 2330 * 2331 * Input tile dimensions and pitch must already be 2332 * rotated to match x and y, and in pixel units. 2333 */ 2334static u32 intel_adjust_tile_offset(int *x, int *y, 2335 unsigned int tile_width, 2336 unsigned int tile_height, 2337 unsigned int tile_size, 2338 unsigned int pitch_tiles, 2339 u32 old_offset, 2340 u32 new_offset) 2341{ 2342 unsigned int tiles; 2343 2344 WARN_ON(old_offset & (tile_size - 1)); 2345 WARN_ON(new_offset & (tile_size - 1)); 2346 WARN_ON(new_offset > old_offset); 2347 2348 tiles = (old_offset - new_offset) / tile_size; 2349 2350 *y += tiles / pitch_tiles * tile_height; 2351 *x += tiles % pitch_tiles * tile_width; 2352 2353 return new_offset; 2354} 2355 2356/* 2357 * Computes the linear offset to the base tile and adjusts 2358 * x, y. bytes per pixel is assumed to be a power-of-two. 2359 * 2360 * In the 90/270 rotated case, x and y are assumed 2361 * to be already rotated to match the rotated GTT view, and 2362 * pitch is the tile_height aligned framebuffer height. 2363 */ 2364u32 intel_compute_tile_offset(int *x, int *y, 2365 const struct drm_framebuffer *fb, int plane, 2366 unsigned int pitch, 2367 unsigned int rotation) 2368{ 2369 const struct drm_i915_private *dev_priv = to_i915(fb->dev); 2370 uint64_t fb_modifier = fb->modifier[plane]; 2371 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane); 2372 u32 offset, offset_aligned, alignment; 2373 2374 alignment = intel_surf_alignment(dev_priv, fb_modifier); 2375 if (alignment) 2376 alignment--; 2377 2378 if (fb_modifier != DRM_FORMAT_MOD_NONE) { 2379 unsigned int tile_size, tile_width, tile_height; 2380 unsigned int tile_rows, tiles, pitch_tiles; 2381 2382 tile_size = intel_tile_size(dev_priv); 2383 intel_tile_dims(dev_priv, &tile_width, &tile_height, 2384 fb_modifier, cpp); 2385 2386 if (intel_rotation_90_or_270(rotation)) { 2387 pitch_tiles = pitch / tile_height; 2388 swap(tile_width, tile_height); 2389 } else { 2390 pitch_tiles = pitch / (tile_width * cpp); 2391 } 2392 2393 tile_rows = *y / tile_height; 2394 *y %= tile_height; 2395 2396 tiles = *x / tile_width; 2397 *x %= tile_width; 2398 2399 offset = (tile_rows * pitch_tiles + tiles) * tile_size; 2400 offset_aligned = offset & ~alignment; 2401 2402 intel_adjust_tile_offset(x, y, tile_width, tile_height, 2403 tile_size, pitch_tiles, 2404 offset, offset_aligned); 2405 } else { 2406 offset = *y * pitch + *x * cpp; 2407 offset_aligned = offset & ~alignment; 2408 2409 *y = (offset & alignment) / pitch; 2410 *x = ((offset & alignment) - *y * pitch) / cpp; 2411 } 2412 2413 return offset_aligned; 2414} 2415 2416static int i9xx_format_to_fourcc(int format) 2417{ 2418 switch (format) { 2419 case DISPPLANE_8BPP: 2420 return DRM_FORMAT_C8; 2421 case DISPPLANE_BGRX555: 2422 return DRM_FORMAT_XRGB1555; 2423 case DISPPLANE_BGRX565: 2424 return DRM_FORMAT_RGB565; 2425 default: 2426 case DISPPLANE_BGRX888: 2427 return DRM_FORMAT_XRGB8888; 2428 case DISPPLANE_RGBX888: 2429 return DRM_FORMAT_XBGR8888; 2430 case DISPPLANE_BGRX101010: 2431 return DRM_FORMAT_XRGB2101010; 2432 case DISPPLANE_RGBX101010: 2433 return DRM_FORMAT_XBGR2101010; 2434 } 2435} 2436 2437static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha) 2438{ 2439 switch (format) { 2440 case PLANE_CTL_FORMAT_RGB_565: 2441 return DRM_FORMAT_RGB565; 2442 default: 2443 case PLANE_CTL_FORMAT_XRGB_8888: 2444 if (rgb_order) { 2445 if (alpha) 2446 return DRM_FORMAT_ABGR8888; 2447 else 2448 return DRM_FORMAT_XBGR8888; 2449 } else { 2450 if (alpha) 2451 return DRM_FORMAT_ARGB8888; 2452 else 2453 return DRM_FORMAT_XRGB8888; 2454 } 2455 case PLANE_CTL_FORMAT_XRGB_2101010: 2456 if (rgb_order) 2457 return DRM_FORMAT_XBGR2101010; 2458 else 2459 return DRM_FORMAT_XRGB2101010; 2460 } 2461} 2462 2463static bool 2464intel_alloc_initial_plane_obj(struct intel_crtc *crtc, 2465 struct intel_initial_plane_config *plane_config) 2466{ 2467 struct drm_device *dev = crtc->base.dev; 2468 struct drm_i915_private *dev_priv = to_i915(dev); 2469 struct i915_ggtt *ggtt = &dev_priv->ggtt; 2470 struct drm_i915_gem_object *obj = NULL; 2471 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 2472 struct drm_framebuffer *fb = &plane_config->fb->base; 2473 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE); 2474 u32 size_aligned = round_up(plane_config->base + plane_config->size, 2475 PAGE_SIZE); 2476 2477 size_aligned -= base_aligned; 2478 2479 if (plane_config->size == 0) 2480 return false; 2481 2482 /* If the FB is too big, just don't use it since fbdev is not very 2483 * important and we should probably use that space with FBC or other 2484 * features. */ 2485 if (size_aligned * 2 > ggtt->stolen_usable_size) 2486 return false; 2487 2488 mutex_lock(&dev->struct_mutex); 2489 2490 obj = i915_gem_object_create_stolen_for_preallocated(dev, 2491 base_aligned, 2492 base_aligned, 2493 size_aligned); 2494 if (!obj) { 2495 mutex_unlock(&dev->struct_mutex); 2496 return false; 2497 } 2498 2499 obj->tiling_mode = plane_config->tiling; 2500 if (obj->tiling_mode == I915_TILING_X) 2501 obj->stride = fb->pitches[0]; 2502 2503 mode_cmd.pixel_format = fb->pixel_format; 2504 mode_cmd.width = fb->width; 2505 mode_cmd.height = fb->height; 2506 mode_cmd.pitches[0] = fb->pitches[0]; 2507 mode_cmd.modifier[0] = fb->modifier[0]; 2508 mode_cmd.flags = DRM_MODE_FB_MODIFIERS; 2509 2510 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb), 2511 &mode_cmd, obj)) { 2512 DRM_DEBUG_KMS("intel fb init failed\n"); 2513 goto out_unref_obj; 2514 } 2515 2516 mutex_unlock(&dev->struct_mutex); 2517 2518 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj); 2519 return true; 2520 2521out_unref_obj: 2522 drm_gem_object_unreference(&obj->base); 2523 mutex_unlock(&dev->struct_mutex); 2524 return false; 2525} 2526 2527/* Update plane->state->fb to match plane->fb after driver-internal updates */ 2528static void 2529update_state_fb(struct drm_plane *plane) 2530{ 2531 if (plane->fb == plane->state->fb) 2532 return; 2533 2534 if (plane->state->fb) 2535 drm_framebuffer_unreference(plane->state->fb); 2536 plane->state->fb = plane->fb; 2537 if (plane->state->fb) 2538 drm_framebuffer_reference(plane->state->fb); 2539} 2540 2541static void 2542intel_find_initial_plane_obj(struct intel_crtc *intel_crtc, 2543 struct intel_initial_plane_config *plane_config) 2544{ 2545 struct drm_device *dev = intel_crtc->base.dev; 2546 struct drm_i915_private *dev_priv = dev->dev_private; 2547 struct drm_crtc *c; 2548 struct intel_crtc *i; 2549 struct drm_i915_gem_object *obj; 2550 struct drm_plane *primary = intel_crtc->base.primary; 2551 struct drm_plane_state *plane_state = primary->state; 2552 struct drm_crtc_state *crtc_state = intel_crtc->base.state; 2553 struct intel_plane *intel_plane = to_intel_plane(primary); 2554 struct intel_plane_state *intel_state = 2555 to_intel_plane_state(plane_state); 2556 struct drm_framebuffer *fb; 2557 2558 if (!plane_config->fb) 2559 return; 2560 2561 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) { 2562 fb = &plane_config->fb->base; 2563 goto valid_fb; 2564 } 2565 2566 kfree(plane_config->fb); 2567 2568 /* 2569 * Failed to alloc the obj, check to see if we should share 2570 * an fb with another CRTC instead 2571 */ 2572 for_each_crtc(dev, c) { 2573 i = to_intel_crtc(c); 2574 2575 if (c == &intel_crtc->base) 2576 continue; 2577 2578 if (!i->active) 2579 continue; 2580 2581 fb = c->primary->fb; 2582 if (!fb) 2583 continue; 2584 2585 obj = intel_fb_obj(fb); 2586 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) { 2587 drm_framebuffer_reference(fb); 2588 goto valid_fb; 2589 } 2590 } 2591 2592 /* 2593 * We've failed to reconstruct the BIOS FB. Current display state 2594 * indicates that the primary plane is visible, but has a NULL FB, 2595 * which will lead to problems later if we don't fix it up. The 2596 * simplest solution is to just disable the primary plane now and 2597 * pretend the BIOS never had it enabled. 2598 */ 2599 to_intel_plane_state(plane_state)->visible = false; 2600 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary)); 2601 intel_pre_disable_primary_noatomic(&intel_crtc->base); 2602 intel_plane->disable_plane(primary, &intel_crtc->base); 2603 2604 return; 2605 2606valid_fb: 2607 plane_state->src_x = 0; 2608 plane_state->src_y = 0; 2609 plane_state->src_w = fb->width << 16; 2610 plane_state->src_h = fb->height << 16; 2611 2612 plane_state->crtc_x = 0; 2613 plane_state->crtc_y = 0; 2614 plane_state->crtc_w = fb->width; 2615 plane_state->crtc_h = fb->height; 2616 2617 intel_state->src.x1 = plane_state->src_x; 2618 intel_state->src.y1 = plane_state->src_y; 2619 intel_state->src.x2 = plane_state->src_x + plane_state->src_w; 2620 intel_state->src.y2 = plane_state->src_y + plane_state->src_h; 2621 intel_state->dst.x1 = plane_state->crtc_x; 2622 intel_state->dst.y1 = plane_state->crtc_y; 2623 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w; 2624 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h; 2625 2626 obj = intel_fb_obj(fb); 2627 if (obj->tiling_mode != I915_TILING_NONE) 2628 dev_priv->preserve_bios_swizzle = true; 2629 2630 drm_framebuffer_reference(fb); 2631 primary->fb = primary->state->fb = fb; 2632 primary->crtc = primary->state->crtc = &intel_crtc->base; 2633 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary)); 2634 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit; 2635} 2636 2637static void i9xx_update_primary_plane(struct drm_plane *primary, 2638 const struct intel_crtc_state *crtc_state, 2639 const struct intel_plane_state *plane_state) 2640{ 2641 struct drm_device *dev = primary->dev; 2642 struct drm_i915_private *dev_priv = dev->dev_private; 2643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 2644 struct drm_framebuffer *fb = plane_state->base.fb; 2645 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2646 int plane = intel_crtc->plane; 2647 u32 linear_offset; 2648 u32 dspcntr; 2649 i915_reg_t reg = DSPCNTR(plane); 2650 unsigned int rotation = plane_state->base.rotation; 2651 int cpp = drm_format_plane_cpp(fb->pixel_format, 0); 2652 int x = plane_state->src.x1 >> 16; 2653 int y = plane_state->src.y1 >> 16; 2654 2655 dspcntr = DISPPLANE_GAMMA_ENABLE; 2656 2657 dspcntr |= DISPLAY_PLANE_ENABLE; 2658 2659 if (INTEL_INFO(dev)->gen < 4) { 2660 if (intel_crtc->pipe == PIPE_B) 2661 dspcntr |= DISPPLANE_SEL_PIPE_B; 2662 2663 /* pipesrc and dspsize control the size that is scaled from, 2664 * which should always be the user's requested size. 2665 */ 2666 I915_WRITE(DSPSIZE(plane), 2667 ((crtc_state->pipe_src_h - 1) << 16) | 2668 (crtc_state->pipe_src_w - 1)); 2669 I915_WRITE(DSPPOS(plane), 0); 2670 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) { 2671 I915_WRITE(PRIMSIZE(plane), 2672 ((crtc_state->pipe_src_h - 1) << 16) | 2673 (crtc_state->pipe_src_w - 1)); 2674 I915_WRITE(PRIMPOS(plane), 0); 2675 I915_WRITE(PRIMCNSTALPHA(plane), 0); 2676 } 2677 2678 switch (fb->pixel_format) { 2679 case DRM_FORMAT_C8: 2680 dspcntr |= DISPPLANE_8BPP; 2681 break; 2682 case DRM_FORMAT_XRGB1555: 2683 dspcntr |= DISPPLANE_BGRX555; 2684 break; 2685 case DRM_FORMAT_RGB565: 2686 dspcntr |= DISPPLANE_BGRX565; 2687 break; 2688 case DRM_FORMAT_XRGB8888: 2689 dspcntr |= DISPPLANE_BGRX888; 2690 break; 2691 case DRM_FORMAT_XBGR8888: 2692 dspcntr |= DISPPLANE_RGBX888; 2693 break; 2694 case DRM_FORMAT_XRGB2101010: 2695 dspcntr |= DISPPLANE_BGRX101010; 2696 break; 2697 case DRM_FORMAT_XBGR2101010: 2698 dspcntr |= DISPPLANE_RGBX101010; 2699 break; 2700 default: 2701 BUG(); 2702 } 2703 2704 if (INTEL_INFO(dev)->gen >= 4 && 2705 obj->tiling_mode != I915_TILING_NONE) 2706 dspcntr |= DISPPLANE_TILED; 2707 2708 if (IS_G4X(dev)) 2709 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 2710 2711 linear_offset = y * fb->pitches[0] + x * cpp; 2712 2713 if (INTEL_INFO(dev)->gen >= 4) { 2714 intel_crtc->dspaddr_offset = 2715 intel_compute_tile_offset(&x, &y, fb, 0, 2716 fb->pitches[0], rotation); 2717 linear_offset -= intel_crtc->dspaddr_offset; 2718 } else { 2719 intel_crtc->dspaddr_offset = linear_offset; 2720 } 2721 2722 if (rotation == BIT(DRM_ROTATE_180)) { 2723 dspcntr |= DISPPLANE_ROTATE_180; 2724 2725 x += (crtc_state->pipe_src_w - 1); 2726 y += (crtc_state->pipe_src_h - 1); 2727 2728 /* Finding the last pixel of the last line of the display 2729 data and adding to linear_offset*/ 2730 linear_offset += 2731 (crtc_state->pipe_src_h - 1) * fb->pitches[0] + 2732 (crtc_state->pipe_src_w - 1) * cpp; 2733 } 2734 2735 intel_crtc->adjusted_x = x; 2736 intel_crtc->adjusted_y = y; 2737 2738 I915_WRITE(reg, dspcntr); 2739 2740 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); 2741 if (INTEL_INFO(dev)->gen >= 4) { 2742 I915_WRITE(DSPSURF(plane), 2743 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); 2744 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); 2745 I915_WRITE(DSPLINOFF(plane), linear_offset); 2746 } else 2747 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset); 2748 POSTING_READ(reg); 2749} 2750 2751static void i9xx_disable_primary_plane(struct drm_plane *primary, 2752 struct drm_crtc *crtc) 2753{ 2754 struct drm_device *dev = crtc->dev; 2755 struct drm_i915_private *dev_priv = dev->dev_private; 2756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 2757 int plane = intel_crtc->plane; 2758 2759 I915_WRITE(DSPCNTR(plane), 0); 2760 if (INTEL_INFO(dev_priv)->gen >= 4) 2761 I915_WRITE(DSPSURF(plane), 0); 2762 else 2763 I915_WRITE(DSPADDR(plane), 0); 2764 POSTING_READ(DSPCNTR(plane)); 2765} 2766 2767static void ironlake_update_primary_plane(struct drm_plane *primary, 2768 const struct intel_crtc_state *crtc_state, 2769 const struct intel_plane_state *plane_state) 2770{ 2771 struct drm_device *dev = primary->dev; 2772 struct drm_i915_private *dev_priv = dev->dev_private; 2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 2774 struct drm_framebuffer *fb = plane_state->base.fb; 2775 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 2776 int plane = intel_crtc->plane; 2777 u32 linear_offset; 2778 u32 dspcntr; 2779 i915_reg_t reg = DSPCNTR(plane); 2780 unsigned int rotation = plane_state->base.rotation; 2781 int cpp = drm_format_plane_cpp(fb->pixel_format, 0); 2782 int x = plane_state->src.x1 >> 16; 2783 int y = plane_state->src.y1 >> 16; 2784 2785 dspcntr = DISPPLANE_GAMMA_ENABLE; 2786 dspcntr |= DISPLAY_PLANE_ENABLE; 2787 2788 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 2789 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; 2790 2791 switch (fb->pixel_format) { 2792 case DRM_FORMAT_C8: 2793 dspcntr |= DISPPLANE_8BPP; 2794 break; 2795 case DRM_FORMAT_RGB565: 2796 dspcntr |= DISPPLANE_BGRX565; 2797 break; 2798 case DRM_FORMAT_XRGB8888: 2799 dspcntr |= DISPPLANE_BGRX888; 2800 break; 2801 case DRM_FORMAT_XBGR8888: 2802 dspcntr |= DISPPLANE_RGBX888; 2803 break; 2804 case DRM_FORMAT_XRGB2101010: 2805 dspcntr |= DISPPLANE_BGRX101010; 2806 break; 2807 case DRM_FORMAT_XBGR2101010: 2808 dspcntr |= DISPPLANE_RGBX101010; 2809 break; 2810 default: 2811 BUG(); 2812 } 2813 2814 if (obj->tiling_mode != I915_TILING_NONE) 2815 dspcntr |= DISPPLANE_TILED; 2816 2817 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) 2818 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; 2819 2820 linear_offset = y * fb->pitches[0] + x * cpp; 2821 intel_crtc->dspaddr_offset = 2822 intel_compute_tile_offset(&x, &y, fb, 0, 2823 fb->pitches[0], rotation); 2824 linear_offset -= intel_crtc->dspaddr_offset; 2825 if (rotation == BIT(DRM_ROTATE_180)) { 2826 dspcntr |= DISPPLANE_ROTATE_180; 2827 2828 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) { 2829 x += (crtc_state->pipe_src_w - 1); 2830 y += (crtc_state->pipe_src_h - 1); 2831 2832 /* Finding the last pixel of the last line of the display 2833 data and adding to linear_offset*/ 2834 linear_offset += 2835 (crtc_state->pipe_src_h - 1) * fb->pitches[0] + 2836 (crtc_state->pipe_src_w - 1) * cpp; 2837 } 2838 } 2839 2840 intel_crtc->adjusted_x = x; 2841 intel_crtc->adjusted_y = y; 2842 2843 I915_WRITE(reg, dspcntr); 2844 2845 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); 2846 I915_WRITE(DSPSURF(plane), 2847 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); 2848 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { 2849 I915_WRITE(DSPOFFSET(plane), (y << 16) | x); 2850 } else { 2851 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); 2852 I915_WRITE(DSPLINOFF(plane), linear_offset); 2853 } 2854 POSTING_READ(reg); 2855} 2856 2857u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv, 2858 uint64_t fb_modifier, uint32_t pixel_format) 2859{ 2860 if (fb_modifier == DRM_FORMAT_MOD_NONE) { 2861 return 64; 2862 } else { 2863 int cpp = drm_format_plane_cpp(pixel_format, 0); 2864 2865 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp); 2866 } 2867} 2868 2869u32 intel_plane_obj_offset(struct intel_plane *intel_plane, 2870 struct drm_i915_gem_object *obj, 2871 unsigned int plane) 2872{ 2873 struct i915_ggtt_view view; 2874 struct i915_vma *vma; 2875 u64 offset; 2876 2877 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb, 2878 intel_plane->base.state->rotation); 2879 2880 vma = i915_gem_obj_to_ggtt_view(obj, &view); 2881 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n", 2882 view.type)) 2883 return -1; 2884 2885 offset = vma->node.start; 2886 2887 if (plane == 1) { 2888 offset += vma->ggtt_view.params.rotated.uv_start_page * 2889 PAGE_SIZE; 2890 } 2891 2892 WARN_ON(upper_32_bits(offset)); 2893 2894 return lower_32_bits(offset); 2895} 2896 2897static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id) 2898{ 2899 struct drm_device *dev = intel_crtc->base.dev; 2900 struct drm_i915_private *dev_priv = dev->dev_private; 2901 2902 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0); 2903 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0); 2904 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0); 2905} 2906 2907/* 2908 * This function detaches (aka. unbinds) unused scalers in hardware 2909 */ 2910static void skl_detach_scalers(struct intel_crtc *intel_crtc) 2911{ 2912 struct intel_crtc_scaler_state *scaler_state; 2913 int i; 2914 2915 scaler_state = &intel_crtc->config->scaler_state; 2916 2917 /* loop through and disable scalers that aren't in use */ 2918 for (i = 0; i < intel_crtc->num_scalers; i++) { 2919 if (!scaler_state->scalers[i].in_use) 2920 skl_detach_scaler(intel_crtc, i); 2921 } 2922} 2923 2924u32 skl_plane_ctl_format(uint32_t pixel_format) 2925{ 2926 switch (pixel_format) { 2927 case DRM_FORMAT_C8: 2928 return PLANE_CTL_FORMAT_INDEXED; 2929 case DRM_FORMAT_RGB565: 2930 return PLANE_CTL_FORMAT_RGB_565; 2931 case DRM_FORMAT_XBGR8888: 2932 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX; 2933 case DRM_FORMAT_XRGB8888: 2934 return PLANE_CTL_FORMAT_XRGB_8888; 2935 /* 2936 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers 2937 * to be already pre-multiplied. We need to add a knob (or a different 2938 * DRM_FORMAT) for user-space to configure that. 2939 */ 2940 case DRM_FORMAT_ABGR8888: 2941 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX | 2942 PLANE_CTL_ALPHA_SW_PREMULTIPLY; 2943 case DRM_FORMAT_ARGB8888: 2944 return PLANE_CTL_FORMAT_XRGB_8888 | 2945 PLANE_CTL_ALPHA_SW_PREMULTIPLY; 2946 case DRM_FORMAT_XRGB2101010: 2947 return PLANE_CTL_FORMAT_XRGB_2101010; 2948 case DRM_FORMAT_XBGR2101010: 2949 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010; 2950 case DRM_FORMAT_YUYV: 2951 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV; 2952 case DRM_FORMAT_YVYU: 2953 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU; 2954 case DRM_FORMAT_UYVY: 2955 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY; 2956 case DRM_FORMAT_VYUY: 2957 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY; 2958 default: 2959 MISSING_CASE(pixel_format); 2960 } 2961 2962 return 0; 2963} 2964 2965u32 skl_plane_ctl_tiling(uint64_t fb_modifier) 2966{ 2967 switch (fb_modifier) { 2968 case DRM_FORMAT_MOD_NONE: 2969 break; 2970 case I915_FORMAT_MOD_X_TILED: 2971 return PLANE_CTL_TILED_X; 2972 case I915_FORMAT_MOD_Y_TILED: 2973 return PLANE_CTL_TILED_Y; 2974 case I915_FORMAT_MOD_Yf_TILED: 2975 return PLANE_CTL_TILED_YF; 2976 default: 2977 MISSING_CASE(fb_modifier); 2978 } 2979 2980 return 0; 2981} 2982 2983u32 skl_plane_ctl_rotation(unsigned int rotation) 2984{ 2985 switch (rotation) { 2986 case BIT(DRM_ROTATE_0): 2987 break; 2988 /* 2989 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr 2990 * while i915 HW rotation is clockwise, thats why this swapping. 2991 */ 2992 case BIT(DRM_ROTATE_90): 2993 return PLANE_CTL_ROTATE_270; 2994 case BIT(DRM_ROTATE_180): 2995 return PLANE_CTL_ROTATE_180; 2996 case BIT(DRM_ROTATE_270): 2997 return PLANE_CTL_ROTATE_90; 2998 default: 2999 MISSING_CASE(rotation); 3000 } 3001 3002 return 0; 3003} 3004 3005static void skylake_update_primary_plane(struct drm_plane *plane, 3006 const struct intel_crtc_state *crtc_state, 3007 const struct intel_plane_state *plane_state) 3008{ 3009 struct drm_device *dev = plane->dev; 3010 struct drm_i915_private *dev_priv = dev->dev_private; 3011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 3012 struct drm_framebuffer *fb = plane_state->base.fb; 3013 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 3014 int pipe = intel_crtc->pipe; 3015 u32 plane_ctl, stride_div, stride; 3016 u32 tile_height, plane_offset, plane_size; 3017 unsigned int rotation = plane_state->base.rotation; 3018 int x_offset, y_offset; 3019 u32 surf_addr; 3020 int scaler_id = plane_state->scaler_id; 3021 int src_x = plane_state->src.x1 >> 16; 3022 int src_y = plane_state->src.y1 >> 16; 3023 int src_w = drm_rect_width(&plane_state->src) >> 16; 3024 int src_h = drm_rect_height(&plane_state->src) >> 16; 3025 int dst_x = plane_state->dst.x1; 3026 int dst_y = plane_state->dst.y1; 3027 int dst_w = drm_rect_width(&plane_state->dst); 3028 int dst_h = drm_rect_height(&plane_state->dst); 3029 3030 plane_ctl = PLANE_CTL_ENABLE | 3031 PLANE_CTL_PIPE_GAMMA_ENABLE | 3032 PLANE_CTL_PIPE_CSC_ENABLE; 3033 3034 plane_ctl |= skl_plane_ctl_format(fb->pixel_format); 3035 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]); 3036 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; 3037 plane_ctl |= skl_plane_ctl_rotation(rotation); 3038 3039 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0], 3040 fb->pixel_format); 3041 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0); 3042 3043 WARN_ON(drm_rect_width(&plane_state->src) == 0); 3044 3045 if (intel_rotation_90_or_270(rotation)) { 3046 int cpp = drm_format_plane_cpp(fb->pixel_format, 0); 3047 3048 /* stride = Surface height in tiles */ 3049 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp); 3050 stride = DIV_ROUND_UP(fb->height, tile_height); 3051 x_offset = stride * tile_height - src_y - src_h; 3052 y_offset = src_x; 3053 plane_size = (src_w - 1) << 16 | (src_h - 1); 3054 } else { 3055 stride = fb->pitches[0] / stride_div; 3056 x_offset = src_x; 3057 y_offset = src_y; 3058 plane_size = (src_h - 1) << 16 | (src_w - 1); 3059 } 3060 plane_offset = y_offset << 16 | x_offset; 3061 3062 intel_crtc->adjusted_x = x_offset; 3063 intel_crtc->adjusted_y = y_offset; 3064 3065 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl); 3066 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset); 3067 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size); 3068 I915_WRITE(PLANE_STRIDE(pipe, 0), stride); 3069 3070 if (scaler_id >= 0) { 3071 uint32_t ps_ctrl = 0; 3072 3073 WARN_ON(!dst_w || !dst_h); 3074 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) | 3075 crtc_state->scaler_state.scalers[scaler_id].mode; 3076 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl); 3077 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0); 3078 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y); 3079 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h); 3080 I915_WRITE(PLANE_POS(pipe, 0), 0); 3081 } else { 3082 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x); 3083 } 3084 3085 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr); 3086 3087 POSTING_READ(PLANE_SURF(pipe, 0)); 3088} 3089 3090static void skylake_disable_primary_plane(struct drm_plane *primary, 3091 struct drm_crtc *crtc) 3092{ 3093 struct drm_device *dev = crtc->dev; 3094 struct drm_i915_private *dev_priv = dev->dev_private; 3095 int pipe = to_intel_crtc(crtc)->pipe; 3096 3097 I915_WRITE(PLANE_CTL(pipe, 0), 0); 3098 I915_WRITE(PLANE_SURF(pipe, 0), 0); 3099 POSTING_READ(PLANE_SURF(pipe, 0)); 3100} 3101 3102/* Assume fb object is pinned & idle & fenced and just update base pointers */ 3103static int 3104intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, 3105 int x, int y, enum mode_set_atomic state) 3106{ 3107 /* Support for kgdboc is disabled, this needs a major rework. */ 3108 DRM_ERROR("legacy panic handler not supported any more.\n"); 3109 3110 return -ENODEV; 3111} 3112 3113static void intel_complete_page_flips(struct drm_device *dev) 3114{ 3115 struct drm_crtc *crtc; 3116 3117 for_each_crtc(dev, crtc) { 3118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3119 enum plane plane = intel_crtc->plane; 3120 3121 intel_prepare_page_flip(dev, plane); 3122 intel_finish_page_flip_plane(dev, plane); 3123 } 3124} 3125 3126static void intel_update_primary_planes(struct drm_device *dev) 3127{ 3128 struct drm_crtc *crtc; 3129 3130 for_each_crtc(dev, crtc) { 3131 struct intel_plane *plane = to_intel_plane(crtc->primary); 3132 struct intel_plane_state *plane_state; 3133 3134 drm_modeset_lock_crtc(crtc, &plane->base); 3135 plane_state = to_intel_plane_state(plane->base.state); 3136 3137 if (plane_state->visible) 3138 plane->update_plane(&plane->base, 3139 to_intel_crtc_state(crtc->state), 3140 plane_state); 3141 3142 drm_modeset_unlock_crtc(crtc); 3143 } 3144} 3145 3146void intel_prepare_reset(struct drm_device *dev) 3147{ 3148 /* no reset support for gen2 */ 3149 if (IS_GEN2(dev)) 3150 return; 3151 3152 /* reset doesn't touch the display */ 3153 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) 3154 return; 3155 3156 drm_modeset_lock_all(dev); 3157 /* 3158 * Disabling the crtcs gracefully seems nicer. Also the 3159 * g33 docs say we should at least disable all the planes. 3160 */ 3161 intel_display_suspend(dev); 3162} 3163 3164void intel_finish_reset(struct drm_device *dev) 3165{ 3166 struct drm_i915_private *dev_priv = to_i915(dev); 3167 3168 /* 3169 * Flips in the rings will be nuked by the reset, 3170 * so complete all pending flips so that user space 3171 * will get its events and not get stuck. 3172 */ 3173 intel_complete_page_flips(dev); 3174 3175 /* no reset support for gen2 */ 3176 if (IS_GEN2(dev)) 3177 return; 3178 3179 /* reset doesn't touch the display */ 3180 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) { 3181 /* 3182 * Flips in the rings have been nuked by the reset, 3183 * so update the base address of all primary 3184 * planes to the the last fb to make sure we're 3185 * showing the correct fb after a reset. 3186 * 3187 * FIXME: Atomic will make this obsolete since we won't schedule 3188 * CS-based flips (which might get lost in gpu resets) any more. 3189 */ 3190 intel_update_primary_planes(dev); 3191 return; 3192 } 3193 3194 /* 3195 * The display has been reset as well, 3196 * so need a full re-initialization. 3197 */ 3198 intel_runtime_pm_disable_interrupts(dev_priv); 3199 intel_runtime_pm_enable_interrupts(dev_priv); 3200 3201 intel_modeset_init_hw(dev); 3202 3203 spin_lock_irq(&dev_priv->irq_lock); 3204 if (dev_priv->display.hpd_irq_setup) 3205 dev_priv->display.hpd_irq_setup(dev); 3206 spin_unlock_irq(&dev_priv->irq_lock); 3207 3208 intel_display_resume(dev); 3209 3210 intel_hpd_init(dev_priv); 3211 3212 drm_modeset_unlock_all(dev); 3213} 3214 3215static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) 3216{ 3217 struct drm_device *dev = crtc->dev; 3218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3219 unsigned reset_counter; 3220 bool pending; 3221 3222 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error); 3223 if (intel_crtc->reset_counter != reset_counter) 3224 return false; 3225 3226 spin_lock_irq(&dev->event_lock); 3227 pending = to_intel_crtc(crtc)->unpin_work != NULL; 3228 spin_unlock_irq(&dev->event_lock); 3229 3230 return pending; 3231} 3232 3233static void intel_update_pipe_config(struct intel_crtc *crtc, 3234 struct intel_crtc_state *old_crtc_state) 3235{ 3236 struct drm_device *dev = crtc->base.dev; 3237 struct drm_i915_private *dev_priv = dev->dev_private; 3238 struct intel_crtc_state *pipe_config = 3239 to_intel_crtc_state(crtc->base.state); 3240 3241 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */ 3242 crtc->base.mode = crtc->base.state->mode; 3243 3244 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n", 3245 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h, 3246 pipe_config->pipe_src_w, pipe_config->pipe_src_h); 3247 3248 /* 3249 * Update pipe size and adjust fitter if needed: the reason for this is 3250 * that in compute_mode_changes we check the native mode (not the pfit 3251 * mode) to see if we can flip rather than do a full mode set. In the 3252 * fastboot case, we'll flip, but if we don't update the pipesrc and 3253 * pfit state, we'll end up with a big fb scanned out into the wrong 3254 * sized surface. 3255 */ 3256 3257 I915_WRITE(PIPESRC(crtc->pipe), 3258 ((pipe_config->pipe_src_w - 1) << 16) | 3259 (pipe_config->pipe_src_h - 1)); 3260 3261 /* on skylake this is done by detaching scalers */ 3262 if (INTEL_INFO(dev)->gen >= 9) { 3263 skl_detach_scalers(crtc); 3264 3265 if (pipe_config->pch_pfit.enabled) 3266 skylake_pfit_enable(crtc); 3267 } else if (HAS_PCH_SPLIT(dev)) { 3268 if (pipe_config->pch_pfit.enabled) 3269 ironlake_pfit_enable(crtc); 3270 else if (old_crtc_state->pch_pfit.enabled) 3271 ironlake_pfit_disable(crtc, true); 3272 } 3273} 3274 3275static void intel_fdi_normal_train(struct drm_crtc *crtc) 3276{ 3277 struct drm_device *dev = crtc->dev; 3278 struct drm_i915_private *dev_priv = dev->dev_private; 3279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3280 int pipe = intel_crtc->pipe; 3281 i915_reg_t reg; 3282 u32 temp; 3283 3284 /* enable normal train */ 3285 reg = FDI_TX_CTL(pipe); 3286 temp = I915_READ(reg); 3287 if (IS_IVYBRIDGE(dev)) { 3288 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 3289 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; 3290 } else { 3291 temp &= ~FDI_LINK_TRAIN_NONE; 3292 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; 3293 } 3294 I915_WRITE(reg, temp); 3295 3296 reg = FDI_RX_CTL(pipe); 3297 temp = I915_READ(reg); 3298 if (HAS_PCH_CPT(dev)) { 3299 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 3300 temp |= FDI_LINK_TRAIN_NORMAL_CPT; 3301 } else { 3302 temp &= ~FDI_LINK_TRAIN_NONE; 3303 temp |= FDI_LINK_TRAIN_NONE; 3304 } 3305 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); 3306 3307 /* wait one idle pattern time */ 3308 POSTING_READ(reg); 3309 udelay(1000); 3310 3311 /* IVB wants error correction enabled */ 3312 if (IS_IVYBRIDGE(dev)) 3313 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | 3314 FDI_FE_ERRC_ENABLE); 3315} 3316 3317/* The FDI link training functions for ILK/Ibexpeak. */ 3318static void ironlake_fdi_link_train(struct drm_crtc *crtc) 3319{ 3320 struct drm_device *dev = crtc->dev; 3321 struct drm_i915_private *dev_priv = dev->dev_private; 3322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3323 int pipe = intel_crtc->pipe; 3324 i915_reg_t reg; 3325 u32 temp, tries; 3326 3327 /* FDI needs bits from pipe first */ 3328 assert_pipe_enabled(dev_priv, pipe); 3329 3330 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 3331 for train result */ 3332 reg = FDI_RX_IMR(pipe); 3333 temp = I915_READ(reg); 3334 temp &= ~FDI_RX_SYMBOL_LOCK; 3335 temp &= ~FDI_RX_BIT_LOCK; 3336 I915_WRITE(reg, temp); 3337 I915_READ(reg); 3338 udelay(150); 3339 3340 /* enable CPU FDI TX and PCH FDI RX */ 3341 reg = FDI_TX_CTL(pipe); 3342 temp = I915_READ(reg); 3343 temp &= ~FDI_DP_PORT_WIDTH_MASK; 3344 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); 3345 temp &= ~FDI_LINK_TRAIN_NONE; 3346 temp |= FDI_LINK_TRAIN_PATTERN_1; 3347 I915_WRITE(reg, temp | FDI_TX_ENABLE); 3348 3349 reg = FDI_RX_CTL(pipe); 3350 temp = I915_READ(reg); 3351 temp &= ~FDI_LINK_TRAIN_NONE; 3352 temp |= FDI_LINK_TRAIN_PATTERN_1; 3353 I915_WRITE(reg, temp | FDI_RX_ENABLE); 3354 3355 POSTING_READ(reg); 3356 udelay(150); 3357 3358 /* Ironlake workaround, enable clock pointer after FDI enable*/ 3359 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 3360 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | 3361 FDI_RX_PHASE_SYNC_POINTER_EN); 3362 3363 reg = FDI_RX_IIR(pipe); 3364 for (tries = 0; tries < 5; tries++) { 3365 temp = I915_READ(reg); 3366 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 3367 3368 if ((temp & FDI_RX_BIT_LOCK)) { 3369 DRM_DEBUG_KMS("FDI train 1 done.\n"); 3370 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 3371 break; 3372 } 3373 } 3374 if (tries == 5) 3375 DRM_ERROR("FDI train 1 fail!\n"); 3376 3377 /* Train 2 */ 3378 reg = FDI_TX_CTL(pipe); 3379 temp = I915_READ(reg); 3380 temp &= ~FDI_LINK_TRAIN_NONE; 3381 temp |= FDI_LINK_TRAIN_PATTERN_2; 3382 I915_WRITE(reg, temp); 3383 3384 reg = FDI_RX_CTL(pipe); 3385 temp = I915_READ(reg); 3386 temp &= ~FDI_LINK_TRAIN_NONE; 3387 temp |= FDI_LINK_TRAIN_PATTERN_2; 3388 I915_WRITE(reg, temp); 3389 3390 POSTING_READ(reg); 3391 udelay(150); 3392 3393 reg = FDI_RX_IIR(pipe); 3394 for (tries = 0; tries < 5; tries++) { 3395 temp = I915_READ(reg); 3396 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 3397 3398 if (temp & FDI_RX_SYMBOL_LOCK) { 3399 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 3400 DRM_DEBUG_KMS("FDI train 2 done.\n"); 3401 break; 3402 } 3403 } 3404 if (tries == 5) 3405 DRM_ERROR("FDI train 2 fail!\n"); 3406 3407 DRM_DEBUG_KMS("FDI train done\n"); 3408 3409} 3410 3411static const int snb_b_fdi_train_param[] = { 3412 FDI_LINK_TRAIN_400MV_0DB_SNB_B, 3413 FDI_LINK_TRAIN_400MV_6DB_SNB_B, 3414 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, 3415 FDI_LINK_TRAIN_800MV_0DB_SNB_B, 3416}; 3417 3418/* The FDI link training functions for SNB/Cougarpoint. */ 3419static void gen6_fdi_link_train(struct drm_crtc *crtc) 3420{ 3421 struct drm_device *dev = crtc->dev; 3422 struct drm_i915_private *dev_priv = dev->dev_private; 3423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3424 int pipe = intel_crtc->pipe; 3425 i915_reg_t reg; 3426 u32 temp, i, retry; 3427 3428 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 3429 for train result */ 3430 reg = FDI_RX_IMR(pipe); 3431 temp = I915_READ(reg); 3432 temp &= ~FDI_RX_SYMBOL_LOCK; 3433 temp &= ~FDI_RX_BIT_LOCK; 3434 I915_WRITE(reg, temp); 3435 3436 POSTING_READ(reg); 3437 udelay(150); 3438 3439 /* enable CPU FDI TX and PCH FDI RX */ 3440 reg = FDI_TX_CTL(pipe); 3441 temp = I915_READ(reg); 3442 temp &= ~FDI_DP_PORT_WIDTH_MASK; 3443 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); 3444 temp &= ~FDI_LINK_TRAIN_NONE; 3445 temp |= FDI_LINK_TRAIN_PATTERN_1; 3446 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 3447 /* SNB-B */ 3448 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 3449 I915_WRITE(reg, temp | FDI_TX_ENABLE); 3450 3451 I915_WRITE(FDI_RX_MISC(pipe), 3452 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 3453 3454 reg = FDI_RX_CTL(pipe); 3455 temp = I915_READ(reg); 3456 if (HAS_PCH_CPT(dev)) { 3457 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 3458 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 3459 } else { 3460 temp &= ~FDI_LINK_TRAIN_NONE; 3461 temp |= FDI_LINK_TRAIN_PATTERN_1; 3462 } 3463 I915_WRITE(reg, temp | FDI_RX_ENABLE); 3464 3465 POSTING_READ(reg); 3466 udelay(150); 3467 3468 for (i = 0; i < 4; i++) { 3469 reg = FDI_TX_CTL(pipe); 3470 temp = I915_READ(reg); 3471 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 3472 temp |= snb_b_fdi_train_param[i]; 3473 I915_WRITE(reg, temp); 3474 3475 POSTING_READ(reg); 3476 udelay(500); 3477 3478 for (retry = 0; retry < 5; retry++) { 3479 reg = FDI_RX_IIR(pipe); 3480 temp = I915_READ(reg); 3481 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 3482 if (temp & FDI_RX_BIT_LOCK) { 3483 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 3484 DRM_DEBUG_KMS("FDI train 1 done.\n"); 3485 break; 3486 } 3487 udelay(50); 3488 } 3489 if (retry < 5) 3490 break; 3491 } 3492 if (i == 4) 3493 DRM_ERROR("FDI train 1 fail!\n"); 3494 3495 /* Train 2 */ 3496 reg = FDI_TX_CTL(pipe); 3497 temp = I915_READ(reg); 3498 temp &= ~FDI_LINK_TRAIN_NONE; 3499 temp |= FDI_LINK_TRAIN_PATTERN_2; 3500 if (IS_GEN6(dev)) { 3501 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 3502 /* SNB-B */ 3503 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; 3504 } 3505 I915_WRITE(reg, temp); 3506 3507 reg = FDI_RX_CTL(pipe); 3508 temp = I915_READ(reg); 3509 if (HAS_PCH_CPT(dev)) { 3510 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 3511 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 3512 } else { 3513 temp &= ~FDI_LINK_TRAIN_NONE; 3514 temp |= FDI_LINK_TRAIN_PATTERN_2; 3515 } 3516 I915_WRITE(reg, temp); 3517 3518 POSTING_READ(reg); 3519 udelay(150); 3520 3521 for (i = 0; i < 4; i++) { 3522 reg = FDI_TX_CTL(pipe); 3523 temp = I915_READ(reg); 3524 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 3525 temp |= snb_b_fdi_train_param[i]; 3526 I915_WRITE(reg, temp); 3527 3528 POSTING_READ(reg); 3529 udelay(500); 3530 3531 for (retry = 0; retry < 5; retry++) { 3532 reg = FDI_RX_IIR(pipe); 3533 temp = I915_READ(reg); 3534 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 3535 if (temp & FDI_RX_SYMBOL_LOCK) { 3536 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 3537 DRM_DEBUG_KMS("FDI train 2 done.\n"); 3538 break; 3539 } 3540 udelay(50); 3541 } 3542 if (retry < 5) 3543 break; 3544 } 3545 if (i == 4) 3546 DRM_ERROR("FDI train 2 fail!\n"); 3547 3548 DRM_DEBUG_KMS("FDI train done.\n"); 3549} 3550 3551/* Manual link training for Ivy Bridge A0 parts */ 3552static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) 3553{ 3554 struct drm_device *dev = crtc->dev; 3555 struct drm_i915_private *dev_priv = dev->dev_private; 3556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3557 int pipe = intel_crtc->pipe; 3558 i915_reg_t reg; 3559 u32 temp, i, j; 3560 3561 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit 3562 for train result */ 3563 reg = FDI_RX_IMR(pipe); 3564 temp = I915_READ(reg); 3565 temp &= ~FDI_RX_SYMBOL_LOCK; 3566 temp &= ~FDI_RX_BIT_LOCK; 3567 I915_WRITE(reg, temp); 3568 3569 POSTING_READ(reg); 3570 udelay(150); 3571 3572 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", 3573 I915_READ(FDI_RX_IIR(pipe))); 3574 3575 /* Try each vswing and preemphasis setting twice before moving on */ 3576 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { 3577 /* disable first in case we need to retry */ 3578 reg = FDI_TX_CTL(pipe); 3579 temp = I915_READ(reg); 3580 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); 3581 temp &= ~FDI_TX_ENABLE; 3582 I915_WRITE(reg, temp); 3583 3584 reg = FDI_RX_CTL(pipe); 3585 temp = I915_READ(reg); 3586 temp &= ~FDI_LINK_TRAIN_AUTO; 3587 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 3588 temp &= ~FDI_RX_ENABLE; 3589 I915_WRITE(reg, temp); 3590 3591 /* enable CPU FDI TX and PCH FDI RX */ 3592 reg = FDI_TX_CTL(pipe); 3593 temp = I915_READ(reg); 3594 temp &= ~FDI_DP_PORT_WIDTH_MASK; 3595 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); 3596 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; 3597 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; 3598 temp |= snb_b_fdi_train_param[j/2]; 3599 temp |= FDI_COMPOSITE_SYNC; 3600 I915_WRITE(reg, temp | FDI_TX_ENABLE); 3601 3602 I915_WRITE(FDI_RX_MISC(pipe), 3603 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); 3604 3605 reg = FDI_RX_CTL(pipe); 3606 temp = I915_READ(reg); 3607 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 3608 temp |= FDI_COMPOSITE_SYNC; 3609 I915_WRITE(reg, temp | FDI_RX_ENABLE); 3610 3611 POSTING_READ(reg); 3612 udelay(1); /* should be 0.5us */ 3613 3614 for (i = 0; i < 4; i++) { 3615 reg = FDI_RX_IIR(pipe); 3616 temp = I915_READ(reg); 3617 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 3618 3619 if (temp & FDI_RX_BIT_LOCK || 3620 (I915_READ(reg) & FDI_RX_BIT_LOCK)) { 3621 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); 3622 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", 3623 i); 3624 break; 3625 } 3626 udelay(1); /* should be 0.5us */ 3627 } 3628 if (i == 4) { 3629 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); 3630 continue; 3631 } 3632 3633 /* Train 2 */ 3634 reg = FDI_TX_CTL(pipe); 3635 temp = I915_READ(reg); 3636 temp &= ~FDI_LINK_TRAIN_NONE_IVB; 3637 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; 3638 I915_WRITE(reg, temp); 3639 3640 reg = FDI_RX_CTL(pipe); 3641 temp = I915_READ(reg); 3642 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 3643 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; 3644 I915_WRITE(reg, temp); 3645 3646 POSTING_READ(reg); 3647 udelay(2); /* should be 1.5us */ 3648 3649 for (i = 0; i < 4; i++) { 3650 reg = FDI_RX_IIR(pipe); 3651 temp = I915_READ(reg); 3652 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); 3653 3654 if (temp & FDI_RX_SYMBOL_LOCK || 3655 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { 3656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); 3657 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", 3658 i); 3659 goto train_done; 3660 } 3661 udelay(2); /* should be 1.5us */ 3662 } 3663 if (i == 4) 3664 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); 3665 } 3666 3667train_done: 3668 DRM_DEBUG_KMS("FDI train done.\n"); 3669} 3670 3671static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) 3672{ 3673 struct drm_device *dev = intel_crtc->base.dev; 3674 struct drm_i915_private *dev_priv = dev->dev_private; 3675 int pipe = intel_crtc->pipe; 3676 i915_reg_t reg; 3677 u32 temp; 3678 3679 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ 3680 reg = FDI_RX_CTL(pipe); 3681 temp = I915_READ(reg); 3682 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); 3683 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes); 3684 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 3685 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); 3686 3687 POSTING_READ(reg); 3688 udelay(200); 3689 3690 /* Switch from Rawclk to PCDclk */ 3691 temp = I915_READ(reg); 3692 I915_WRITE(reg, temp | FDI_PCDCLK); 3693 3694 POSTING_READ(reg); 3695 udelay(200); 3696 3697 /* Enable CPU FDI TX PLL, always on for Ironlake */ 3698 reg = FDI_TX_CTL(pipe); 3699 temp = I915_READ(reg); 3700 if ((temp & FDI_TX_PLL_ENABLE) == 0) { 3701 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); 3702 3703 POSTING_READ(reg); 3704 udelay(100); 3705 } 3706} 3707 3708static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) 3709{ 3710 struct drm_device *dev = intel_crtc->base.dev; 3711 struct drm_i915_private *dev_priv = dev->dev_private; 3712 int pipe = intel_crtc->pipe; 3713 i915_reg_t reg; 3714 u32 temp; 3715 3716 /* Switch from PCDclk to Rawclk */ 3717 reg = FDI_RX_CTL(pipe); 3718 temp = I915_READ(reg); 3719 I915_WRITE(reg, temp & ~FDI_PCDCLK); 3720 3721 /* Disable CPU FDI TX PLL */ 3722 reg = FDI_TX_CTL(pipe); 3723 temp = I915_READ(reg); 3724 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); 3725 3726 POSTING_READ(reg); 3727 udelay(100); 3728 3729 reg = FDI_RX_CTL(pipe); 3730 temp = I915_READ(reg); 3731 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); 3732 3733 /* Wait for the clocks to turn off. */ 3734 POSTING_READ(reg); 3735 udelay(100); 3736} 3737 3738static void ironlake_fdi_disable(struct drm_crtc *crtc) 3739{ 3740 struct drm_device *dev = crtc->dev; 3741 struct drm_i915_private *dev_priv = dev->dev_private; 3742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3743 int pipe = intel_crtc->pipe; 3744 i915_reg_t reg; 3745 u32 temp; 3746 3747 /* disable CPU FDI tx and PCH FDI rx */ 3748 reg = FDI_TX_CTL(pipe); 3749 temp = I915_READ(reg); 3750 I915_WRITE(reg, temp & ~FDI_TX_ENABLE); 3751 POSTING_READ(reg); 3752 3753 reg = FDI_RX_CTL(pipe); 3754 temp = I915_READ(reg); 3755 temp &= ~(0x7 << 16); 3756 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 3757 I915_WRITE(reg, temp & ~FDI_RX_ENABLE); 3758 3759 POSTING_READ(reg); 3760 udelay(100); 3761 3762 /* Ironlake workaround, disable clock pointer after downing FDI */ 3763 if (HAS_PCH_IBX(dev)) 3764 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); 3765 3766 /* still set train pattern 1 */ 3767 reg = FDI_TX_CTL(pipe); 3768 temp = I915_READ(reg); 3769 temp &= ~FDI_LINK_TRAIN_NONE; 3770 temp |= FDI_LINK_TRAIN_PATTERN_1; 3771 I915_WRITE(reg, temp); 3772 3773 reg = FDI_RX_CTL(pipe); 3774 temp = I915_READ(reg); 3775 if (HAS_PCH_CPT(dev)) { 3776 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; 3777 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; 3778 } else { 3779 temp &= ~FDI_LINK_TRAIN_NONE; 3780 temp |= FDI_LINK_TRAIN_PATTERN_1; 3781 } 3782 /* BPC in FDI rx is consistent with that in PIPECONF */ 3783 temp &= ~(0x07 << 16); 3784 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; 3785 I915_WRITE(reg, temp); 3786 3787 POSTING_READ(reg); 3788 udelay(100); 3789} 3790 3791bool intel_has_pending_fb_unpin(struct drm_device *dev) 3792{ 3793 struct intel_crtc *crtc; 3794 3795 /* Note that we don't need to be called with mode_config.lock here 3796 * as our list of CRTC objects is static for the lifetime of the 3797 * device and so cannot disappear as we iterate. Similarly, we can 3798 * happily treat the predicates as racy, atomic checks as userspace 3799 * cannot claim and pin a new fb without at least acquring the 3800 * struct_mutex and so serialising with us. 3801 */ 3802 for_each_intel_crtc(dev, crtc) { 3803 if (atomic_read(&crtc->unpin_work_count) == 0) 3804 continue; 3805 3806 if (crtc->unpin_work) 3807 intel_wait_for_vblank(dev, crtc->pipe); 3808 3809 return true; 3810 } 3811 3812 return false; 3813} 3814 3815static void page_flip_completed(struct intel_crtc *intel_crtc) 3816{ 3817 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); 3818 struct intel_unpin_work *work = intel_crtc->unpin_work; 3819 3820 /* ensure that the unpin work is consistent wrt ->pending. */ 3821 smp_rmb(); 3822 intel_crtc->unpin_work = NULL; 3823 3824 if (work->event) 3825 drm_crtc_send_vblank_event(&intel_crtc->base, work->event); 3826 3827 drm_crtc_vblank_put(&intel_crtc->base); 3828 3829 wake_up_all(&dev_priv->pending_flip_queue); 3830 queue_work(dev_priv->wq, &work->work); 3831 3832 trace_i915_flip_complete(intel_crtc->plane, 3833 work->pending_flip_obj); 3834} 3835 3836static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) 3837{ 3838 struct drm_device *dev = crtc->dev; 3839 struct drm_i915_private *dev_priv = dev->dev_private; 3840 long ret; 3841 3842 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); 3843 3844 ret = wait_event_interruptible_timeout( 3845 dev_priv->pending_flip_queue, 3846 !intel_crtc_has_pending_flip(crtc), 3847 60*HZ); 3848 3849 if (ret < 0) 3850 return ret; 3851 3852 if (ret == 0) { 3853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 3854 3855 spin_lock_irq(&dev->event_lock); 3856 if (intel_crtc->unpin_work) { 3857 WARN_ONCE(1, "Removing stuck page flip\n"); 3858 page_flip_completed(intel_crtc); 3859 } 3860 spin_unlock_irq(&dev->event_lock); 3861 } 3862 3863 return 0; 3864} 3865 3866static void lpt_disable_iclkip(struct drm_i915_private *dev_priv) 3867{ 3868 u32 temp; 3869 3870 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); 3871 3872 mutex_lock(&dev_priv->sb_lock); 3873 3874 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 3875 temp |= SBI_SSCCTL_DISABLE; 3876 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 3877 3878 mutex_unlock(&dev_priv->sb_lock); 3879} 3880 3881/* Program iCLKIP clock to the desired frequency */ 3882static void lpt_program_iclkip(struct drm_crtc *crtc) 3883{ 3884 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 3885 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock; 3886 u32 divsel, phaseinc, auxdiv, phasedir = 0; 3887 u32 temp; 3888 3889 lpt_disable_iclkip(dev_priv); 3890 3891 /* The iCLK virtual clock root frequency is in MHz, 3892 * but the adjusted_mode->crtc_clock in in KHz. To get the 3893 * divisors, it is necessary to divide one by another, so we 3894 * convert the virtual clock precision to KHz here for higher 3895 * precision. 3896 */ 3897 for (auxdiv = 0; auxdiv < 2; auxdiv++) { 3898 u32 iclk_virtual_root_freq = 172800 * 1000; 3899 u32 iclk_pi_range = 64; 3900 u32 desired_divisor; 3901 3902 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 3903 clock << auxdiv); 3904 divsel = (desired_divisor / iclk_pi_range) - 2; 3905 phaseinc = desired_divisor % iclk_pi_range; 3906 3907 /* 3908 * Near 20MHz is a corner case which is 3909 * out of range for the 7-bit divisor 3910 */ 3911 if (divsel <= 0x7f) 3912 break; 3913 } 3914 3915 /* This should not happen with any sane values */ 3916 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & 3917 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); 3918 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & 3919 ~SBI_SSCDIVINTPHASE_INCVAL_MASK); 3920 3921 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", 3922 clock, 3923 auxdiv, 3924 divsel, 3925 phasedir, 3926 phaseinc); 3927 3928 mutex_lock(&dev_priv->sb_lock); 3929 3930 /* Program SSCDIVINTPHASE6 */ 3931 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 3932 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; 3933 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); 3934 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; 3935 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); 3936 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); 3937 temp |= SBI_SSCDIVINTPHASE_PROPAGATE; 3938 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); 3939 3940 /* Program SSCAUXDIV */ 3941 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 3942 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); 3943 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); 3944 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); 3945 3946 /* Enable modulator and associated divider */ 3947 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 3948 temp &= ~SBI_SSCCTL_DISABLE; 3949 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); 3950 3951 mutex_unlock(&dev_priv->sb_lock); 3952 3953 /* Wait for initialization time */ 3954 udelay(24); 3955 3956 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); 3957} 3958 3959int lpt_get_iclkip(struct drm_i915_private *dev_priv) 3960{ 3961 u32 divsel, phaseinc, auxdiv; 3962 u32 iclk_virtual_root_freq = 172800 * 1000; 3963 u32 iclk_pi_range = 64; 3964 u32 desired_divisor; 3965 u32 temp; 3966 3967 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0) 3968 return 0; 3969 3970 mutex_lock(&dev_priv->sb_lock); 3971 3972 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); 3973 if (temp & SBI_SSCCTL_DISABLE) { 3974 mutex_unlock(&dev_priv->sb_lock); 3975 return 0; 3976 } 3977 3978 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); 3979 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >> 3980 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT; 3981 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >> 3982 SBI_SSCDIVINTPHASE_INCVAL_SHIFT; 3983 3984 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); 3985 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >> 3986 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT; 3987 3988 mutex_unlock(&dev_priv->sb_lock); 3989 3990 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc; 3991 3992 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq, 3993 desired_divisor << auxdiv); 3994} 3995 3996static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc, 3997 enum pipe pch_transcoder) 3998{ 3999 struct drm_device *dev = crtc->base.dev; 4000 struct drm_i915_private *dev_priv = dev->dev_private; 4001 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; 4002 4003 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), 4004 I915_READ(HTOTAL(cpu_transcoder))); 4005 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), 4006 I915_READ(HBLANK(cpu_transcoder))); 4007 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), 4008 I915_READ(HSYNC(cpu_transcoder))); 4009 4010 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), 4011 I915_READ(VTOTAL(cpu_transcoder))); 4012 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), 4013 I915_READ(VBLANK(cpu_transcoder))); 4014 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), 4015 I915_READ(VSYNC(cpu_transcoder))); 4016 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), 4017 I915_READ(VSYNCSHIFT(cpu_transcoder))); 4018} 4019 4020static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable) 4021{ 4022 struct drm_i915_private *dev_priv = dev->dev_private; 4023 uint32_t temp; 4024 4025 temp = I915_READ(SOUTH_CHICKEN1); 4026 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable) 4027 return; 4028 4029 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); 4030 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); 4031 4032 temp &= ~FDI_BC_BIFURCATION_SELECT; 4033 if (enable) 4034 temp |= FDI_BC_BIFURCATION_SELECT; 4035 4036 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis"); 4037 I915_WRITE(SOUTH_CHICKEN1, temp); 4038 POSTING_READ(SOUTH_CHICKEN1); 4039} 4040 4041static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc) 4042{ 4043 struct drm_device *dev = intel_crtc->base.dev; 4044 4045 switch (intel_crtc->pipe) { 4046 case PIPE_A: 4047 break; 4048 case PIPE_B: 4049 if (intel_crtc->config->fdi_lanes > 2) 4050 cpt_set_fdi_bc_bifurcation(dev, false); 4051 else 4052 cpt_set_fdi_bc_bifurcation(dev, true); 4053 4054 break; 4055 case PIPE_C: 4056 cpt_set_fdi_bc_bifurcation(dev, true); 4057 4058 break; 4059 default: 4060 BUG(); 4061 } 4062} 4063 4064/* Return which DP Port should be selected for Transcoder DP control */ 4065static enum port 4066intel_trans_dp_port_sel(struct drm_crtc *crtc) 4067{ 4068 struct drm_device *dev = crtc->dev; 4069 struct intel_encoder *encoder; 4070 4071 for_each_encoder_on_crtc(dev, crtc, encoder) { 4072 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT || 4073 encoder->type == INTEL_OUTPUT_EDP) 4074 return enc_to_dig_port(&encoder->base)->port; 4075 } 4076 4077 return -1; 4078} 4079 4080/* 4081 * Enable PCH resources required for PCH ports: 4082 * - PCH PLLs 4083 * - FDI training & RX/TX 4084 * - update transcoder timings 4085 * - DP transcoding bits 4086 * - transcoder 4087 */ 4088static void ironlake_pch_enable(struct drm_crtc *crtc) 4089{ 4090 struct drm_device *dev = crtc->dev; 4091 struct drm_i915_private *dev_priv = dev->dev_private; 4092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4093 int pipe = intel_crtc->pipe; 4094 u32 temp; 4095 4096 assert_pch_transcoder_disabled(dev_priv, pipe); 4097 4098 if (IS_IVYBRIDGE(dev)) 4099 ivybridge_update_fdi_bc_bifurcation(intel_crtc); 4100 4101 /* Write the TU size bits before fdi link training, so that error 4102 * detection works. */ 4103 I915_WRITE(FDI_RX_TUSIZE1(pipe), 4104 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); 4105 4106 /* For PCH output, training FDI link */ 4107 dev_priv->display.fdi_link_train(crtc); 4108 4109 /* We need to program the right clock selection before writing the pixel 4110 * mutliplier into the DPLL. */ 4111 if (HAS_PCH_CPT(dev)) { 4112 u32 sel; 4113 4114 temp = I915_READ(PCH_DPLL_SEL); 4115 temp |= TRANS_DPLL_ENABLE(pipe); 4116 sel = TRANS_DPLLB_SEL(pipe); 4117 if (intel_crtc->config->shared_dpll == 4118 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B)) 4119 temp |= sel; 4120 else 4121 temp &= ~sel; 4122 I915_WRITE(PCH_DPLL_SEL, temp); 4123 } 4124 4125 /* XXX: pch pll's can be enabled any time before we enable the PCH 4126 * transcoder, and we actually should do this to not upset any PCH 4127 * transcoder that already use the clock when we share it. 4128 * 4129 * Note that enable_shared_dpll tries to do the right thing, but 4130 * get_shared_dpll unconditionally resets the pll - we need that to have 4131 * the right LVDS enable sequence. */ 4132 intel_enable_shared_dpll(intel_crtc); 4133 4134 /* set transcoder timing, panel must allow it */ 4135 assert_panel_unlocked(dev_priv, pipe); 4136 ironlake_pch_transcoder_set_timings(intel_crtc, pipe); 4137 4138 intel_fdi_normal_train(crtc); 4139 4140 /* For PCH DP, enable TRANS_DP_CTL */ 4141 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) { 4142 const struct drm_display_mode *adjusted_mode = 4143 &intel_crtc->config->base.adjusted_mode; 4144 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; 4145 i915_reg_t reg = TRANS_DP_CTL(pipe); 4146 temp = I915_READ(reg); 4147 temp &= ~(TRANS_DP_PORT_SEL_MASK | 4148 TRANS_DP_SYNC_MASK | 4149 TRANS_DP_BPC_MASK); 4150 temp |= TRANS_DP_OUTPUT_ENABLE; 4151 temp |= bpc << 9; /* same format but at 11:9 */ 4152 4153 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 4154 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; 4155 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 4156 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; 4157 4158 switch (intel_trans_dp_port_sel(crtc)) { 4159 case PORT_B: 4160 temp |= TRANS_DP_PORT_SEL_B; 4161 break; 4162 case PORT_C: 4163 temp |= TRANS_DP_PORT_SEL_C; 4164 break; 4165 case PORT_D: 4166 temp |= TRANS_DP_PORT_SEL_D; 4167 break; 4168 default: 4169 BUG(); 4170 } 4171 4172 I915_WRITE(reg, temp); 4173 } 4174 4175 ironlake_enable_pch_transcoder(dev_priv, pipe); 4176} 4177 4178static void lpt_pch_enable(struct drm_crtc *crtc) 4179{ 4180 struct drm_device *dev = crtc->dev; 4181 struct drm_i915_private *dev_priv = dev->dev_private; 4182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4183 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; 4184 4185 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A); 4186 4187 lpt_program_iclkip(crtc); 4188 4189 /* Set transcoder timing. */ 4190 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A); 4191 4192 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); 4193} 4194 4195static void cpt_verify_modeset(struct drm_device *dev, int pipe) 4196{ 4197 struct drm_i915_private *dev_priv = dev->dev_private; 4198 i915_reg_t dslreg = PIPEDSL(pipe); 4199 u32 temp; 4200 4201 temp = I915_READ(dslreg); 4202 udelay(500); 4203 if (wait_for(I915_READ(dslreg) != temp, 5)) { 4204 if (wait_for(I915_READ(dslreg) != temp, 5)) 4205 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); 4206 } 4207} 4208 4209static int 4210skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach, 4211 unsigned scaler_user, int *scaler_id, unsigned int rotation, 4212 int src_w, int src_h, int dst_w, int dst_h) 4213{ 4214 struct intel_crtc_scaler_state *scaler_state = 4215 &crtc_state->scaler_state; 4216 struct intel_crtc *intel_crtc = 4217 to_intel_crtc(crtc_state->base.crtc); 4218 int need_scaling; 4219 4220 need_scaling = intel_rotation_90_or_270(rotation) ? 4221 (src_h != dst_w || src_w != dst_h): 4222 (src_w != dst_w || src_h != dst_h); 4223 4224 /* 4225 * if plane is being disabled or scaler is no more required or force detach 4226 * - free scaler binded to this plane/crtc 4227 * - in order to do this, update crtc->scaler_usage 4228 * 4229 * Here scaler state in crtc_state is set free so that 4230 * scaler can be assigned to other user. Actual register 4231 * update to free the scaler is done in plane/panel-fit programming. 4232 * For this purpose crtc/plane_state->scaler_id isn't reset here. 4233 */ 4234 if (force_detach || !need_scaling) { 4235 if (*scaler_id >= 0) { 4236 scaler_state->scaler_users &= ~(1 << scaler_user); 4237 scaler_state->scalers[*scaler_id].in_use = 0; 4238 4239 DRM_DEBUG_KMS("scaler_user index %u.%u: " 4240 "Staged freeing scaler id %d scaler_users = 0x%x\n", 4241 intel_crtc->pipe, scaler_user, *scaler_id, 4242 scaler_state->scaler_users); 4243 *scaler_id = -1; 4244 } 4245 return 0; 4246 } 4247 4248 /* range checks */ 4249 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H || 4250 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H || 4251 4252 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H || 4253 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) { 4254 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u " 4255 "size is out of scaler range\n", 4256 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h); 4257 return -EINVAL; 4258 } 4259 4260 /* mark this plane as a scaler user in crtc_state */ 4261 scaler_state->scaler_users |= (1 << scaler_user); 4262 DRM_DEBUG_KMS("scaler_user index %u.%u: " 4263 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n", 4264 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h, 4265 scaler_state->scaler_users); 4266 4267 return 0; 4268} 4269 4270/** 4271 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc. 4272 * 4273 * @state: crtc's scaler state 4274 * 4275 * Return 4276 * 0 - scaler_usage updated successfully 4277 * error - requested scaling cannot be supported or other error condition 4278 */ 4279int skl_update_scaler_crtc(struct intel_crtc_state *state) 4280{ 4281 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc); 4282 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode; 4283 4284 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n", 4285 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX); 4286 4287 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX, 4288 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0), 4289 state->pipe_src_w, state->pipe_src_h, 4290 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay); 4291} 4292 4293/** 4294 * skl_update_scaler_plane - Stages update to scaler state for a given plane. 4295 * 4296 * @state: crtc's scaler state 4297 * @plane_state: atomic plane state to update 4298 * 4299 * Return 4300 * 0 - scaler_usage updated successfully 4301 * error - requested scaling cannot be supported or other error condition 4302 */ 4303static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state, 4304 struct intel_plane_state *plane_state) 4305{ 4306 4307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); 4308 struct intel_plane *intel_plane = 4309 to_intel_plane(plane_state->base.plane); 4310 struct drm_framebuffer *fb = plane_state->base.fb; 4311 int ret; 4312 4313 bool force_detach = !fb || !plane_state->visible; 4314 4315 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n", 4316 intel_plane->base.base.id, intel_crtc->pipe, 4317 drm_plane_index(&intel_plane->base)); 4318 4319 ret = skl_update_scaler(crtc_state, force_detach, 4320 drm_plane_index(&intel_plane->base), 4321 &plane_state->scaler_id, 4322 plane_state->base.rotation, 4323 drm_rect_width(&plane_state->src) >> 16, 4324 drm_rect_height(&plane_state->src) >> 16, 4325 drm_rect_width(&plane_state->dst), 4326 drm_rect_height(&plane_state->dst)); 4327 4328 if (ret || plane_state->scaler_id < 0) 4329 return ret; 4330 4331 /* check colorkey */ 4332 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) { 4333 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed", 4334 intel_plane->base.base.id); 4335 return -EINVAL; 4336 } 4337 4338 /* Check src format */ 4339 switch (fb->pixel_format) { 4340 case DRM_FORMAT_RGB565: 4341 case DRM_FORMAT_XBGR8888: 4342 case DRM_FORMAT_XRGB8888: 4343 case DRM_FORMAT_ABGR8888: 4344 case DRM_FORMAT_ARGB8888: 4345 case DRM_FORMAT_XRGB2101010: 4346 case DRM_FORMAT_XBGR2101010: 4347 case DRM_FORMAT_YUYV: 4348 case DRM_FORMAT_YVYU: 4349 case DRM_FORMAT_UYVY: 4350 case DRM_FORMAT_VYUY: 4351 break; 4352 default: 4353 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n", 4354 intel_plane->base.base.id, fb->base.id, fb->pixel_format); 4355 return -EINVAL; 4356 } 4357 4358 return 0; 4359} 4360 4361static void skylake_scaler_disable(struct intel_crtc *crtc) 4362{ 4363 int i; 4364 4365 for (i = 0; i < crtc->num_scalers; i++) 4366 skl_detach_scaler(crtc, i); 4367} 4368 4369static void skylake_pfit_enable(struct intel_crtc *crtc) 4370{ 4371 struct drm_device *dev = crtc->base.dev; 4372 struct drm_i915_private *dev_priv = dev->dev_private; 4373 int pipe = crtc->pipe; 4374 struct intel_crtc_scaler_state *scaler_state = 4375 &crtc->config->scaler_state; 4376 4377 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config); 4378 4379 if (crtc->config->pch_pfit.enabled) { 4380 int id; 4381 4382 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) { 4383 DRM_ERROR("Requesting pfit without getting a scaler first\n"); 4384 return; 4385 } 4386 4387 id = scaler_state->scaler_id; 4388 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN | 4389 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode); 4390 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos); 4391 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size); 4392 4393 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id); 4394 } 4395} 4396 4397static void ironlake_pfit_enable(struct intel_crtc *crtc) 4398{ 4399 struct drm_device *dev = crtc->base.dev; 4400 struct drm_i915_private *dev_priv = dev->dev_private; 4401 int pipe = crtc->pipe; 4402 4403 if (crtc->config->pch_pfit.enabled) { 4404 /* Force use of hard-coded filter coefficients 4405 * as some pre-programmed values are broken, 4406 * e.g. x201. 4407 */ 4408 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) 4409 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | 4410 PF_PIPE_SEL_IVB(pipe)); 4411 else 4412 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); 4413 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos); 4414 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size); 4415 } 4416} 4417 4418void hsw_enable_ips(struct intel_crtc *crtc) 4419{ 4420 struct drm_device *dev = crtc->base.dev; 4421 struct drm_i915_private *dev_priv = dev->dev_private; 4422 4423 if (!crtc->config->ips_enabled) 4424 return; 4425 4426 /* 4427 * We can only enable IPS after we enable a plane and wait for a vblank 4428 * This function is called from post_plane_update, which is run after 4429 * a vblank wait. 4430 */ 4431 4432 assert_plane_enabled(dev_priv, crtc->plane); 4433 if (IS_BROADWELL(dev)) { 4434 mutex_lock(&dev_priv->rps.hw_lock); 4435 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000)); 4436 mutex_unlock(&dev_priv->rps.hw_lock); 4437 /* Quoting Art Runyan: "its not safe to expect any particular 4438 * value in IPS_CTL bit 31 after enabling IPS through the 4439 * mailbox." Moreover, the mailbox may return a bogus state, 4440 * so we need to just enable it and continue on. 4441 */ 4442 } else { 4443 I915_WRITE(IPS_CTL, IPS_ENABLE); 4444 /* The bit only becomes 1 in the next vblank, so this wait here 4445 * is essentially intel_wait_for_vblank. If we don't have this 4446 * and don't wait for vblanks until the end of crtc_enable, then 4447 * the HW state readout code will complain that the expected 4448 * IPS_CTL value is not the one we read. */ 4449 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50)) 4450 DRM_ERROR("Timed out waiting for IPS enable\n"); 4451 } 4452} 4453 4454void hsw_disable_ips(struct intel_crtc *crtc) 4455{ 4456 struct drm_device *dev = crtc->base.dev; 4457 struct drm_i915_private *dev_priv = dev->dev_private; 4458 4459 if (!crtc->config->ips_enabled) 4460 return; 4461 4462 assert_plane_enabled(dev_priv, crtc->plane); 4463 if (IS_BROADWELL(dev)) { 4464 mutex_lock(&dev_priv->rps.hw_lock); 4465 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); 4466 mutex_unlock(&dev_priv->rps.hw_lock); 4467 /* wait for pcode to finish disabling IPS, which may take up to 42ms */ 4468 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42)) 4469 DRM_ERROR("Timed out waiting for IPS disable\n"); 4470 } else { 4471 I915_WRITE(IPS_CTL, 0); 4472 POSTING_READ(IPS_CTL); 4473 } 4474 4475 /* We need to wait for a vblank before we can disable the plane. */ 4476 intel_wait_for_vblank(dev, crtc->pipe); 4477} 4478 4479static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc) 4480{ 4481 if (intel_crtc->overlay) { 4482 struct drm_device *dev = intel_crtc->base.dev; 4483 struct drm_i915_private *dev_priv = dev->dev_private; 4484 4485 mutex_lock(&dev->struct_mutex); 4486 dev_priv->mm.interruptible = false; 4487 (void) intel_overlay_switch_off(intel_crtc->overlay); 4488 dev_priv->mm.interruptible = true; 4489 mutex_unlock(&dev->struct_mutex); 4490 } 4491 4492 /* Let userspace switch the overlay on again. In most cases userspace 4493 * has to recompute where to put it anyway. 4494 */ 4495} 4496 4497/** 4498 * intel_post_enable_primary - Perform operations after enabling primary plane 4499 * @crtc: the CRTC whose primary plane was just enabled 4500 * 4501 * Performs potentially sleeping operations that must be done after the primary 4502 * plane is enabled, such as updating FBC and IPS. Note that this may be 4503 * called due to an explicit primary plane update, or due to an implicit 4504 * re-enable that is caused when a sprite plane is updated to no longer 4505 * completely hide the primary plane. 4506 */ 4507static void 4508intel_post_enable_primary(struct drm_crtc *crtc) 4509{ 4510 struct drm_device *dev = crtc->dev; 4511 struct drm_i915_private *dev_priv = dev->dev_private; 4512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4513 int pipe = intel_crtc->pipe; 4514 4515 /* 4516 * FIXME IPS should be fine as long as one plane is 4517 * enabled, but in practice it seems to have problems 4518 * when going from primary only to sprite only and vice 4519 * versa. 4520 */ 4521 hsw_enable_ips(intel_crtc); 4522 4523 /* 4524 * Gen2 reports pipe underruns whenever all planes are disabled. 4525 * So don't enable underrun reporting before at least some planes 4526 * are enabled. 4527 * FIXME: Need to fix the logic to work when we turn off all planes 4528 * but leave the pipe running. 4529 */ 4530 if (IS_GEN2(dev)) 4531 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4532 4533 /* Underruns don't always raise interrupts, so check manually. */ 4534 intel_check_cpu_fifo_underruns(dev_priv); 4535 intel_check_pch_fifo_underruns(dev_priv); 4536} 4537 4538/* FIXME move all this to pre_plane_update() with proper state tracking */ 4539static void 4540intel_pre_disable_primary(struct drm_crtc *crtc) 4541{ 4542 struct drm_device *dev = crtc->dev; 4543 struct drm_i915_private *dev_priv = dev->dev_private; 4544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4545 int pipe = intel_crtc->pipe; 4546 4547 /* 4548 * Gen2 reports pipe underruns whenever all planes are disabled. 4549 * So diasble underrun reporting before all the planes get disabled. 4550 * FIXME: Need to fix the logic to work when we turn off all planes 4551 * but leave the pipe running. 4552 */ 4553 if (IS_GEN2(dev)) 4554 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4555 4556 /* 4557 * FIXME IPS should be fine as long as one plane is 4558 * enabled, but in practice it seems to have problems 4559 * when going from primary only to sprite only and vice 4560 * versa. 4561 */ 4562 hsw_disable_ips(intel_crtc); 4563} 4564 4565/* FIXME get rid of this and use pre_plane_update */ 4566static void 4567intel_pre_disable_primary_noatomic(struct drm_crtc *crtc) 4568{ 4569 struct drm_device *dev = crtc->dev; 4570 struct drm_i915_private *dev_priv = dev->dev_private; 4571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4572 int pipe = intel_crtc->pipe; 4573 4574 intel_pre_disable_primary(crtc); 4575 4576 /* 4577 * Vblank time updates from the shadow to live plane control register 4578 * are blocked if the memory self-refresh mode is active at that 4579 * moment. So to make sure the plane gets truly disabled, disable 4580 * first the self-refresh mode. The self-refresh enable bit in turn 4581 * will be checked/applied by the HW only at the next frame start 4582 * event which is after the vblank start event, so we need to have a 4583 * wait-for-vblank between disabling the plane and the pipe. 4584 */ 4585 if (HAS_GMCH_DISPLAY(dev)) { 4586 intel_set_memory_cxsr(dev_priv, false); 4587 dev_priv->wm.vlv.cxsr = false; 4588 intel_wait_for_vblank(dev, pipe); 4589 } 4590} 4591 4592static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state) 4593{ 4594 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4595 struct drm_atomic_state *old_state = old_crtc_state->base.state; 4596 struct intel_crtc_state *pipe_config = 4597 to_intel_crtc_state(crtc->base.state); 4598 struct drm_device *dev = crtc->base.dev; 4599 struct drm_plane *primary = crtc->base.primary; 4600 struct drm_plane_state *old_pri_state = 4601 drm_atomic_get_existing_plane_state(old_state, primary); 4602 4603 intel_frontbuffer_flip(dev, pipe_config->fb_bits); 4604 4605 crtc->wm.cxsr_allowed = true; 4606 4607 if (pipe_config->update_wm_post && pipe_config->base.active) 4608 intel_update_watermarks(&crtc->base); 4609 4610 if (old_pri_state) { 4611 struct intel_plane_state *primary_state = 4612 to_intel_plane_state(primary->state); 4613 struct intel_plane_state *old_primary_state = 4614 to_intel_plane_state(old_pri_state); 4615 4616 intel_fbc_post_update(crtc); 4617 4618 if (primary_state->visible && 4619 (needs_modeset(&pipe_config->base) || 4620 !old_primary_state->visible)) 4621 intel_post_enable_primary(&crtc->base); 4622 } 4623} 4624 4625static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state) 4626{ 4627 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); 4628 struct drm_device *dev = crtc->base.dev; 4629 struct drm_i915_private *dev_priv = dev->dev_private; 4630 struct intel_crtc_state *pipe_config = 4631 to_intel_crtc_state(crtc->base.state); 4632 struct drm_atomic_state *old_state = old_crtc_state->base.state; 4633 struct drm_plane *primary = crtc->base.primary; 4634 struct drm_plane_state *old_pri_state = 4635 drm_atomic_get_existing_plane_state(old_state, primary); 4636 bool modeset = needs_modeset(&pipe_config->base); 4637 4638 if (old_pri_state) { 4639 struct intel_plane_state *primary_state = 4640 to_intel_plane_state(primary->state); 4641 struct intel_plane_state *old_primary_state = 4642 to_intel_plane_state(old_pri_state); 4643 4644 intel_fbc_pre_update(crtc); 4645 4646 if (old_primary_state->visible && 4647 (modeset || !primary_state->visible)) 4648 intel_pre_disable_primary(&crtc->base); 4649 } 4650 4651 if (pipe_config->disable_cxsr) { 4652 crtc->wm.cxsr_allowed = false; 4653 4654 /* 4655 * Vblank time updates from the shadow to live plane control register 4656 * are blocked if the memory self-refresh mode is active at that 4657 * moment. So to make sure the plane gets truly disabled, disable 4658 * first the self-refresh mode. The self-refresh enable bit in turn 4659 * will be checked/applied by the HW only at the next frame start 4660 * event which is after the vblank start event, so we need to have a 4661 * wait-for-vblank between disabling the plane and the pipe. 4662 */ 4663 if (old_crtc_state->base.active) { 4664 intel_set_memory_cxsr(dev_priv, false); 4665 dev_priv->wm.vlv.cxsr = false; 4666 intel_wait_for_vblank(dev, crtc->pipe); 4667 } 4668 } 4669 4670 /* 4671 * IVB workaround: must disable low power watermarks for at least 4672 * one frame before enabling scaling. LP watermarks can be re-enabled 4673 * when scaling is disabled. 4674 * 4675 * WaCxSRDisabledForSpriteScaling:ivb 4676 */ 4677 if (pipe_config->disable_lp_wm) { 4678 ilk_disable_lp_wm(dev); 4679 intel_wait_for_vblank(dev, crtc->pipe); 4680 } 4681 4682 /* 4683 * If we're doing a modeset, we're done. No need to do any pre-vblank 4684 * watermark programming here. 4685 */ 4686 if (needs_modeset(&pipe_config->base)) 4687 return; 4688 4689 /* 4690 * For platforms that support atomic watermarks, program the 4691 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these 4692 * will be the intermediate values that are safe for both pre- and 4693 * post- vblank; when vblank happens, the 'active' values will be set 4694 * to the final 'target' values and we'll do this again to get the 4695 * optimal watermarks. For gen9+ platforms, the values we program here 4696 * will be the final target values which will get automatically latched 4697 * at vblank time; no further programming will be necessary. 4698 * 4699 * If a platform hasn't been transitioned to atomic watermarks yet, 4700 * we'll continue to update watermarks the old way, if flags tell 4701 * us to. 4702 */ 4703 if (dev_priv->display.initial_watermarks != NULL) 4704 dev_priv->display.initial_watermarks(pipe_config); 4705 else if (pipe_config->update_wm_pre) 4706 intel_update_watermarks(&crtc->base); 4707} 4708 4709static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask) 4710{ 4711 struct drm_device *dev = crtc->dev; 4712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4713 struct drm_plane *p; 4714 int pipe = intel_crtc->pipe; 4715 4716 intel_crtc_dpms_overlay_disable(intel_crtc); 4717 4718 drm_for_each_plane_mask(p, dev, plane_mask) 4719 to_intel_plane(p)->disable_plane(p, crtc); 4720 4721 /* 4722 * FIXME: Once we grow proper nuclear flip support out of this we need 4723 * to compute the mask of flip planes precisely. For the time being 4724 * consider this a flip to a NULL plane. 4725 */ 4726 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); 4727} 4728 4729static void ironlake_crtc_enable(struct drm_crtc *crtc) 4730{ 4731 struct drm_device *dev = crtc->dev; 4732 struct drm_i915_private *dev_priv = dev->dev_private; 4733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4734 struct intel_encoder *encoder; 4735 int pipe = intel_crtc->pipe; 4736 struct intel_crtc_state *pipe_config = 4737 to_intel_crtc_state(crtc->state); 4738 4739 if (WARN_ON(intel_crtc->active)) 4740 return; 4741 4742 /* 4743 * Sometimes spurious CPU pipe underruns happen during FDI 4744 * training, at least with VGA+HDMI cloning. Suppress them. 4745 * 4746 * On ILK we get an occasional spurious CPU pipe underruns 4747 * between eDP port A enable and vdd enable. Also PCH port 4748 * enable seems to result in the occasional CPU pipe underrun. 4749 * 4750 * Spurious PCH underruns also occur during PCH enabling. 4751 */ 4752 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv)) 4753 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4754 if (intel_crtc->config->has_pch_encoder) 4755 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 4756 4757 if (intel_crtc->config->has_pch_encoder) 4758 intel_prepare_shared_dpll(intel_crtc); 4759 4760 if (intel_crtc->config->has_dp_encoder) 4761 intel_dp_set_m_n(intel_crtc, M1_N1); 4762 4763 intel_set_pipe_timings(intel_crtc); 4764 intel_set_pipe_src_size(intel_crtc); 4765 4766 if (intel_crtc->config->has_pch_encoder) { 4767 intel_cpu_transcoder_set_m_n(intel_crtc, 4768 &intel_crtc->config->fdi_m_n, NULL); 4769 } 4770 4771 ironlake_set_pipeconf(crtc); 4772 4773 intel_crtc->active = true; 4774 4775 for_each_encoder_on_crtc(dev, crtc, encoder) 4776 if (encoder->pre_enable) 4777 encoder->pre_enable(encoder); 4778 4779 if (intel_crtc->config->has_pch_encoder) { 4780 /* Note: FDI PLL enabling _must_ be done before we enable the 4781 * cpu pipes, hence this is separate from all the other fdi/pch 4782 * enabling. */ 4783 ironlake_fdi_pll_enable(intel_crtc); 4784 } else { 4785 assert_fdi_tx_disabled(dev_priv, pipe); 4786 assert_fdi_rx_disabled(dev_priv, pipe); 4787 } 4788 4789 ironlake_pfit_enable(intel_crtc); 4790 4791 /* 4792 * On ILK+ LUT must be loaded before the pipe is running but with 4793 * clocks enabled 4794 */ 4795 intel_color_load_luts(&pipe_config->base); 4796 4797 if (dev_priv->display.initial_watermarks != NULL) 4798 dev_priv->display.initial_watermarks(intel_crtc->config); 4799 intel_enable_pipe(intel_crtc); 4800 4801 if (intel_crtc->config->has_pch_encoder) 4802 ironlake_pch_enable(crtc); 4803 4804 assert_vblank_disabled(crtc); 4805 drm_crtc_vblank_on(crtc); 4806 4807 for_each_encoder_on_crtc(dev, crtc, encoder) 4808 encoder->enable(encoder); 4809 4810 if (HAS_PCH_CPT(dev)) 4811 cpt_verify_modeset(dev, intel_crtc->pipe); 4812 4813 /* Must wait for vblank to avoid spurious PCH FIFO underruns */ 4814 if (intel_crtc->config->has_pch_encoder) 4815 intel_wait_for_vblank(dev, pipe); 4816 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4817 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 4818} 4819 4820/* IPS only exists on ULT machines and is tied to pipe A. */ 4821static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) 4822{ 4823 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A; 4824} 4825 4826static void haswell_crtc_enable(struct drm_crtc *crtc) 4827{ 4828 struct drm_device *dev = crtc->dev; 4829 struct drm_i915_private *dev_priv = dev->dev_private; 4830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4831 struct intel_encoder *encoder; 4832 int pipe = intel_crtc->pipe, hsw_workaround_pipe; 4833 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; 4834 struct intel_crtc_state *pipe_config = 4835 to_intel_crtc_state(crtc->state); 4836 4837 if (WARN_ON(intel_crtc->active)) 4838 return; 4839 4840 if (intel_crtc->config->has_pch_encoder) 4841 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, 4842 false); 4843 4844 if (intel_crtc->config->shared_dpll) 4845 intel_enable_shared_dpll(intel_crtc); 4846 4847 if (intel_crtc->config->has_dp_encoder) 4848 intel_dp_set_m_n(intel_crtc, M1_N1); 4849 4850 if (!intel_crtc->config->has_dsi_encoder) 4851 intel_set_pipe_timings(intel_crtc); 4852 4853 intel_set_pipe_src_size(intel_crtc); 4854 4855 if (cpu_transcoder != TRANSCODER_EDP && 4856 !transcoder_is_dsi(cpu_transcoder)) { 4857 I915_WRITE(PIPE_MULT(cpu_transcoder), 4858 intel_crtc->config->pixel_multiplier - 1); 4859 } 4860 4861 if (intel_crtc->config->has_pch_encoder) { 4862 intel_cpu_transcoder_set_m_n(intel_crtc, 4863 &intel_crtc->config->fdi_m_n, NULL); 4864 } 4865 4866 if (!intel_crtc->config->has_dsi_encoder) 4867 haswell_set_pipeconf(crtc); 4868 4869 haswell_set_pipemisc(crtc); 4870 4871 intel_color_set_csc(&pipe_config->base); 4872 4873 intel_crtc->active = true; 4874 4875 if (intel_crtc->config->has_pch_encoder) 4876 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4877 else 4878 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4879 4880 for_each_encoder_on_crtc(dev, crtc, encoder) { 4881 if (encoder->pre_enable) 4882 encoder->pre_enable(encoder); 4883 } 4884 4885 if (intel_crtc->config->has_pch_encoder) 4886 dev_priv->display.fdi_link_train(crtc); 4887 4888 if (!intel_crtc->config->has_dsi_encoder) 4889 intel_ddi_enable_pipe_clock(intel_crtc); 4890 4891 if (INTEL_INFO(dev)->gen >= 9) 4892 skylake_pfit_enable(intel_crtc); 4893 else 4894 ironlake_pfit_enable(intel_crtc); 4895 4896 /* 4897 * On ILK+ LUT must be loaded before the pipe is running but with 4898 * clocks enabled 4899 */ 4900 intel_color_load_luts(&pipe_config->base); 4901 4902 intel_ddi_set_pipe_settings(crtc); 4903 if (!intel_crtc->config->has_dsi_encoder) 4904 intel_ddi_enable_transcoder_func(crtc); 4905 4906 if (dev_priv->display.initial_watermarks != NULL) 4907 dev_priv->display.initial_watermarks(pipe_config); 4908 else 4909 intel_update_watermarks(crtc); 4910 4911 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 4912 if (!intel_crtc->config->has_dsi_encoder) 4913 intel_enable_pipe(intel_crtc); 4914 4915 if (intel_crtc->config->has_pch_encoder) 4916 lpt_pch_enable(crtc); 4917 4918 if (intel_crtc->config->dp_encoder_is_mst) 4919 intel_ddi_set_vc_payload_alloc(crtc, true); 4920 4921 assert_vblank_disabled(crtc); 4922 drm_crtc_vblank_on(crtc); 4923 4924 for_each_encoder_on_crtc(dev, crtc, encoder) { 4925 encoder->enable(encoder); 4926 intel_opregion_notify_encoder(encoder, true); 4927 } 4928 4929 if (intel_crtc->config->has_pch_encoder) { 4930 intel_wait_for_vblank(dev, pipe); 4931 intel_wait_for_vblank(dev, pipe); 4932 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 4933 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, 4934 true); 4935 } 4936 4937 /* If we change the relative order between pipe/planes enabling, we need 4938 * to change the workaround. */ 4939 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe; 4940 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) { 4941 intel_wait_for_vblank(dev, hsw_workaround_pipe); 4942 intel_wait_for_vblank(dev, hsw_workaround_pipe); 4943 } 4944} 4945 4946static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force) 4947{ 4948 struct drm_device *dev = crtc->base.dev; 4949 struct drm_i915_private *dev_priv = dev->dev_private; 4950 int pipe = crtc->pipe; 4951 4952 /* To avoid upsetting the power well on haswell only disable the pfit if 4953 * it's in use. The hw state code will make sure we get this right. */ 4954 if (force || crtc->config->pch_pfit.enabled) { 4955 I915_WRITE(PF_CTL(pipe), 0); 4956 I915_WRITE(PF_WIN_POS(pipe), 0); 4957 I915_WRITE(PF_WIN_SZ(pipe), 0); 4958 } 4959} 4960 4961static void ironlake_crtc_disable(struct drm_crtc *crtc) 4962{ 4963 struct drm_device *dev = crtc->dev; 4964 struct drm_i915_private *dev_priv = dev->dev_private; 4965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 4966 struct intel_encoder *encoder; 4967 int pipe = intel_crtc->pipe; 4968 4969 /* 4970 * Sometimes spurious CPU pipe underruns happen when the 4971 * pipe is already disabled, but FDI RX/TX is still enabled. 4972 * Happens at least with VGA+HDMI cloning. Suppress them. 4973 */ 4974 if (intel_crtc->config->has_pch_encoder) { 4975 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 4976 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); 4977 } 4978 4979 for_each_encoder_on_crtc(dev, crtc, encoder) 4980 encoder->disable(encoder); 4981 4982 drm_crtc_vblank_off(crtc); 4983 assert_vblank_disabled(crtc); 4984 4985 intel_disable_pipe(intel_crtc); 4986 4987 ironlake_pfit_disable(intel_crtc, false); 4988 4989 if (intel_crtc->config->has_pch_encoder) 4990 ironlake_fdi_disable(crtc); 4991 4992 for_each_encoder_on_crtc(dev, crtc, encoder) 4993 if (encoder->post_disable) 4994 encoder->post_disable(encoder); 4995 4996 if (intel_crtc->config->has_pch_encoder) { 4997 ironlake_disable_pch_transcoder(dev_priv, pipe); 4998 4999 if (HAS_PCH_CPT(dev)) { 5000 i915_reg_t reg; 5001 u32 temp; 5002 5003 /* disable TRANS_DP_CTL */ 5004 reg = TRANS_DP_CTL(pipe); 5005 temp = I915_READ(reg); 5006 temp &= ~(TRANS_DP_OUTPUT_ENABLE | 5007 TRANS_DP_PORT_SEL_MASK); 5008 temp |= TRANS_DP_PORT_SEL_NONE; 5009 I915_WRITE(reg, temp); 5010 5011 /* disable DPLL_SEL */ 5012 temp = I915_READ(PCH_DPLL_SEL); 5013 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); 5014 I915_WRITE(PCH_DPLL_SEL, temp); 5015 } 5016 5017 ironlake_fdi_pll_disable(intel_crtc); 5018 } 5019 5020 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 5021 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); 5022} 5023 5024static void haswell_crtc_disable(struct drm_crtc *crtc) 5025{ 5026 struct drm_device *dev = crtc->dev; 5027 struct drm_i915_private *dev_priv = dev->dev_private; 5028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5029 struct intel_encoder *encoder; 5030 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; 5031 5032 if (intel_crtc->config->has_pch_encoder) 5033 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, 5034 false); 5035 5036 for_each_encoder_on_crtc(dev, crtc, encoder) { 5037 intel_opregion_notify_encoder(encoder, false); 5038 encoder->disable(encoder); 5039 } 5040 5041 drm_crtc_vblank_off(crtc); 5042 assert_vblank_disabled(crtc); 5043 5044 /* XXX: Do the pipe assertions at the right place for BXT DSI. */ 5045 if (!intel_crtc->config->has_dsi_encoder) 5046 intel_disable_pipe(intel_crtc); 5047 5048 if (intel_crtc->config->dp_encoder_is_mst) 5049 intel_ddi_set_vc_payload_alloc(crtc, false); 5050 5051 if (!intel_crtc->config->has_dsi_encoder) 5052 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); 5053 5054 if (INTEL_INFO(dev)->gen >= 9) 5055 skylake_scaler_disable(intel_crtc); 5056 else 5057 ironlake_pfit_disable(intel_crtc, false); 5058 5059 if (!intel_crtc->config->has_dsi_encoder) 5060 intel_ddi_disable_pipe_clock(intel_crtc); 5061 5062 for_each_encoder_on_crtc(dev, crtc, encoder) 5063 if (encoder->post_disable) 5064 encoder->post_disable(encoder); 5065 5066 if (intel_crtc->config->has_pch_encoder) { 5067 lpt_disable_pch_transcoder(dev_priv); 5068 lpt_disable_iclkip(dev_priv); 5069 intel_ddi_fdi_disable(crtc); 5070 5071 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, 5072 true); 5073 } 5074} 5075 5076static void i9xx_pfit_enable(struct intel_crtc *crtc) 5077{ 5078 struct drm_device *dev = crtc->base.dev; 5079 struct drm_i915_private *dev_priv = dev->dev_private; 5080 struct intel_crtc_state *pipe_config = crtc->config; 5081 5082 if (!pipe_config->gmch_pfit.control) 5083 return; 5084 5085 /* 5086 * The panel fitter should only be adjusted whilst the pipe is disabled, 5087 * according to register description and PRM. 5088 */ 5089 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); 5090 assert_pipe_disabled(dev_priv, crtc->pipe); 5091 5092 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios); 5093 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control); 5094 5095 /* Border color in case we don't scale up to the full screen. Black by 5096 * default, change to something else for debugging. */ 5097 I915_WRITE(BCLRPAT(crtc->pipe), 0); 5098} 5099 5100static enum intel_display_power_domain port_to_power_domain(enum port port) 5101{ 5102 switch (port) { 5103 case PORT_A: 5104 return POWER_DOMAIN_PORT_DDI_A_LANES; 5105 case PORT_B: 5106 return POWER_DOMAIN_PORT_DDI_B_LANES; 5107 case PORT_C: 5108 return POWER_DOMAIN_PORT_DDI_C_LANES; 5109 case PORT_D: 5110 return POWER_DOMAIN_PORT_DDI_D_LANES; 5111 case PORT_E: 5112 return POWER_DOMAIN_PORT_DDI_E_LANES; 5113 default: 5114 MISSING_CASE(port); 5115 return POWER_DOMAIN_PORT_OTHER; 5116 } 5117} 5118 5119static enum intel_display_power_domain port_to_aux_power_domain(enum port port) 5120{ 5121 switch (port) { 5122 case PORT_A: 5123 return POWER_DOMAIN_AUX_A; 5124 case PORT_B: 5125 return POWER_DOMAIN_AUX_B; 5126 case PORT_C: 5127 return POWER_DOMAIN_AUX_C; 5128 case PORT_D: 5129 return POWER_DOMAIN_AUX_D; 5130 case PORT_E: 5131 /* FIXME: Check VBT for actual wiring of PORT E */ 5132 return POWER_DOMAIN_AUX_D; 5133 default: 5134 MISSING_CASE(port); 5135 return POWER_DOMAIN_AUX_A; 5136 } 5137} 5138 5139enum intel_display_power_domain 5140intel_display_port_power_domain(struct intel_encoder *intel_encoder) 5141{ 5142 struct drm_device *dev = intel_encoder->base.dev; 5143 struct intel_digital_port *intel_dig_port; 5144 5145 switch (intel_encoder->type) { 5146 case INTEL_OUTPUT_UNKNOWN: 5147 /* Only DDI platforms should ever use this output type */ 5148 WARN_ON_ONCE(!HAS_DDI(dev)); 5149 case INTEL_OUTPUT_DISPLAYPORT: 5150 case INTEL_OUTPUT_HDMI: 5151 case INTEL_OUTPUT_EDP: 5152 intel_dig_port = enc_to_dig_port(&intel_encoder->base); 5153 return port_to_power_domain(intel_dig_port->port); 5154 case INTEL_OUTPUT_DP_MST: 5155 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; 5156 return port_to_power_domain(intel_dig_port->port); 5157 case INTEL_OUTPUT_ANALOG: 5158 return POWER_DOMAIN_PORT_CRT; 5159 case INTEL_OUTPUT_DSI: 5160 return POWER_DOMAIN_PORT_DSI; 5161 default: 5162 return POWER_DOMAIN_PORT_OTHER; 5163 } 5164} 5165 5166enum intel_display_power_domain 5167intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder) 5168{ 5169 struct drm_device *dev = intel_encoder->base.dev; 5170 struct intel_digital_port *intel_dig_port; 5171 5172 switch (intel_encoder->type) { 5173 case INTEL_OUTPUT_UNKNOWN: 5174 case INTEL_OUTPUT_HDMI: 5175 /* 5176 * Only DDI platforms should ever use these output types. 5177 * We can get here after the HDMI detect code has already set 5178 * the type of the shared encoder. Since we can't be sure 5179 * what's the status of the given connectors, play safe and 5180 * run the DP detection too. 5181 */ 5182 WARN_ON_ONCE(!HAS_DDI(dev)); 5183 case INTEL_OUTPUT_DISPLAYPORT: 5184 case INTEL_OUTPUT_EDP: 5185 intel_dig_port = enc_to_dig_port(&intel_encoder->base); 5186 return port_to_aux_power_domain(intel_dig_port->port); 5187 case INTEL_OUTPUT_DP_MST: 5188 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; 5189 return port_to_aux_power_domain(intel_dig_port->port); 5190 default: 5191 MISSING_CASE(intel_encoder->type); 5192 return POWER_DOMAIN_AUX_A; 5193 } 5194} 5195 5196static unsigned long get_crtc_power_domains(struct drm_crtc *crtc, 5197 struct intel_crtc_state *crtc_state) 5198{ 5199 struct drm_device *dev = crtc->dev; 5200 struct drm_encoder *encoder; 5201 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5202 enum pipe pipe = intel_crtc->pipe; 5203 unsigned long mask; 5204 enum transcoder transcoder = crtc_state->cpu_transcoder; 5205 5206 if (!crtc_state->base.active) 5207 return 0; 5208 5209 mask = BIT(POWER_DOMAIN_PIPE(pipe)); 5210 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder)); 5211 if (crtc_state->pch_pfit.enabled || 5212 crtc_state->pch_pfit.force_thru) 5213 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); 5214 5215 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) { 5216 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 5217 5218 mask |= BIT(intel_display_port_power_domain(intel_encoder)); 5219 } 5220 5221 if (crtc_state->shared_dpll) 5222 mask |= BIT(POWER_DOMAIN_PLLS); 5223 5224 return mask; 5225} 5226 5227static unsigned long 5228modeset_get_crtc_power_domains(struct drm_crtc *crtc, 5229 struct intel_crtc_state *crtc_state) 5230{ 5231 struct drm_i915_private *dev_priv = crtc->dev->dev_private; 5232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 5233 enum intel_display_power_domain domain; 5234 unsigned long domains, new_domains, old_domains; 5235 5236 old_domains = intel_crtc->enabled_power_domains; 5237 intel_crtc->enabled_power_domains = new_domains = 5238 get_crtc_power_domains(crtc, crtc_state); 5239 5240 domains = new_domains & ~old_domains; 5241 5242 for_each_power_domain(domain, domains) 5243 intel_display_power_get(dev_priv, domain); 5244 5245 return old_domains & ~new_domains; 5246} 5247 5248static void modeset_put_power_domains(struct drm_i915_private *dev_priv, 5249 unsigned long domains) 5250{ 5251 enum intel_display_power_domain domain; 5252 5253 for_each_power_domain(domain, domains) 5254 intel_display_power_put(dev_priv, domain); 5255} 5256 5257static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv) 5258{ 5259 int max_cdclk_freq = dev_priv->max_cdclk_freq; 5260 5261 if (INTEL_INFO(dev_priv)->gen >= 9 || 5262 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 5263 return max_cdclk_freq; 5264 else if (IS_CHERRYVIEW(dev_priv)) 5265 return max_cdclk_freq*95/100; 5266 else if (INTEL_INFO(dev_priv)->gen < 4) 5267 return 2*max_cdclk_freq*90/100; 5268 else 5269 return max_cdclk_freq*90/100; 5270} 5271 5272static void intel_update_max_cdclk(struct drm_device *dev) 5273{ 5274 struct drm_i915_private *dev_priv = dev->dev_private; 5275 5276 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { 5277 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK; 5278 5279 if (limit == SKL_DFSM_CDCLK_LIMIT_675) 5280 dev_priv->max_cdclk_freq = 675000; 5281 else if (limit == SKL_DFSM_CDCLK_LIMIT_540) 5282 dev_priv->max_cdclk_freq = 540000; 5283 else if (limit == SKL_DFSM_CDCLK_LIMIT_450) 5284 dev_priv->max_cdclk_freq = 450000; 5285 else 5286 dev_priv->max_cdclk_freq = 337500; 5287 } else if (IS_BROXTON(dev)) { 5288 dev_priv->max_cdclk_freq = 624000; 5289 } else if (IS_BROADWELL(dev)) { 5290 /* 5291 * FIXME with extra cooling we can allow 5292 * 540 MHz for ULX and 675 Mhz for ULT. 5293 * How can we know if extra cooling is 5294 * available? PCI ID, VTB, something else? 5295 */ 5296 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) 5297 dev_priv->max_cdclk_freq = 450000; 5298 else if (IS_BDW_ULX(dev)) 5299 dev_priv->max_cdclk_freq = 450000; 5300 else if (IS_BDW_ULT(dev)) 5301 dev_priv->max_cdclk_freq = 540000; 5302 else 5303 dev_priv->max_cdclk_freq = 675000; 5304 } else if (IS_CHERRYVIEW(dev)) { 5305 dev_priv->max_cdclk_freq = 320000; 5306 } else if (IS_VALLEYVIEW(dev)) { 5307 dev_priv->max_cdclk_freq = 400000; 5308 } else { 5309 /* otherwise assume cdclk is fixed */ 5310 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq; 5311 } 5312 5313 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv); 5314 5315 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n", 5316 dev_priv->max_cdclk_freq); 5317 5318 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n", 5319 dev_priv->max_dotclk_freq); 5320} 5321 5322static void intel_update_cdclk(struct drm_device *dev) 5323{ 5324 struct drm_i915_private *dev_priv = dev->dev_private; 5325 5326 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev); 5327 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n", 5328 dev_priv->cdclk_freq); 5329 5330 /* 5331 * Program the gmbus_freq based on the cdclk frequency. 5332 * BSpec erroneously claims we should aim for 4MHz, but 5333 * in fact 1MHz is the correct frequency. 5334 */ 5335 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 5336 /* 5337 * Program the gmbus_freq based on the cdclk frequency. 5338 * BSpec erroneously claims we should aim for 4MHz, but 5339 * in fact 1MHz is the correct frequency. 5340 */ 5341 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000)); 5342 } 5343 5344 if (dev_priv->max_cdclk_freq == 0) 5345 intel_update_max_cdclk(dev); 5346} 5347 5348static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency) 5349{ 5350 uint32_t divider; 5351 uint32_t ratio; 5352 uint32_t current_freq; 5353 int ret; 5354 5355 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */ 5356 switch (frequency) { 5357 case 144000: 5358 divider = BXT_CDCLK_CD2X_DIV_SEL_4; 5359 ratio = BXT_DE_PLL_RATIO(60); 5360 break; 5361 case 288000: 5362 divider = BXT_CDCLK_CD2X_DIV_SEL_2; 5363 ratio = BXT_DE_PLL_RATIO(60); 5364 break; 5365 case 384000: 5366 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5; 5367 ratio = BXT_DE_PLL_RATIO(60); 5368 break; 5369 case 576000: 5370 divider = BXT_CDCLK_CD2X_DIV_SEL_1; 5371 ratio = BXT_DE_PLL_RATIO(60); 5372 break; 5373 case 624000: 5374 divider = BXT_CDCLK_CD2X_DIV_SEL_1; 5375 ratio = BXT_DE_PLL_RATIO(65); 5376 break; 5377 case 19200: 5378 /* 5379 * Bypass frequency with DE PLL disabled. Init ratio, divider 5380 * to suppress GCC warning. 5381 */ 5382 ratio = 0; 5383 divider = 0; 5384 break; 5385 default: 5386 DRM_ERROR("unsupported CDCLK freq %d", frequency); 5387 5388 return; 5389 } 5390 5391 mutex_lock(&dev_priv->rps.hw_lock); 5392 /* Inform power controller of upcoming frequency change */ 5393 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, 5394 0x80000000); 5395 mutex_unlock(&dev_priv->rps.hw_lock); 5396 5397 if (ret) { 5398 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n", 5399 ret, frequency); 5400 return; 5401 } 5402 5403 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK; 5404 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */ 5405 current_freq = current_freq * 500 + 1000; 5406 5407 /* 5408 * DE PLL has to be disabled when 5409 * - setting to 19.2MHz (bypass, PLL isn't used) 5410 * - before setting to 624MHz (PLL needs toggling) 5411 * - before setting to any frequency from 624MHz (PLL needs toggling) 5412 */ 5413 if (frequency == 19200 || frequency == 624000 || 5414 current_freq == 624000) { 5415 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE); 5416 /* Timeout 200us */ 5417 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK), 5418 1)) 5419 DRM_ERROR("timout waiting for DE PLL unlock\n"); 5420 } 5421 5422 if (frequency != 19200) { 5423 uint32_t val; 5424 5425 val = I915_READ(BXT_DE_PLL_CTL); 5426 val &= ~BXT_DE_PLL_RATIO_MASK; 5427 val |= ratio; 5428 I915_WRITE(BXT_DE_PLL_CTL, val); 5429 5430 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE); 5431 /* Timeout 200us */ 5432 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1)) 5433 DRM_ERROR("timeout waiting for DE PLL lock\n"); 5434 5435 val = I915_READ(CDCLK_CTL); 5436 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK; 5437 val |= divider; 5438 /* 5439 * Disable SSA Precharge when CD clock frequency < 500 MHz, 5440 * enable otherwise. 5441 */ 5442 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE; 5443 if (frequency >= 500000) 5444 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE; 5445 5446 val &= ~CDCLK_FREQ_DECIMAL_MASK; 5447 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */ 5448 val |= (frequency - 1000) / 500; 5449 I915_WRITE(CDCLK_CTL, val); 5450 } 5451 5452 mutex_lock(&dev_priv->rps.hw_lock); 5453 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, 5454 DIV_ROUND_UP(frequency, 25000)); 5455 mutex_unlock(&dev_priv->rps.hw_lock); 5456 5457 if (ret) { 5458 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n", 5459 ret, frequency); 5460 return; 5461 } 5462 5463 intel_update_cdclk(dev_priv->dev); 5464} 5465 5466static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv) 5467{ 5468 if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE)) 5469 return false; 5470 5471 /* TODO: Check for a valid CDCLK rate */ 5472 5473 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) { 5474 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n"); 5475 5476 return false; 5477 } 5478 5479 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) { 5480 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n"); 5481 5482 return false; 5483 } 5484 5485 return true; 5486} 5487 5488bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv) 5489{ 5490 return broxton_cdclk_is_enabled(dev_priv); 5491} 5492 5493void broxton_init_cdclk(struct drm_i915_private *dev_priv) 5494{ 5495 /* check if cd clock is enabled */ 5496 if (broxton_cdclk_is_enabled(dev_priv)) { 5497 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n"); 5498 return; 5499 } 5500 5501 DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n"); 5502 5503 /* 5504 * FIXME: 5505 * - The initial CDCLK needs to be read from VBT. 5506 * Need to make this change after VBT has changes for BXT. 5507 * - check if setting the max (or any) cdclk freq is really necessary 5508 * here, it belongs to modeset time 5509 */ 5510 broxton_set_cdclk(dev_priv, 624000); 5511 5512 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST); 5513 POSTING_READ(DBUF_CTL); 5514 5515 udelay(10); 5516 5517 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) 5518 DRM_ERROR("DBuf power enable timeout!\n"); 5519} 5520 5521void broxton_uninit_cdclk(struct drm_i915_private *dev_priv) 5522{ 5523 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST); 5524 POSTING_READ(DBUF_CTL); 5525 5526 udelay(10); 5527 5528 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE) 5529 DRM_ERROR("DBuf power disable timeout!\n"); 5530 5531 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */ 5532 broxton_set_cdclk(dev_priv, 19200); 5533} 5534 5535static const struct skl_cdclk_entry { 5536 unsigned int freq; 5537 unsigned int vco; 5538} skl_cdclk_frequencies[] = { 5539 { .freq = 308570, .vco = 8640 }, 5540 { .freq = 337500, .vco = 8100 }, 5541 { .freq = 432000, .vco = 8640 }, 5542 { .freq = 450000, .vco = 8100 }, 5543 { .freq = 540000, .vco = 8100 }, 5544 { .freq = 617140, .vco = 8640 }, 5545 { .freq = 675000, .vco = 8100 }, 5546}; 5547 5548static unsigned int skl_cdclk_decimal(unsigned int freq) 5549{ 5550 return (freq - 1000) / 500; 5551} 5552 5553static unsigned int skl_cdclk_get_vco(unsigned int freq) 5554{ 5555 unsigned int i; 5556 5557 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) { 5558 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i]; 5559 5560 if (e->freq == freq) 5561 return e->vco; 5562 } 5563 5564 return 8100; 5565} 5566 5567static void 5568skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco) 5569{ 5570 unsigned int min_freq; 5571 u32 val; 5572 5573 /* select the minimum CDCLK before enabling DPLL 0 */ 5574 val = I915_READ(CDCLK_CTL); 5575 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK; 5576 val |= CDCLK_FREQ_337_308; 5577 5578 if (required_vco == 8640) 5579 min_freq = 308570; 5580 else 5581 min_freq = 337500; 5582 5583 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq); 5584 5585 I915_WRITE(CDCLK_CTL, val); 5586 POSTING_READ(CDCLK_CTL); 5587 5588 /* 5589 * We always enable DPLL0 with the lowest link rate possible, but still 5590 * taking into account the VCO required to operate the eDP panel at the 5591 * desired frequency. The usual DP link rates operate with a VCO of 5592 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640. 5593 * The modeset code is responsible for the selection of the exact link 5594 * rate later on, with the constraint of choosing a frequency that 5595 * works with required_vco. 5596 */ 5597 val = I915_READ(DPLL_CTRL1); 5598 5599 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) | 5600 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)); 5601 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0); 5602 if (required_vco == 8640) 5603 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 5604 SKL_DPLL0); 5605 else 5606 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 5607 SKL_DPLL0); 5608 5609 I915_WRITE(DPLL_CTRL1, val); 5610 POSTING_READ(DPLL_CTRL1); 5611 5612 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE); 5613 5614 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5)) 5615 DRM_ERROR("DPLL0 not locked\n"); 5616} 5617 5618static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv) 5619{ 5620 int ret; 5621 u32 val; 5622 5623 /* inform PCU we want to change CDCLK */ 5624 val = SKL_CDCLK_PREPARE_FOR_CHANGE; 5625 mutex_lock(&dev_priv->rps.hw_lock); 5626 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val); 5627 mutex_unlock(&dev_priv->rps.hw_lock); 5628 5629 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE); 5630} 5631 5632static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv) 5633{ 5634 unsigned int i; 5635 5636 for (i = 0; i < 15; i++) { 5637 if (skl_cdclk_pcu_ready(dev_priv)) 5638 return true; 5639 udelay(10); 5640 } 5641 5642 return false; 5643} 5644 5645static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq) 5646{ 5647 struct drm_device *dev = dev_priv->dev; 5648 u32 freq_select, pcu_ack; 5649 5650 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq); 5651 5652 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) { 5653 DRM_ERROR("failed to inform PCU about cdclk change\n"); 5654 return; 5655 } 5656 5657 /* set CDCLK_CTL */ 5658 switch(freq) { 5659 case 450000: 5660 case 432000: 5661 freq_select = CDCLK_FREQ_450_432; 5662 pcu_ack = 1; 5663 break; 5664 case 540000: 5665 freq_select = CDCLK_FREQ_540; 5666 pcu_ack = 2; 5667 break; 5668 case 308570: 5669 case 337500: 5670 default: 5671 freq_select = CDCLK_FREQ_337_308; 5672 pcu_ack = 0; 5673 break; 5674 case 617140: 5675 case 675000: 5676 freq_select = CDCLK_FREQ_675_617; 5677 pcu_ack = 3; 5678 break; 5679 } 5680 5681 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq)); 5682 POSTING_READ(CDCLK_CTL); 5683 5684 /* inform PCU of the change */ 5685 mutex_lock(&dev_priv->rps.hw_lock); 5686 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack); 5687 mutex_unlock(&dev_priv->rps.hw_lock); 5688 5689 intel_update_cdclk(dev); 5690} 5691 5692void skl_uninit_cdclk(struct drm_i915_private *dev_priv) 5693{ 5694 /* disable DBUF power */ 5695 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST); 5696 POSTING_READ(DBUF_CTL); 5697 5698 udelay(10); 5699 5700 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE) 5701 DRM_ERROR("DBuf power disable timeout\n"); 5702 5703 /* disable DPLL0 */ 5704 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE); 5705 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1)) 5706 DRM_ERROR("Couldn't disable DPLL0\n"); 5707} 5708 5709void skl_init_cdclk(struct drm_i915_private *dev_priv) 5710{ 5711 unsigned int required_vco; 5712 5713 /* DPLL0 not enabled (happens on early BIOS versions) */ 5714 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) { 5715 /* enable DPLL0 */ 5716 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk); 5717 skl_dpll0_enable(dev_priv, required_vco); 5718 } 5719 5720 /* set CDCLK to the frequency the BIOS chose */ 5721 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk); 5722 5723 /* enable DBUF power */ 5724 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST); 5725 POSTING_READ(DBUF_CTL); 5726 5727 udelay(10); 5728 5729 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) 5730 DRM_ERROR("DBuf power enable timeout\n"); 5731} 5732 5733int skl_sanitize_cdclk(struct drm_i915_private *dev_priv) 5734{ 5735 uint32_t lcpll1 = I915_READ(LCPLL1_CTL); 5736 uint32_t cdctl = I915_READ(CDCLK_CTL); 5737 int freq = dev_priv->skl_boot_cdclk; 5738 5739 /* 5740 * check if the pre-os intialized the display 5741 * There is SWF18 scratchpad register defined which is set by the 5742 * pre-os which can be used by the OS drivers to check the status 5743 */ 5744 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0) 5745 goto sanitize; 5746 5747 /* Is PLL enabled and locked ? */ 5748 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK))) 5749 goto sanitize; 5750 5751 /* DPLL okay; verify the cdclock 5752 * 5753 * Noticed in some instances that the freq selection is correct but 5754 * decimal part is programmed wrong from BIOS where pre-os does not 5755 * enable display. Verify the same as well. 5756 */ 5757 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq))) 5758 /* All well; nothing to sanitize */ 5759 return false; 5760sanitize: 5761 /* 5762 * As of now initialize with max cdclk till 5763 * we get dynamic cdclk support 5764 * */ 5765 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq; 5766 skl_init_cdclk(dev_priv); 5767 5768 /* we did have to sanitize */ 5769 return true; 5770} 5771 5772/* Adjust CDclk dividers to allow high res or save power if possible */ 5773static void valleyview_set_cdclk(struct drm_device *dev, int cdclk) 5774{ 5775 struct drm_i915_private *dev_priv = dev->dev_private; 5776 u32 val, cmd; 5777 5778 WARN_ON(dev_priv->display.get_display_clock_speed(dev) 5779 != dev_priv->cdclk_freq); 5780 5781 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ 5782 cmd = 2; 5783 else if (cdclk == 266667) 5784 cmd = 1; 5785 else 5786 cmd = 0; 5787 5788 mutex_lock(&dev_priv->rps.hw_lock); 5789 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); 5790 val &= ~DSPFREQGUAR_MASK; 5791 val |= (cmd << DSPFREQGUAR_SHIFT); 5792 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); 5793 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & 5794 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 5795 50)) { 5796 DRM_ERROR("timed out waiting for CDclk change\n"); 5797 } 5798 mutex_unlock(&dev_priv->rps.hw_lock); 5799 5800 mutex_lock(&dev_priv->sb_lock); 5801 5802 if (cdclk == 400000) { 5803 u32 divider; 5804 5805 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; 5806 5807 /* adjust cdclk divider */ 5808 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); 5809 val &= ~CCK_FREQUENCY_VALUES; 5810 val |= divider; 5811 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); 5812 5813 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & 5814 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT), 5815 50)) 5816 DRM_ERROR("timed out waiting for CDclk change\n"); 5817 } 5818 5819 /* adjust self-refresh exit latency value */ 5820 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); 5821 val &= ~0x7f; 5822 5823 /* 5824 * For high bandwidth configs, we set a higher latency in the bunit 5825 * so that the core display fetch happens in time to avoid underruns. 5826 */ 5827 if (cdclk == 400000) 5828 val |= 4500 / 250; /* 4.5 usec */ 5829 else 5830 val |= 3000 / 250; /* 3.0 usec */ 5831 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); 5832 5833 mutex_unlock(&dev_priv->sb_lock); 5834 5835 intel_update_cdclk(dev); 5836} 5837 5838static void cherryview_set_cdclk(struct drm_device *dev, int cdclk) 5839{ 5840 struct drm_i915_private *dev_priv = dev->dev_private; 5841 u32 val, cmd; 5842 5843 WARN_ON(dev_priv->display.get_display_clock_speed(dev) 5844 != dev_priv->cdclk_freq); 5845 5846 switch (cdclk) { 5847 case 333333: 5848 case 320000: 5849 case 266667: 5850 case 200000: 5851 break; 5852 default: 5853 MISSING_CASE(cdclk); 5854 return; 5855 } 5856 5857 /* 5858 * Specs are full of misinformation, but testing on actual 5859 * hardware has shown that we just need to write the desired 5860 * CCK divider into the Punit register. 5861 */ 5862 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; 5863 5864 mutex_lock(&dev_priv->rps.hw_lock); 5865 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); 5866 val &= ~DSPFREQGUAR_MASK_CHV; 5867 val |= (cmd << DSPFREQGUAR_SHIFT_CHV); 5868 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); 5869 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & 5870 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 5871 50)) { 5872 DRM_ERROR("timed out waiting for CDclk change\n"); 5873 } 5874 mutex_unlock(&dev_priv->rps.hw_lock); 5875 5876 intel_update_cdclk(dev); 5877} 5878 5879static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv, 5880 int max_pixclk) 5881{ 5882 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000; 5883 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90; 5884 5885 /* 5886 * Really only a few cases to deal with, as only 4 CDclks are supported: 5887 * 200MHz 5888 * 267MHz 5889 * 320/333MHz (depends on HPLL freq) 5890 * 400MHz (VLV only) 5891 * So we check to see whether we're above 90% (VLV) or 95% (CHV) 5892 * of the lower bin and adjust if needed. 5893 * 5894 * We seem to get an unstable or solid color picture at 200MHz. 5895 * Not sure what's wrong. For now use 200MHz only when all pipes 5896 * are off. 5897 */ 5898 if (!IS_CHERRYVIEW(dev_priv) && 5899 max_pixclk > freq_320*limit/100) 5900 return 400000; 5901 else if (max_pixclk > 266667*limit/100) 5902 return freq_320; 5903 else if (max_pixclk > 0) 5904 return 266667; 5905 else 5906 return 200000; 5907} 5908 5909static int broxton_calc_cdclk(struct drm_i915_private *dev_priv, 5910 int max_pixclk) 5911{ 5912 /* 5913 * FIXME: 5914 * - remove the guardband, it's not needed on BXT 5915 * - set 19.2MHz bypass frequency if there are no active pipes 5916 */ 5917 if (max_pixclk > 576000*9/10) 5918 return 624000; 5919 else if (max_pixclk > 384000*9/10) 5920 return 576000; 5921 else if (max_pixclk > 288000*9/10) 5922 return 384000; 5923 else if (max_pixclk > 144000*9/10) 5924 return 288000; 5925 else 5926 return 144000; 5927} 5928 5929/* Compute the max pixel clock for new configuration. */ 5930static int intel_mode_max_pixclk(struct drm_device *dev, 5931 struct drm_atomic_state *state) 5932{ 5933 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 5934 struct drm_i915_private *dev_priv = dev->dev_private; 5935 struct drm_crtc *crtc; 5936 struct drm_crtc_state *crtc_state; 5937 unsigned max_pixclk = 0, i; 5938 enum pipe pipe; 5939 5940 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk, 5941 sizeof(intel_state->min_pixclk)); 5942 5943 for_each_crtc_in_state(state, crtc, crtc_state, i) { 5944 int pixclk = 0; 5945 5946 if (crtc_state->enable) 5947 pixclk = crtc_state->adjusted_mode.crtc_clock; 5948 5949 intel_state->min_pixclk[i] = pixclk; 5950 } 5951 5952 for_each_pipe(dev_priv, pipe) 5953 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk); 5954 5955 return max_pixclk; 5956} 5957 5958static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state) 5959{ 5960 struct drm_device *dev = state->dev; 5961 struct drm_i915_private *dev_priv = dev->dev_private; 5962 int max_pixclk = intel_mode_max_pixclk(dev, state); 5963 struct intel_atomic_state *intel_state = 5964 to_intel_atomic_state(state); 5965 5966 if (max_pixclk < 0) 5967 return max_pixclk; 5968 5969 intel_state->cdclk = intel_state->dev_cdclk = 5970 valleyview_calc_cdclk(dev_priv, max_pixclk); 5971 5972 if (!intel_state->active_crtcs) 5973 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0); 5974 5975 return 0; 5976} 5977 5978static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state) 5979{ 5980 struct drm_device *dev = state->dev; 5981 struct drm_i915_private *dev_priv = dev->dev_private; 5982 int max_pixclk = intel_mode_max_pixclk(dev, state); 5983 struct intel_atomic_state *intel_state = 5984 to_intel_atomic_state(state); 5985 5986 if (max_pixclk < 0) 5987 return max_pixclk; 5988 5989 intel_state->cdclk = intel_state->dev_cdclk = 5990 broxton_calc_cdclk(dev_priv, max_pixclk); 5991 5992 if (!intel_state->active_crtcs) 5993 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0); 5994 5995 return 0; 5996} 5997 5998static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv) 5999{ 6000 unsigned int credits, default_credits; 6001 6002 if (IS_CHERRYVIEW(dev_priv)) 6003 default_credits = PFI_CREDIT(12); 6004 else 6005 default_credits = PFI_CREDIT(8); 6006 6007 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) { 6008 /* CHV suggested value is 31 or 63 */ 6009 if (IS_CHERRYVIEW(dev_priv)) 6010 credits = PFI_CREDIT_63; 6011 else 6012 credits = PFI_CREDIT(15); 6013 } else { 6014 credits = default_credits; 6015 } 6016 6017 /* 6018 * WA - write default credits before re-programming 6019 * FIXME: should we also set the resend bit here? 6020 */ 6021 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | 6022 default_credits); 6023 6024 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE | 6025 credits | PFI_CREDIT_RESEND); 6026 6027 /* 6028 * FIXME is this guaranteed to clear 6029 * immediately or should we poll for it? 6030 */ 6031 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND); 6032} 6033 6034static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state) 6035{ 6036 struct drm_device *dev = old_state->dev; 6037 struct drm_i915_private *dev_priv = dev->dev_private; 6038 struct intel_atomic_state *old_intel_state = 6039 to_intel_atomic_state(old_state); 6040 unsigned req_cdclk = old_intel_state->dev_cdclk; 6041 6042 /* 6043 * FIXME: We can end up here with all power domains off, yet 6044 * with a CDCLK frequency other than the minimum. To account 6045 * for this take the PIPE-A power domain, which covers the HW 6046 * blocks needed for the following programming. This can be 6047 * removed once it's guaranteed that we get here either with 6048 * the minimum CDCLK set, or the required power domains 6049 * enabled. 6050 */ 6051 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A); 6052 6053 if (IS_CHERRYVIEW(dev)) 6054 cherryview_set_cdclk(dev, req_cdclk); 6055 else 6056 valleyview_set_cdclk(dev, req_cdclk); 6057 6058 vlv_program_pfi_credits(dev_priv); 6059 6060 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A); 6061} 6062 6063static void valleyview_crtc_enable(struct drm_crtc *crtc) 6064{ 6065 struct drm_device *dev = crtc->dev; 6066 struct drm_i915_private *dev_priv = to_i915(dev); 6067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6068 struct intel_encoder *encoder; 6069 struct intel_crtc_state *pipe_config = 6070 to_intel_crtc_state(crtc->state); 6071 int pipe = intel_crtc->pipe; 6072 6073 if (WARN_ON(intel_crtc->active)) 6074 return; 6075 6076 if (intel_crtc->config->has_dp_encoder) 6077 intel_dp_set_m_n(intel_crtc, M1_N1); 6078 6079 intel_set_pipe_timings(intel_crtc); 6080 intel_set_pipe_src_size(intel_crtc); 6081 6082 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) { 6083 struct drm_i915_private *dev_priv = dev->dev_private; 6084 6085 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); 6086 I915_WRITE(CHV_CANVAS(pipe), 0); 6087 } 6088 6089 i9xx_set_pipeconf(intel_crtc); 6090 6091 intel_crtc->active = true; 6092 6093 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6094 6095 for_each_encoder_on_crtc(dev, crtc, encoder) 6096 if (encoder->pre_pll_enable) 6097 encoder->pre_pll_enable(encoder); 6098 6099 if (IS_CHERRYVIEW(dev)) { 6100 chv_prepare_pll(intel_crtc, intel_crtc->config); 6101 chv_enable_pll(intel_crtc, intel_crtc->config); 6102 } else { 6103 vlv_prepare_pll(intel_crtc, intel_crtc->config); 6104 vlv_enable_pll(intel_crtc, intel_crtc->config); 6105 } 6106 6107 for_each_encoder_on_crtc(dev, crtc, encoder) 6108 if (encoder->pre_enable) 6109 encoder->pre_enable(encoder); 6110 6111 i9xx_pfit_enable(intel_crtc); 6112 6113 intel_color_load_luts(&pipe_config->base); 6114 6115 intel_update_watermarks(crtc); 6116 intel_enable_pipe(intel_crtc); 6117 6118 assert_vblank_disabled(crtc); 6119 drm_crtc_vblank_on(crtc); 6120 6121 for_each_encoder_on_crtc(dev, crtc, encoder) 6122 encoder->enable(encoder); 6123} 6124 6125static void i9xx_set_pll_dividers(struct intel_crtc *crtc) 6126{ 6127 struct drm_device *dev = crtc->base.dev; 6128 struct drm_i915_private *dev_priv = dev->dev_private; 6129 6130 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0); 6131 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1); 6132} 6133 6134static void i9xx_crtc_enable(struct drm_crtc *crtc) 6135{ 6136 struct drm_device *dev = crtc->dev; 6137 struct drm_i915_private *dev_priv = to_i915(dev); 6138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6139 struct intel_encoder *encoder; 6140 struct intel_crtc_state *pipe_config = 6141 to_intel_crtc_state(crtc->state); 6142 enum pipe pipe = intel_crtc->pipe; 6143 6144 if (WARN_ON(intel_crtc->active)) 6145 return; 6146 6147 i9xx_set_pll_dividers(intel_crtc); 6148 6149 if (intel_crtc->config->has_dp_encoder) 6150 intel_dp_set_m_n(intel_crtc, M1_N1); 6151 6152 intel_set_pipe_timings(intel_crtc); 6153 intel_set_pipe_src_size(intel_crtc); 6154 6155 i9xx_set_pipeconf(intel_crtc); 6156 6157 intel_crtc->active = true; 6158 6159 if (!IS_GEN2(dev)) 6160 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); 6161 6162 for_each_encoder_on_crtc(dev, crtc, encoder) 6163 if (encoder->pre_enable) 6164 encoder->pre_enable(encoder); 6165 6166 i9xx_enable_pll(intel_crtc); 6167 6168 i9xx_pfit_enable(intel_crtc); 6169 6170 intel_color_load_luts(&pipe_config->base); 6171 6172 intel_update_watermarks(crtc); 6173 intel_enable_pipe(intel_crtc); 6174 6175 assert_vblank_disabled(crtc); 6176 drm_crtc_vblank_on(crtc); 6177 6178 for_each_encoder_on_crtc(dev, crtc, encoder) 6179 encoder->enable(encoder); 6180} 6181 6182static void i9xx_pfit_disable(struct intel_crtc *crtc) 6183{ 6184 struct drm_device *dev = crtc->base.dev; 6185 struct drm_i915_private *dev_priv = dev->dev_private; 6186 6187 if (!crtc->config->gmch_pfit.control) 6188 return; 6189 6190 assert_pipe_disabled(dev_priv, crtc->pipe); 6191 6192 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", 6193 I915_READ(PFIT_CONTROL)); 6194 I915_WRITE(PFIT_CONTROL, 0); 6195} 6196 6197static void i9xx_crtc_disable(struct drm_crtc *crtc) 6198{ 6199 struct drm_device *dev = crtc->dev; 6200 struct drm_i915_private *dev_priv = dev->dev_private; 6201 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6202 struct intel_encoder *encoder; 6203 int pipe = intel_crtc->pipe; 6204 6205 /* 6206 * On gen2 planes are double buffered but the pipe isn't, so we must 6207 * wait for planes to fully turn off before disabling the pipe. 6208 */ 6209 if (IS_GEN2(dev)) 6210 intel_wait_for_vblank(dev, pipe); 6211 6212 for_each_encoder_on_crtc(dev, crtc, encoder) 6213 encoder->disable(encoder); 6214 6215 drm_crtc_vblank_off(crtc); 6216 assert_vblank_disabled(crtc); 6217 6218 intel_disable_pipe(intel_crtc); 6219 6220 i9xx_pfit_disable(intel_crtc); 6221 6222 for_each_encoder_on_crtc(dev, crtc, encoder) 6223 if (encoder->post_disable) 6224 encoder->post_disable(encoder); 6225 6226 if (!intel_crtc->config->has_dsi_encoder) { 6227 if (IS_CHERRYVIEW(dev)) 6228 chv_disable_pll(dev_priv, pipe); 6229 else if (IS_VALLEYVIEW(dev)) 6230 vlv_disable_pll(dev_priv, pipe); 6231 else 6232 i9xx_disable_pll(intel_crtc); 6233 } 6234 6235 for_each_encoder_on_crtc(dev, crtc, encoder) 6236 if (encoder->post_pll_disable) 6237 encoder->post_pll_disable(encoder); 6238 6239 if (!IS_GEN2(dev)) 6240 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); 6241} 6242 6243static void intel_crtc_disable_noatomic(struct drm_crtc *crtc) 6244{ 6245 struct intel_encoder *encoder; 6246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 6247 struct drm_i915_private *dev_priv = to_i915(crtc->dev); 6248 enum intel_display_power_domain domain; 6249 unsigned long domains; 6250 6251 if (!intel_crtc->active) 6252 return; 6253 6254 if (to_intel_plane_state(crtc->primary->state)->visible) { 6255 WARN_ON(intel_crtc->unpin_work); 6256 6257 intel_pre_disable_primary_noatomic(crtc); 6258 6259 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary)); 6260 to_intel_plane_state(crtc->primary->state)->visible = false; 6261 } 6262 6263 dev_priv->display.crtc_disable(crtc); 6264 6265 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n", 6266 crtc->base.id); 6267 6268 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0); 6269 crtc->state->active = false; 6270 intel_crtc->active = false; 6271 crtc->enabled = false; 6272 crtc->state->connector_mask = 0; 6273 crtc->state->encoder_mask = 0; 6274 6275 for_each_encoder_on_crtc(crtc->dev, crtc, encoder) 6276 encoder->base.crtc = NULL; 6277 6278 intel_fbc_disable(intel_crtc); 6279 intel_update_watermarks(crtc); 6280 intel_disable_shared_dpll(intel_crtc); 6281 6282 domains = intel_crtc->enabled_power_domains; 6283 for_each_power_domain(domain, domains) 6284 intel_display_power_put(dev_priv, domain); 6285 intel_crtc->enabled_power_domains = 0; 6286 6287 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe); 6288 dev_priv->min_pixclk[intel_crtc->pipe] = 0; 6289} 6290 6291/* 6292 * turn all crtc's off, but do not adjust state 6293 * This has to be paired with a call to intel_modeset_setup_hw_state. 6294 */ 6295int intel_display_suspend(struct drm_device *dev) 6296{ 6297 struct drm_i915_private *dev_priv = to_i915(dev); 6298 struct drm_atomic_state *state; 6299 int ret; 6300 6301 state = drm_atomic_helper_suspend(dev); 6302 ret = PTR_ERR_OR_ZERO(state); 6303 if (ret) 6304 DRM_ERROR("Suspending crtc's failed with %i\n", ret); 6305 else 6306 dev_priv->modeset_restore_state = state; 6307 return ret; 6308} 6309 6310void intel_encoder_destroy(struct drm_encoder *encoder) 6311{ 6312 struct intel_encoder *intel_encoder = to_intel_encoder(encoder); 6313 6314 drm_encoder_cleanup(encoder); 6315 kfree(intel_encoder); 6316} 6317 6318/* Cross check the actual hw state with our own modeset state tracking (and it's 6319 * internal consistency). */ 6320static void intel_connector_verify_state(struct intel_connector *connector) 6321{ 6322 struct drm_crtc *crtc = connector->base.state->crtc; 6323 6324 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 6325 connector->base.base.id, 6326 connector->base.name); 6327 6328 if (connector->get_hw_state(connector)) { 6329 struct intel_encoder *encoder = connector->encoder; 6330 struct drm_connector_state *conn_state = connector->base.state; 6331 6332 I915_STATE_WARN(!crtc, 6333 "connector enabled without attached crtc\n"); 6334 6335 if (!crtc) 6336 return; 6337 6338 I915_STATE_WARN(!crtc->state->active, 6339 "connector is active, but attached crtc isn't\n"); 6340 6341 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST) 6342 return; 6343 6344 I915_STATE_WARN(conn_state->best_encoder != &encoder->base, 6345 "atomic encoder doesn't match attached encoder\n"); 6346 6347 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc, 6348 "attached encoder crtc differs from connector crtc\n"); 6349 } else { 6350 I915_STATE_WARN(crtc && crtc->state->active, 6351 "attached crtc is active, but connector isn't\n"); 6352 I915_STATE_WARN(!crtc && connector->base.state->best_encoder, 6353 "best encoder set without crtc!\n"); 6354 } 6355} 6356 6357int intel_connector_init(struct intel_connector *connector) 6358{ 6359 drm_atomic_helper_connector_reset(&connector->base); 6360 6361 if (!connector->base.state) 6362 return -ENOMEM; 6363 6364 return 0; 6365} 6366 6367struct intel_connector *intel_connector_alloc(void) 6368{ 6369 struct intel_connector *connector; 6370 6371 connector = kzalloc(sizeof *connector, GFP_KERNEL); 6372 if (!connector) 6373 return NULL; 6374 6375 if (intel_connector_init(connector) < 0) { 6376 kfree(connector); 6377 return NULL; 6378 } 6379 6380 return connector; 6381} 6382 6383/* Simple connector->get_hw_state implementation for encoders that support only 6384 * one connector and no cloning and hence the encoder state determines the state 6385 * of the connector. */ 6386bool intel_connector_get_hw_state(struct intel_connector *connector) 6387{ 6388 enum pipe pipe = 0; 6389 struct intel_encoder *encoder = connector->encoder; 6390 6391 return encoder->get_hw_state(encoder, &pipe); 6392} 6393 6394static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state) 6395{ 6396 if (crtc_state->base.enable && crtc_state->has_pch_encoder) 6397 return crtc_state->fdi_lanes; 6398 6399 return 0; 6400} 6401 6402static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, 6403 struct intel_crtc_state *pipe_config) 6404{ 6405 struct drm_atomic_state *state = pipe_config->base.state; 6406 struct intel_crtc *other_crtc; 6407 struct intel_crtc_state *other_crtc_state; 6408 6409 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", 6410 pipe_name(pipe), pipe_config->fdi_lanes); 6411 if (pipe_config->fdi_lanes > 4) { 6412 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", 6413 pipe_name(pipe), pipe_config->fdi_lanes); 6414 return -EINVAL; 6415 } 6416 6417 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { 6418 if (pipe_config->fdi_lanes > 2) { 6419 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", 6420 pipe_config->fdi_lanes); 6421 return -EINVAL; 6422 } else { 6423 return 0; 6424 } 6425 } 6426 6427 if (INTEL_INFO(dev)->num_pipes == 2) 6428 return 0; 6429 6430 /* Ivybridge 3 pipe is really complicated */ 6431 switch (pipe) { 6432 case PIPE_A: 6433 return 0; 6434 case PIPE_B: 6435 if (pipe_config->fdi_lanes <= 2) 6436 return 0; 6437 6438 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C)); 6439 other_crtc_state = 6440 intel_atomic_get_crtc_state(state, other_crtc); 6441 if (IS_ERR(other_crtc_state)) 6442 return PTR_ERR(other_crtc_state); 6443 6444 if (pipe_required_fdi_lanes(other_crtc_state) > 0) { 6445 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", 6446 pipe_name(pipe), pipe_config->fdi_lanes); 6447 return -EINVAL; 6448 } 6449 return 0; 6450 case PIPE_C: 6451 if (pipe_config->fdi_lanes > 2) { 6452 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n", 6453 pipe_name(pipe), pipe_config->fdi_lanes); 6454 return -EINVAL; 6455 } 6456 6457 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B)); 6458 other_crtc_state = 6459 intel_atomic_get_crtc_state(state, other_crtc); 6460 if (IS_ERR(other_crtc_state)) 6461 return PTR_ERR(other_crtc_state); 6462 6463 if (pipe_required_fdi_lanes(other_crtc_state) > 2) { 6464 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); 6465 return -EINVAL; 6466 } 6467 return 0; 6468 default: 6469 BUG(); 6470 } 6471} 6472 6473#define RETRY 1 6474static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, 6475 struct intel_crtc_state *pipe_config) 6476{ 6477 struct drm_device *dev = intel_crtc->base.dev; 6478 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 6479 int lane, link_bw, fdi_dotclock, ret; 6480 bool needs_recompute = false; 6481 6482retry: 6483 /* FDI is a binary signal running at ~2.7GHz, encoding 6484 * each output octet as 10 bits. The actual frequency 6485 * is stored as a divider into a 100MHz clock, and the 6486 * mode pixel clock is stored in units of 1KHz. 6487 * Hence the bw of each lane in terms of the mode signal 6488 * is: 6489 */ 6490 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config); 6491 6492 fdi_dotclock = adjusted_mode->crtc_clock; 6493 6494 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, 6495 pipe_config->pipe_bpp); 6496 6497 pipe_config->fdi_lanes = lane; 6498 6499 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, 6500 link_bw, &pipe_config->fdi_m_n); 6501 6502 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config); 6503 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) { 6504 pipe_config->pipe_bpp -= 2*3; 6505 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", 6506 pipe_config->pipe_bpp); 6507 needs_recompute = true; 6508 pipe_config->bw_constrained = true; 6509 6510 goto retry; 6511 } 6512 6513 if (needs_recompute) 6514 return RETRY; 6515 6516 return ret; 6517} 6518 6519static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv, 6520 struct intel_crtc_state *pipe_config) 6521{ 6522 if (pipe_config->pipe_bpp > 24) 6523 return false; 6524 6525 /* HSW can handle pixel rate up to cdclk? */ 6526 if (IS_HASWELL(dev_priv)) 6527 return true; 6528 6529 /* 6530 * We compare against max which means we must take 6531 * the increased cdclk requirement into account when 6532 * calculating the new cdclk. 6533 * 6534 * Should measure whether using a lower cdclk w/o IPS 6535 */ 6536 return ilk_pipe_pixel_rate(pipe_config) <= 6537 dev_priv->max_cdclk_freq * 95 / 100; 6538} 6539 6540static void hsw_compute_ips_config(struct intel_crtc *crtc, 6541 struct intel_crtc_state *pipe_config) 6542{ 6543 struct drm_device *dev = crtc->base.dev; 6544 struct drm_i915_private *dev_priv = dev->dev_private; 6545 6546 pipe_config->ips_enabled = i915.enable_ips && 6547 hsw_crtc_supports_ips(crtc) && 6548 pipe_config_supports_ips(dev_priv, pipe_config); 6549} 6550 6551static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) 6552{ 6553 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6554 6555 /* GDG double wide on either pipe, otherwise pipe A only */ 6556 return INTEL_INFO(dev_priv)->gen < 4 && 6557 (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); 6558} 6559 6560static int intel_crtc_compute_config(struct intel_crtc *crtc, 6561 struct intel_crtc_state *pipe_config) 6562{ 6563 struct drm_device *dev = crtc->base.dev; 6564 struct drm_i915_private *dev_priv = dev->dev_private; 6565 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; 6566 6567 /* FIXME should check pixel clock limits on all platforms */ 6568 if (INTEL_INFO(dev)->gen < 4) { 6569 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10; 6570 6571 /* 6572 * Enable double wide mode when the dot clock 6573 * is > 90% of the (display) core speed. 6574 */ 6575 if (intel_crtc_supports_double_wide(crtc) && 6576 adjusted_mode->crtc_clock > clock_limit) { 6577 clock_limit *= 2; 6578 pipe_config->double_wide = true; 6579 } 6580 6581 if (adjusted_mode->crtc_clock > clock_limit) { 6582 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", 6583 adjusted_mode->crtc_clock, clock_limit, 6584 yesno(pipe_config->double_wide)); 6585 return -EINVAL; 6586 } 6587 } 6588 6589 /* 6590 * Pipe horizontal size must be even in: 6591 * - DVO ganged mode 6592 * - LVDS dual channel mode 6593 * - Double wide pipe 6594 */ 6595 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) && 6596 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide) 6597 pipe_config->pipe_src_w &= ~1; 6598 6599 /* Cantiga+ cannot handle modes with a hsync front porch of 0. 6600 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. 6601 */ 6602 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && 6603 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay) 6604 return -EINVAL; 6605 6606 if (HAS_IPS(dev)) 6607 hsw_compute_ips_config(crtc, pipe_config); 6608 6609 if (pipe_config->has_pch_encoder) 6610 return ironlake_fdi_compute_config(crtc, pipe_config); 6611 6612 return 0; 6613} 6614 6615static int skylake_get_display_clock_speed(struct drm_device *dev) 6616{ 6617 struct drm_i915_private *dev_priv = to_i915(dev); 6618 uint32_t lcpll1 = I915_READ(LCPLL1_CTL); 6619 uint32_t cdctl = I915_READ(CDCLK_CTL); 6620 uint32_t linkrate; 6621 6622 if (!(lcpll1 & LCPLL_PLL_ENABLE)) 6623 return 24000; /* 24MHz is the cd freq with NSSC ref */ 6624 6625 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540) 6626 return 540000; 6627 6628 linkrate = (I915_READ(DPLL_CTRL1) & 6629 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1; 6630 6631 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 || 6632 linkrate == DPLL_CTRL1_LINK_RATE_1080) { 6633 /* vco 8640 */ 6634 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 6635 case CDCLK_FREQ_450_432: 6636 return 432000; 6637 case CDCLK_FREQ_337_308: 6638 return 308570; 6639 case CDCLK_FREQ_675_617: 6640 return 617140; 6641 default: 6642 WARN(1, "Unknown cd freq selection\n"); 6643 } 6644 } else { 6645 /* vco 8100 */ 6646 switch (cdctl & CDCLK_FREQ_SEL_MASK) { 6647 case CDCLK_FREQ_450_432: 6648 return 450000; 6649 case CDCLK_FREQ_337_308: 6650 return 337500; 6651 case CDCLK_FREQ_675_617: 6652 return 675000; 6653 default: 6654 WARN(1, "Unknown cd freq selection\n"); 6655 } 6656 } 6657 6658 /* error case, do as if DPLL0 isn't enabled */ 6659 return 24000; 6660} 6661 6662static int broxton_get_display_clock_speed(struct drm_device *dev) 6663{ 6664 struct drm_i915_private *dev_priv = to_i915(dev); 6665 uint32_t cdctl = I915_READ(CDCLK_CTL); 6666 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK; 6667 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE); 6668 int cdclk; 6669 6670 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE)) 6671 return 19200; 6672 6673 cdclk = 19200 * pll_ratio / 2; 6674 6675 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) { 6676 case BXT_CDCLK_CD2X_DIV_SEL_1: 6677 return cdclk; /* 576MHz or 624MHz */ 6678 case BXT_CDCLK_CD2X_DIV_SEL_1_5: 6679 return cdclk * 2 / 3; /* 384MHz */ 6680 case BXT_CDCLK_CD2X_DIV_SEL_2: 6681 return cdclk / 2; /* 288MHz */ 6682 case BXT_CDCLK_CD2X_DIV_SEL_4: 6683 return cdclk / 4; /* 144MHz */ 6684 } 6685 6686 /* error case, do as if DE PLL isn't enabled */ 6687 return 19200; 6688} 6689 6690static int broadwell_get_display_clock_speed(struct drm_device *dev) 6691{ 6692 struct drm_i915_private *dev_priv = dev->dev_private; 6693 uint32_t lcpll = I915_READ(LCPLL_CTL); 6694 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; 6695 6696 if (lcpll & LCPLL_CD_SOURCE_FCLK) 6697 return 800000; 6698 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) 6699 return 450000; 6700 else if (freq == LCPLL_CLK_FREQ_450) 6701 return 450000; 6702 else if (freq == LCPLL_CLK_FREQ_54O_BDW) 6703 return 540000; 6704 else if (freq == LCPLL_CLK_FREQ_337_5_BDW) 6705 return 337500; 6706 else 6707 return 675000; 6708} 6709 6710static int haswell_get_display_clock_speed(struct drm_device *dev) 6711{ 6712 struct drm_i915_private *dev_priv = dev->dev_private; 6713 uint32_t lcpll = I915_READ(LCPLL_CTL); 6714 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK; 6715 6716 if (lcpll & LCPLL_CD_SOURCE_FCLK) 6717 return 800000; 6718 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT) 6719 return 450000; 6720 else if (freq == LCPLL_CLK_FREQ_450) 6721 return 450000; 6722 else if (IS_HSW_ULT(dev)) 6723 return 337500; 6724 else 6725 return 540000; 6726} 6727 6728static int valleyview_get_display_clock_speed(struct drm_device *dev) 6729{ 6730 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk", 6731 CCK_DISPLAY_CLOCK_CONTROL); 6732} 6733 6734static int ilk_get_display_clock_speed(struct drm_device *dev) 6735{ 6736 return 450000; 6737} 6738 6739static int i945_get_display_clock_speed(struct drm_device *dev) 6740{ 6741 return 400000; 6742} 6743 6744static int i915_get_display_clock_speed(struct drm_device *dev) 6745{ 6746 return 333333; 6747} 6748 6749static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) 6750{ 6751 return 200000; 6752} 6753 6754static int pnv_get_display_clock_speed(struct drm_device *dev) 6755{ 6756 u16 gcfgc = 0; 6757 6758 pci_read_config_word(dev->pdev, GCFGC, &gcfgc); 6759 6760 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 6761 case GC_DISPLAY_CLOCK_267_MHZ_PNV: 6762 return 266667; 6763 case GC_DISPLAY_CLOCK_333_MHZ_PNV: 6764 return 333333; 6765 case GC_DISPLAY_CLOCK_444_MHZ_PNV: 6766 return 444444; 6767 case GC_DISPLAY_CLOCK_200_MHZ_PNV: 6768 return 200000; 6769 default: 6770 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); 6771 case GC_DISPLAY_CLOCK_133_MHZ_PNV: 6772 return 133333; 6773 case GC_DISPLAY_CLOCK_167_MHZ_PNV: 6774 return 166667; 6775 } 6776} 6777 6778static int i915gm_get_display_clock_speed(struct drm_device *dev) 6779{ 6780 u16 gcfgc = 0; 6781 6782 pci_read_config_word(dev->pdev, GCFGC, &gcfgc); 6783 6784 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) 6785 return 133333; 6786 else { 6787 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { 6788 case GC_DISPLAY_CLOCK_333_MHZ: 6789 return 333333; 6790 default: 6791 case GC_DISPLAY_CLOCK_190_200_MHZ: 6792 return 190000; 6793 } 6794 } 6795} 6796 6797static int i865_get_display_clock_speed(struct drm_device *dev) 6798{ 6799 return 266667; 6800} 6801 6802static int i85x_get_display_clock_speed(struct drm_device *dev) 6803{ 6804 u16 hpllcc = 0; 6805 6806 /* 6807 * 852GM/852GMV only supports 133 MHz and the HPLLCC 6808 * encoding is different :( 6809 * FIXME is this the right way to detect 852GM/852GMV? 6810 */ 6811 if (dev->pdev->revision == 0x1) 6812 return 133333; 6813 6814 pci_bus_read_config_word(dev->pdev->bus, 6815 PCI_DEVFN(0, 3), HPLLCC, &hpllcc); 6816 6817 /* Assume that the hardware is in the high speed state. This 6818 * should be the default. 6819 */ 6820 switch (hpllcc & GC_CLOCK_CONTROL_MASK) { 6821 case GC_CLOCK_133_200: 6822 case GC_CLOCK_133_200_2: 6823 case GC_CLOCK_100_200: 6824 return 200000; 6825 case GC_CLOCK_166_250: 6826 return 250000; 6827 case GC_CLOCK_100_133: 6828 return 133333; 6829 case GC_CLOCK_133_266: 6830 case GC_CLOCK_133_266_2: 6831 case GC_CLOCK_166_266: 6832 return 266667; 6833 } 6834 6835 /* Shouldn't happen */ 6836 return 0; 6837} 6838 6839static int i830_get_display_clock_speed(struct drm_device *dev) 6840{ 6841 return 133333; 6842} 6843 6844static unsigned int intel_hpll_vco(struct drm_device *dev) 6845{ 6846 struct drm_i915_private *dev_priv = dev->dev_private; 6847 static const unsigned int blb_vco[8] = { 6848 [0] = 3200000, 6849 [1] = 4000000, 6850 [2] = 5333333, 6851 [3] = 4800000, 6852 [4] = 6400000, 6853 }; 6854 static const unsigned int pnv_vco[8] = { 6855 [0] = 3200000, 6856 [1] = 4000000, 6857 [2] = 5333333, 6858 [3] = 4800000, 6859 [4] = 2666667, 6860 }; 6861 static const unsigned int cl_vco[8] = { 6862 [0] = 3200000, 6863 [1] = 4000000, 6864 [2] = 5333333, 6865 [3] = 6400000, 6866 [4] = 3333333, 6867 [5] = 3566667, 6868 [6] = 4266667, 6869 }; 6870 static const unsigned int elk_vco[8] = { 6871 [0] = 3200000, 6872 [1] = 4000000, 6873 [2] = 5333333, 6874 [3] = 4800000, 6875 }; 6876 static const unsigned int ctg_vco[8] = { 6877 [0] = 3200000, 6878 [1] = 4000000, 6879 [2] = 5333333, 6880 [3] = 6400000, 6881 [4] = 2666667, 6882 [5] = 4266667, 6883 }; 6884 const unsigned int *vco_table; 6885 unsigned int vco; 6886 uint8_t tmp = 0; 6887 6888 /* FIXME other chipsets? */ 6889 if (IS_GM45(dev)) 6890 vco_table = ctg_vco; 6891 else if (IS_G4X(dev)) 6892 vco_table = elk_vco; 6893 else if (IS_CRESTLINE(dev)) 6894 vco_table = cl_vco; 6895 else if (IS_PINEVIEW(dev)) 6896 vco_table = pnv_vco; 6897 else if (IS_G33(dev)) 6898 vco_table = blb_vco; 6899 else 6900 return 0; 6901 6902 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO); 6903 6904 vco = vco_table[tmp & 0x7]; 6905 if (vco == 0) 6906 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp); 6907 else 6908 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco); 6909 6910 return vco; 6911} 6912 6913static int gm45_get_display_clock_speed(struct drm_device *dev) 6914{ 6915 unsigned int cdclk_sel, vco = intel_hpll_vco(dev); 6916 uint16_t tmp = 0; 6917 6918 pci_read_config_word(dev->pdev, GCFGC, &tmp); 6919 6920 cdclk_sel = (tmp >> 12) & 0x1; 6921 6922 switch (vco) { 6923 case 2666667: 6924 case 4000000: 6925 case 5333333: 6926 return cdclk_sel ? 333333 : 222222; 6927 case 3200000: 6928 return cdclk_sel ? 320000 : 228571; 6929 default: 6930 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp); 6931 return 222222; 6932 } 6933} 6934 6935static int i965gm_get_display_clock_speed(struct drm_device *dev) 6936{ 6937 static const uint8_t div_3200[] = { 16, 10, 8 }; 6938 static const uint8_t div_4000[] = { 20, 12, 10 }; 6939 static const uint8_t div_5333[] = { 24, 16, 14 }; 6940 const uint8_t *div_table; 6941 unsigned int cdclk_sel, vco = intel_hpll_vco(dev); 6942 uint16_t tmp = 0; 6943 6944 pci_read_config_word(dev->pdev, GCFGC, &tmp); 6945 6946 cdclk_sel = ((tmp >> 8) & 0x1f) - 1; 6947 6948 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 6949 goto fail; 6950 6951 switch (vco) { 6952 case 3200000: 6953 div_table = div_3200; 6954 break; 6955 case 4000000: 6956 div_table = div_4000; 6957 break; 6958 case 5333333: 6959 div_table = div_5333; 6960 break; 6961 default: 6962 goto fail; 6963 } 6964 6965 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]); 6966 6967fail: 6968 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp); 6969 return 200000; 6970} 6971 6972static int g33_get_display_clock_speed(struct drm_device *dev) 6973{ 6974 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 }; 6975 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 }; 6976 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 }; 6977 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 }; 6978 const uint8_t *div_table; 6979 unsigned int cdclk_sel, vco = intel_hpll_vco(dev); 6980 uint16_t tmp = 0; 6981 6982 pci_read_config_word(dev->pdev, GCFGC, &tmp); 6983 6984 cdclk_sel = (tmp >> 4) & 0x7; 6985 6986 if (cdclk_sel >= ARRAY_SIZE(div_3200)) 6987 goto fail; 6988 6989 switch (vco) { 6990 case 3200000: 6991 div_table = div_3200; 6992 break; 6993 case 4000000: 6994 div_table = div_4000; 6995 break; 6996 case 4800000: 6997 div_table = div_4800; 6998 break; 6999 case 5333333: 7000 div_table = div_5333; 7001 break; 7002 default: 7003 goto fail; 7004 } 7005 7006 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]); 7007 7008fail: 7009 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp); 7010 return 190476; 7011} 7012 7013static void 7014intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) 7015{ 7016 while (*num > DATA_LINK_M_N_MASK || 7017 *den > DATA_LINK_M_N_MASK) { 7018 *num >>= 1; 7019 *den >>= 1; 7020 } 7021} 7022 7023static void compute_m_n(unsigned int m, unsigned int n, 7024 uint32_t *ret_m, uint32_t *ret_n) 7025{ 7026 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); 7027 *ret_m = div_u64((uint64_t) m * *ret_n, n); 7028 intel_reduce_m_n_ratio(ret_m, ret_n); 7029} 7030 7031void 7032intel_link_compute_m_n(int bits_per_pixel, int nlanes, 7033 int pixel_clock, int link_clock, 7034 struct intel_link_m_n *m_n) 7035{ 7036 m_n->tu = 64; 7037 7038 compute_m_n(bits_per_pixel * pixel_clock, 7039 link_clock * nlanes * 8, 7040 &m_n->gmch_m, &m_n->gmch_n); 7041 7042 compute_m_n(pixel_clock, link_clock, 7043 &m_n->link_m, &m_n->link_n); 7044} 7045 7046static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) 7047{ 7048 if (i915.panel_use_ssc >= 0) 7049 return i915.panel_use_ssc != 0; 7050 return dev_priv->vbt.lvds_use_ssc 7051 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); 7052} 7053 7054static uint32_t pnv_dpll_compute_fp(struct dpll *dpll) 7055{ 7056 return (1 << dpll->n) << 16 | dpll->m2; 7057} 7058 7059static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll) 7060{ 7061 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; 7062} 7063 7064static void i9xx_update_pll_dividers(struct intel_crtc *crtc, 7065 struct intel_crtc_state *crtc_state, 7066 intel_clock_t *reduced_clock) 7067{ 7068 struct drm_device *dev = crtc->base.dev; 7069 u32 fp, fp2 = 0; 7070 7071 if (IS_PINEVIEW(dev)) { 7072 fp = pnv_dpll_compute_fp(&crtc_state->dpll); 7073 if (reduced_clock) 7074 fp2 = pnv_dpll_compute_fp(reduced_clock); 7075 } else { 7076 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 7077 if (reduced_clock) 7078 fp2 = i9xx_dpll_compute_fp(reduced_clock); 7079 } 7080 7081 crtc_state->dpll_hw_state.fp0 = fp; 7082 7083 crtc->lowfreq_avail = false; 7084 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && 7085 reduced_clock) { 7086 crtc_state->dpll_hw_state.fp1 = fp2; 7087 crtc->lowfreq_avail = true; 7088 } else { 7089 crtc_state->dpll_hw_state.fp1 = fp; 7090 } 7091} 7092 7093static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe 7094 pipe) 7095{ 7096 u32 reg_val; 7097 7098 /* 7099 * PLLB opamp always calibrates to max value of 0x3f, force enable it 7100 * and set it to a reasonable value instead. 7101 */ 7102 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7103 reg_val &= 0xffffff00; 7104 reg_val |= 0x00000030; 7105 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7106 7107 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7108 reg_val &= 0x8cffffff; 7109 reg_val = 0x8c000000; 7110 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7111 7112 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); 7113 reg_val &= 0xffffff00; 7114 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); 7115 7116 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); 7117 reg_val &= 0x00ffffff; 7118 reg_val |= 0xb0000000; 7119 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); 7120} 7121 7122static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc, 7123 struct intel_link_m_n *m_n) 7124{ 7125 struct drm_device *dev = crtc->base.dev; 7126 struct drm_i915_private *dev_priv = dev->dev_private; 7127 int pipe = crtc->pipe; 7128 7129 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7130 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); 7131 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); 7132 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); 7133} 7134 7135static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, 7136 struct intel_link_m_n *m_n, 7137 struct intel_link_m_n *m2_n2) 7138{ 7139 struct drm_device *dev = crtc->base.dev; 7140 struct drm_i915_private *dev_priv = dev->dev_private; 7141 int pipe = crtc->pipe; 7142 enum transcoder transcoder = crtc->config->cpu_transcoder; 7143 7144 if (INTEL_INFO(dev)->gen >= 5) { 7145 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); 7146 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); 7147 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); 7148 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); 7149 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available 7150 * for gen < 8) and if DRRS is supported (to make sure the 7151 * registers are not unnecessarily accessed). 7152 */ 7153 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) && 7154 crtc->config->has_drrs) { 7155 I915_WRITE(PIPE_DATA_M2(transcoder), 7156 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); 7157 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); 7158 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); 7159 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); 7160 } 7161 } else { 7162 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); 7163 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); 7164 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); 7165 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); 7166 } 7167} 7168 7169void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n) 7170{ 7171 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL; 7172 7173 if (m_n == M1_N1) { 7174 dp_m_n = &crtc->config->dp_m_n; 7175 dp_m2_n2 = &crtc->config->dp_m2_n2; 7176 } else if (m_n == M2_N2) { 7177 7178 /* 7179 * M2_N2 registers are not supported. Hence m2_n2 divider value 7180 * needs to be programmed into M1_N1. 7181 */ 7182 dp_m_n = &crtc->config->dp_m2_n2; 7183 } else { 7184 DRM_ERROR("Unsupported divider value\n"); 7185 return; 7186 } 7187 7188 if (crtc->config->has_pch_encoder) 7189 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n); 7190 else 7191 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2); 7192} 7193 7194static void vlv_compute_dpll(struct intel_crtc *crtc, 7195 struct intel_crtc_state *pipe_config) 7196{ 7197 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | 7198 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7199 if (crtc->pipe != PIPE_A) 7200 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7201 7202 /* DPLL not used with DSI, but still need the rest set up */ 7203 if (!pipe_config->has_dsi_encoder) 7204 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | 7205 DPLL_EXT_BUFFER_ENABLE_VLV; 7206 7207 pipe_config->dpll_hw_state.dpll_md = 7208 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7209} 7210 7211static void chv_compute_dpll(struct intel_crtc *crtc, 7212 struct intel_crtc_state *pipe_config) 7213{ 7214 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | 7215 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; 7216 if (crtc->pipe != PIPE_A) 7217 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; 7218 7219 /* DPLL not used with DSI, but still need the rest set up */ 7220 if (!pipe_config->has_dsi_encoder) 7221 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; 7222 7223 pipe_config->dpll_hw_state.dpll_md = 7224 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7225} 7226 7227static void vlv_prepare_pll(struct intel_crtc *crtc, 7228 const struct intel_crtc_state *pipe_config) 7229{ 7230 struct drm_device *dev = crtc->base.dev; 7231 struct drm_i915_private *dev_priv = dev->dev_private; 7232 enum pipe pipe = crtc->pipe; 7233 u32 mdiv; 7234 u32 bestn, bestm1, bestm2, bestp1, bestp2; 7235 u32 coreclk, reg_val; 7236 7237 /* Enable Refclk */ 7238 I915_WRITE(DPLL(pipe), 7239 pipe_config->dpll_hw_state.dpll & 7240 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV)); 7241 7242 /* No need to actually set up the DPLL with DSI */ 7243 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7244 return; 7245 7246 mutex_lock(&dev_priv->sb_lock); 7247 7248 bestn = pipe_config->dpll.n; 7249 bestm1 = pipe_config->dpll.m1; 7250 bestm2 = pipe_config->dpll.m2; 7251 bestp1 = pipe_config->dpll.p1; 7252 bestp2 = pipe_config->dpll.p2; 7253 7254 /* See eDP HDMI DPIO driver vbios notes doc */ 7255 7256 /* PLL B needs special handling */ 7257 if (pipe == PIPE_B) 7258 vlv_pllb_recal_opamp(dev_priv, pipe); 7259 7260 /* Set up Tx target for periodic Rcomp update */ 7261 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); 7262 7263 /* Disable target IRef on PLL */ 7264 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); 7265 reg_val &= 0x00ffffff; 7266 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); 7267 7268 /* Disable fast lock */ 7269 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); 7270 7271 /* Set idtafcrecal before PLL is enabled */ 7272 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); 7273 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); 7274 mdiv |= ((bestn << DPIO_N_SHIFT)); 7275 mdiv |= (1 << DPIO_K_SHIFT); 7276 7277 /* 7278 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, 7279 * but we don't support that). 7280 * Note: don't use the DAC post divider as it seems unstable. 7281 */ 7282 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); 7283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7284 7285 mdiv |= DPIO_ENABLE_CALIBRATION; 7286 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); 7287 7288 /* Set HBR and RBR LPF coefficients */ 7289 if (pipe_config->port_clock == 162000 || 7290 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) || 7291 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) 7292 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7293 0x009f0003); 7294 else 7295 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 7296 0x00d0000f); 7297 7298 if (pipe_config->has_dp_encoder) { 7299 /* Use SSC source */ 7300 if (pipe == PIPE_A) 7301 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7302 0x0df40000); 7303 else 7304 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7305 0x0df70000); 7306 } else { /* HDMI or VGA */ 7307 /* Use bend source */ 7308 if (pipe == PIPE_A) 7309 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7310 0x0df70000); 7311 else 7312 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 7313 0x0df40000); 7314 } 7315 7316 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); 7317 coreclk = (coreclk & 0x0000ff00) | 0x01c00000; 7318 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || 7319 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) 7320 coreclk |= 0x01000000; 7321 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); 7322 7323 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); 7324 mutex_unlock(&dev_priv->sb_lock); 7325} 7326 7327static void chv_prepare_pll(struct intel_crtc *crtc, 7328 const struct intel_crtc_state *pipe_config) 7329{ 7330 struct drm_device *dev = crtc->base.dev; 7331 struct drm_i915_private *dev_priv = dev->dev_private; 7332 enum pipe pipe = crtc->pipe; 7333 enum dpio_channel port = vlv_pipe_to_channel(pipe); 7334 u32 loopfilter, tribuf_calcntr; 7335 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; 7336 u32 dpio_val; 7337 int vco; 7338 7339 /* Enable Refclk and SSC */ 7340 I915_WRITE(DPLL(pipe), 7341 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); 7342 7343 /* No need to actually set up the DPLL with DSI */ 7344 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 7345 return; 7346 7347 bestn = pipe_config->dpll.n; 7348 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; 7349 bestm1 = pipe_config->dpll.m1; 7350 bestm2 = pipe_config->dpll.m2 >> 22; 7351 bestp1 = pipe_config->dpll.p1; 7352 bestp2 = pipe_config->dpll.p2; 7353 vco = pipe_config->dpll.vco; 7354 dpio_val = 0; 7355 loopfilter = 0; 7356 7357 mutex_lock(&dev_priv->sb_lock); 7358 7359 /* p1 and p2 divider */ 7360 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 7361 5 << DPIO_CHV_S1_DIV_SHIFT | 7362 bestp1 << DPIO_CHV_P1_DIV_SHIFT | 7363 bestp2 << DPIO_CHV_P2_DIV_SHIFT | 7364 1 << DPIO_CHV_K_DIV_SHIFT); 7365 7366 /* Feedback post-divider - m2 */ 7367 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); 7368 7369 /* Feedback refclk divider - n and m1 */ 7370 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), 7371 DPIO_CHV_M1_DIV_BY_2 | 7372 1 << DPIO_CHV_N_DIV_SHIFT); 7373 7374 /* M2 fraction division */ 7375 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); 7376 7377 /* M2 fraction division enable */ 7378 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 7379 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN); 7380 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT); 7381 if (bestm2_frac) 7382 dpio_val |= DPIO_CHV_FRAC_DIV_EN; 7383 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val); 7384 7385 /* Program digital lock detect threshold */ 7386 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port)); 7387 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK | 7388 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE); 7389 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT); 7390 if (!bestm2_frac) 7391 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE; 7392 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val); 7393 7394 /* Loop filter */ 7395 if (vco == 5400000) { 7396 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT); 7397 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT); 7398 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT); 7399 tribuf_calcntr = 0x9; 7400 } else if (vco <= 6200000) { 7401 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT); 7402 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT); 7403 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 7404 tribuf_calcntr = 0x9; 7405 } else if (vco <= 6480000) { 7406 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 7407 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 7408 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 7409 tribuf_calcntr = 0x8; 7410 } else { 7411 /* Not supported. Apply the same limits as in the max case */ 7412 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT); 7413 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT); 7414 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT); 7415 tribuf_calcntr = 0; 7416 } 7417 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); 7418 7419 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port)); 7420 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK; 7421 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT); 7422 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val); 7423 7424 /* AFC Recal */ 7425 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), 7426 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | 7427 DPIO_AFC_RECAL); 7428 7429 mutex_unlock(&dev_priv->sb_lock); 7430} 7431 7432/** 7433 * vlv_force_pll_on - forcibly enable just the PLL 7434 * @dev_priv: i915 private structure 7435 * @pipe: pipe PLL to enable 7436 * @dpll: PLL configuration 7437 * 7438 * Enable the PLL for @pipe using the supplied @dpll config. To be used 7439 * in cases where we need the PLL enabled even when @pipe is not going to 7440 * be enabled. 7441 */ 7442int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe, 7443 const struct dpll *dpll) 7444{ 7445 struct intel_crtc *crtc = 7446 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe)); 7447 struct intel_crtc_state *pipe_config; 7448 7449 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); 7450 if (!pipe_config) 7451 return -ENOMEM; 7452 7453 pipe_config->base.crtc = &crtc->base; 7454 pipe_config->pixel_multiplier = 1; 7455 pipe_config->dpll = *dpll; 7456 7457 if (IS_CHERRYVIEW(dev)) { 7458 chv_compute_dpll(crtc, pipe_config); 7459 chv_prepare_pll(crtc, pipe_config); 7460 chv_enable_pll(crtc, pipe_config); 7461 } else { 7462 vlv_compute_dpll(crtc, pipe_config); 7463 vlv_prepare_pll(crtc, pipe_config); 7464 vlv_enable_pll(crtc, pipe_config); 7465 } 7466 7467 kfree(pipe_config); 7468 7469 return 0; 7470} 7471 7472/** 7473 * vlv_force_pll_off - forcibly disable just the PLL 7474 * @dev_priv: i915 private structure 7475 * @pipe: pipe PLL to disable 7476 * 7477 * Disable the PLL for @pipe. To be used in cases where we need 7478 * the PLL enabled even when @pipe is not going to be enabled. 7479 */ 7480void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe) 7481{ 7482 if (IS_CHERRYVIEW(dev)) 7483 chv_disable_pll(to_i915(dev), pipe); 7484 else 7485 vlv_disable_pll(to_i915(dev), pipe); 7486} 7487 7488static void i9xx_compute_dpll(struct intel_crtc *crtc, 7489 struct intel_crtc_state *crtc_state, 7490 intel_clock_t *reduced_clock) 7491{ 7492 struct drm_device *dev = crtc->base.dev; 7493 struct drm_i915_private *dev_priv = dev->dev_private; 7494 u32 dpll; 7495 bool is_sdvo; 7496 struct dpll *clock = &crtc_state->dpll; 7497 7498 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 7499 7500 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) || 7501 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI); 7502 7503 dpll = DPLL_VGA_MODE_DIS; 7504 7505 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) 7506 dpll |= DPLLB_MODE_LVDS; 7507 else 7508 dpll |= DPLLB_MODE_DAC_SERIAL; 7509 7510 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { 7511 dpll |= (crtc_state->pixel_multiplier - 1) 7512 << SDVO_MULTIPLIER_SHIFT_HIRES; 7513 } 7514 7515 if (is_sdvo) 7516 dpll |= DPLL_SDVO_HIGH_SPEED; 7517 7518 if (crtc_state->has_dp_encoder) 7519 dpll |= DPLL_SDVO_HIGH_SPEED; 7520 7521 /* compute bitmask from p1 value */ 7522 if (IS_PINEVIEW(dev)) 7523 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; 7524 else { 7525 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 7526 if (IS_G4X(dev) && reduced_clock) 7527 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 7528 } 7529 switch (clock->p2) { 7530 case 5: 7531 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 7532 break; 7533 case 7: 7534 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 7535 break; 7536 case 10: 7537 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 7538 break; 7539 case 14: 7540 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 7541 break; 7542 } 7543 if (INTEL_INFO(dev)->gen >= 4) 7544 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); 7545 7546 if (crtc_state->sdvo_tv_clock) 7547 dpll |= PLL_REF_INPUT_TVCLKINBC; 7548 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && 7549 intel_panel_use_ssc(dev_priv)) 7550 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 7551 else 7552 dpll |= PLL_REF_INPUT_DREFCLK; 7553 7554 dpll |= DPLL_VCO_ENABLE; 7555 crtc_state->dpll_hw_state.dpll = dpll; 7556 7557 if (INTEL_INFO(dev)->gen >= 4) { 7558 u32 dpll_md = (crtc_state->pixel_multiplier - 1) 7559 << DPLL_MD_UDI_MULTIPLIER_SHIFT; 7560 crtc_state->dpll_hw_state.dpll_md = dpll_md; 7561 } 7562} 7563 7564static void i8xx_compute_dpll(struct intel_crtc *crtc, 7565 struct intel_crtc_state *crtc_state, 7566 intel_clock_t *reduced_clock) 7567{ 7568 struct drm_device *dev = crtc->base.dev; 7569 struct drm_i915_private *dev_priv = dev->dev_private; 7570 u32 dpll; 7571 struct dpll *clock = &crtc_state->dpll; 7572 7573 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); 7574 7575 dpll = DPLL_VGA_MODE_DIS; 7576 7577 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 7578 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 7579 } else { 7580 if (clock->p1 == 2) 7581 dpll |= PLL_P1_DIVIDE_BY_TWO; 7582 else 7583 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; 7584 if (clock->p2 == 4) 7585 dpll |= PLL_P2_DIVIDE_BY_4; 7586 } 7587 7588 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) 7589 dpll |= DPLL_DVO_2X_MODE; 7590 7591 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && 7592 intel_panel_use_ssc(dev_priv)) 7593 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 7594 else 7595 dpll |= PLL_REF_INPUT_DREFCLK; 7596 7597 dpll |= DPLL_VCO_ENABLE; 7598 crtc_state->dpll_hw_state.dpll = dpll; 7599} 7600 7601static void intel_set_pipe_timings(struct intel_crtc *intel_crtc) 7602{ 7603 struct drm_device *dev = intel_crtc->base.dev; 7604 struct drm_i915_private *dev_priv = dev->dev_private; 7605 enum pipe pipe = intel_crtc->pipe; 7606 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; 7607 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode; 7608 uint32_t crtc_vtotal, crtc_vblank_end; 7609 int vsyncshift = 0; 7610 7611 /* We need to be careful not to changed the adjusted mode, for otherwise 7612 * the hw state checker will get angry at the mismatch. */ 7613 crtc_vtotal = adjusted_mode->crtc_vtotal; 7614 crtc_vblank_end = adjusted_mode->crtc_vblank_end; 7615 7616 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 7617 /* the chip adds 2 halflines automatically */ 7618 crtc_vtotal -= 1; 7619 crtc_vblank_end -= 1; 7620 7621 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) 7622 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; 7623 else 7624 vsyncshift = adjusted_mode->crtc_hsync_start - 7625 adjusted_mode->crtc_htotal / 2; 7626 if (vsyncshift < 0) 7627 vsyncshift += adjusted_mode->crtc_htotal; 7628 } 7629 7630 if (INTEL_INFO(dev)->gen > 3) 7631 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); 7632 7633 I915_WRITE(HTOTAL(cpu_transcoder), 7634 (adjusted_mode->crtc_hdisplay - 1) | 7635 ((adjusted_mode->crtc_htotal - 1) << 16)); 7636 I915_WRITE(HBLANK(cpu_transcoder), 7637 (adjusted_mode->crtc_hblank_start - 1) | 7638 ((adjusted_mode->crtc_hblank_end - 1) << 16)); 7639 I915_WRITE(HSYNC(cpu_transcoder), 7640 (adjusted_mode->crtc_hsync_start - 1) | 7641 ((adjusted_mode->crtc_hsync_end - 1) << 16)); 7642 7643 I915_WRITE(VTOTAL(cpu_transcoder), 7644 (adjusted_mode->crtc_vdisplay - 1) | 7645 ((crtc_vtotal - 1) << 16)); 7646 I915_WRITE(VBLANK(cpu_transcoder), 7647 (adjusted_mode->crtc_vblank_start - 1) | 7648 ((crtc_vblank_end - 1) << 16)); 7649 I915_WRITE(VSYNC(cpu_transcoder), 7650 (adjusted_mode->crtc_vsync_start - 1) | 7651 ((adjusted_mode->crtc_vsync_end - 1) << 16)); 7652 7653 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be 7654 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is 7655 * documented on the DDI_FUNC_CTL register description, EDP Input Select 7656 * bits. */ 7657 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && 7658 (pipe == PIPE_B || pipe == PIPE_C)) 7659 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); 7660 7661} 7662 7663static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc) 7664{ 7665 struct drm_device *dev = intel_crtc->base.dev; 7666 struct drm_i915_private *dev_priv = dev->dev_private; 7667 enum pipe pipe = intel_crtc->pipe; 7668 7669 /* pipesrc controls the size that is scaled from, which should 7670 * always be the user's requested size. 7671 */ 7672 I915_WRITE(PIPESRC(pipe), 7673 ((intel_crtc->config->pipe_src_w - 1) << 16) | 7674 (intel_crtc->config->pipe_src_h - 1)); 7675} 7676 7677static void intel_get_pipe_timings(struct intel_crtc *crtc, 7678 struct intel_crtc_state *pipe_config) 7679{ 7680 struct drm_device *dev = crtc->base.dev; 7681 struct drm_i915_private *dev_priv = dev->dev_private; 7682 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 7683 uint32_t tmp; 7684 7685 tmp = I915_READ(HTOTAL(cpu_transcoder)); 7686 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; 7687 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; 7688 tmp = I915_READ(HBLANK(cpu_transcoder)); 7689 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; 7690 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; 7691 tmp = I915_READ(HSYNC(cpu_transcoder)); 7692 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; 7693 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; 7694 7695 tmp = I915_READ(VTOTAL(cpu_transcoder)); 7696 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; 7697 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; 7698 tmp = I915_READ(VBLANK(cpu_transcoder)); 7699 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; 7700 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; 7701 tmp = I915_READ(VSYNC(cpu_transcoder)); 7702 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; 7703 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; 7704 7705 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { 7706 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; 7707 pipe_config->base.adjusted_mode.crtc_vtotal += 1; 7708 pipe_config->base.adjusted_mode.crtc_vblank_end += 1; 7709 } 7710} 7711 7712static void intel_get_pipe_src_size(struct intel_crtc *crtc, 7713 struct intel_crtc_state *pipe_config) 7714{ 7715 struct drm_device *dev = crtc->base.dev; 7716 struct drm_i915_private *dev_priv = dev->dev_private; 7717 u32 tmp; 7718 7719 tmp = I915_READ(PIPESRC(crtc->pipe)); 7720 pipe_config->pipe_src_h = (tmp & 0xffff) + 1; 7721 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; 7722 7723 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h; 7724 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w; 7725} 7726 7727void intel_mode_from_pipe_config(struct drm_display_mode *mode, 7728 struct intel_crtc_state *pipe_config) 7729{ 7730 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay; 7731 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal; 7732 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start; 7733 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end; 7734 7735 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay; 7736 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal; 7737 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start; 7738 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end; 7739 7740 mode->flags = pipe_config->base.adjusted_mode.flags; 7741 mode->type = DRM_MODE_TYPE_DRIVER; 7742 7743 mode->clock = pipe_config->base.adjusted_mode.crtc_clock; 7744 mode->flags |= pipe_config->base.adjusted_mode.flags; 7745 7746 mode->hsync = drm_mode_hsync(mode); 7747 mode->vrefresh = drm_mode_vrefresh(mode); 7748 drm_mode_set_name(mode); 7749} 7750 7751static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc) 7752{ 7753 struct drm_device *dev = intel_crtc->base.dev; 7754 struct drm_i915_private *dev_priv = dev->dev_private; 7755 uint32_t pipeconf; 7756 7757 pipeconf = 0; 7758 7759 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || 7760 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) 7761 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE; 7762 7763 if (intel_crtc->config->double_wide) 7764 pipeconf |= PIPECONF_DOUBLE_WIDE; 7765 7766 /* only g4x and later have fancy bpc/dither controls */ 7767 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 7768 /* Bspec claims that we can't use dithering for 30bpp pipes. */ 7769 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30) 7770 pipeconf |= PIPECONF_DITHER_EN | 7771 PIPECONF_DITHER_TYPE_SP; 7772 7773 switch (intel_crtc->config->pipe_bpp) { 7774 case 18: 7775 pipeconf |= PIPECONF_6BPC; 7776 break; 7777 case 24: 7778 pipeconf |= PIPECONF_8BPC; 7779 break; 7780 case 30: 7781 pipeconf |= PIPECONF_10BPC; 7782 break; 7783 default: 7784 /* Case prevented by intel_choose_pipe_bpp_dither. */ 7785 BUG(); 7786 } 7787 } 7788 7789 if (HAS_PIPE_CXSR(dev)) { 7790 if (intel_crtc->lowfreq_avail) { 7791 DRM_DEBUG_KMS("enabling CxSR downclocking\n"); 7792 pipeconf |= PIPECONF_CXSR_DOWNCLOCK; 7793 } else { 7794 DRM_DEBUG_KMS("disabling CxSR downclocking\n"); 7795 } 7796 } 7797 7798 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { 7799 if (INTEL_INFO(dev)->gen < 4 || 7800 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) 7801 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; 7802 else 7803 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; 7804 } else 7805 pipeconf |= PIPECONF_PROGRESSIVE; 7806 7807 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) && 7808 intel_crtc->config->limited_color_range) 7809 pipeconf |= PIPECONF_COLOR_RANGE_SELECT; 7810 7811 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf); 7812 POSTING_READ(PIPECONF(intel_crtc->pipe)); 7813} 7814 7815static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, 7816 struct intel_crtc_state *crtc_state) 7817{ 7818 struct drm_device *dev = crtc->base.dev; 7819 struct drm_i915_private *dev_priv = dev->dev_private; 7820 const intel_limit_t *limit; 7821 int refclk = 48000; 7822 7823 memset(&crtc_state->dpll_hw_state, 0, 7824 sizeof(crtc_state->dpll_hw_state)); 7825 7826 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 7827 if (intel_panel_use_ssc(dev_priv)) { 7828 refclk = dev_priv->vbt.lvds_ssc_freq; 7829 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 7830 } 7831 7832 limit = &intel_limits_i8xx_lvds; 7833 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) { 7834 limit = &intel_limits_i8xx_dvo; 7835 } else { 7836 limit = &intel_limits_i8xx_dac; 7837 } 7838 7839 if (!crtc_state->clock_set && 7840 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 7841 refclk, NULL, &crtc_state->dpll)) { 7842 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 7843 return -EINVAL; 7844 } 7845 7846 i8xx_compute_dpll(crtc, crtc_state, NULL); 7847 7848 return 0; 7849} 7850 7851static int g4x_crtc_compute_clock(struct intel_crtc *crtc, 7852 struct intel_crtc_state *crtc_state) 7853{ 7854 struct drm_device *dev = crtc->base.dev; 7855 struct drm_i915_private *dev_priv = dev->dev_private; 7856 const intel_limit_t *limit; 7857 int refclk = 96000; 7858 7859 memset(&crtc_state->dpll_hw_state, 0, 7860 sizeof(crtc_state->dpll_hw_state)); 7861 7862 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 7863 if (intel_panel_use_ssc(dev_priv)) { 7864 refclk = dev_priv->vbt.lvds_ssc_freq; 7865 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 7866 } 7867 7868 if (intel_is_dual_link_lvds(dev)) 7869 limit = &intel_limits_g4x_dual_channel_lvds; 7870 else 7871 limit = &intel_limits_g4x_single_channel_lvds; 7872 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) || 7873 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) { 7874 limit = &intel_limits_g4x_hdmi; 7875 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) { 7876 limit = &intel_limits_g4x_sdvo; 7877 } else { 7878 /* The option is for other outputs */ 7879 limit = &intel_limits_i9xx_sdvo; 7880 } 7881 7882 if (!crtc_state->clock_set && 7883 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 7884 refclk, NULL, &crtc_state->dpll)) { 7885 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 7886 return -EINVAL; 7887 } 7888 7889 i9xx_compute_dpll(crtc, crtc_state, NULL); 7890 7891 return 0; 7892} 7893 7894static int pnv_crtc_compute_clock(struct intel_crtc *crtc, 7895 struct intel_crtc_state *crtc_state) 7896{ 7897 struct drm_device *dev = crtc->base.dev; 7898 struct drm_i915_private *dev_priv = dev->dev_private; 7899 const intel_limit_t *limit; 7900 int refclk = 96000; 7901 7902 memset(&crtc_state->dpll_hw_state, 0, 7903 sizeof(crtc_state->dpll_hw_state)); 7904 7905 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 7906 if (intel_panel_use_ssc(dev_priv)) { 7907 refclk = dev_priv->vbt.lvds_ssc_freq; 7908 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 7909 } 7910 7911 limit = &intel_limits_pineview_lvds; 7912 } else { 7913 limit = &intel_limits_pineview_sdvo; 7914 } 7915 7916 if (!crtc_state->clock_set && 7917 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 7918 refclk, NULL, &crtc_state->dpll)) { 7919 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 7920 return -EINVAL; 7921 } 7922 7923 i9xx_compute_dpll(crtc, crtc_state, NULL); 7924 7925 return 0; 7926} 7927 7928static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, 7929 struct intel_crtc_state *crtc_state) 7930{ 7931 struct drm_device *dev = crtc->base.dev; 7932 struct drm_i915_private *dev_priv = dev->dev_private; 7933 const intel_limit_t *limit; 7934 int refclk = 96000; 7935 7936 memset(&crtc_state->dpll_hw_state, 0, 7937 sizeof(crtc_state->dpll_hw_state)); 7938 7939 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 7940 if (intel_panel_use_ssc(dev_priv)) { 7941 refclk = dev_priv->vbt.lvds_ssc_freq; 7942 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); 7943 } 7944 7945 limit = &intel_limits_i9xx_lvds; 7946 } else { 7947 limit = &intel_limits_i9xx_sdvo; 7948 } 7949 7950 if (!crtc_state->clock_set && 7951 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 7952 refclk, NULL, &crtc_state->dpll)) { 7953 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 7954 return -EINVAL; 7955 } 7956 7957 i9xx_compute_dpll(crtc, crtc_state, NULL); 7958 7959 return 0; 7960} 7961 7962static int chv_crtc_compute_clock(struct intel_crtc *crtc, 7963 struct intel_crtc_state *crtc_state) 7964{ 7965 int refclk = 100000; 7966 const intel_limit_t *limit = &intel_limits_chv; 7967 7968 memset(&crtc_state->dpll_hw_state, 0, 7969 sizeof(crtc_state->dpll_hw_state)); 7970 7971 if (!crtc_state->clock_set && 7972 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 7973 refclk, NULL, &crtc_state->dpll)) { 7974 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 7975 return -EINVAL; 7976 } 7977 7978 chv_compute_dpll(crtc, crtc_state); 7979 7980 return 0; 7981} 7982 7983static int vlv_crtc_compute_clock(struct intel_crtc *crtc, 7984 struct intel_crtc_state *crtc_state) 7985{ 7986 int refclk = 100000; 7987 const intel_limit_t *limit = &intel_limits_vlv; 7988 7989 memset(&crtc_state->dpll_hw_state, 0, 7990 sizeof(crtc_state->dpll_hw_state)); 7991 7992 if (!crtc_state->clock_set && 7993 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 7994 refclk, NULL, &crtc_state->dpll)) { 7995 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 7996 return -EINVAL; 7997 } 7998 7999 vlv_compute_dpll(crtc, crtc_state); 8000 8001 return 0; 8002} 8003 8004static void i9xx_get_pfit_config(struct intel_crtc *crtc, 8005 struct intel_crtc_state *pipe_config) 8006{ 8007 struct drm_device *dev = crtc->base.dev; 8008 struct drm_i915_private *dev_priv = dev->dev_private; 8009 uint32_t tmp; 8010 8011 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev))) 8012 return; 8013 8014 tmp = I915_READ(PFIT_CONTROL); 8015 if (!(tmp & PFIT_ENABLE)) 8016 return; 8017 8018 /* Check whether the pfit is attached to our pipe. */ 8019 if (INTEL_INFO(dev)->gen < 4) { 8020 if (crtc->pipe != PIPE_B) 8021 return; 8022 } else { 8023 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) 8024 return; 8025 } 8026 8027 pipe_config->gmch_pfit.control = tmp; 8028 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); 8029} 8030 8031static void vlv_crtc_clock_get(struct intel_crtc *crtc, 8032 struct intel_crtc_state *pipe_config) 8033{ 8034 struct drm_device *dev = crtc->base.dev; 8035 struct drm_i915_private *dev_priv = dev->dev_private; 8036 int pipe = pipe_config->cpu_transcoder; 8037 intel_clock_t clock; 8038 u32 mdiv; 8039 int refclk = 100000; 8040 8041 /* In case of DSI, DPLL will not be used */ 8042 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8043 return; 8044 8045 mutex_lock(&dev_priv->sb_lock); 8046 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); 8047 mutex_unlock(&dev_priv->sb_lock); 8048 8049 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; 8050 clock.m2 = mdiv & DPIO_M2DIV_MASK; 8051 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; 8052 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; 8053 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; 8054 8055 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); 8056} 8057 8058static void 8059i9xx_get_initial_plane_config(struct intel_crtc *crtc, 8060 struct intel_initial_plane_config *plane_config) 8061{ 8062 struct drm_device *dev = crtc->base.dev; 8063 struct drm_i915_private *dev_priv = dev->dev_private; 8064 u32 val, base, offset; 8065 int pipe = crtc->pipe, plane = crtc->plane; 8066 int fourcc, pixel_format; 8067 unsigned int aligned_height; 8068 struct drm_framebuffer *fb; 8069 struct intel_framebuffer *intel_fb; 8070 8071 val = I915_READ(DSPCNTR(plane)); 8072 if (!(val & DISPLAY_PLANE_ENABLE)) 8073 return; 8074 8075 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 8076 if (!intel_fb) { 8077 DRM_DEBUG_KMS("failed to alloc fb\n"); 8078 return; 8079 } 8080 8081 fb = &intel_fb->base; 8082 8083 if (INTEL_INFO(dev)->gen >= 4) { 8084 if (val & DISPPLANE_TILED) { 8085 plane_config->tiling = I915_TILING_X; 8086 fb->modifier[0] = I915_FORMAT_MOD_X_TILED; 8087 } 8088 } 8089 8090 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 8091 fourcc = i9xx_format_to_fourcc(pixel_format); 8092 fb->pixel_format = fourcc; 8093 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; 8094 8095 if (INTEL_INFO(dev)->gen >= 4) { 8096 if (plane_config->tiling) 8097 offset = I915_READ(DSPTILEOFF(plane)); 8098 else 8099 offset = I915_READ(DSPLINOFF(plane)); 8100 base = I915_READ(DSPSURF(plane)) & 0xfffff000; 8101 } else { 8102 base = I915_READ(DSPADDR(plane)); 8103 } 8104 plane_config->base = base; 8105 8106 val = I915_READ(PIPESRC(pipe)); 8107 fb->width = ((val >> 16) & 0xfff) + 1; 8108 fb->height = ((val >> 0) & 0xfff) + 1; 8109 8110 val = I915_READ(DSPSTRIDE(pipe)); 8111 fb->pitches[0] = val & 0xffffffc0; 8112 8113 aligned_height = intel_fb_align_height(dev, fb->height, 8114 fb->pixel_format, 8115 fb->modifier[0]); 8116 8117 plane_config->size = fb->pitches[0] * aligned_height; 8118 8119 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 8120 pipe_name(pipe), plane, fb->width, fb->height, 8121 fb->bits_per_pixel, base, fb->pitches[0], 8122 plane_config->size); 8123 8124 plane_config->fb = intel_fb; 8125} 8126 8127static void chv_crtc_clock_get(struct intel_crtc *crtc, 8128 struct intel_crtc_state *pipe_config) 8129{ 8130 struct drm_device *dev = crtc->base.dev; 8131 struct drm_i915_private *dev_priv = dev->dev_private; 8132 int pipe = pipe_config->cpu_transcoder; 8133 enum dpio_channel port = vlv_pipe_to_channel(pipe); 8134 intel_clock_t clock; 8135 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; 8136 int refclk = 100000; 8137 8138 /* In case of DSI, DPLL will not be used */ 8139 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) 8140 return; 8141 8142 mutex_lock(&dev_priv->sb_lock); 8143 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); 8144 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); 8145 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); 8146 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); 8147 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); 8148 mutex_unlock(&dev_priv->sb_lock); 8149 8150 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; 8151 clock.m2 = (pll_dw0 & 0xff) << 22; 8152 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) 8153 clock.m2 |= pll_dw2 & 0x3fffff; 8154 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; 8155 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; 8156 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; 8157 8158 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); 8159} 8160 8161static bool i9xx_get_pipe_config(struct intel_crtc *crtc, 8162 struct intel_crtc_state *pipe_config) 8163{ 8164 struct drm_device *dev = crtc->base.dev; 8165 struct drm_i915_private *dev_priv = dev->dev_private; 8166 enum intel_display_power_domain power_domain; 8167 uint32_t tmp; 8168 bool ret; 8169 8170 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 8171 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) 8172 return false; 8173 8174 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 8175 pipe_config->shared_dpll = NULL; 8176 8177 ret = false; 8178 8179 tmp = I915_READ(PIPECONF(crtc->pipe)); 8180 if (!(tmp & PIPECONF_ENABLE)) 8181 goto out; 8182 8183 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 8184 switch (tmp & PIPECONF_BPC_MASK) { 8185 case PIPECONF_6BPC: 8186 pipe_config->pipe_bpp = 18; 8187 break; 8188 case PIPECONF_8BPC: 8189 pipe_config->pipe_bpp = 24; 8190 break; 8191 case PIPECONF_10BPC: 8192 pipe_config->pipe_bpp = 30; 8193 break; 8194 default: 8195 break; 8196 } 8197 } 8198 8199 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) && 8200 (tmp & PIPECONF_COLOR_RANGE_SELECT)) 8201 pipe_config->limited_color_range = true; 8202 8203 if (INTEL_INFO(dev)->gen < 4) 8204 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; 8205 8206 intel_get_pipe_timings(crtc, pipe_config); 8207 intel_get_pipe_src_size(crtc, pipe_config); 8208 8209 i9xx_get_pfit_config(crtc, pipe_config); 8210 8211 if (INTEL_INFO(dev)->gen >= 4) { 8212 /* No way to read it out on pipes B and C */ 8213 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A) 8214 tmp = dev_priv->chv_dpll_md[crtc->pipe]; 8215 else 8216 tmp = I915_READ(DPLL_MD(crtc->pipe)); 8217 pipe_config->pixel_multiplier = 8218 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) 8219 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; 8220 pipe_config->dpll_hw_state.dpll_md = tmp; 8221 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { 8222 tmp = I915_READ(DPLL(crtc->pipe)); 8223 pipe_config->pixel_multiplier = 8224 ((tmp & SDVO_MULTIPLIER_MASK) 8225 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; 8226 } else { 8227 /* Note that on i915G/GM the pixel multiplier is in the sdvo 8228 * port and will be fixed up in the encoder->get_config 8229 * function. */ 8230 pipe_config->pixel_multiplier = 1; 8231 } 8232 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); 8233 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { 8234 /* 8235 * DPLL_DVO_2X_MODE must be enabled for both DPLLs 8236 * on 830. Filter it out here so that we don't 8237 * report errors due to that. 8238 */ 8239 if (IS_I830(dev)) 8240 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE; 8241 8242 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); 8243 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); 8244 } else { 8245 /* Mask out read-only status bits. */ 8246 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | 8247 DPLL_PORTC_READY_MASK | 8248 DPLL_PORTB_READY_MASK); 8249 } 8250 8251 if (IS_CHERRYVIEW(dev)) 8252 chv_crtc_clock_get(crtc, pipe_config); 8253 else if (IS_VALLEYVIEW(dev)) 8254 vlv_crtc_clock_get(crtc, pipe_config); 8255 else 8256 i9xx_crtc_clock_get(crtc, pipe_config); 8257 8258 /* 8259 * Normally the dotclock is filled in by the encoder .get_config() 8260 * but in case the pipe is enabled w/o any ports we need a sane 8261 * default. 8262 */ 8263 pipe_config->base.adjusted_mode.crtc_clock = 8264 pipe_config->port_clock / pipe_config->pixel_multiplier; 8265 8266 ret = true; 8267 8268out: 8269 intel_display_power_put(dev_priv, power_domain); 8270 8271 return ret; 8272} 8273 8274static void ironlake_init_pch_refclk(struct drm_device *dev) 8275{ 8276 struct drm_i915_private *dev_priv = dev->dev_private; 8277 struct intel_encoder *encoder; 8278 int i; 8279 u32 val, final; 8280 bool has_lvds = false; 8281 bool has_cpu_edp = false; 8282 bool has_panel = false; 8283 bool has_ck505 = false; 8284 bool can_ssc = false; 8285 bool using_ssc_source = false; 8286 8287 /* We need to take the global config into account */ 8288 for_each_intel_encoder(dev, encoder) { 8289 switch (encoder->type) { 8290 case INTEL_OUTPUT_LVDS: 8291 has_panel = true; 8292 has_lvds = true; 8293 break; 8294 case INTEL_OUTPUT_EDP: 8295 has_panel = true; 8296 if (enc_to_dig_port(&encoder->base)->port == PORT_A) 8297 has_cpu_edp = true; 8298 break; 8299 default: 8300 break; 8301 } 8302 } 8303 8304 if (HAS_PCH_IBX(dev)) { 8305 has_ck505 = dev_priv->vbt.display_clock_mode; 8306 can_ssc = has_ck505; 8307 } else { 8308 has_ck505 = false; 8309 can_ssc = true; 8310 } 8311 8312 /* Check if any DPLLs are using the SSC source */ 8313 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 8314 u32 temp = I915_READ(PCH_DPLL(i)); 8315 8316 if (!(temp & DPLL_VCO_ENABLE)) 8317 continue; 8318 8319 if ((temp & PLL_REF_INPUT_MASK) == 8320 PLLB_REF_INPUT_SPREADSPECTRUMIN) { 8321 using_ssc_source = true; 8322 break; 8323 } 8324 } 8325 8326 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n", 8327 has_panel, has_lvds, has_ck505, using_ssc_source); 8328 8329 /* Ironlake: try to setup display ref clock before DPLL 8330 * enabling. This is only under driver's control after 8331 * PCH B stepping, previous chipset stepping should be 8332 * ignoring this setting. 8333 */ 8334 val = I915_READ(PCH_DREF_CONTROL); 8335 8336 /* As we must carefully and slowly disable/enable each source in turn, 8337 * compute the final state we want first and check if we need to 8338 * make any changes at all. 8339 */ 8340 final = val; 8341 final &= ~DREF_NONSPREAD_SOURCE_MASK; 8342 if (has_ck505) 8343 final |= DREF_NONSPREAD_CK505_ENABLE; 8344 else 8345 final |= DREF_NONSPREAD_SOURCE_ENABLE; 8346 8347 final &= ~DREF_SSC_SOURCE_MASK; 8348 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 8349 final &= ~DREF_SSC1_ENABLE; 8350 8351 if (has_panel) { 8352 final |= DREF_SSC_SOURCE_ENABLE; 8353 8354 if (intel_panel_use_ssc(dev_priv) && can_ssc) 8355 final |= DREF_SSC1_ENABLE; 8356 8357 if (has_cpu_edp) { 8358 if (intel_panel_use_ssc(dev_priv) && can_ssc) 8359 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 8360 else 8361 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 8362 } else 8363 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 8364 } else if (using_ssc_source) { 8365 final |= DREF_SSC_SOURCE_ENABLE; 8366 final |= DREF_SSC1_ENABLE; 8367 } 8368 8369 if (final == val) 8370 return; 8371 8372 /* Always enable nonspread source */ 8373 val &= ~DREF_NONSPREAD_SOURCE_MASK; 8374 8375 if (has_ck505) 8376 val |= DREF_NONSPREAD_CK505_ENABLE; 8377 else 8378 val |= DREF_NONSPREAD_SOURCE_ENABLE; 8379 8380 if (has_panel) { 8381 val &= ~DREF_SSC_SOURCE_MASK; 8382 val |= DREF_SSC_SOURCE_ENABLE; 8383 8384 /* SSC must be turned on before enabling the CPU output */ 8385 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 8386 DRM_DEBUG_KMS("Using SSC on panel\n"); 8387 val |= DREF_SSC1_ENABLE; 8388 } else 8389 val &= ~DREF_SSC1_ENABLE; 8390 8391 /* Get SSC going before enabling the outputs */ 8392 I915_WRITE(PCH_DREF_CONTROL, val); 8393 POSTING_READ(PCH_DREF_CONTROL); 8394 udelay(200); 8395 8396 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 8397 8398 /* Enable CPU source on CPU attached eDP */ 8399 if (has_cpu_edp) { 8400 if (intel_panel_use_ssc(dev_priv) && can_ssc) { 8401 DRM_DEBUG_KMS("Using SSC on eDP\n"); 8402 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; 8403 } else 8404 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; 8405 } else 8406 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 8407 8408 I915_WRITE(PCH_DREF_CONTROL, val); 8409 POSTING_READ(PCH_DREF_CONTROL); 8410 udelay(200); 8411 } else { 8412 DRM_DEBUG_KMS("Disabling CPU source output\n"); 8413 8414 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; 8415 8416 /* Turn off CPU output */ 8417 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; 8418 8419 I915_WRITE(PCH_DREF_CONTROL, val); 8420 POSTING_READ(PCH_DREF_CONTROL); 8421 udelay(200); 8422 8423 if (!using_ssc_source) { 8424 DRM_DEBUG_KMS("Disabling SSC source\n"); 8425 8426 /* Turn off the SSC source */ 8427 val &= ~DREF_SSC_SOURCE_MASK; 8428 val |= DREF_SSC_SOURCE_DISABLE; 8429 8430 /* Turn off SSC1 */ 8431 val &= ~DREF_SSC1_ENABLE; 8432 8433 I915_WRITE(PCH_DREF_CONTROL, val); 8434 POSTING_READ(PCH_DREF_CONTROL); 8435 udelay(200); 8436 } 8437 } 8438 8439 BUG_ON(val != final); 8440} 8441 8442static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) 8443{ 8444 uint32_t tmp; 8445 8446 tmp = I915_READ(SOUTH_CHICKEN2); 8447 tmp |= FDI_MPHY_IOSFSB_RESET_CTL; 8448 I915_WRITE(SOUTH_CHICKEN2, tmp); 8449 8450 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) & 8451 FDI_MPHY_IOSFSB_RESET_STATUS, 100)) 8452 DRM_ERROR("FDI mPHY reset assert timeout\n"); 8453 8454 tmp = I915_READ(SOUTH_CHICKEN2); 8455 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; 8456 I915_WRITE(SOUTH_CHICKEN2, tmp); 8457 8458 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) & 8459 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) 8460 DRM_ERROR("FDI mPHY reset de-assert timeout\n"); 8461} 8462 8463/* WaMPhyProgramming:hsw */ 8464static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) 8465{ 8466 uint32_t tmp; 8467 8468 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); 8469 tmp &= ~(0xFF << 24); 8470 tmp |= (0x12 << 24); 8471 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); 8472 8473 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); 8474 tmp |= (1 << 11); 8475 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); 8476 8477 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); 8478 tmp |= (1 << 11); 8479 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); 8480 8481 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); 8482 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 8483 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); 8484 8485 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); 8486 tmp |= (1 << 24) | (1 << 21) | (1 << 18); 8487 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); 8488 8489 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); 8490 tmp &= ~(7 << 13); 8491 tmp |= (5 << 13); 8492 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); 8493 8494 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); 8495 tmp &= ~(7 << 13); 8496 tmp |= (5 << 13); 8497 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); 8498 8499 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); 8500 tmp &= ~0xFF; 8501 tmp |= 0x1C; 8502 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); 8503 8504 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); 8505 tmp &= ~0xFF; 8506 tmp |= 0x1C; 8507 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); 8508 8509 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); 8510 tmp &= ~(0xFF << 16); 8511 tmp |= (0x1C << 16); 8512 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); 8513 8514 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); 8515 tmp &= ~(0xFF << 16); 8516 tmp |= (0x1C << 16); 8517 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); 8518 8519 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); 8520 tmp |= (1 << 27); 8521 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); 8522 8523 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); 8524 tmp |= (1 << 27); 8525 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); 8526 8527 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); 8528 tmp &= ~(0xF << 28); 8529 tmp |= (4 << 28); 8530 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); 8531 8532 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); 8533 tmp &= ~(0xF << 28); 8534 tmp |= (4 << 28); 8535 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); 8536} 8537 8538/* Implements 3 different sequences from BSpec chapter "Display iCLK 8539 * Programming" based on the parameters passed: 8540 * - Sequence to enable CLKOUT_DP 8541 * - Sequence to enable CLKOUT_DP without spread 8542 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O 8543 */ 8544static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread, 8545 bool with_fdi) 8546{ 8547 struct drm_i915_private *dev_priv = dev->dev_private; 8548 uint32_t reg, tmp; 8549 8550 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) 8551 with_spread = true; 8552 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n")) 8553 with_fdi = false; 8554 8555 mutex_lock(&dev_priv->sb_lock); 8556 8557 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 8558 tmp &= ~SBI_SSCCTL_DISABLE; 8559 tmp |= SBI_SSCCTL_PATHALT; 8560 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 8561 8562 udelay(24); 8563 8564 if (with_spread) { 8565 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 8566 tmp &= ~SBI_SSCCTL_PATHALT; 8567 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 8568 8569 if (with_fdi) { 8570 lpt_reset_fdi_mphy(dev_priv); 8571 lpt_program_fdi_mphy(dev_priv); 8572 } 8573 } 8574 8575 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0; 8576 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 8577 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; 8578 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 8579 8580 mutex_unlock(&dev_priv->sb_lock); 8581} 8582 8583/* Sequence to disable CLKOUT_DP */ 8584static void lpt_disable_clkout_dp(struct drm_device *dev) 8585{ 8586 struct drm_i915_private *dev_priv = dev->dev_private; 8587 uint32_t reg, tmp; 8588 8589 mutex_lock(&dev_priv->sb_lock); 8590 8591 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0; 8592 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); 8593 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; 8594 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); 8595 8596 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); 8597 if (!(tmp & SBI_SSCCTL_DISABLE)) { 8598 if (!(tmp & SBI_SSCCTL_PATHALT)) { 8599 tmp |= SBI_SSCCTL_PATHALT; 8600 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 8601 udelay(32); 8602 } 8603 tmp |= SBI_SSCCTL_DISABLE; 8604 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); 8605 } 8606 8607 mutex_unlock(&dev_priv->sb_lock); 8608} 8609 8610#define BEND_IDX(steps) ((50 + (steps)) / 5) 8611 8612static const uint16_t sscdivintphase[] = { 8613 [BEND_IDX( 50)] = 0x3B23, 8614 [BEND_IDX( 45)] = 0x3B23, 8615 [BEND_IDX( 40)] = 0x3C23, 8616 [BEND_IDX( 35)] = 0x3C23, 8617 [BEND_IDX( 30)] = 0x3D23, 8618 [BEND_IDX( 25)] = 0x3D23, 8619 [BEND_IDX( 20)] = 0x3E23, 8620 [BEND_IDX( 15)] = 0x3E23, 8621 [BEND_IDX( 10)] = 0x3F23, 8622 [BEND_IDX( 5)] = 0x3F23, 8623 [BEND_IDX( 0)] = 0x0025, 8624 [BEND_IDX( -5)] = 0x0025, 8625 [BEND_IDX(-10)] = 0x0125, 8626 [BEND_IDX(-15)] = 0x0125, 8627 [BEND_IDX(-20)] = 0x0225, 8628 [BEND_IDX(-25)] = 0x0225, 8629 [BEND_IDX(-30)] = 0x0325, 8630 [BEND_IDX(-35)] = 0x0325, 8631 [BEND_IDX(-40)] = 0x0425, 8632 [BEND_IDX(-45)] = 0x0425, 8633 [BEND_IDX(-50)] = 0x0525, 8634}; 8635 8636/* 8637 * Bend CLKOUT_DP 8638 * steps -50 to 50 inclusive, in steps of 5 8639 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz) 8640 * change in clock period = -(steps / 10) * 5.787 ps 8641 */ 8642static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps) 8643{ 8644 uint32_t tmp; 8645 int idx = BEND_IDX(steps); 8646 8647 if (WARN_ON(steps % 5 != 0)) 8648 return; 8649 8650 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase))) 8651 return; 8652 8653 mutex_lock(&dev_priv->sb_lock); 8654 8655 if (steps % 10 != 0) 8656 tmp = 0xAAAAAAAB; 8657 else 8658 tmp = 0x00000000; 8659 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK); 8660 8661 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK); 8662 tmp &= 0xffff0000; 8663 tmp |= sscdivintphase[idx]; 8664 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK); 8665 8666 mutex_unlock(&dev_priv->sb_lock); 8667} 8668 8669#undef BEND_IDX 8670 8671static void lpt_init_pch_refclk(struct drm_device *dev) 8672{ 8673 struct intel_encoder *encoder; 8674 bool has_vga = false; 8675 8676 for_each_intel_encoder(dev, encoder) { 8677 switch (encoder->type) { 8678 case INTEL_OUTPUT_ANALOG: 8679 has_vga = true; 8680 break; 8681 default: 8682 break; 8683 } 8684 } 8685 8686 if (has_vga) { 8687 lpt_bend_clkout_dp(to_i915(dev), 0); 8688 lpt_enable_clkout_dp(dev, true, true); 8689 } else { 8690 lpt_disable_clkout_dp(dev); 8691 } 8692} 8693 8694/* 8695 * Initialize reference clocks when the driver loads 8696 */ 8697void intel_init_pch_refclk(struct drm_device *dev) 8698{ 8699 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) 8700 ironlake_init_pch_refclk(dev); 8701 else if (HAS_PCH_LPT(dev)) 8702 lpt_init_pch_refclk(dev); 8703} 8704 8705static void ironlake_set_pipeconf(struct drm_crtc *crtc) 8706{ 8707 struct drm_i915_private *dev_priv = crtc->dev->dev_private; 8708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 8709 int pipe = intel_crtc->pipe; 8710 uint32_t val; 8711 8712 val = 0; 8713 8714 switch (intel_crtc->config->pipe_bpp) { 8715 case 18: 8716 val |= PIPECONF_6BPC; 8717 break; 8718 case 24: 8719 val |= PIPECONF_8BPC; 8720 break; 8721 case 30: 8722 val |= PIPECONF_10BPC; 8723 break; 8724 case 36: 8725 val |= PIPECONF_12BPC; 8726 break; 8727 default: 8728 /* Case prevented by intel_choose_pipe_bpp_dither. */ 8729 BUG(); 8730 } 8731 8732 if (intel_crtc->config->dither) 8733 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 8734 8735 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 8736 val |= PIPECONF_INTERLACED_ILK; 8737 else 8738 val |= PIPECONF_PROGRESSIVE; 8739 8740 if (intel_crtc->config->limited_color_range) 8741 val |= PIPECONF_COLOR_RANGE_SELECT; 8742 8743 I915_WRITE(PIPECONF(pipe), val); 8744 POSTING_READ(PIPECONF(pipe)); 8745} 8746 8747static void haswell_set_pipeconf(struct drm_crtc *crtc) 8748{ 8749 struct drm_i915_private *dev_priv = crtc->dev->dev_private; 8750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 8751 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; 8752 u32 val = 0; 8753 8754 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither) 8755 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); 8756 8757 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) 8758 val |= PIPECONF_INTERLACED_ILK; 8759 else 8760 val |= PIPECONF_PROGRESSIVE; 8761 8762 I915_WRITE(PIPECONF(cpu_transcoder), val); 8763 POSTING_READ(PIPECONF(cpu_transcoder)); 8764} 8765 8766static void haswell_set_pipemisc(struct drm_crtc *crtc) 8767{ 8768 struct drm_i915_private *dev_priv = crtc->dev->dev_private; 8769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 8770 8771 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) { 8772 u32 val = 0; 8773 8774 switch (intel_crtc->config->pipe_bpp) { 8775 case 18: 8776 val |= PIPEMISC_DITHER_6_BPC; 8777 break; 8778 case 24: 8779 val |= PIPEMISC_DITHER_8_BPC; 8780 break; 8781 case 30: 8782 val |= PIPEMISC_DITHER_10_BPC; 8783 break; 8784 case 36: 8785 val |= PIPEMISC_DITHER_12_BPC; 8786 break; 8787 default: 8788 /* Case prevented by pipe_config_set_bpp. */ 8789 BUG(); 8790 } 8791 8792 if (intel_crtc->config->dither) 8793 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; 8794 8795 I915_WRITE(PIPEMISC(intel_crtc->pipe), val); 8796 } 8797} 8798 8799int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) 8800{ 8801 /* 8802 * Account for spread spectrum to avoid 8803 * oversubscribing the link. Max center spread 8804 * is 2.5%; use 5% for safety's sake. 8805 */ 8806 u32 bps = target_clock * bpp * 21 / 20; 8807 return DIV_ROUND_UP(bps, link_bw * 8); 8808} 8809 8810static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) 8811{ 8812 return i9xx_dpll_compute_m(dpll) < factor * dpll->n; 8813} 8814 8815static void ironlake_compute_dpll(struct intel_crtc *intel_crtc, 8816 struct intel_crtc_state *crtc_state, 8817 intel_clock_t *reduced_clock) 8818{ 8819 struct drm_crtc *crtc = &intel_crtc->base; 8820 struct drm_device *dev = crtc->dev; 8821 struct drm_i915_private *dev_priv = dev->dev_private; 8822 struct drm_atomic_state *state = crtc_state->base.state; 8823 struct drm_connector *connector; 8824 struct drm_connector_state *connector_state; 8825 struct intel_encoder *encoder; 8826 u32 dpll, fp, fp2; 8827 int factor, i; 8828 bool is_lvds = false, is_sdvo = false; 8829 8830 for_each_connector_in_state(state, connector, connector_state, i) { 8831 if (connector_state->crtc != crtc_state->base.crtc) 8832 continue; 8833 8834 encoder = to_intel_encoder(connector_state->best_encoder); 8835 8836 switch (encoder->type) { 8837 case INTEL_OUTPUT_LVDS: 8838 is_lvds = true; 8839 break; 8840 case INTEL_OUTPUT_SDVO: 8841 case INTEL_OUTPUT_HDMI: 8842 is_sdvo = true; 8843 break; 8844 default: 8845 break; 8846 } 8847 } 8848 8849 /* Enable autotuning of the PLL clock (if permissible) */ 8850 factor = 21; 8851 if (is_lvds) { 8852 if ((intel_panel_use_ssc(dev_priv) && 8853 dev_priv->vbt.lvds_ssc_freq == 100000) || 8854 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev))) 8855 factor = 25; 8856 } else if (crtc_state->sdvo_tv_clock) 8857 factor = 20; 8858 8859 fp = i9xx_dpll_compute_fp(&crtc_state->dpll); 8860 8861 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor)) 8862 fp |= FP_CB_TUNE; 8863 8864 if (reduced_clock) { 8865 fp2 = i9xx_dpll_compute_fp(reduced_clock); 8866 8867 if (reduced_clock->m < factor * reduced_clock->n) 8868 fp2 |= FP_CB_TUNE; 8869 } else { 8870 fp2 = fp; 8871 } 8872 8873 dpll = 0; 8874 8875 if (is_lvds) 8876 dpll |= DPLLB_MODE_LVDS; 8877 else 8878 dpll |= DPLLB_MODE_DAC_SERIAL; 8879 8880 dpll |= (crtc_state->pixel_multiplier - 1) 8881 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; 8882 8883 if (is_sdvo) 8884 dpll |= DPLL_SDVO_HIGH_SPEED; 8885 if (crtc_state->has_dp_encoder) 8886 dpll |= DPLL_SDVO_HIGH_SPEED; 8887 8888 /* compute bitmask from p1 value */ 8889 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; 8890 /* also FPA1 */ 8891 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; 8892 8893 switch (crtc_state->dpll.p2) { 8894 case 5: 8895 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; 8896 break; 8897 case 7: 8898 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; 8899 break; 8900 case 10: 8901 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; 8902 break; 8903 case 14: 8904 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; 8905 break; 8906 } 8907 8908 if (is_lvds && intel_panel_use_ssc(dev_priv)) 8909 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; 8910 else 8911 dpll |= PLL_REF_INPUT_DREFCLK; 8912 8913 dpll |= DPLL_VCO_ENABLE; 8914 8915 crtc_state->dpll_hw_state.dpll = dpll; 8916 crtc_state->dpll_hw_state.fp0 = fp; 8917 crtc_state->dpll_hw_state.fp1 = fp2; 8918} 8919 8920static int ironlake_crtc_compute_clock(struct intel_crtc *crtc, 8921 struct intel_crtc_state *crtc_state) 8922{ 8923 struct drm_device *dev = crtc->base.dev; 8924 struct drm_i915_private *dev_priv = dev->dev_private; 8925 intel_clock_t reduced_clock; 8926 bool has_reduced_clock = false; 8927 struct intel_shared_dpll *pll; 8928 const intel_limit_t *limit; 8929 int refclk = 120000; 8930 8931 memset(&crtc_state->dpll_hw_state, 0, 8932 sizeof(crtc_state->dpll_hw_state)); 8933 8934 crtc->lowfreq_avail = false; 8935 8936 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ 8937 if (!crtc_state->has_pch_encoder) 8938 return 0; 8939 8940 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) { 8941 if (intel_panel_use_ssc(dev_priv)) { 8942 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", 8943 dev_priv->vbt.lvds_ssc_freq); 8944 refclk = dev_priv->vbt.lvds_ssc_freq; 8945 } 8946 8947 if (intel_is_dual_link_lvds(dev)) { 8948 if (refclk == 100000) 8949 limit = &intel_limits_ironlake_dual_lvds_100m; 8950 else 8951 limit = &intel_limits_ironlake_dual_lvds; 8952 } else { 8953 if (refclk == 100000) 8954 limit = &intel_limits_ironlake_single_lvds_100m; 8955 else 8956 limit = &intel_limits_ironlake_single_lvds; 8957 } 8958 } else { 8959 limit = &intel_limits_ironlake_dac; 8960 } 8961 8962 if (!crtc_state->clock_set && 8963 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, 8964 refclk, NULL, &crtc_state->dpll)) { 8965 DRM_ERROR("Couldn't find PLL settings for mode!\n"); 8966 return -EINVAL; 8967 } 8968 8969 ironlake_compute_dpll(crtc, crtc_state, 8970 has_reduced_clock ? &reduced_clock : NULL); 8971 8972 pll = intel_get_shared_dpll(crtc, crtc_state, NULL); 8973 if (pll == NULL) { 8974 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", 8975 pipe_name(crtc->pipe)); 8976 return -EINVAL; 8977 } 8978 8979 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) && 8980 has_reduced_clock) 8981 crtc->lowfreq_avail = true; 8982 8983 return 0; 8984} 8985 8986static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, 8987 struct intel_link_m_n *m_n) 8988{ 8989 struct drm_device *dev = crtc->base.dev; 8990 struct drm_i915_private *dev_priv = dev->dev_private; 8991 enum pipe pipe = crtc->pipe; 8992 8993 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); 8994 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); 8995 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) 8996 & ~TU_SIZE_MASK; 8997 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); 8998 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) 8999 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9000} 9001 9002static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, 9003 enum transcoder transcoder, 9004 struct intel_link_m_n *m_n, 9005 struct intel_link_m_n *m2_n2) 9006{ 9007 struct drm_device *dev = crtc->base.dev; 9008 struct drm_i915_private *dev_priv = dev->dev_private; 9009 enum pipe pipe = crtc->pipe; 9010 9011 if (INTEL_INFO(dev)->gen >= 5) { 9012 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); 9013 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); 9014 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) 9015 & ~TU_SIZE_MASK; 9016 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); 9017 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) 9018 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9019 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for 9020 * gen < 8) and if DRRS is supported (to make sure the 9021 * registers are not unnecessarily read). 9022 */ 9023 if (m2_n2 && INTEL_INFO(dev)->gen < 8 && 9024 crtc->config->has_drrs) { 9025 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); 9026 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); 9027 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) 9028 & ~TU_SIZE_MASK; 9029 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); 9030 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) 9031 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9032 } 9033 } else { 9034 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); 9035 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); 9036 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) 9037 & ~TU_SIZE_MASK; 9038 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); 9039 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) 9040 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; 9041 } 9042} 9043 9044void intel_dp_get_m_n(struct intel_crtc *crtc, 9045 struct intel_crtc_state *pipe_config) 9046{ 9047 if (pipe_config->has_pch_encoder) 9048 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); 9049 else 9050 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9051 &pipe_config->dp_m_n, 9052 &pipe_config->dp_m2_n2); 9053} 9054 9055static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, 9056 struct intel_crtc_state *pipe_config) 9057{ 9058 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, 9059 &pipe_config->fdi_m_n, NULL); 9060} 9061 9062static void skylake_get_pfit_config(struct intel_crtc *crtc, 9063 struct intel_crtc_state *pipe_config) 9064{ 9065 struct drm_device *dev = crtc->base.dev; 9066 struct drm_i915_private *dev_priv = dev->dev_private; 9067 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state; 9068 uint32_t ps_ctrl = 0; 9069 int id = -1; 9070 int i; 9071 9072 /* find scaler attached to this pipe */ 9073 for (i = 0; i < crtc->num_scalers; i++) { 9074 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i)); 9075 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) { 9076 id = i; 9077 pipe_config->pch_pfit.enabled = true; 9078 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i)); 9079 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i)); 9080 break; 9081 } 9082 } 9083 9084 scaler_state->scaler_id = id; 9085 if (id >= 0) { 9086 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); 9087 } else { 9088 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); 9089 } 9090} 9091 9092static void 9093skylake_get_initial_plane_config(struct intel_crtc *crtc, 9094 struct intel_initial_plane_config *plane_config) 9095{ 9096 struct drm_device *dev = crtc->base.dev; 9097 struct drm_i915_private *dev_priv = dev->dev_private; 9098 u32 val, base, offset, stride_mult, tiling; 9099 int pipe = crtc->pipe; 9100 int fourcc, pixel_format; 9101 unsigned int aligned_height; 9102 struct drm_framebuffer *fb; 9103 struct intel_framebuffer *intel_fb; 9104 9105 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9106 if (!intel_fb) { 9107 DRM_DEBUG_KMS("failed to alloc fb\n"); 9108 return; 9109 } 9110 9111 fb = &intel_fb->base; 9112 9113 val = I915_READ(PLANE_CTL(pipe, 0)); 9114 if (!(val & PLANE_CTL_ENABLE)) 9115 goto error; 9116 9117 pixel_format = val & PLANE_CTL_FORMAT_MASK; 9118 fourcc = skl_format_to_fourcc(pixel_format, 9119 val & PLANE_CTL_ORDER_RGBX, 9120 val & PLANE_CTL_ALPHA_MASK); 9121 fb->pixel_format = fourcc; 9122 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; 9123 9124 tiling = val & PLANE_CTL_TILED_MASK; 9125 switch (tiling) { 9126 case PLANE_CTL_TILED_LINEAR: 9127 fb->modifier[0] = DRM_FORMAT_MOD_NONE; 9128 break; 9129 case PLANE_CTL_TILED_X: 9130 plane_config->tiling = I915_TILING_X; 9131 fb->modifier[0] = I915_FORMAT_MOD_X_TILED; 9132 break; 9133 case PLANE_CTL_TILED_Y: 9134 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED; 9135 break; 9136 case PLANE_CTL_TILED_YF: 9137 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED; 9138 break; 9139 default: 9140 MISSING_CASE(tiling); 9141 goto error; 9142 } 9143 9144 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000; 9145 plane_config->base = base; 9146 9147 offset = I915_READ(PLANE_OFFSET(pipe, 0)); 9148 9149 val = I915_READ(PLANE_SIZE(pipe, 0)); 9150 fb->height = ((val >> 16) & 0xfff) + 1; 9151 fb->width = ((val >> 0) & 0x1fff) + 1; 9152 9153 val = I915_READ(PLANE_STRIDE(pipe, 0)); 9154 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0], 9155 fb->pixel_format); 9156 fb->pitches[0] = (val & 0x3ff) * stride_mult; 9157 9158 aligned_height = intel_fb_align_height(dev, fb->height, 9159 fb->pixel_format, 9160 fb->modifier[0]); 9161 9162 plane_config->size = fb->pitches[0] * aligned_height; 9163 9164 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9165 pipe_name(pipe), fb->width, fb->height, 9166 fb->bits_per_pixel, base, fb->pitches[0], 9167 plane_config->size); 9168 9169 plane_config->fb = intel_fb; 9170 return; 9171 9172error: 9173 kfree(fb); 9174} 9175 9176static void ironlake_get_pfit_config(struct intel_crtc *crtc, 9177 struct intel_crtc_state *pipe_config) 9178{ 9179 struct drm_device *dev = crtc->base.dev; 9180 struct drm_i915_private *dev_priv = dev->dev_private; 9181 uint32_t tmp; 9182 9183 tmp = I915_READ(PF_CTL(crtc->pipe)); 9184 9185 if (tmp & PF_ENABLE) { 9186 pipe_config->pch_pfit.enabled = true; 9187 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); 9188 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); 9189 9190 /* We currently do not free assignements of panel fitters on 9191 * ivb/hsw (since we don't use the higher upscaling modes which 9192 * differentiates them) so just WARN about this case for now. */ 9193 if (IS_GEN7(dev)) { 9194 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != 9195 PF_PIPE_SEL_IVB(crtc->pipe)); 9196 } 9197 } 9198} 9199 9200static void 9201ironlake_get_initial_plane_config(struct intel_crtc *crtc, 9202 struct intel_initial_plane_config *plane_config) 9203{ 9204 struct drm_device *dev = crtc->base.dev; 9205 struct drm_i915_private *dev_priv = dev->dev_private; 9206 u32 val, base, offset; 9207 int pipe = crtc->pipe; 9208 int fourcc, pixel_format; 9209 unsigned int aligned_height; 9210 struct drm_framebuffer *fb; 9211 struct intel_framebuffer *intel_fb; 9212 9213 val = I915_READ(DSPCNTR(pipe)); 9214 if (!(val & DISPLAY_PLANE_ENABLE)) 9215 return; 9216 9217 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 9218 if (!intel_fb) { 9219 DRM_DEBUG_KMS("failed to alloc fb\n"); 9220 return; 9221 } 9222 9223 fb = &intel_fb->base; 9224 9225 if (INTEL_INFO(dev)->gen >= 4) { 9226 if (val & DISPPLANE_TILED) { 9227 plane_config->tiling = I915_TILING_X; 9228 fb->modifier[0] = I915_FORMAT_MOD_X_TILED; 9229 } 9230 } 9231 9232 pixel_format = val & DISPPLANE_PIXFORMAT_MASK; 9233 fourcc = i9xx_format_to_fourcc(pixel_format); 9234 fb->pixel_format = fourcc; 9235 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; 9236 9237 base = I915_READ(DSPSURF(pipe)) & 0xfffff000; 9238 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { 9239 offset = I915_READ(DSPOFFSET(pipe)); 9240 } else { 9241 if (plane_config->tiling) 9242 offset = I915_READ(DSPTILEOFF(pipe)); 9243 else 9244 offset = I915_READ(DSPLINOFF(pipe)); 9245 } 9246 plane_config->base = base; 9247 9248 val = I915_READ(PIPESRC(pipe)); 9249 fb->width = ((val >> 16) & 0xfff) + 1; 9250 fb->height = ((val >> 0) & 0xfff) + 1; 9251 9252 val = I915_READ(DSPSTRIDE(pipe)); 9253 fb->pitches[0] = val & 0xffffffc0; 9254 9255 aligned_height = intel_fb_align_height(dev, fb->height, 9256 fb->pixel_format, 9257 fb->modifier[0]); 9258 9259 plane_config->size = fb->pitches[0] * aligned_height; 9260 9261 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", 9262 pipe_name(pipe), fb->width, fb->height, 9263 fb->bits_per_pixel, base, fb->pitches[0], 9264 plane_config->size); 9265 9266 plane_config->fb = intel_fb; 9267} 9268 9269static bool ironlake_get_pipe_config(struct intel_crtc *crtc, 9270 struct intel_crtc_state *pipe_config) 9271{ 9272 struct drm_device *dev = crtc->base.dev; 9273 struct drm_i915_private *dev_priv = dev->dev_private; 9274 enum intel_display_power_domain power_domain; 9275 uint32_t tmp; 9276 bool ret; 9277 9278 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 9279 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) 9280 return false; 9281 9282 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9283 pipe_config->shared_dpll = NULL; 9284 9285 ret = false; 9286 tmp = I915_READ(PIPECONF(crtc->pipe)); 9287 if (!(tmp & PIPECONF_ENABLE)) 9288 goto out; 9289 9290 switch (tmp & PIPECONF_BPC_MASK) { 9291 case PIPECONF_6BPC: 9292 pipe_config->pipe_bpp = 18; 9293 break; 9294 case PIPECONF_8BPC: 9295 pipe_config->pipe_bpp = 24; 9296 break; 9297 case PIPECONF_10BPC: 9298 pipe_config->pipe_bpp = 30; 9299 break; 9300 case PIPECONF_12BPC: 9301 pipe_config->pipe_bpp = 36; 9302 break; 9303 default: 9304 break; 9305 } 9306 9307 if (tmp & PIPECONF_COLOR_RANGE_SELECT) 9308 pipe_config->limited_color_range = true; 9309 9310 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { 9311 struct intel_shared_dpll *pll; 9312 enum intel_dpll_id pll_id; 9313 9314 pipe_config->has_pch_encoder = true; 9315 9316 tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); 9317 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 9318 FDI_DP_PORT_WIDTH_SHIFT) + 1; 9319 9320 ironlake_get_fdi_m_n_config(crtc, pipe_config); 9321 9322 if (HAS_PCH_IBX(dev_priv)) { 9323 pll_id = (enum intel_dpll_id) crtc->pipe; 9324 } else { 9325 tmp = I915_READ(PCH_DPLL_SEL); 9326 if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) 9327 pll_id = DPLL_ID_PCH_PLL_B; 9328 else 9329 pll_id= DPLL_ID_PCH_PLL_A; 9330 } 9331 9332 pipe_config->shared_dpll = 9333 intel_get_shared_dpll_by_id(dev_priv, pll_id); 9334 pll = pipe_config->shared_dpll; 9335 9336 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll, 9337 &pipe_config->dpll_hw_state)); 9338 9339 tmp = pipe_config->dpll_hw_state.dpll; 9340 pipe_config->pixel_multiplier = 9341 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) 9342 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; 9343 9344 ironlake_pch_clock_get(crtc, pipe_config); 9345 } else { 9346 pipe_config->pixel_multiplier = 1; 9347 } 9348 9349 intel_get_pipe_timings(crtc, pipe_config); 9350 intel_get_pipe_src_size(crtc, pipe_config); 9351 9352 ironlake_get_pfit_config(crtc, pipe_config); 9353 9354 ret = true; 9355 9356out: 9357 intel_display_power_put(dev_priv, power_domain); 9358 9359 return ret; 9360} 9361 9362static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) 9363{ 9364 struct drm_device *dev = dev_priv->dev; 9365 struct intel_crtc *crtc; 9366 9367 for_each_intel_crtc(dev, crtc) 9368 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n", 9369 pipe_name(crtc->pipe)); 9370 9371 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n"); 9372 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); 9373 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); 9374 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); 9375 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n"); 9376 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, 9377 "CPU PWM1 enabled\n"); 9378 if (IS_HASWELL(dev)) 9379 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, 9380 "CPU PWM2 enabled\n"); 9381 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, 9382 "PCH PWM1 enabled\n"); 9383 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, 9384 "Utility pin enabled\n"); 9385 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); 9386 9387 /* 9388 * In theory we can still leave IRQs enabled, as long as only the HPD 9389 * interrupts remain enabled. We used to check for that, but since it's 9390 * gen-specific and since we only disable LCPLL after we fully disable 9391 * the interrupts, the check below should be enough. 9392 */ 9393 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); 9394} 9395 9396static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv) 9397{ 9398 struct drm_device *dev = dev_priv->dev; 9399 9400 if (IS_HASWELL(dev)) 9401 return I915_READ(D_COMP_HSW); 9402 else 9403 return I915_READ(D_COMP_BDW); 9404} 9405 9406static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val) 9407{ 9408 struct drm_device *dev = dev_priv->dev; 9409 9410 if (IS_HASWELL(dev)) { 9411 mutex_lock(&dev_priv->rps.hw_lock); 9412 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, 9413 val)) 9414 DRM_ERROR("Failed to write to D_COMP\n"); 9415 mutex_unlock(&dev_priv->rps.hw_lock); 9416 } else { 9417 I915_WRITE(D_COMP_BDW, val); 9418 POSTING_READ(D_COMP_BDW); 9419 } 9420} 9421 9422/* 9423 * This function implements pieces of two sequences from BSpec: 9424 * - Sequence for display software to disable LCPLL 9425 * - Sequence for display software to allow package C8+ 9426 * The steps implemented here are just the steps that actually touch the LCPLL 9427 * register. Callers should take care of disabling all the display engine 9428 * functions, doing the mode unset, fixing interrupts, etc. 9429 */ 9430static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, 9431 bool switch_to_fclk, bool allow_power_down) 9432{ 9433 uint32_t val; 9434 9435 assert_can_disable_lcpll(dev_priv); 9436 9437 val = I915_READ(LCPLL_CTL); 9438 9439 if (switch_to_fclk) { 9440 val |= LCPLL_CD_SOURCE_FCLK; 9441 I915_WRITE(LCPLL_CTL, val); 9442 9443 if (wait_for_us(I915_READ(LCPLL_CTL) & 9444 LCPLL_CD_SOURCE_FCLK_DONE, 1)) 9445 DRM_ERROR("Switching to FCLK failed\n"); 9446 9447 val = I915_READ(LCPLL_CTL); 9448 } 9449 9450 val |= LCPLL_PLL_DISABLE; 9451 I915_WRITE(LCPLL_CTL, val); 9452 POSTING_READ(LCPLL_CTL); 9453 9454 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1)) 9455 DRM_ERROR("LCPLL still locked\n"); 9456 9457 val = hsw_read_dcomp(dev_priv); 9458 val |= D_COMP_COMP_DISABLE; 9459 hsw_write_dcomp(dev_priv, val); 9460 ndelay(100); 9461 9462 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, 9463 1)) 9464 DRM_ERROR("D_COMP RCOMP still in progress\n"); 9465 9466 if (allow_power_down) { 9467 val = I915_READ(LCPLL_CTL); 9468 val |= LCPLL_POWER_DOWN_ALLOW; 9469 I915_WRITE(LCPLL_CTL, val); 9470 POSTING_READ(LCPLL_CTL); 9471 } 9472} 9473 9474/* 9475 * Fully restores LCPLL, disallowing power down and switching back to LCPLL 9476 * source. 9477 */ 9478static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) 9479{ 9480 uint32_t val; 9481 9482 val = I915_READ(LCPLL_CTL); 9483 9484 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | 9485 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) 9486 return; 9487 9488 /* 9489 * Make sure we're not on PC8 state before disabling PC8, otherwise 9490 * we'll hang the machine. To prevent PC8 state, just enable force_wake. 9491 */ 9492 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 9493 9494 if (val & LCPLL_POWER_DOWN_ALLOW) { 9495 val &= ~LCPLL_POWER_DOWN_ALLOW; 9496 I915_WRITE(LCPLL_CTL, val); 9497 POSTING_READ(LCPLL_CTL); 9498 } 9499 9500 val = hsw_read_dcomp(dev_priv); 9501 val |= D_COMP_COMP_FORCE; 9502 val &= ~D_COMP_COMP_DISABLE; 9503 hsw_write_dcomp(dev_priv, val); 9504 9505 val = I915_READ(LCPLL_CTL); 9506 val &= ~LCPLL_PLL_DISABLE; 9507 I915_WRITE(LCPLL_CTL, val); 9508 9509 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5)) 9510 DRM_ERROR("LCPLL not locked yet\n"); 9511 9512 if (val & LCPLL_CD_SOURCE_FCLK) { 9513 val = I915_READ(LCPLL_CTL); 9514 val &= ~LCPLL_CD_SOURCE_FCLK; 9515 I915_WRITE(LCPLL_CTL, val); 9516 9517 if (wait_for_us((I915_READ(LCPLL_CTL) & 9518 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 9519 DRM_ERROR("Switching back to LCPLL failed\n"); 9520 } 9521 9522 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 9523 intel_update_cdclk(dev_priv->dev); 9524} 9525 9526/* 9527 * Package states C8 and deeper are really deep PC states that can only be 9528 * reached when all the devices on the system allow it, so even if the graphics 9529 * device allows PC8+, it doesn't mean the system will actually get to these 9530 * states. Our driver only allows PC8+ when going into runtime PM. 9531 * 9532 * The requirements for PC8+ are that all the outputs are disabled, the power 9533 * well is disabled and most interrupts are disabled, and these are also 9534 * requirements for runtime PM. When these conditions are met, we manually do 9535 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk 9536 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard 9537 * hang the machine. 9538 * 9539 * When we really reach PC8 or deeper states (not just when we allow it) we lose 9540 * the state of some registers, so when we come back from PC8+ we need to 9541 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't 9542 * need to take care of the registers kept by RC6. Notice that this happens even 9543 * if we don't put the device in PCI D3 state (which is what currently happens 9544 * because of the runtime PM support). 9545 * 9546 * For more, read "Display Sequences for Package C8" on the hardware 9547 * documentation. 9548 */ 9549void hsw_enable_pc8(struct drm_i915_private *dev_priv) 9550{ 9551 struct drm_device *dev = dev_priv->dev; 9552 uint32_t val; 9553 9554 DRM_DEBUG_KMS("Enabling package C8+\n"); 9555 9556 if (HAS_PCH_LPT_LP(dev)) { 9557 val = I915_READ(SOUTH_DSPCLK_GATE_D); 9558 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; 9559 I915_WRITE(SOUTH_DSPCLK_GATE_D, val); 9560 } 9561 9562 lpt_disable_clkout_dp(dev); 9563 hsw_disable_lcpll(dev_priv, true, true); 9564} 9565 9566void hsw_disable_pc8(struct drm_i915_private *dev_priv) 9567{ 9568 struct drm_device *dev = dev_priv->dev; 9569 uint32_t val; 9570 9571 DRM_DEBUG_KMS("Disabling package C8+\n"); 9572 9573 hsw_restore_lcpll(dev_priv); 9574 lpt_init_pch_refclk(dev); 9575 9576 if (HAS_PCH_LPT_LP(dev)) { 9577 val = I915_READ(SOUTH_DSPCLK_GATE_D); 9578 val |= PCH_LP_PARTITION_LEVEL_DISABLE; 9579 I915_WRITE(SOUTH_DSPCLK_GATE_D, val); 9580 } 9581} 9582 9583static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state) 9584{ 9585 struct drm_device *dev = old_state->dev; 9586 struct intel_atomic_state *old_intel_state = 9587 to_intel_atomic_state(old_state); 9588 unsigned int req_cdclk = old_intel_state->dev_cdclk; 9589 9590 broxton_set_cdclk(to_i915(dev), req_cdclk); 9591} 9592 9593/* compute the max rate for new configuration */ 9594static int ilk_max_pixel_rate(struct drm_atomic_state *state) 9595{ 9596 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 9597 struct drm_i915_private *dev_priv = state->dev->dev_private; 9598 struct drm_crtc *crtc; 9599 struct drm_crtc_state *cstate; 9600 struct intel_crtc_state *crtc_state; 9601 unsigned max_pixel_rate = 0, i; 9602 enum pipe pipe; 9603 9604 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk, 9605 sizeof(intel_state->min_pixclk)); 9606 9607 for_each_crtc_in_state(state, crtc, cstate, i) { 9608 int pixel_rate; 9609 9610 crtc_state = to_intel_crtc_state(cstate); 9611 if (!crtc_state->base.enable) { 9612 intel_state->min_pixclk[i] = 0; 9613 continue; 9614 } 9615 9616 pixel_rate = ilk_pipe_pixel_rate(crtc_state); 9617 9618 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 9619 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled) 9620 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95); 9621 9622 intel_state->min_pixclk[i] = pixel_rate; 9623 } 9624 9625 for_each_pipe(dev_priv, pipe) 9626 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate); 9627 9628 return max_pixel_rate; 9629} 9630 9631static void broadwell_set_cdclk(struct drm_device *dev, int cdclk) 9632{ 9633 struct drm_i915_private *dev_priv = dev->dev_private; 9634 uint32_t val, data; 9635 int ret; 9636 9637 if (WARN((I915_READ(LCPLL_CTL) & 9638 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK | 9639 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE | 9640 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW | 9641 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK, 9642 "trying to change cdclk frequency with cdclk not enabled\n")) 9643 return; 9644 9645 mutex_lock(&dev_priv->rps.hw_lock); 9646 ret = sandybridge_pcode_write(dev_priv, 9647 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0); 9648 mutex_unlock(&dev_priv->rps.hw_lock); 9649 if (ret) { 9650 DRM_ERROR("failed to inform pcode about cdclk change\n"); 9651 return; 9652 } 9653 9654 val = I915_READ(LCPLL_CTL); 9655 val |= LCPLL_CD_SOURCE_FCLK; 9656 I915_WRITE(LCPLL_CTL, val); 9657 9658 if (wait_for_us(I915_READ(LCPLL_CTL) & 9659 LCPLL_CD_SOURCE_FCLK_DONE, 1)) 9660 DRM_ERROR("Switching to FCLK failed\n"); 9661 9662 val = I915_READ(LCPLL_CTL); 9663 val &= ~LCPLL_CLK_FREQ_MASK; 9664 9665 switch (cdclk) { 9666 case 450000: 9667 val |= LCPLL_CLK_FREQ_450; 9668 data = 0; 9669 break; 9670 case 540000: 9671 val |= LCPLL_CLK_FREQ_54O_BDW; 9672 data = 1; 9673 break; 9674 case 337500: 9675 val |= LCPLL_CLK_FREQ_337_5_BDW; 9676 data = 2; 9677 break; 9678 case 675000: 9679 val |= LCPLL_CLK_FREQ_675_BDW; 9680 data = 3; 9681 break; 9682 default: 9683 WARN(1, "invalid cdclk frequency\n"); 9684 return; 9685 } 9686 9687 I915_WRITE(LCPLL_CTL, val); 9688 9689 val = I915_READ(LCPLL_CTL); 9690 val &= ~LCPLL_CD_SOURCE_FCLK; 9691 I915_WRITE(LCPLL_CTL, val); 9692 9693 if (wait_for_us((I915_READ(LCPLL_CTL) & 9694 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) 9695 DRM_ERROR("Switching back to LCPLL failed\n"); 9696 9697 mutex_lock(&dev_priv->rps.hw_lock); 9698 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data); 9699 mutex_unlock(&dev_priv->rps.hw_lock); 9700 9701 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1); 9702 9703 intel_update_cdclk(dev); 9704 9705 WARN(cdclk != dev_priv->cdclk_freq, 9706 "cdclk requested %d kHz but got %d kHz\n", 9707 cdclk, dev_priv->cdclk_freq); 9708} 9709 9710static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state) 9711{ 9712 struct drm_i915_private *dev_priv = to_i915(state->dev); 9713 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 9714 int max_pixclk = ilk_max_pixel_rate(state); 9715 int cdclk; 9716 9717 /* 9718 * FIXME should also account for plane ratio 9719 * once 64bpp pixel formats are supported. 9720 */ 9721 if (max_pixclk > 540000) 9722 cdclk = 675000; 9723 else if (max_pixclk > 450000) 9724 cdclk = 540000; 9725 else if (max_pixclk > 337500) 9726 cdclk = 450000; 9727 else 9728 cdclk = 337500; 9729 9730 if (cdclk > dev_priv->max_cdclk_freq) { 9731 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n", 9732 cdclk, dev_priv->max_cdclk_freq); 9733 return -EINVAL; 9734 } 9735 9736 intel_state->cdclk = intel_state->dev_cdclk = cdclk; 9737 if (!intel_state->active_crtcs) 9738 intel_state->dev_cdclk = 337500; 9739 9740 return 0; 9741} 9742 9743static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state) 9744{ 9745 struct drm_device *dev = old_state->dev; 9746 struct intel_atomic_state *old_intel_state = 9747 to_intel_atomic_state(old_state); 9748 unsigned req_cdclk = old_intel_state->dev_cdclk; 9749 9750 broadwell_set_cdclk(dev, req_cdclk); 9751} 9752 9753static int haswell_crtc_compute_clock(struct intel_crtc *crtc, 9754 struct intel_crtc_state *crtc_state) 9755{ 9756 struct intel_encoder *intel_encoder = 9757 intel_ddi_get_crtc_new_encoder(crtc_state); 9758 9759 if (intel_encoder->type != INTEL_OUTPUT_DSI) { 9760 if (!intel_ddi_pll_select(crtc, crtc_state)) 9761 return -EINVAL; 9762 } 9763 9764 crtc->lowfreq_avail = false; 9765 9766 return 0; 9767} 9768 9769static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv, 9770 enum port port, 9771 struct intel_crtc_state *pipe_config) 9772{ 9773 enum intel_dpll_id id; 9774 9775 switch (port) { 9776 case PORT_A: 9777 pipe_config->ddi_pll_sel = SKL_DPLL0; 9778 id = DPLL_ID_SKL_DPLL0; 9779 break; 9780 case PORT_B: 9781 pipe_config->ddi_pll_sel = SKL_DPLL1; 9782 id = DPLL_ID_SKL_DPLL1; 9783 break; 9784 case PORT_C: 9785 pipe_config->ddi_pll_sel = SKL_DPLL2; 9786 id = DPLL_ID_SKL_DPLL2; 9787 break; 9788 default: 9789 DRM_ERROR("Incorrect port type\n"); 9790 return; 9791 } 9792 9793 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 9794} 9795 9796static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, 9797 enum port port, 9798 struct intel_crtc_state *pipe_config) 9799{ 9800 enum intel_dpll_id id; 9801 u32 temp; 9802 9803 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); 9804 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1); 9805 9806 switch (pipe_config->ddi_pll_sel) { 9807 case SKL_DPLL0: 9808 id = DPLL_ID_SKL_DPLL0; 9809 break; 9810 case SKL_DPLL1: 9811 id = DPLL_ID_SKL_DPLL1; 9812 break; 9813 case SKL_DPLL2: 9814 id = DPLL_ID_SKL_DPLL2; 9815 break; 9816 case SKL_DPLL3: 9817 id = DPLL_ID_SKL_DPLL3; 9818 break; 9819 default: 9820 MISSING_CASE(pipe_config->ddi_pll_sel); 9821 return; 9822 } 9823 9824 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 9825} 9826 9827static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, 9828 enum port port, 9829 struct intel_crtc_state *pipe_config) 9830{ 9831 enum intel_dpll_id id; 9832 9833 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); 9834 9835 switch (pipe_config->ddi_pll_sel) { 9836 case PORT_CLK_SEL_WRPLL1: 9837 id = DPLL_ID_WRPLL1; 9838 break; 9839 case PORT_CLK_SEL_WRPLL2: 9840 id = DPLL_ID_WRPLL2; 9841 break; 9842 case PORT_CLK_SEL_SPLL: 9843 id = DPLL_ID_SPLL; 9844 break; 9845 case PORT_CLK_SEL_LCPLL_810: 9846 id = DPLL_ID_LCPLL_810; 9847 break; 9848 case PORT_CLK_SEL_LCPLL_1350: 9849 id = DPLL_ID_LCPLL_1350; 9850 break; 9851 case PORT_CLK_SEL_LCPLL_2700: 9852 id = DPLL_ID_LCPLL_2700; 9853 break; 9854 default: 9855 MISSING_CASE(pipe_config->ddi_pll_sel); 9856 /* fall through */ 9857 case PORT_CLK_SEL_NONE: 9858 return; 9859 } 9860 9861 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id); 9862} 9863 9864static bool hsw_get_transcoder_state(struct intel_crtc *crtc, 9865 struct intel_crtc_state *pipe_config, 9866 unsigned long *power_domain_mask) 9867{ 9868 struct drm_device *dev = crtc->base.dev; 9869 struct drm_i915_private *dev_priv = dev->dev_private; 9870 enum intel_display_power_domain power_domain; 9871 u32 tmp; 9872 9873 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; 9874 9875 /* 9876 * XXX: Do intel_display_power_get_if_enabled before reading this (for 9877 * consistency and less surprising code; it's in always on power). 9878 */ 9879 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); 9880 if (tmp & TRANS_DDI_FUNC_ENABLE) { 9881 enum pipe trans_edp_pipe; 9882 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { 9883 default: 9884 WARN(1, "unknown pipe linked to edp transcoder\n"); 9885 case TRANS_DDI_EDP_INPUT_A_ONOFF: 9886 case TRANS_DDI_EDP_INPUT_A_ON: 9887 trans_edp_pipe = PIPE_A; 9888 break; 9889 case TRANS_DDI_EDP_INPUT_B_ONOFF: 9890 trans_edp_pipe = PIPE_B; 9891 break; 9892 case TRANS_DDI_EDP_INPUT_C_ONOFF: 9893 trans_edp_pipe = PIPE_C; 9894 break; 9895 } 9896 9897 if (trans_edp_pipe == crtc->pipe) 9898 pipe_config->cpu_transcoder = TRANSCODER_EDP; 9899 } 9900 9901 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder); 9902 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) 9903 return false; 9904 *power_domain_mask |= BIT(power_domain); 9905 9906 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); 9907 9908 return tmp & PIPECONF_ENABLE; 9909} 9910 9911static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, 9912 struct intel_crtc_state *pipe_config, 9913 unsigned long *power_domain_mask) 9914{ 9915 struct drm_device *dev = crtc->base.dev; 9916 struct drm_i915_private *dev_priv = dev->dev_private; 9917 enum intel_display_power_domain power_domain; 9918 enum port port; 9919 enum transcoder cpu_transcoder; 9920 u32 tmp; 9921 9922 pipe_config->has_dsi_encoder = false; 9923 9924 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { 9925 if (port == PORT_A) 9926 cpu_transcoder = TRANSCODER_DSI_A; 9927 else 9928 cpu_transcoder = TRANSCODER_DSI_C; 9929 9930 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); 9931 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) 9932 continue; 9933 *power_domain_mask |= BIT(power_domain); 9934 9935 /* 9936 * The PLL needs to be enabled with a valid divider 9937 * configuration, otherwise accessing DSI registers will hang 9938 * the machine. See BSpec North Display Engine 9939 * registers/MIPI[BXT]. We can break out here early, since we 9940 * need the same DSI PLL to be enabled for both DSI ports. 9941 */ 9942 if (!intel_dsi_pll_is_enabled(dev_priv)) 9943 break; 9944 9945 /* XXX: this works for video mode only */ 9946 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port)); 9947 if (!(tmp & DPI_ENABLE)) 9948 continue; 9949 9950 tmp = I915_READ(MIPI_CTRL(port)); 9951 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) 9952 continue; 9953 9954 pipe_config->cpu_transcoder = cpu_transcoder; 9955 pipe_config->has_dsi_encoder = true; 9956 break; 9957 } 9958 9959 return pipe_config->has_dsi_encoder; 9960} 9961 9962static void haswell_get_ddi_port_state(struct intel_crtc *crtc, 9963 struct intel_crtc_state *pipe_config) 9964{ 9965 struct drm_device *dev = crtc->base.dev; 9966 struct drm_i915_private *dev_priv = dev->dev_private; 9967 struct intel_shared_dpll *pll; 9968 enum port port; 9969 uint32_t tmp; 9970 9971 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); 9972 9973 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; 9974 9975 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 9976 skylake_get_ddi_pll(dev_priv, port, pipe_config); 9977 else if (IS_BROXTON(dev)) 9978 bxt_get_ddi_pll(dev_priv, port, pipe_config); 9979 else 9980 haswell_get_ddi_pll(dev_priv, port, pipe_config); 9981 9982 pll = pipe_config->shared_dpll; 9983 if (pll) { 9984 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll, 9985 &pipe_config->dpll_hw_state)); 9986 } 9987 9988 /* 9989 * Haswell has only FDI/PCH transcoder A. It is which is connected to 9990 * DDI E. So just check whether this pipe is wired to DDI E and whether 9991 * the PCH transcoder is on. 9992 */ 9993 if (INTEL_INFO(dev)->gen < 9 && 9994 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { 9995 pipe_config->has_pch_encoder = true; 9996 9997 tmp = I915_READ(FDI_RX_CTL(PIPE_A)); 9998 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> 9999 FDI_DP_PORT_WIDTH_SHIFT) + 1; 10000 10001 ironlake_get_fdi_m_n_config(crtc, pipe_config); 10002 } 10003} 10004 10005static bool haswell_get_pipe_config(struct intel_crtc *crtc, 10006 struct intel_crtc_state *pipe_config) 10007{ 10008 struct drm_device *dev = crtc->base.dev; 10009 struct drm_i915_private *dev_priv = dev->dev_private; 10010 enum intel_display_power_domain power_domain; 10011 unsigned long power_domain_mask; 10012 bool active; 10013 10014 power_domain = POWER_DOMAIN_PIPE(crtc->pipe); 10015 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) 10016 return false; 10017 power_domain_mask = BIT(power_domain); 10018 10019 pipe_config->shared_dpll = NULL; 10020 10021 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask); 10022 10023 if (IS_BROXTON(dev_priv)) { 10024 bxt_get_dsi_transcoder_state(crtc, pipe_config, 10025 &power_domain_mask); 10026 WARN_ON(active && pipe_config->has_dsi_encoder); 10027 if (pipe_config->has_dsi_encoder) 10028 active = true; 10029 } 10030 10031 if (!active) 10032 goto out; 10033 10034 if (!pipe_config->has_dsi_encoder) { 10035 haswell_get_ddi_port_state(crtc, pipe_config); 10036 intel_get_pipe_timings(crtc, pipe_config); 10037 } 10038 10039 intel_get_pipe_src_size(crtc, pipe_config); 10040 10041 pipe_config->gamma_mode = 10042 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK; 10043 10044 if (INTEL_INFO(dev)->gen >= 9) { 10045 skl_init_scalers(dev, crtc, pipe_config); 10046 } 10047 10048 if (INTEL_INFO(dev)->gen >= 9) { 10049 pipe_config->scaler_state.scaler_id = -1; 10050 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX); 10051 } 10052 10053 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); 10054 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) { 10055 power_domain_mask |= BIT(power_domain); 10056 if (INTEL_INFO(dev)->gen >= 9) 10057 skylake_get_pfit_config(crtc, pipe_config); 10058 else 10059 ironlake_get_pfit_config(crtc, pipe_config); 10060 } 10061 10062 if (IS_HASWELL(dev)) 10063 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) && 10064 (I915_READ(IPS_CTL) & IPS_ENABLE); 10065 10066 if (pipe_config->cpu_transcoder != TRANSCODER_EDP && 10067 !transcoder_is_dsi(pipe_config->cpu_transcoder)) { 10068 pipe_config->pixel_multiplier = 10069 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; 10070 } else { 10071 pipe_config->pixel_multiplier = 1; 10072 } 10073 10074out: 10075 for_each_power_domain(power_domain, power_domain_mask) 10076 intel_display_power_put(dev_priv, power_domain); 10077 10078 return active; 10079} 10080 10081static void i845_update_cursor(struct drm_crtc *crtc, u32 base, 10082 const struct intel_plane_state *plane_state) 10083{ 10084 struct drm_device *dev = crtc->dev; 10085 struct drm_i915_private *dev_priv = dev->dev_private; 10086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 10087 uint32_t cntl = 0, size = 0; 10088 10089 if (plane_state && plane_state->visible) { 10090 unsigned int width = plane_state->base.crtc_w; 10091 unsigned int height = plane_state->base.crtc_h; 10092 unsigned int stride = roundup_pow_of_two(width) * 4; 10093 10094 switch (stride) { 10095 default: 10096 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n", 10097 width, stride); 10098 stride = 256; 10099 /* fallthrough */ 10100 case 256: 10101 case 512: 10102 case 1024: 10103 case 2048: 10104 break; 10105 } 10106 10107 cntl |= CURSOR_ENABLE | 10108 CURSOR_GAMMA_ENABLE | 10109 CURSOR_FORMAT_ARGB | 10110 CURSOR_STRIDE(stride); 10111 10112 size = (height << 12) | width; 10113 } 10114 10115 if (intel_crtc->cursor_cntl != 0 && 10116 (intel_crtc->cursor_base != base || 10117 intel_crtc->cursor_size != size || 10118 intel_crtc->cursor_cntl != cntl)) { 10119 /* On these chipsets we can only modify the base/size/stride 10120 * whilst the cursor is disabled. 10121 */ 10122 I915_WRITE(CURCNTR(PIPE_A), 0); 10123 POSTING_READ(CURCNTR(PIPE_A)); 10124 intel_crtc->cursor_cntl = 0; 10125 } 10126 10127 if (intel_crtc->cursor_base != base) { 10128 I915_WRITE(CURBASE(PIPE_A), base); 10129 intel_crtc->cursor_base = base; 10130 } 10131 10132 if (intel_crtc->cursor_size != size) { 10133 I915_WRITE(CURSIZE, size); 10134 intel_crtc->cursor_size = size; 10135 } 10136 10137 if (intel_crtc->cursor_cntl != cntl) { 10138 I915_WRITE(CURCNTR(PIPE_A), cntl); 10139 POSTING_READ(CURCNTR(PIPE_A)); 10140 intel_crtc->cursor_cntl = cntl; 10141 } 10142} 10143 10144static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, 10145 const struct intel_plane_state *plane_state) 10146{ 10147 struct drm_device *dev = crtc->dev; 10148 struct drm_i915_private *dev_priv = dev->dev_private; 10149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 10150 int pipe = intel_crtc->pipe; 10151 uint32_t cntl = 0; 10152 10153 if (plane_state && plane_state->visible) { 10154 cntl = MCURSOR_GAMMA_ENABLE; 10155 switch (plane_state->base.crtc_w) { 10156 case 64: 10157 cntl |= CURSOR_MODE_64_ARGB_AX; 10158 break; 10159 case 128: 10160 cntl |= CURSOR_MODE_128_ARGB_AX; 10161 break; 10162 case 256: 10163 cntl |= CURSOR_MODE_256_ARGB_AX; 10164 break; 10165 default: 10166 MISSING_CASE(plane_state->base.crtc_w); 10167 return; 10168 } 10169 cntl |= pipe << 28; /* Connect to correct pipe */ 10170 10171 if (HAS_DDI(dev)) 10172 cntl |= CURSOR_PIPE_CSC_ENABLE; 10173 10174 if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) 10175 cntl |= CURSOR_ROTATE_180; 10176 } 10177 10178 if (intel_crtc->cursor_cntl != cntl) { 10179 I915_WRITE(CURCNTR(pipe), cntl); 10180 POSTING_READ(CURCNTR(pipe)); 10181 intel_crtc->cursor_cntl = cntl; 10182 } 10183 10184 /* and commit changes on next vblank */ 10185 I915_WRITE(CURBASE(pipe), base); 10186 POSTING_READ(CURBASE(pipe)); 10187 10188 intel_crtc->cursor_base = base; 10189} 10190 10191/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ 10192static void intel_crtc_update_cursor(struct drm_crtc *crtc, 10193 const struct intel_plane_state *plane_state) 10194{ 10195 struct drm_device *dev = crtc->dev; 10196 struct drm_i915_private *dev_priv = dev->dev_private; 10197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 10198 int pipe = intel_crtc->pipe; 10199 u32 base = intel_crtc->cursor_addr; 10200 u32 pos = 0; 10201 10202 if (plane_state) { 10203 int x = plane_state->base.crtc_x; 10204 int y = plane_state->base.crtc_y; 10205 10206 if (x < 0) { 10207 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; 10208 x = -x; 10209 } 10210 pos |= x << CURSOR_X_SHIFT; 10211 10212 if (y < 0) { 10213 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; 10214 y = -y; 10215 } 10216 pos |= y << CURSOR_Y_SHIFT; 10217 10218 /* ILK+ do this automagically */ 10219 if (HAS_GMCH_DISPLAY(dev) && 10220 plane_state->base.rotation == BIT(DRM_ROTATE_180)) { 10221 base += (plane_state->base.crtc_h * 10222 plane_state->base.crtc_w - 1) * 4; 10223 } 10224 } 10225 10226 I915_WRITE(CURPOS(pipe), pos); 10227 10228 if (IS_845G(dev) || IS_I865G(dev)) 10229 i845_update_cursor(crtc, base, plane_state); 10230 else 10231 i9xx_update_cursor(crtc, base, plane_state); 10232} 10233 10234static bool cursor_size_ok(struct drm_device *dev, 10235 uint32_t width, uint32_t height) 10236{ 10237 if (width == 0 || height == 0) 10238 return false; 10239 10240 /* 10241 * 845g/865g are special in that they are only limited by 10242 * the width of their cursors, the height is arbitrary up to 10243 * the precision of the register. Everything else requires 10244 * square cursors, limited to a few power-of-two sizes. 10245 */ 10246 if (IS_845G(dev) || IS_I865G(dev)) { 10247 if ((width & 63) != 0) 10248 return false; 10249 10250 if (width > (IS_845G(dev) ? 64 : 512)) 10251 return false; 10252 10253 if (height > 1023) 10254 return false; 10255 } else { 10256 switch (width | height) { 10257 case 256: 10258 case 128: 10259 if (IS_GEN2(dev)) 10260 return false; 10261 case 64: 10262 break; 10263 default: 10264 return false; 10265 } 10266 } 10267 10268 return true; 10269} 10270 10271/* VESA 640x480x72Hz mode to set on the pipe */ 10272static struct drm_display_mode load_detect_mode = { 10273 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 10274 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), 10275}; 10276 10277struct drm_framebuffer * 10278__intel_framebuffer_create(struct drm_device *dev, 10279 struct drm_mode_fb_cmd2 *mode_cmd, 10280 struct drm_i915_gem_object *obj) 10281{ 10282 struct intel_framebuffer *intel_fb; 10283 int ret; 10284 10285 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); 10286 if (!intel_fb) 10287 return ERR_PTR(-ENOMEM); 10288 10289 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); 10290 if (ret) 10291 goto err; 10292 10293 return &intel_fb->base; 10294 10295err: 10296 kfree(intel_fb); 10297 return ERR_PTR(ret); 10298} 10299 10300static struct drm_framebuffer * 10301intel_framebuffer_create(struct drm_device *dev, 10302 struct drm_mode_fb_cmd2 *mode_cmd, 10303 struct drm_i915_gem_object *obj) 10304{ 10305 struct drm_framebuffer *fb; 10306 int ret; 10307 10308 ret = i915_mutex_lock_interruptible(dev); 10309 if (ret) 10310 return ERR_PTR(ret); 10311 fb = __intel_framebuffer_create(dev, mode_cmd, obj); 10312 mutex_unlock(&dev->struct_mutex); 10313 10314 return fb; 10315} 10316 10317static u32 10318intel_framebuffer_pitch_for_width(int width, int bpp) 10319{ 10320 u32 pitch = DIV_ROUND_UP(width * bpp, 8); 10321 return ALIGN(pitch, 64); 10322} 10323 10324static u32 10325intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) 10326{ 10327 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); 10328 return PAGE_ALIGN(pitch * mode->vdisplay); 10329} 10330 10331static struct drm_framebuffer * 10332intel_framebuffer_create_for_mode(struct drm_device *dev, 10333 struct drm_display_mode *mode, 10334 int depth, int bpp) 10335{ 10336 struct drm_framebuffer *fb; 10337 struct drm_i915_gem_object *obj; 10338 struct drm_mode_fb_cmd2 mode_cmd = { 0 }; 10339 10340 obj = i915_gem_alloc_object(dev, 10341 intel_framebuffer_size_for_mode(mode, bpp)); 10342 if (obj == NULL) 10343 return ERR_PTR(-ENOMEM); 10344 10345 mode_cmd.width = mode->hdisplay; 10346 mode_cmd.height = mode->vdisplay; 10347 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, 10348 bpp); 10349 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); 10350 10351 fb = intel_framebuffer_create(dev, &mode_cmd, obj); 10352 if (IS_ERR(fb)) 10353 drm_gem_object_unreference_unlocked(&obj->base); 10354 10355 return fb; 10356} 10357 10358static struct drm_framebuffer * 10359mode_fits_in_fbdev(struct drm_device *dev, 10360 struct drm_display_mode *mode) 10361{ 10362#ifdef CONFIG_DRM_FBDEV_EMULATION 10363 struct drm_i915_private *dev_priv = dev->dev_private; 10364 struct drm_i915_gem_object *obj; 10365 struct drm_framebuffer *fb; 10366 10367 if (!dev_priv->fbdev) 10368 return NULL; 10369 10370 if (!dev_priv->fbdev->fb) 10371 return NULL; 10372 10373 obj = dev_priv->fbdev->fb->obj; 10374 BUG_ON(!obj); 10375 10376 fb = &dev_priv->fbdev->fb->base; 10377 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, 10378 fb->bits_per_pixel)) 10379 return NULL; 10380 10381 if (obj->base.size < mode->vdisplay * fb->pitches[0]) 10382 return NULL; 10383 10384 drm_framebuffer_reference(fb); 10385 return fb; 10386#else 10387 return NULL; 10388#endif 10389} 10390 10391static int intel_modeset_setup_plane_state(struct drm_atomic_state *state, 10392 struct drm_crtc *crtc, 10393 struct drm_display_mode *mode, 10394 struct drm_framebuffer *fb, 10395 int x, int y) 10396{ 10397 struct drm_plane_state *plane_state; 10398 int hdisplay, vdisplay; 10399 int ret; 10400 10401 plane_state = drm_atomic_get_plane_state(state, crtc->primary); 10402 if (IS_ERR(plane_state)) 10403 return PTR_ERR(plane_state); 10404 10405 if (mode) 10406 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay); 10407 else 10408 hdisplay = vdisplay = 0; 10409 10410 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL); 10411 if (ret) 10412 return ret; 10413 drm_atomic_set_fb_for_plane(plane_state, fb); 10414 plane_state->crtc_x = 0; 10415 plane_state->crtc_y = 0; 10416 plane_state->crtc_w = hdisplay; 10417 plane_state->crtc_h = vdisplay; 10418 plane_state->src_x = x << 16; 10419 plane_state->src_y = y << 16; 10420 plane_state->src_w = hdisplay << 16; 10421 plane_state->src_h = vdisplay << 16; 10422 10423 return 0; 10424} 10425 10426bool intel_get_load_detect_pipe(struct drm_connector *connector, 10427 struct drm_display_mode *mode, 10428 struct intel_load_detect_pipe *old, 10429 struct drm_modeset_acquire_ctx *ctx) 10430{ 10431 struct intel_crtc *intel_crtc; 10432 struct intel_encoder *intel_encoder = 10433 intel_attached_encoder(connector); 10434 struct drm_crtc *possible_crtc; 10435 struct drm_encoder *encoder = &intel_encoder->base; 10436 struct drm_crtc *crtc = NULL; 10437 struct drm_device *dev = encoder->dev; 10438 struct drm_framebuffer *fb; 10439 struct drm_mode_config *config = &dev->mode_config; 10440 struct drm_atomic_state *state = NULL, *restore_state = NULL; 10441 struct drm_connector_state *connector_state; 10442 struct intel_crtc_state *crtc_state; 10443 int ret, i = -1; 10444 10445 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 10446 connector->base.id, connector->name, 10447 encoder->base.id, encoder->name); 10448 10449 old->restore_state = NULL; 10450 10451retry: 10452 ret = drm_modeset_lock(&config->connection_mutex, ctx); 10453 if (ret) 10454 goto fail; 10455 10456 /* 10457 * Algorithm gets a little messy: 10458 * 10459 * - if the connector already has an assigned crtc, use it (but make 10460 * sure it's on first) 10461 * 10462 * - try to find the first unused crtc that can drive this connector, 10463 * and use that if we find one 10464 */ 10465 10466 /* See if we already have a CRTC for this connector */ 10467 if (connector->state->crtc) { 10468 crtc = connector->state->crtc; 10469 10470 ret = drm_modeset_lock(&crtc->mutex, ctx); 10471 if (ret) 10472 goto fail; 10473 10474 /* Make sure the crtc and connector are running */ 10475 goto found; 10476 } 10477 10478 /* Find an unused one (if possible) */ 10479 for_each_crtc(dev, possible_crtc) { 10480 i++; 10481 if (!(encoder->possible_crtcs & (1 << i))) 10482 continue; 10483 10484 ret = drm_modeset_lock(&possible_crtc->mutex, ctx); 10485 if (ret) 10486 goto fail; 10487 10488 if (possible_crtc->state->enable) { 10489 drm_modeset_unlock(&possible_crtc->mutex); 10490 continue; 10491 } 10492 10493 crtc = possible_crtc; 10494 break; 10495 } 10496 10497 /* 10498 * If we didn't find an unused CRTC, don't use any. 10499 */ 10500 if (!crtc) { 10501 DRM_DEBUG_KMS("no pipe available for load-detect\n"); 10502 goto fail; 10503 } 10504 10505found: 10506 intel_crtc = to_intel_crtc(crtc); 10507 10508 ret = drm_modeset_lock(&crtc->primary->mutex, ctx); 10509 if (ret) 10510 goto fail; 10511 10512 state = drm_atomic_state_alloc(dev); 10513 restore_state = drm_atomic_state_alloc(dev); 10514 if (!state || !restore_state) { 10515 ret = -ENOMEM; 10516 goto fail; 10517 } 10518 10519 state->acquire_ctx = ctx; 10520 restore_state->acquire_ctx = ctx; 10521 10522 connector_state = drm_atomic_get_connector_state(state, connector); 10523 if (IS_ERR(connector_state)) { 10524 ret = PTR_ERR(connector_state); 10525 goto fail; 10526 } 10527 10528 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc); 10529 if (ret) 10530 goto fail; 10531 10532 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc); 10533 if (IS_ERR(crtc_state)) { 10534 ret = PTR_ERR(crtc_state); 10535 goto fail; 10536 } 10537 10538 crtc_state->base.active = crtc_state->base.enable = true; 10539 10540 if (!mode) 10541 mode = &load_detect_mode; 10542 10543 /* We need a framebuffer large enough to accommodate all accesses 10544 * that the plane may generate whilst we perform load detection. 10545 * We can not rely on the fbcon either being present (we get called 10546 * during its initialisation to detect all boot displays, or it may 10547 * not even exist) or that it is large enough to satisfy the 10548 * requested mode. 10549 */ 10550 fb = mode_fits_in_fbdev(dev, mode); 10551 if (fb == NULL) { 10552 DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); 10553 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); 10554 } else 10555 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); 10556 if (IS_ERR(fb)) { 10557 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); 10558 goto fail; 10559 } 10560 10561 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0); 10562 if (ret) 10563 goto fail; 10564 10565 drm_framebuffer_unreference(fb); 10566 10567 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode); 10568 if (ret) 10569 goto fail; 10570 10571 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); 10572 if (!ret) 10573 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc)); 10574 if (!ret) 10575 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary)); 10576 if (ret) { 10577 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret); 10578 goto fail; 10579 } 10580 10581 ret = drm_atomic_commit(state); 10582 if (ret) { 10583 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); 10584 goto fail; 10585 } 10586 10587 old->restore_state = restore_state; 10588 10589 /* let the connector get through one full cycle before testing */ 10590 intel_wait_for_vblank(dev, intel_crtc->pipe); 10591 return true; 10592 10593fail: 10594 drm_atomic_state_free(state); 10595 drm_atomic_state_free(restore_state); 10596 restore_state = state = NULL; 10597 10598 if (ret == -EDEADLK) { 10599 drm_modeset_backoff(ctx); 10600 goto retry; 10601 } 10602 10603 return false; 10604} 10605 10606void intel_release_load_detect_pipe(struct drm_connector *connector, 10607 struct intel_load_detect_pipe *old, 10608 struct drm_modeset_acquire_ctx *ctx) 10609{ 10610 struct intel_encoder *intel_encoder = 10611 intel_attached_encoder(connector); 10612 struct drm_encoder *encoder = &intel_encoder->base; 10613 struct drm_atomic_state *state = old->restore_state; 10614 int ret; 10615 10616 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", 10617 connector->base.id, connector->name, 10618 encoder->base.id, encoder->name); 10619 10620 if (!state) 10621 return; 10622 10623 ret = drm_atomic_commit(state); 10624 if (ret) { 10625 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret); 10626 drm_atomic_state_free(state); 10627 } 10628} 10629 10630static int i9xx_pll_refclk(struct drm_device *dev, 10631 const struct intel_crtc_state *pipe_config) 10632{ 10633 struct drm_i915_private *dev_priv = dev->dev_private; 10634 u32 dpll = pipe_config->dpll_hw_state.dpll; 10635 10636 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) 10637 return dev_priv->vbt.lvds_ssc_freq; 10638 else if (HAS_PCH_SPLIT(dev)) 10639 return 120000; 10640 else if (!IS_GEN2(dev)) 10641 return 96000; 10642 else 10643 return 48000; 10644} 10645 10646/* Returns the clock of the currently programmed mode of the given pipe. */ 10647static void i9xx_crtc_clock_get(struct intel_crtc *crtc, 10648 struct intel_crtc_state *pipe_config) 10649{ 10650 struct drm_device *dev = crtc->base.dev; 10651 struct drm_i915_private *dev_priv = dev->dev_private; 10652 int pipe = pipe_config->cpu_transcoder; 10653 u32 dpll = pipe_config->dpll_hw_state.dpll; 10654 u32 fp; 10655 intel_clock_t clock; 10656 int port_clock; 10657 int refclk = i9xx_pll_refclk(dev, pipe_config); 10658 10659 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) 10660 fp = pipe_config->dpll_hw_state.fp0; 10661 else 10662 fp = pipe_config->dpll_hw_state.fp1; 10663 10664 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; 10665 if (IS_PINEVIEW(dev)) { 10666 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; 10667 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; 10668 } else { 10669 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; 10670 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; 10671 } 10672 10673 if (!IS_GEN2(dev)) { 10674 if (IS_PINEVIEW(dev)) 10675 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> 10676 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); 10677 else 10678 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> 10679 DPLL_FPA01_P1_POST_DIV_SHIFT); 10680 10681 switch (dpll & DPLL_MODE_MASK) { 10682 case DPLLB_MODE_DAC_SERIAL: 10683 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 10684 5 : 10; 10685 break; 10686 case DPLLB_MODE_LVDS: 10687 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 10688 7 : 14; 10689 break; 10690 default: 10691 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " 10692 "mode\n", (int)(dpll & DPLL_MODE_MASK)); 10693 return; 10694 } 10695 10696 if (IS_PINEVIEW(dev)) 10697 port_clock = pnv_calc_dpll_params(refclk, &clock); 10698 else 10699 port_clock = i9xx_calc_dpll_params(refclk, &clock); 10700 } else { 10701 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS); 10702 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); 10703 10704 if (is_lvds) { 10705 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> 10706 DPLL_FPA01_P1_POST_DIV_SHIFT); 10707 10708 if (lvds & LVDS_CLKB_POWER_UP) 10709 clock.p2 = 7; 10710 else 10711 clock.p2 = 14; 10712 } else { 10713 if (dpll & PLL_P1_DIVIDE_BY_TWO) 10714 clock.p1 = 2; 10715 else { 10716 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> 10717 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; 10718 } 10719 if (dpll & PLL_P2_DIVIDE_BY_4) 10720 clock.p2 = 4; 10721 else 10722 clock.p2 = 2; 10723 } 10724 10725 port_clock = i9xx_calc_dpll_params(refclk, &clock); 10726 } 10727 10728 /* 10729 * This value includes pixel_multiplier. We will use 10730 * port_clock to compute adjusted_mode.crtc_clock in the 10731 * encoder's get_config() function. 10732 */ 10733 pipe_config->port_clock = port_clock; 10734} 10735 10736int intel_dotclock_calculate(int link_freq, 10737 const struct intel_link_m_n *m_n) 10738{ 10739 /* 10740 * The calculation for the data clock is: 10741 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp 10742 * But we want to avoid losing precison if possible, so: 10743 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) 10744 * 10745 * and the link clock is simpler: 10746 * link_clock = (m * link_clock) / n 10747 */ 10748 10749 if (!m_n->link_n) 10750 return 0; 10751 10752 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n); 10753} 10754 10755static void ironlake_pch_clock_get(struct intel_crtc *crtc, 10756 struct intel_crtc_state *pipe_config) 10757{ 10758 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 10759 10760 /* read out port_clock from the DPLL */ 10761 i9xx_crtc_clock_get(crtc, pipe_config); 10762 10763 /* 10764 * In case there is an active pipe without active ports, 10765 * we may need some idea for the dotclock anyway. 10766 * Calculate one based on the FDI configuration. 10767 */ 10768 pipe_config->base.adjusted_mode.crtc_clock = 10769 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 10770 &pipe_config->fdi_m_n); 10771} 10772 10773/** Returns the currently programmed mode of the given pipe. */ 10774struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, 10775 struct drm_crtc *crtc) 10776{ 10777 struct drm_i915_private *dev_priv = dev->dev_private; 10778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 10779 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder; 10780 struct drm_display_mode *mode; 10781 struct intel_crtc_state *pipe_config; 10782 int htot = I915_READ(HTOTAL(cpu_transcoder)); 10783 int hsync = I915_READ(HSYNC(cpu_transcoder)); 10784 int vtot = I915_READ(VTOTAL(cpu_transcoder)); 10785 int vsync = I915_READ(VSYNC(cpu_transcoder)); 10786 enum pipe pipe = intel_crtc->pipe; 10787 10788 mode = kzalloc(sizeof(*mode), GFP_KERNEL); 10789 if (!mode) 10790 return NULL; 10791 10792 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); 10793 if (!pipe_config) { 10794 kfree(mode); 10795 return NULL; 10796 } 10797 10798 /* 10799 * Construct a pipe_config sufficient for getting the clock info 10800 * back out of crtc_clock_get. 10801 * 10802 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need 10803 * to use a real value here instead. 10804 */ 10805 pipe_config->cpu_transcoder = (enum transcoder) pipe; 10806 pipe_config->pixel_multiplier = 1; 10807 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe)); 10808 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe)); 10809 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe)); 10810 i9xx_crtc_clock_get(intel_crtc, pipe_config); 10811 10812 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier; 10813 mode->hdisplay = (htot & 0xffff) + 1; 10814 mode->htotal = ((htot & 0xffff0000) >> 16) + 1; 10815 mode->hsync_start = (hsync & 0xffff) + 1; 10816 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; 10817 mode->vdisplay = (vtot & 0xffff) + 1; 10818 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; 10819 mode->vsync_start = (vsync & 0xffff) + 1; 10820 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; 10821 10822 drm_mode_set_name(mode); 10823 10824 kfree(pipe_config); 10825 10826 return mode; 10827} 10828 10829void intel_mark_busy(struct drm_device *dev) 10830{ 10831 struct drm_i915_private *dev_priv = dev->dev_private; 10832 10833 if (dev_priv->mm.busy) 10834 return; 10835 10836 intel_runtime_pm_get(dev_priv); 10837 i915_update_gfx_val(dev_priv); 10838 if (INTEL_INFO(dev)->gen >= 6) 10839 gen6_rps_busy(dev_priv); 10840 dev_priv->mm.busy = true; 10841} 10842 10843void intel_mark_idle(struct drm_device *dev) 10844{ 10845 struct drm_i915_private *dev_priv = dev->dev_private; 10846 10847 if (!dev_priv->mm.busy) 10848 return; 10849 10850 dev_priv->mm.busy = false; 10851 10852 if (INTEL_INFO(dev)->gen >= 6) 10853 gen6_rps_idle(dev->dev_private); 10854 10855 intel_runtime_pm_put(dev_priv); 10856} 10857 10858static void intel_crtc_destroy(struct drm_crtc *crtc) 10859{ 10860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 10861 struct drm_device *dev = crtc->dev; 10862 struct intel_unpin_work *work; 10863 10864 spin_lock_irq(&dev->event_lock); 10865 work = intel_crtc->unpin_work; 10866 intel_crtc->unpin_work = NULL; 10867 spin_unlock_irq(&dev->event_lock); 10868 10869 if (work) { 10870 cancel_work_sync(&work->work); 10871 kfree(work); 10872 } 10873 10874 drm_crtc_cleanup(crtc); 10875 10876 kfree(intel_crtc); 10877} 10878 10879static void intel_unpin_work_fn(struct work_struct *__work) 10880{ 10881 struct intel_unpin_work *work = 10882 container_of(__work, struct intel_unpin_work, work); 10883 struct intel_crtc *crtc = to_intel_crtc(work->crtc); 10884 struct drm_device *dev = crtc->base.dev; 10885 struct drm_plane *primary = crtc->base.primary; 10886 10887 mutex_lock(&dev->struct_mutex); 10888 intel_unpin_fb_obj(work->old_fb, primary->state->rotation); 10889 drm_gem_object_unreference(&work->pending_flip_obj->base); 10890 10891 if (work->flip_queued_req) 10892 i915_gem_request_assign(&work->flip_queued_req, NULL); 10893 mutex_unlock(&dev->struct_mutex); 10894 10895 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit); 10896 intel_fbc_post_update(crtc); 10897 drm_framebuffer_unreference(work->old_fb); 10898 10899 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0); 10900 atomic_dec(&crtc->unpin_work_count); 10901 10902 kfree(work); 10903} 10904 10905static void do_intel_finish_page_flip(struct drm_device *dev, 10906 struct drm_crtc *crtc) 10907{ 10908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 10909 struct intel_unpin_work *work; 10910 unsigned long flags; 10911 10912 /* Ignore early vblank irqs */ 10913 if (intel_crtc == NULL) 10914 return; 10915 10916 /* 10917 * This is called both by irq handlers and the reset code (to complete 10918 * lost pageflips) so needs the full irqsave spinlocks. 10919 */ 10920 spin_lock_irqsave(&dev->event_lock, flags); 10921 work = intel_crtc->unpin_work; 10922 10923 /* Ensure we don't miss a work->pending update ... */ 10924 smp_rmb(); 10925 10926 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { 10927 spin_unlock_irqrestore(&dev->event_lock, flags); 10928 return; 10929 } 10930 10931 page_flip_completed(intel_crtc); 10932 10933 spin_unlock_irqrestore(&dev->event_lock, flags); 10934} 10935 10936void intel_finish_page_flip(struct drm_device *dev, int pipe) 10937{ 10938 struct drm_i915_private *dev_priv = dev->dev_private; 10939 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 10940 10941 do_intel_finish_page_flip(dev, crtc); 10942} 10943 10944void intel_finish_page_flip_plane(struct drm_device *dev, int plane) 10945{ 10946 struct drm_i915_private *dev_priv = dev->dev_private; 10947 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; 10948 10949 do_intel_finish_page_flip(dev, crtc); 10950} 10951 10952/* Is 'a' after or equal to 'b'? */ 10953static bool g4x_flip_count_after_eq(u32 a, u32 b) 10954{ 10955 return !((a - b) & 0x80000000); 10956} 10957 10958static bool page_flip_finished(struct intel_crtc *crtc) 10959{ 10960 struct drm_device *dev = crtc->base.dev; 10961 struct drm_i915_private *dev_priv = dev->dev_private; 10962 unsigned reset_counter; 10963 10964 reset_counter = i915_reset_counter(&dev_priv->gpu_error); 10965 if (crtc->reset_counter != reset_counter) 10966 return true; 10967 10968 /* 10969 * The relevant registers doen't exist on pre-ctg. 10970 * As the flip done interrupt doesn't trigger for mmio 10971 * flips on gmch platforms, a flip count check isn't 10972 * really needed there. But since ctg has the registers, 10973 * include it in the check anyway. 10974 */ 10975 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev)) 10976 return true; 10977 10978 /* 10979 * BDW signals flip done immediately if the plane 10980 * is disabled, even if the plane enable is already 10981 * armed to occur at the next vblank :( 10982 */ 10983 10984 /* 10985 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips 10986 * used the same base address. In that case the mmio flip might 10987 * have completed, but the CS hasn't even executed the flip yet. 10988 * 10989 * A flip count check isn't enough as the CS might have updated 10990 * the base address just after start of vblank, but before we 10991 * managed to process the interrupt. This means we'd complete the 10992 * CS flip too soon. 10993 * 10994 * Combining both checks should get us a good enough result. It may 10995 * still happen that the CS flip has been executed, but has not 10996 * yet actually completed. But in case the base address is the same 10997 * anyway, we don't really care. 10998 */ 10999 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) == 11000 crtc->unpin_work->gtt_offset && 11001 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)), 11002 crtc->unpin_work->flip_count); 11003} 11004 11005void intel_prepare_page_flip(struct drm_device *dev, int plane) 11006{ 11007 struct drm_i915_private *dev_priv = dev->dev_private; 11008 struct intel_crtc *intel_crtc = 11009 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); 11010 unsigned long flags; 11011 11012 11013 /* 11014 * This is called both by irq handlers and the reset code (to complete 11015 * lost pageflips) so needs the full irqsave spinlocks. 11016 * 11017 * NB: An MMIO update of the plane base pointer will also 11018 * generate a page-flip completion irq, i.e. every modeset 11019 * is also accompanied by a spurious intel_prepare_page_flip(). 11020 */ 11021 spin_lock_irqsave(&dev->event_lock, flags); 11022 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc)) 11023 atomic_inc_not_zero(&intel_crtc->unpin_work->pending); 11024 spin_unlock_irqrestore(&dev->event_lock, flags); 11025} 11026 11027static inline void intel_mark_page_flip_active(struct intel_unpin_work *work) 11028{ 11029 /* Ensure that the work item is consistent when activating it ... */ 11030 smp_wmb(); 11031 atomic_set(&work->pending, INTEL_FLIP_PENDING); 11032 /* and that it is marked active as soon as the irq could fire. */ 11033 smp_wmb(); 11034} 11035 11036static int intel_gen2_queue_flip(struct drm_device *dev, 11037 struct drm_crtc *crtc, 11038 struct drm_framebuffer *fb, 11039 struct drm_i915_gem_object *obj, 11040 struct drm_i915_gem_request *req, 11041 uint32_t flags) 11042{ 11043 struct intel_engine_cs *engine = req->engine; 11044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11045 u32 flip_mask; 11046 int ret; 11047 11048 ret = intel_ring_begin(req, 6); 11049 if (ret) 11050 return ret; 11051 11052 /* Can't queue multiple flips, so wait for the previous 11053 * one to finish before executing the next. 11054 */ 11055 if (intel_crtc->plane) 11056 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; 11057 else 11058 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; 11059 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask); 11060 intel_ring_emit(engine, MI_NOOP); 11061 intel_ring_emit(engine, MI_DISPLAY_FLIP | 11062 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 11063 intel_ring_emit(engine, fb->pitches[0]); 11064 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); 11065 intel_ring_emit(engine, 0); /* aux display base address, unused */ 11066 11067 intel_mark_page_flip_active(intel_crtc->unpin_work); 11068 return 0; 11069} 11070 11071static int intel_gen3_queue_flip(struct drm_device *dev, 11072 struct drm_crtc *crtc, 11073 struct drm_framebuffer *fb, 11074 struct drm_i915_gem_object *obj, 11075 struct drm_i915_gem_request *req, 11076 uint32_t flags) 11077{ 11078 struct intel_engine_cs *engine = req->engine; 11079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11080 u32 flip_mask; 11081 int ret; 11082 11083 ret = intel_ring_begin(req, 6); 11084 if (ret) 11085 return ret; 11086 11087 if (intel_crtc->plane) 11088 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; 11089 else 11090 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; 11091 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask); 11092 intel_ring_emit(engine, MI_NOOP); 11093 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | 11094 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 11095 intel_ring_emit(engine, fb->pitches[0]); 11096 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); 11097 intel_ring_emit(engine, MI_NOOP); 11098 11099 intel_mark_page_flip_active(intel_crtc->unpin_work); 11100 return 0; 11101} 11102 11103static int intel_gen4_queue_flip(struct drm_device *dev, 11104 struct drm_crtc *crtc, 11105 struct drm_framebuffer *fb, 11106 struct drm_i915_gem_object *obj, 11107 struct drm_i915_gem_request *req, 11108 uint32_t flags) 11109{ 11110 struct intel_engine_cs *engine = req->engine; 11111 struct drm_i915_private *dev_priv = dev->dev_private; 11112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11113 uint32_t pf, pipesrc; 11114 int ret; 11115 11116 ret = intel_ring_begin(req, 4); 11117 if (ret) 11118 return ret; 11119 11120 /* i965+ uses the linear or tiled offsets from the 11121 * Display Registers (which do not change across a page-flip) 11122 * so we need only reprogram the base address. 11123 */ 11124 intel_ring_emit(engine, MI_DISPLAY_FLIP | 11125 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 11126 intel_ring_emit(engine, fb->pitches[0]); 11127 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset | 11128 obj->tiling_mode); 11129 11130 /* XXX Enabling the panel-fitter across page-flip is so far 11131 * untested on non-native modes, so ignore it for now. 11132 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; 11133 */ 11134 pf = 0; 11135 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; 11136 intel_ring_emit(engine, pf | pipesrc); 11137 11138 intel_mark_page_flip_active(intel_crtc->unpin_work); 11139 return 0; 11140} 11141 11142static int intel_gen6_queue_flip(struct drm_device *dev, 11143 struct drm_crtc *crtc, 11144 struct drm_framebuffer *fb, 11145 struct drm_i915_gem_object *obj, 11146 struct drm_i915_gem_request *req, 11147 uint32_t flags) 11148{ 11149 struct intel_engine_cs *engine = req->engine; 11150 struct drm_i915_private *dev_priv = dev->dev_private; 11151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11152 uint32_t pf, pipesrc; 11153 int ret; 11154 11155 ret = intel_ring_begin(req, 4); 11156 if (ret) 11157 return ret; 11158 11159 intel_ring_emit(engine, MI_DISPLAY_FLIP | 11160 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); 11161 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode); 11162 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); 11163 11164 /* Contrary to the suggestions in the documentation, 11165 * "Enable Panel Fitter" does not seem to be required when page 11166 * flipping with a non-native mode, and worse causes a normal 11167 * modeset to fail. 11168 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; 11169 */ 11170 pf = 0; 11171 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; 11172 intel_ring_emit(engine, pf | pipesrc); 11173 11174 intel_mark_page_flip_active(intel_crtc->unpin_work); 11175 return 0; 11176} 11177 11178static int intel_gen7_queue_flip(struct drm_device *dev, 11179 struct drm_crtc *crtc, 11180 struct drm_framebuffer *fb, 11181 struct drm_i915_gem_object *obj, 11182 struct drm_i915_gem_request *req, 11183 uint32_t flags) 11184{ 11185 struct intel_engine_cs *engine = req->engine; 11186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11187 uint32_t plane_bit = 0; 11188 int len, ret; 11189 11190 switch (intel_crtc->plane) { 11191 case PLANE_A: 11192 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; 11193 break; 11194 case PLANE_B: 11195 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; 11196 break; 11197 case PLANE_C: 11198 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; 11199 break; 11200 default: 11201 WARN_ONCE(1, "unknown plane in flip command\n"); 11202 return -ENODEV; 11203 } 11204 11205 len = 4; 11206 if (engine->id == RCS) { 11207 len += 6; 11208 /* 11209 * On Gen 8, SRM is now taking an extra dword to accommodate 11210 * 48bits addresses, and we need a NOOP for the batch size to 11211 * stay even. 11212 */ 11213 if (IS_GEN8(dev)) 11214 len += 2; 11215 } 11216 11217 /* 11218 * BSpec MI_DISPLAY_FLIP for IVB: 11219 * "The full packet must be contained within the same cache line." 11220 * 11221 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same 11222 * cacheline, if we ever start emitting more commands before 11223 * the MI_DISPLAY_FLIP we may need to first emit everything else, 11224 * then do the cacheline alignment, and finally emit the 11225 * MI_DISPLAY_FLIP. 11226 */ 11227 ret = intel_ring_cacheline_align(req); 11228 if (ret) 11229 return ret; 11230 11231 ret = intel_ring_begin(req, len); 11232 if (ret) 11233 return ret; 11234 11235 /* Unmask the flip-done completion message. Note that the bspec says that 11236 * we should do this for both the BCS and RCS, and that we must not unmask 11237 * more than one flip event at any time (or ensure that one flip message 11238 * can be sent by waiting for flip-done prior to queueing new flips). 11239 * Experimentation says that BCS works despite DERRMR masking all 11240 * flip-done completion events and that unmasking all planes at once 11241 * for the RCS also doesn't appear to drop events. Setting the DERRMR 11242 * to zero does lead to lockups within MI_DISPLAY_FLIP. 11243 */ 11244 if (engine->id == RCS) { 11245 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1)); 11246 intel_ring_emit_reg(engine, DERRMR); 11247 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE | 11248 DERRMR_PIPEB_PRI_FLIP_DONE | 11249 DERRMR_PIPEC_PRI_FLIP_DONE)); 11250 if (IS_GEN8(dev)) 11251 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 | 11252 MI_SRM_LRM_GLOBAL_GTT); 11253 else 11254 intel_ring_emit(engine, MI_STORE_REGISTER_MEM | 11255 MI_SRM_LRM_GLOBAL_GTT); 11256 intel_ring_emit_reg(engine, DERRMR); 11257 intel_ring_emit(engine, engine->scratch.gtt_offset + 256); 11258 if (IS_GEN8(dev)) { 11259 intel_ring_emit(engine, 0); 11260 intel_ring_emit(engine, MI_NOOP); 11261 } 11262 } 11263 11264 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit); 11265 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode)); 11266 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset); 11267 intel_ring_emit(engine, (MI_NOOP)); 11268 11269 intel_mark_page_flip_active(intel_crtc->unpin_work); 11270 return 0; 11271} 11272 11273static bool use_mmio_flip(struct intel_engine_cs *engine, 11274 struct drm_i915_gem_object *obj) 11275{ 11276 /* 11277 * This is not being used for older platforms, because 11278 * non-availability of flip done interrupt forces us to use 11279 * CS flips. Older platforms derive flip done using some clever 11280 * tricks involving the flip_pending status bits and vblank irqs. 11281 * So using MMIO flips there would disrupt this mechanism. 11282 */ 11283 11284 if (engine == NULL) 11285 return true; 11286 11287 if (INTEL_INFO(engine->dev)->gen < 5) 11288 return false; 11289 11290 if (i915.use_mmio_flip < 0) 11291 return false; 11292 else if (i915.use_mmio_flip > 0) 11293 return true; 11294 else if (i915.enable_execlists) 11295 return true; 11296 else if (obj->base.dma_buf && 11297 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv, 11298 false)) 11299 return true; 11300 else 11301 return engine != i915_gem_request_get_engine(obj->last_write_req); 11302} 11303 11304static void skl_do_mmio_flip(struct intel_crtc *intel_crtc, 11305 unsigned int rotation, 11306 struct intel_unpin_work *work) 11307{ 11308 struct drm_device *dev = intel_crtc->base.dev; 11309 struct drm_i915_private *dev_priv = dev->dev_private; 11310 struct drm_framebuffer *fb = intel_crtc->base.primary->fb; 11311 const enum pipe pipe = intel_crtc->pipe; 11312 u32 ctl, stride, tile_height; 11313 11314 ctl = I915_READ(PLANE_CTL(pipe, 0)); 11315 ctl &= ~PLANE_CTL_TILED_MASK; 11316 switch (fb->modifier[0]) { 11317 case DRM_FORMAT_MOD_NONE: 11318 break; 11319 case I915_FORMAT_MOD_X_TILED: 11320 ctl |= PLANE_CTL_TILED_X; 11321 break; 11322 case I915_FORMAT_MOD_Y_TILED: 11323 ctl |= PLANE_CTL_TILED_Y; 11324 break; 11325 case I915_FORMAT_MOD_Yf_TILED: 11326 ctl |= PLANE_CTL_TILED_YF; 11327 break; 11328 default: 11329 MISSING_CASE(fb->modifier[0]); 11330 } 11331 11332 /* 11333 * The stride is either expressed as a multiple of 64 bytes chunks for 11334 * linear buffers or in number of tiles for tiled buffers. 11335 */ 11336 if (intel_rotation_90_or_270(rotation)) { 11337 /* stride = Surface height in tiles */ 11338 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0); 11339 stride = DIV_ROUND_UP(fb->height, tile_height); 11340 } else { 11341 stride = fb->pitches[0] / 11342 intel_fb_stride_alignment(dev_priv, fb->modifier[0], 11343 fb->pixel_format); 11344 } 11345 11346 /* 11347 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on 11348 * PLANE_SURF updates, the update is then guaranteed to be atomic. 11349 */ 11350 I915_WRITE(PLANE_CTL(pipe, 0), ctl); 11351 I915_WRITE(PLANE_STRIDE(pipe, 0), stride); 11352 11353 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset); 11354 POSTING_READ(PLANE_SURF(pipe, 0)); 11355} 11356 11357static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc, 11358 struct intel_unpin_work *work) 11359{ 11360 struct drm_device *dev = intel_crtc->base.dev; 11361 struct drm_i915_private *dev_priv = dev->dev_private; 11362 struct intel_framebuffer *intel_fb = 11363 to_intel_framebuffer(intel_crtc->base.primary->fb); 11364 struct drm_i915_gem_object *obj = intel_fb->obj; 11365 i915_reg_t reg = DSPCNTR(intel_crtc->plane); 11366 u32 dspcntr; 11367 11368 dspcntr = I915_READ(reg); 11369 11370 if (obj->tiling_mode != I915_TILING_NONE) 11371 dspcntr |= DISPPLANE_TILED; 11372 else 11373 dspcntr &= ~DISPPLANE_TILED; 11374 11375 I915_WRITE(reg, dspcntr); 11376 11377 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset); 11378 POSTING_READ(DSPSURF(intel_crtc->plane)); 11379} 11380 11381/* 11382 * XXX: This is the temporary way to update the plane registers until we get 11383 * around to using the usual plane update functions for MMIO flips 11384 */ 11385static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip) 11386{ 11387 struct intel_crtc *crtc = mmio_flip->crtc; 11388 struct intel_unpin_work *work; 11389 11390 spin_lock_irq(&crtc->base.dev->event_lock); 11391 work = crtc->unpin_work; 11392 spin_unlock_irq(&crtc->base.dev->event_lock); 11393 if (work == NULL) 11394 return; 11395 11396 intel_mark_page_flip_active(work); 11397 11398 intel_pipe_update_start(crtc); 11399 11400 if (INTEL_INFO(mmio_flip->i915)->gen >= 9) 11401 skl_do_mmio_flip(crtc, mmio_flip->rotation, work); 11402 else 11403 /* use_mmio_flip() retricts MMIO flips to ilk+ */ 11404 ilk_do_mmio_flip(crtc, work); 11405 11406 intel_pipe_update_end(crtc); 11407} 11408 11409static void intel_mmio_flip_work_func(struct work_struct *work) 11410{ 11411 struct intel_mmio_flip *mmio_flip = 11412 container_of(work, struct intel_mmio_flip, work); 11413 struct intel_framebuffer *intel_fb = 11414 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb); 11415 struct drm_i915_gem_object *obj = intel_fb->obj; 11416 11417 if (mmio_flip->req) { 11418 WARN_ON(__i915_wait_request(mmio_flip->req, 11419 false, NULL, 11420 &mmio_flip->i915->rps.mmioflips)); 11421 i915_gem_request_unreference__unlocked(mmio_flip->req); 11422 } 11423 11424 /* For framebuffer backed by dmabuf, wait for fence */ 11425 if (obj->base.dma_buf) 11426 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv, 11427 false, false, 11428 MAX_SCHEDULE_TIMEOUT) < 0); 11429 11430 intel_do_mmio_flip(mmio_flip); 11431 kfree(mmio_flip); 11432} 11433 11434static int intel_queue_mmio_flip(struct drm_device *dev, 11435 struct drm_crtc *crtc, 11436 struct drm_i915_gem_object *obj) 11437{ 11438 struct intel_mmio_flip *mmio_flip; 11439 11440 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL); 11441 if (mmio_flip == NULL) 11442 return -ENOMEM; 11443 11444 mmio_flip->i915 = to_i915(dev); 11445 mmio_flip->req = i915_gem_request_reference(obj->last_write_req); 11446 mmio_flip->crtc = to_intel_crtc(crtc); 11447 mmio_flip->rotation = crtc->primary->state->rotation; 11448 11449 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func); 11450 schedule_work(&mmio_flip->work); 11451 11452 return 0; 11453} 11454 11455static int intel_default_queue_flip(struct drm_device *dev, 11456 struct drm_crtc *crtc, 11457 struct drm_framebuffer *fb, 11458 struct drm_i915_gem_object *obj, 11459 struct drm_i915_gem_request *req, 11460 uint32_t flags) 11461{ 11462 return -ENODEV; 11463} 11464 11465static bool __intel_pageflip_stall_check(struct drm_device *dev, 11466 struct drm_crtc *crtc) 11467{ 11468 struct drm_i915_private *dev_priv = dev->dev_private; 11469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11470 struct intel_unpin_work *work = intel_crtc->unpin_work; 11471 u32 addr; 11472 11473 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE) 11474 return true; 11475 11476 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING) 11477 return false; 11478 11479 if (!work->enable_stall_check) 11480 return false; 11481 11482 if (work->flip_ready_vblank == 0) { 11483 if (work->flip_queued_req && 11484 !i915_gem_request_completed(work->flip_queued_req, true)) 11485 return false; 11486 11487 work->flip_ready_vblank = drm_crtc_vblank_count(crtc); 11488 } 11489 11490 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3) 11491 return false; 11492 11493 /* Potential stall - if we see that the flip has happened, 11494 * assume a missed interrupt. */ 11495 if (INTEL_INFO(dev)->gen >= 4) 11496 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane))); 11497 else 11498 addr = I915_READ(DSPADDR(intel_crtc->plane)); 11499 11500 /* There is a potential issue here with a false positive after a flip 11501 * to the same address. We could address this by checking for a 11502 * non-incrementing frame counter. 11503 */ 11504 return addr == work->gtt_offset; 11505} 11506 11507void intel_check_page_flip(struct drm_device *dev, int pipe) 11508{ 11509 struct drm_i915_private *dev_priv = dev->dev_private; 11510 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 11511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11512 struct intel_unpin_work *work; 11513 11514 WARN_ON(!in_interrupt()); 11515 11516 if (crtc == NULL) 11517 return; 11518 11519 spin_lock(&dev->event_lock); 11520 work = intel_crtc->unpin_work; 11521 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) { 11522 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n", 11523 work->flip_queued_vblank, drm_vblank_count(dev, pipe)); 11524 page_flip_completed(intel_crtc); 11525 work = NULL; 11526 } 11527 if (work != NULL && 11528 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1) 11529 intel_queue_rps_boost_for_request(dev, work->flip_queued_req); 11530 spin_unlock(&dev->event_lock); 11531} 11532 11533static int intel_crtc_page_flip(struct drm_crtc *crtc, 11534 struct drm_framebuffer *fb, 11535 struct drm_pending_vblank_event *event, 11536 uint32_t page_flip_flags) 11537{ 11538 struct drm_device *dev = crtc->dev; 11539 struct drm_i915_private *dev_priv = dev->dev_private; 11540 struct drm_framebuffer *old_fb = crtc->primary->fb; 11541 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 11542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11543 struct drm_plane *primary = crtc->primary; 11544 enum pipe pipe = intel_crtc->pipe; 11545 struct intel_unpin_work *work; 11546 struct intel_engine_cs *engine; 11547 bool mmio_flip; 11548 struct drm_i915_gem_request *request = NULL; 11549 int ret; 11550 11551 /* 11552 * drm_mode_page_flip_ioctl() should already catch this, but double 11553 * check to be safe. In the future we may enable pageflipping from 11554 * a disabled primary plane. 11555 */ 11556 if (WARN_ON(intel_fb_obj(old_fb) == NULL)) 11557 return -EBUSY; 11558 11559 /* Can't change pixel format via MI display flips. */ 11560 if (fb->pixel_format != crtc->primary->fb->pixel_format) 11561 return -EINVAL; 11562 11563 /* 11564 * TILEOFF/LINOFF registers can't be changed via MI display flips. 11565 * Note that pitch changes could also affect these register. 11566 */ 11567 if (INTEL_INFO(dev)->gen > 3 && 11568 (fb->offsets[0] != crtc->primary->fb->offsets[0] || 11569 fb->pitches[0] != crtc->primary->fb->pitches[0])) 11570 return -EINVAL; 11571 11572 if (i915_terminally_wedged(&dev_priv->gpu_error)) 11573 goto out_hang; 11574 11575 work = kzalloc(sizeof(*work), GFP_KERNEL); 11576 if (work == NULL) 11577 return -ENOMEM; 11578 11579 work->event = event; 11580 work->crtc = crtc; 11581 work->old_fb = old_fb; 11582 INIT_WORK(&work->work, intel_unpin_work_fn); 11583 11584 ret = drm_crtc_vblank_get(crtc); 11585 if (ret) 11586 goto free_work; 11587 11588 /* We borrow the event spin lock for protecting unpin_work */ 11589 spin_lock_irq(&dev->event_lock); 11590 if (intel_crtc->unpin_work) { 11591 /* Before declaring the flip queue wedged, check if 11592 * the hardware completed the operation behind our backs. 11593 */ 11594 if (__intel_pageflip_stall_check(dev, crtc)) { 11595 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n"); 11596 page_flip_completed(intel_crtc); 11597 } else { 11598 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); 11599 spin_unlock_irq(&dev->event_lock); 11600 11601 drm_crtc_vblank_put(crtc); 11602 kfree(work); 11603 return -EBUSY; 11604 } 11605 } 11606 intel_crtc->unpin_work = work; 11607 spin_unlock_irq(&dev->event_lock); 11608 11609 if (atomic_read(&intel_crtc->unpin_work_count) >= 2) 11610 flush_workqueue(dev_priv->wq); 11611 11612 /* Reference the objects for the scheduled work. */ 11613 drm_framebuffer_reference(work->old_fb); 11614 drm_gem_object_reference(&obj->base); 11615 11616 crtc->primary->fb = fb; 11617 update_state_fb(crtc->primary); 11618 intel_fbc_pre_update(intel_crtc); 11619 11620 work->pending_flip_obj = obj; 11621 11622 ret = i915_mutex_lock_interruptible(dev); 11623 if (ret) 11624 goto cleanup; 11625 11626 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error); 11627 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) { 11628 ret = -EIO; 11629 goto cleanup; 11630 } 11631 11632 atomic_inc(&intel_crtc->unpin_work_count); 11633 11634 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) 11635 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1; 11636 11637 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 11638 engine = &dev_priv->engine[BCS]; 11639 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode) 11640 /* vlv: DISPLAY_FLIP fails to change tiling */ 11641 engine = NULL; 11642 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { 11643 engine = &dev_priv->engine[BCS]; 11644 } else if (INTEL_INFO(dev)->gen >= 7) { 11645 engine = i915_gem_request_get_engine(obj->last_write_req); 11646 if (engine == NULL || engine->id != RCS) 11647 engine = &dev_priv->engine[BCS]; 11648 } else { 11649 engine = &dev_priv->engine[RCS]; 11650 } 11651 11652 mmio_flip = use_mmio_flip(engine, obj); 11653 11654 /* When using CS flips, we want to emit semaphores between rings. 11655 * However, when using mmio flips we will create a task to do the 11656 * synchronisation, so all we want here is to pin the framebuffer 11657 * into the display plane and skip any waits. 11658 */ 11659 if (!mmio_flip) { 11660 ret = i915_gem_object_sync(obj, engine, &request); 11661 if (ret) 11662 goto cleanup_pending; 11663 } 11664 11665 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation); 11666 if (ret) 11667 goto cleanup_pending; 11668 11669 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), 11670 obj, 0); 11671 work->gtt_offset += intel_crtc->dspaddr_offset; 11672 11673 if (mmio_flip) { 11674 ret = intel_queue_mmio_flip(dev, crtc, obj); 11675 if (ret) 11676 goto cleanup_unpin; 11677 11678 i915_gem_request_assign(&work->flip_queued_req, 11679 obj->last_write_req); 11680 } else { 11681 if (!request) { 11682 request = i915_gem_request_alloc(engine, NULL); 11683 if (IS_ERR(request)) { 11684 ret = PTR_ERR(request); 11685 goto cleanup_unpin; 11686 } 11687 } 11688 11689 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request, 11690 page_flip_flags); 11691 if (ret) 11692 goto cleanup_unpin; 11693 11694 i915_gem_request_assign(&work->flip_queued_req, request); 11695 } 11696 11697 if (request) 11698 i915_add_request_no_flush(request); 11699 11700 work->flip_queued_vblank = drm_crtc_vblank_count(crtc); 11701 work->enable_stall_check = true; 11702 11703 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj, 11704 to_intel_plane(primary)->frontbuffer_bit); 11705 mutex_unlock(&dev->struct_mutex); 11706 11707 intel_frontbuffer_flip_prepare(dev, 11708 to_intel_plane(primary)->frontbuffer_bit); 11709 11710 trace_i915_flip_request(intel_crtc->plane, obj); 11711 11712 return 0; 11713 11714cleanup_unpin: 11715 intel_unpin_fb_obj(fb, crtc->primary->state->rotation); 11716cleanup_pending: 11717 if (!IS_ERR_OR_NULL(request)) 11718 i915_add_request_no_flush(request); 11719 atomic_dec(&intel_crtc->unpin_work_count); 11720 mutex_unlock(&dev->struct_mutex); 11721cleanup: 11722 crtc->primary->fb = old_fb; 11723 update_state_fb(crtc->primary); 11724 11725 drm_gem_object_unreference_unlocked(&obj->base); 11726 drm_framebuffer_unreference(work->old_fb); 11727 11728 spin_lock_irq(&dev->event_lock); 11729 intel_crtc->unpin_work = NULL; 11730 spin_unlock_irq(&dev->event_lock); 11731 11732 drm_crtc_vblank_put(crtc); 11733free_work: 11734 kfree(work); 11735 11736 if (ret == -EIO) { 11737 struct drm_atomic_state *state; 11738 struct drm_plane_state *plane_state; 11739 11740out_hang: 11741 state = drm_atomic_state_alloc(dev); 11742 if (!state) 11743 return -ENOMEM; 11744 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); 11745 11746retry: 11747 plane_state = drm_atomic_get_plane_state(state, primary); 11748 ret = PTR_ERR_OR_ZERO(plane_state); 11749 if (!ret) { 11750 drm_atomic_set_fb_for_plane(plane_state, fb); 11751 11752 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); 11753 if (!ret) 11754 ret = drm_atomic_commit(state); 11755 } 11756 11757 if (ret == -EDEADLK) { 11758 drm_modeset_backoff(state->acquire_ctx); 11759 drm_atomic_state_clear(state); 11760 goto retry; 11761 } 11762 11763 if (ret) 11764 drm_atomic_state_free(state); 11765 11766 if (ret == 0 && event) { 11767 spin_lock_irq(&dev->event_lock); 11768 drm_crtc_send_vblank_event(crtc, event); 11769 spin_unlock_irq(&dev->event_lock); 11770 } 11771 } 11772 return ret; 11773} 11774 11775 11776/** 11777 * intel_wm_need_update - Check whether watermarks need updating 11778 * @plane: drm plane 11779 * @state: new plane state 11780 * 11781 * Check current plane state versus the new one to determine whether 11782 * watermarks need to be recalculated. 11783 * 11784 * Returns true or false. 11785 */ 11786static bool intel_wm_need_update(struct drm_plane *plane, 11787 struct drm_plane_state *state) 11788{ 11789 struct intel_plane_state *new = to_intel_plane_state(state); 11790 struct intel_plane_state *cur = to_intel_plane_state(plane->state); 11791 11792 /* Update watermarks on tiling or size changes. */ 11793 if (new->visible != cur->visible) 11794 return true; 11795 11796 if (!cur->base.fb || !new->base.fb) 11797 return false; 11798 11799 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] || 11800 cur->base.rotation != new->base.rotation || 11801 drm_rect_width(&new->src) != drm_rect_width(&cur->src) || 11802 drm_rect_height(&new->src) != drm_rect_height(&cur->src) || 11803 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) || 11804 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst)) 11805 return true; 11806 11807 return false; 11808} 11809 11810static bool needs_scaling(struct intel_plane_state *state) 11811{ 11812 int src_w = drm_rect_width(&state->src) >> 16; 11813 int src_h = drm_rect_height(&state->src) >> 16; 11814 int dst_w = drm_rect_width(&state->dst); 11815 int dst_h = drm_rect_height(&state->dst); 11816 11817 return (src_w != dst_w || src_h != dst_h); 11818} 11819 11820int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state, 11821 struct drm_plane_state *plane_state) 11822{ 11823 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state); 11824 struct drm_crtc *crtc = crtc_state->crtc; 11825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11826 struct drm_plane *plane = plane_state->plane; 11827 struct drm_device *dev = crtc->dev; 11828 struct drm_i915_private *dev_priv = to_i915(dev); 11829 struct intel_plane_state *old_plane_state = 11830 to_intel_plane_state(plane->state); 11831 int idx = intel_crtc->base.base.id, ret; 11832 bool mode_changed = needs_modeset(crtc_state); 11833 bool was_crtc_enabled = crtc->state->active; 11834 bool is_crtc_enabled = crtc_state->active; 11835 bool turn_off, turn_on, visible, was_visible; 11836 struct drm_framebuffer *fb = plane_state->fb; 11837 11838 if (crtc_state && INTEL_INFO(dev)->gen >= 9 && 11839 plane->type != DRM_PLANE_TYPE_CURSOR) { 11840 ret = skl_update_scaler_plane( 11841 to_intel_crtc_state(crtc_state), 11842 to_intel_plane_state(plane_state)); 11843 if (ret) 11844 return ret; 11845 } 11846 11847 was_visible = old_plane_state->visible; 11848 visible = to_intel_plane_state(plane_state)->visible; 11849 11850 if (!was_crtc_enabled && WARN_ON(was_visible)) 11851 was_visible = false; 11852 11853 /* 11854 * Visibility is calculated as if the crtc was on, but 11855 * after scaler setup everything depends on it being off 11856 * when the crtc isn't active. 11857 */ 11858 if (!is_crtc_enabled) 11859 to_intel_plane_state(plane_state)->visible = visible = false; 11860 11861 if (!was_visible && !visible) 11862 return 0; 11863 11864 if (fb != old_plane_state->base.fb) 11865 pipe_config->fb_changed = true; 11866 11867 turn_off = was_visible && (!visible || mode_changed); 11868 turn_on = visible && (!was_visible || mode_changed); 11869 11870 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx, 11871 plane->base.id, fb ? fb->base.id : -1); 11872 11873 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n", 11874 plane->base.id, was_visible, visible, 11875 turn_off, turn_on, mode_changed); 11876 11877 if (turn_on) { 11878 pipe_config->update_wm_pre = true; 11879 11880 /* must disable cxsr around plane enable/disable */ 11881 if (plane->type != DRM_PLANE_TYPE_CURSOR) 11882 pipe_config->disable_cxsr = true; 11883 } else if (turn_off) { 11884 pipe_config->update_wm_post = true; 11885 11886 /* must disable cxsr around plane enable/disable */ 11887 if (plane->type != DRM_PLANE_TYPE_CURSOR) 11888 pipe_config->disable_cxsr = true; 11889 } else if (intel_wm_need_update(plane, plane_state)) { 11890 /* FIXME bollocks */ 11891 pipe_config->update_wm_pre = true; 11892 pipe_config->update_wm_post = true; 11893 } 11894 11895 /* Pre-gen9 platforms need two-step watermark updates */ 11896 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) && 11897 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks) 11898 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true; 11899 11900 if (visible || was_visible) 11901 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit; 11902 11903 /* 11904 * WaCxSRDisabledForSpriteScaling:ivb 11905 * 11906 * cstate->update_wm was already set above, so this flag will 11907 * take effect when we commit and program watermarks. 11908 */ 11909 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) && 11910 needs_scaling(to_intel_plane_state(plane_state)) && 11911 !needs_scaling(old_plane_state)) 11912 pipe_config->disable_lp_wm = true; 11913 11914 return 0; 11915} 11916 11917static bool encoders_cloneable(const struct intel_encoder *a, 11918 const struct intel_encoder *b) 11919{ 11920 /* masks could be asymmetric, so check both ways */ 11921 return a == b || (a->cloneable & (1 << b->type) && 11922 b->cloneable & (1 << a->type)); 11923} 11924 11925static bool check_single_encoder_cloning(struct drm_atomic_state *state, 11926 struct intel_crtc *crtc, 11927 struct intel_encoder *encoder) 11928{ 11929 struct intel_encoder *source_encoder; 11930 struct drm_connector *connector; 11931 struct drm_connector_state *connector_state; 11932 int i; 11933 11934 for_each_connector_in_state(state, connector, connector_state, i) { 11935 if (connector_state->crtc != &crtc->base) 11936 continue; 11937 11938 source_encoder = 11939 to_intel_encoder(connector_state->best_encoder); 11940 if (!encoders_cloneable(encoder, source_encoder)) 11941 return false; 11942 } 11943 11944 return true; 11945} 11946 11947static bool check_encoder_cloning(struct drm_atomic_state *state, 11948 struct intel_crtc *crtc) 11949{ 11950 struct intel_encoder *encoder; 11951 struct drm_connector *connector; 11952 struct drm_connector_state *connector_state; 11953 int i; 11954 11955 for_each_connector_in_state(state, connector, connector_state, i) { 11956 if (connector_state->crtc != &crtc->base) 11957 continue; 11958 11959 encoder = to_intel_encoder(connector_state->best_encoder); 11960 if (!check_single_encoder_cloning(state, crtc, encoder)) 11961 return false; 11962 } 11963 11964 return true; 11965} 11966 11967static int intel_crtc_atomic_check(struct drm_crtc *crtc, 11968 struct drm_crtc_state *crtc_state) 11969{ 11970 struct drm_device *dev = crtc->dev; 11971 struct drm_i915_private *dev_priv = dev->dev_private; 11972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 11973 struct intel_crtc_state *pipe_config = 11974 to_intel_crtc_state(crtc_state); 11975 struct drm_atomic_state *state = crtc_state->state; 11976 int ret; 11977 bool mode_changed = needs_modeset(crtc_state); 11978 11979 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) { 11980 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); 11981 return -EINVAL; 11982 } 11983 11984 if (mode_changed && !crtc_state->active) 11985 pipe_config->update_wm_post = true; 11986 11987 if (mode_changed && crtc_state->enable && 11988 dev_priv->display.crtc_compute_clock && 11989 !WARN_ON(pipe_config->shared_dpll)) { 11990 ret = dev_priv->display.crtc_compute_clock(intel_crtc, 11991 pipe_config); 11992 if (ret) 11993 return ret; 11994 } 11995 11996 if (crtc_state->color_mgmt_changed) { 11997 ret = intel_color_check(crtc, crtc_state); 11998 if (ret) 11999 return ret; 12000 12001 /* 12002 * Changing color management on Intel hardware is 12003 * handled as part of planes update. 12004 */ 12005 crtc_state->planes_changed = true; 12006 } 12007 12008 ret = 0; 12009 if (dev_priv->display.compute_pipe_wm) { 12010 ret = dev_priv->display.compute_pipe_wm(pipe_config); 12011 if (ret) { 12012 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n"); 12013 return ret; 12014 } 12015 } 12016 12017 if (dev_priv->display.compute_intermediate_wm && 12018 !to_intel_atomic_state(state)->skip_intermediate_wm) { 12019 if (WARN_ON(!dev_priv->display.compute_pipe_wm)) 12020 return 0; 12021 12022 /* 12023 * Calculate 'intermediate' watermarks that satisfy both the 12024 * old state and the new state. We can program these 12025 * immediately. 12026 */ 12027 ret = dev_priv->display.compute_intermediate_wm(crtc->dev, 12028 intel_crtc, 12029 pipe_config); 12030 if (ret) { 12031 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n"); 12032 return ret; 12033 } 12034 } else if (dev_priv->display.compute_intermediate_wm) { 12035 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9) 12036 pipe_config->wm.intermediate = pipe_config->wm.optimal.ilk; 12037 } 12038 12039 if (INTEL_INFO(dev)->gen >= 9) { 12040 if (mode_changed) 12041 ret = skl_update_scaler_crtc(pipe_config); 12042 12043 if (!ret) 12044 ret = intel_atomic_setup_scalers(dev, intel_crtc, 12045 pipe_config); 12046 } 12047 12048 return ret; 12049} 12050 12051static const struct drm_crtc_helper_funcs intel_helper_funcs = { 12052 .mode_set_base_atomic = intel_pipe_set_base_atomic, 12053 .atomic_begin = intel_begin_crtc_commit, 12054 .atomic_flush = intel_finish_crtc_commit, 12055 .atomic_check = intel_crtc_atomic_check, 12056}; 12057 12058static void intel_modeset_update_connector_atomic_state(struct drm_device *dev) 12059{ 12060 struct intel_connector *connector; 12061 12062 for_each_intel_connector(dev, connector) { 12063 if (connector->base.state->crtc) 12064 drm_connector_unreference(&connector->base); 12065 12066 if (connector->base.encoder) { 12067 connector->base.state->best_encoder = 12068 connector->base.encoder; 12069 connector->base.state->crtc = 12070 connector->base.encoder->crtc; 12071 12072 drm_connector_reference(&connector->base); 12073 } else { 12074 connector->base.state->best_encoder = NULL; 12075 connector->base.state->crtc = NULL; 12076 } 12077 } 12078} 12079 12080static void 12081connected_sink_compute_bpp(struct intel_connector *connector, 12082 struct intel_crtc_state *pipe_config) 12083{ 12084 int bpp = pipe_config->pipe_bpp; 12085 12086 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n", 12087 connector->base.base.id, 12088 connector->base.name); 12089 12090 /* Don't use an invalid EDID bpc value */ 12091 if (connector->base.display_info.bpc && 12092 connector->base.display_info.bpc * 3 < bpp) { 12093 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n", 12094 bpp, connector->base.display_info.bpc*3); 12095 pipe_config->pipe_bpp = connector->base.display_info.bpc*3; 12096 } 12097 12098 /* Clamp bpp to default limit on screens without EDID 1.4 */ 12099 if (connector->base.display_info.bpc == 0) { 12100 int type = connector->base.connector_type; 12101 int clamp_bpp = 24; 12102 12103 /* Fall back to 18 bpp when DP sink capability is unknown. */ 12104 if (type == DRM_MODE_CONNECTOR_DisplayPort || 12105 type == DRM_MODE_CONNECTOR_eDP) 12106 clamp_bpp = 18; 12107 12108 if (bpp > clamp_bpp) { 12109 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n", 12110 bpp, clamp_bpp); 12111 pipe_config->pipe_bpp = clamp_bpp; 12112 } 12113 } 12114} 12115 12116static int 12117compute_baseline_pipe_bpp(struct intel_crtc *crtc, 12118 struct intel_crtc_state *pipe_config) 12119{ 12120 struct drm_device *dev = crtc->base.dev; 12121 struct drm_atomic_state *state; 12122 struct drm_connector *connector; 12123 struct drm_connector_state *connector_state; 12124 int bpp, i; 12125 12126 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))) 12127 bpp = 10*3; 12128 else if (INTEL_INFO(dev)->gen >= 5) 12129 bpp = 12*3; 12130 else 12131 bpp = 8*3; 12132 12133 12134 pipe_config->pipe_bpp = bpp; 12135 12136 state = pipe_config->base.state; 12137 12138 /* Clamp display bpp to EDID value */ 12139 for_each_connector_in_state(state, connector, connector_state, i) { 12140 if (connector_state->crtc != &crtc->base) 12141 continue; 12142 12143 connected_sink_compute_bpp(to_intel_connector(connector), 12144 pipe_config); 12145 } 12146 12147 return bpp; 12148} 12149 12150static void intel_dump_crtc_timings(const struct drm_display_mode *mode) 12151{ 12152 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " 12153 "type: 0x%x flags: 0x%x\n", 12154 mode->crtc_clock, 12155 mode->crtc_hdisplay, mode->crtc_hsync_start, 12156 mode->crtc_hsync_end, mode->crtc_htotal, 12157 mode->crtc_vdisplay, mode->crtc_vsync_start, 12158 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); 12159} 12160 12161static void intel_dump_pipe_config(struct intel_crtc *crtc, 12162 struct intel_crtc_state *pipe_config, 12163 const char *context) 12164{ 12165 struct drm_device *dev = crtc->base.dev; 12166 struct drm_plane *plane; 12167 struct intel_plane *intel_plane; 12168 struct intel_plane_state *state; 12169 struct drm_framebuffer *fb; 12170 12171 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id, 12172 context, pipe_config, pipe_name(crtc->pipe)); 12173 12174 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder)); 12175 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n", 12176 pipe_config->pipe_bpp, pipe_config->dither); 12177 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12178 pipe_config->has_pch_encoder, 12179 pipe_config->fdi_lanes, 12180 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n, 12181 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n, 12182 pipe_config->fdi_m_n.tu); 12183 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", 12184 pipe_config->has_dp_encoder, 12185 pipe_config->lane_count, 12186 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n, 12187 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n, 12188 pipe_config->dp_m_n.tu); 12189 12190 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n", 12191 pipe_config->has_dp_encoder, 12192 pipe_config->lane_count, 12193 pipe_config->dp_m2_n2.gmch_m, 12194 pipe_config->dp_m2_n2.gmch_n, 12195 pipe_config->dp_m2_n2.link_m, 12196 pipe_config->dp_m2_n2.link_n, 12197 pipe_config->dp_m2_n2.tu); 12198 12199 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n", 12200 pipe_config->has_audio, 12201 pipe_config->has_infoframe); 12202 12203 DRM_DEBUG_KMS("requested mode:\n"); 12204 drm_mode_debug_printmodeline(&pipe_config->base.mode); 12205 DRM_DEBUG_KMS("adjusted mode:\n"); 12206 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode); 12207 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode); 12208 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock); 12209 DRM_DEBUG_KMS("pipe src size: %dx%d\n", 12210 pipe_config->pipe_src_w, pipe_config->pipe_src_h); 12211 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n", 12212 crtc->num_scalers, 12213 pipe_config->scaler_state.scaler_users, 12214 pipe_config->scaler_state.scaler_id); 12215 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", 12216 pipe_config->gmch_pfit.control, 12217 pipe_config->gmch_pfit.pgm_ratios, 12218 pipe_config->gmch_pfit.lvds_border_bits); 12219 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n", 12220 pipe_config->pch_pfit.pos, 12221 pipe_config->pch_pfit.size, 12222 pipe_config->pch_pfit.enabled ? "enabled" : "disabled"); 12223 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled); 12224 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide); 12225 12226 if (IS_BROXTON(dev)) { 12227 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x," 12228 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, " 12229 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n", 12230 pipe_config->ddi_pll_sel, 12231 pipe_config->dpll_hw_state.ebb0, 12232 pipe_config->dpll_hw_state.ebb4, 12233 pipe_config->dpll_hw_state.pll0, 12234 pipe_config->dpll_hw_state.pll1, 12235 pipe_config->dpll_hw_state.pll2, 12236 pipe_config->dpll_hw_state.pll3, 12237 pipe_config->dpll_hw_state.pll6, 12238 pipe_config->dpll_hw_state.pll8, 12239 pipe_config->dpll_hw_state.pll9, 12240 pipe_config->dpll_hw_state.pll10, 12241 pipe_config->dpll_hw_state.pcsdw12); 12242 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) { 12243 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: " 12244 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n", 12245 pipe_config->ddi_pll_sel, 12246 pipe_config->dpll_hw_state.ctrl1, 12247 pipe_config->dpll_hw_state.cfgcr1, 12248 pipe_config->dpll_hw_state.cfgcr2); 12249 } else if (HAS_DDI(dev)) { 12250 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n", 12251 pipe_config->ddi_pll_sel, 12252 pipe_config->dpll_hw_state.wrpll, 12253 pipe_config->dpll_hw_state.spll); 12254 } else { 12255 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, " 12256 "fp0: 0x%x, fp1: 0x%x\n", 12257 pipe_config->dpll_hw_state.dpll, 12258 pipe_config->dpll_hw_state.dpll_md, 12259 pipe_config->dpll_hw_state.fp0, 12260 pipe_config->dpll_hw_state.fp1); 12261 } 12262 12263 DRM_DEBUG_KMS("planes on this crtc\n"); 12264 list_for_each_entry(plane, &dev->mode_config.plane_list, head) { 12265 intel_plane = to_intel_plane(plane); 12266 if (intel_plane->pipe != crtc->pipe) 12267 continue; 12268 12269 state = to_intel_plane_state(plane->state); 12270 fb = state->base.fb; 12271 if (!fb) { 12272 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d " 12273 "disabled, scaler_id = %d\n", 12274 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD", 12275 plane->base.id, intel_plane->pipe, 12276 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1, 12277 drm_plane_index(plane), state->scaler_id); 12278 continue; 12279 } 12280 12281 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled", 12282 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD", 12283 plane->base.id, intel_plane->pipe, 12284 crtc->base.primary == plane ? 0 : intel_plane->plane + 1, 12285 drm_plane_index(plane)); 12286 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x", 12287 fb->base.id, fb->width, fb->height, fb->pixel_format); 12288 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n", 12289 state->scaler_id, 12290 state->src.x1 >> 16, state->src.y1 >> 16, 12291 drm_rect_width(&state->src) >> 16, 12292 drm_rect_height(&state->src) >> 16, 12293 state->dst.x1, state->dst.y1, 12294 drm_rect_width(&state->dst), drm_rect_height(&state->dst)); 12295 } 12296} 12297 12298static bool check_digital_port_conflicts(struct drm_atomic_state *state) 12299{ 12300 struct drm_device *dev = state->dev; 12301 struct drm_connector *connector; 12302 unsigned int used_ports = 0; 12303 12304 /* 12305 * Walk the connector list instead of the encoder 12306 * list to detect the problem on ddi platforms 12307 * where there's just one encoder per digital port. 12308 */ 12309 drm_for_each_connector(connector, dev) { 12310 struct drm_connector_state *connector_state; 12311 struct intel_encoder *encoder; 12312 12313 connector_state = drm_atomic_get_existing_connector_state(state, connector); 12314 if (!connector_state) 12315 connector_state = connector->state; 12316 12317 if (!connector_state->best_encoder) 12318 continue; 12319 12320 encoder = to_intel_encoder(connector_state->best_encoder); 12321 12322 WARN_ON(!connector_state->crtc); 12323 12324 switch (encoder->type) { 12325 unsigned int port_mask; 12326 case INTEL_OUTPUT_UNKNOWN: 12327 if (WARN_ON(!HAS_DDI(dev))) 12328 break; 12329 case INTEL_OUTPUT_DISPLAYPORT: 12330 case INTEL_OUTPUT_HDMI: 12331 case INTEL_OUTPUT_EDP: 12332 port_mask = 1 << enc_to_dig_port(&encoder->base)->port; 12333 12334 /* the same port mustn't appear more than once */ 12335 if (used_ports & port_mask) 12336 return false; 12337 12338 used_ports |= port_mask; 12339 default: 12340 break; 12341 } 12342 } 12343 12344 return true; 12345} 12346 12347static void 12348clear_intel_crtc_state(struct intel_crtc_state *crtc_state) 12349{ 12350 struct drm_crtc_state tmp_state; 12351 struct intel_crtc_scaler_state scaler_state; 12352 struct intel_dpll_hw_state dpll_hw_state; 12353 struct intel_shared_dpll *shared_dpll; 12354 uint32_t ddi_pll_sel; 12355 bool force_thru; 12356 12357 /* FIXME: before the switch to atomic started, a new pipe_config was 12358 * kzalloc'd. Code that depends on any field being zero should be 12359 * fixed, so that the crtc_state can be safely duplicated. For now, 12360 * only fields that are know to not cause problems are preserved. */ 12361 12362 tmp_state = crtc_state->base; 12363 scaler_state = crtc_state->scaler_state; 12364 shared_dpll = crtc_state->shared_dpll; 12365 dpll_hw_state = crtc_state->dpll_hw_state; 12366 ddi_pll_sel = crtc_state->ddi_pll_sel; 12367 force_thru = crtc_state->pch_pfit.force_thru; 12368 12369 memset(crtc_state, 0, sizeof *crtc_state); 12370 12371 crtc_state->base = tmp_state; 12372 crtc_state->scaler_state = scaler_state; 12373 crtc_state->shared_dpll = shared_dpll; 12374 crtc_state->dpll_hw_state = dpll_hw_state; 12375 crtc_state->ddi_pll_sel = ddi_pll_sel; 12376 crtc_state->pch_pfit.force_thru = force_thru; 12377} 12378 12379static int 12380intel_modeset_pipe_config(struct drm_crtc *crtc, 12381 struct intel_crtc_state *pipe_config) 12382{ 12383 struct drm_atomic_state *state = pipe_config->base.state; 12384 struct intel_encoder *encoder; 12385 struct drm_connector *connector; 12386 struct drm_connector_state *connector_state; 12387 int base_bpp, ret = -EINVAL; 12388 int i; 12389 bool retry = true; 12390 12391 clear_intel_crtc_state(pipe_config); 12392 12393 pipe_config->cpu_transcoder = 12394 (enum transcoder) to_intel_crtc(crtc)->pipe; 12395 12396 /* 12397 * Sanitize sync polarity flags based on requested ones. If neither 12398 * positive or negative polarity is requested, treat this as meaning 12399 * negative polarity. 12400 */ 12401 if (!(pipe_config->base.adjusted_mode.flags & 12402 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) 12403 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; 12404 12405 if (!(pipe_config->base.adjusted_mode.flags & 12406 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) 12407 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; 12408 12409 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc), 12410 pipe_config); 12411 if (base_bpp < 0) 12412 goto fail; 12413 12414 /* 12415 * Determine the real pipe dimensions. Note that stereo modes can 12416 * increase the actual pipe size due to the frame doubling and 12417 * insertion of additional space for blanks between the frame. This 12418 * is stored in the crtc timings. We use the requested mode to do this 12419 * computation to clearly distinguish it from the adjusted mode, which 12420 * can be changed by the connectors in the below retry loop. 12421 */ 12422 drm_crtc_get_hv_timing(&pipe_config->base.mode, 12423 &pipe_config->pipe_src_w, 12424 &pipe_config->pipe_src_h); 12425 12426encoder_retry: 12427 /* Ensure the port clock defaults are reset when retrying. */ 12428 pipe_config->port_clock = 0; 12429 pipe_config->pixel_multiplier = 1; 12430 12431 /* Fill in default crtc timings, allow encoders to overwrite them. */ 12432 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode, 12433 CRTC_STEREO_DOUBLE); 12434 12435 /* Pass our mode to the connectors and the CRTC to give them a chance to 12436 * adjust it according to limitations or connector properties, and also 12437 * a chance to reject the mode entirely. 12438 */ 12439 for_each_connector_in_state(state, connector, connector_state, i) { 12440 if (connector_state->crtc != crtc) 12441 continue; 12442 12443 encoder = to_intel_encoder(connector_state->best_encoder); 12444 12445 if (!(encoder->compute_config(encoder, pipe_config))) { 12446 DRM_DEBUG_KMS("Encoder config failure\n"); 12447 goto fail; 12448 } 12449 } 12450 12451 /* Set default port clock if not overwritten by the encoder. Needs to be 12452 * done afterwards in case the encoder adjusts the mode. */ 12453 if (!pipe_config->port_clock) 12454 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock 12455 * pipe_config->pixel_multiplier; 12456 12457 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); 12458 if (ret < 0) { 12459 DRM_DEBUG_KMS("CRTC fixup failed\n"); 12460 goto fail; 12461 } 12462 12463 if (ret == RETRY) { 12464 if (WARN(!retry, "loop in pipe configuration computation\n")) { 12465 ret = -EINVAL; 12466 goto fail; 12467 } 12468 12469 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); 12470 retry = false; 12471 goto encoder_retry; 12472 } 12473 12474 /* Dithering seems to not pass-through bits correctly when it should, so 12475 * only enable it on 6bpc panels. */ 12476 pipe_config->dither = pipe_config->pipe_bpp == 6*3; 12477 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n", 12478 base_bpp, pipe_config->pipe_bpp, pipe_config->dither); 12479 12480fail: 12481 return ret; 12482} 12483 12484static void 12485intel_modeset_update_crtc_state(struct drm_atomic_state *state) 12486{ 12487 struct drm_crtc *crtc; 12488 struct drm_crtc_state *crtc_state; 12489 int i; 12490 12491 /* Double check state. */ 12492 for_each_crtc_in_state(state, crtc, crtc_state, i) { 12493 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state); 12494 12495 /* Update hwmode for vblank functions */ 12496 if (crtc->state->active) 12497 crtc->hwmode = crtc->state->adjusted_mode; 12498 else 12499 crtc->hwmode.crtc_clock = 0; 12500 12501 /* 12502 * Update legacy state to satisfy fbc code. This can 12503 * be removed when fbc uses the atomic state. 12504 */ 12505 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) { 12506 struct drm_plane_state *plane_state = crtc->primary->state; 12507 12508 crtc->primary->fb = plane_state->fb; 12509 crtc->x = plane_state->src_x >> 16; 12510 crtc->y = plane_state->src_y >> 16; 12511 } 12512 } 12513} 12514 12515static bool intel_fuzzy_clock_check(int clock1, int clock2) 12516{ 12517 int diff; 12518 12519 if (clock1 == clock2) 12520 return true; 12521 12522 if (!clock1 || !clock2) 12523 return false; 12524 12525 diff = abs(clock1 - clock2); 12526 12527 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) 12528 return true; 12529 12530 return false; 12531} 12532 12533#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ 12534 list_for_each_entry((intel_crtc), \ 12535 &(dev)->mode_config.crtc_list, \ 12536 base.head) \ 12537 for_each_if (mask & (1 <<(intel_crtc)->pipe)) 12538 12539static bool 12540intel_compare_m_n(unsigned int m, unsigned int n, 12541 unsigned int m2, unsigned int n2, 12542 bool exact) 12543{ 12544 if (m == m2 && n == n2) 12545 return true; 12546 12547 if (exact || !m || !n || !m2 || !n2) 12548 return false; 12549 12550 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX); 12551 12552 if (n > n2) { 12553 while (n > n2) { 12554 m2 <<= 1; 12555 n2 <<= 1; 12556 } 12557 } else if (n < n2) { 12558 while (n < n2) { 12559 m <<= 1; 12560 n <<= 1; 12561 } 12562 } 12563 12564 if (n != n2) 12565 return false; 12566 12567 return intel_fuzzy_clock_check(m, m2); 12568} 12569 12570static bool 12571intel_compare_link_m_n(const struct intel_link_m_n *m_n, 12572 struct intel_link_m_n *m2_n2, 12573 bool adjust) 12574{ 12575 if (m_n->tu == m2_n2->tu && 12576 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n, 12577 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) && 12578 intel_compare_m_n(m_n->link_m, m_n->link_n, 12579 m2_n2->link_m, m2_n2->link_n, !adjust)) { 12580 if (adjust) 12581 *m2_n2 = *m_n; 12582 12583 return true; 12584 } 12585 12586 return false; 12587} 12588 12589static bool 12590intel_pipe_config_compare(struct drm_device *dev, 12591 struct intel_crtc_state *current_config, 12592 struct intel_crtc_state *pipe_config, 12593 bool adjust) 12594{ 12595 bool ret = true; 12596 12597#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \ 12598 do { \ 12599 if (!adjust) \ 12600 DRM_ERROR(fmt, ##__VA_ARGS__); \ 12601 else \ 12602 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \ 12603 } while (0) 12604 12605#define PIPE_CONF_CHECK_X(name) \ 12606 if (current_config->name != pipe_config->name) { \ 12607 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ 12608 "(expected 0x%08x, found 0x%08x)\n", \ 12609 current_config->name, \ 12610 pipe_config->name); \ 12611 ret = false; \ 12612 } 12613 12614#define PIPE_CONF_CHECK_I(name) \ 12615 if (current_config->name != pipe_config->name) { \ 12616 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ 12617 "(expected %i, found %i)\n", \ 12618 current_config->name, \ 12619 pipe_config->name); \ 12620 ret = false; \ 12621 } 12622 12623#define PIPE_CONF_CHECK_P(name) \ 12624 if (current_config->name != pipe_config->name) { \ 12625 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ 12626 "(expected %p, found %p)\n", \ 12627 current_config->name, \ 12628 pipe_config->name); \ 12629 ret = false; \ 12630 } 12631 12632#define PIPE_CONF_CHECK_M_N(name) \ 12633 if (!intel_compare_link_m_n(&current_config->name, \ 12634 &pipe_config->name,\ 12635 adjust)) { \ 12636 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ 12637 "(expected tu %i gmch %i/%i link %i/%i, " \ 12638 "found tu %i, gmch %i/%i link %i/%i)\n", \ 12639 current_config->name.tu, \ 12640 current_config->name.gmch_m, \ 12641 current_config->name.gmch_n, \ 12642 current_config->name.link_m, \ 12643 current_config->name.link_n, \ 12644 pipe_config->name.tu, \ 12645 pipe_config->name.gmch_m, \ 12646 pipe_config->name.gmch_n, \ 12647 pipe_config->name.link_m, \ 12648 pipe_config->name.link_n); \ 12649 ret = false; \ 12650 } 12651 12652/* This is required for BDW+ where there is only one set of registers for 12653 * switching between high and low RR. 12654 * This macro can be used whenever a comparison has to be made between one 12655 * hw state and multiple sw state variables. 12656 */ 12657#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \ 12658 if (!intel_compare_link_m_n(&current_config->name, \ 12659 &pipe_config->name, adjust) && \ 12660 !intel_compare_link_m_n(&current_config->alt_name, \ 12661 &pipe_config->name, adjust)) { \ 12662 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ 12663 "(expected tu %i gmch %i/%i link %i/%i, " \ 12664 "or tu %i gmch %i/%i link %i/%i, " \ 12665 "found tu %i, gmch %i/%i link %i/%i)\n", \ 12666 current_config->name.tu, \ 12667 current_config->name.gmch_m, \ 12668 current_config->name.gmch_n, \ 12669 current_config->name.link_m, \ 12670 current_config->name.link_n, \ 12671 current_config->alt_name.tu, \ 12672 current_config->alt_name.gmch_m, \ 12673 current_config->alt_name.gmch_n, \ 12674 current_config->alt_name.link_m, \ 12675 current_config->alt_name.link_n, \ 12676 pipe_config->name.tu, \ 12677 pipe_config->name.gmch_m, \ 12678 pipe_config->name.gmch_n, \ 12679 pipe_config->name.link_m, \ 12680 pipe_config->name.link_n); \ 12681 ret = false; \ 12682 } 12683 12684#define PIPE_CONF_CHECK_FLAGS(name, mask) \ 12685 if ((current_config->name ^ pipe_config->name) & (mask)) { \ 12686 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \ 12687 "(expected %i, found %i)\n", \ 12688 current_config->name & (mask), \ 12689 pipe_config->name & (mask)); \ 12690 ret = false; \ 12691 } 12692 12693#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \ 12694 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ 12695 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \ 12696 "(expected %i, found %i)\n", \ 12697 current_config->name, \ 12698 pipe_config->name); \ 12699 ret = false; \ 12700 } 12701 12702#define PIPE_CONF_QUIRK(quirk) \ 12703 ((current_config->quirks | pipe_config->quirks) & (quirk)) 12704 12705 PIPE_CONF_CHECK_I(cpu_transcoder); 12706 12707 PIPE_CONF_CHECK_I(has_pch_encoder); 12708 PIPE_CONF_CHECK_I(fdi_lanes); 12709 PIPE_CONF_CHECK_M_N(fdi_m_n); 12710 12711 PIPE_CONF_CHECK_I(has_dp_encoder); 12712 PIPE_CONF_CHECK_I(lane_count); 12713 12714 if (INTEL_INFO(dev)->gen < 8) { 12715 PIPE_CONF_CHECK_M_N(dp_m_n); 12716 12717 if (current_config->has_drrs) 12718 PIPE_CONF_CHECK_M_N(dp_m2_n2); 12719 } else 12720 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); 12721 12722 PIPE_CONF_CHECK_I(has_dsi_encoder); 12723 12724 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay); 12725 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal); 12726 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start); 12727 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end); 12728 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start); 12729 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end); 12730 12731 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay); 12732 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal); 12733 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start); 12734 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end); 12735 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start); 12736 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end); 12737 12738 PIPE_CONF_CHECK_I(pixel_multiplier); 12739 PIPE_CONF_CHECK_I(has_hdmi_sink); 12740 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) || 12741 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 12742 PIPE_CONF_CHECK_I(limited_color_range); 12743 PIPE_CONF_CHECK_I(has_infoframe); 12744 12745 PIPE_CONF_CHECK_I(has_audio); 12746 12747 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12748 DRM_MODE_FLAG_INTERLACE); 12749 12750 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { 12751 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12752 DRM_MODE_FLAG_PHSYNC); 12753 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12754 DRM_MODE_FLAG_NHSYNC); 12755 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12756 DRM_MODE_FLAG_PVSYNC); 12757 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags, 12758 DRM_MODE_FLAG_NVSYNC); 12759 } 12760 12761 PIPE_CONF_CHECK_X(gmch_pfit.control); 12762 /* pfit ratios are autocomputed by the hw on gen4+ */ 12763 if (INTEL_INFO(dev)->gen < 4) 12764 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); 12765 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); 12766 12767 if (!adjust) { 12768 PIPE_CONF_CHECK_I(pipe_src_w); 12769 PIPE_CONF_CHECK_I(pipe_src_h); 12770 12771 PIPE_CONF_CHECK_I(pch_pfit.enabled); 12772 if (current_config->pch_pfit.enabled) { 12773 PIPE_CONF_CHECK_X(pch_pfit.pos); 12774 PIPE_CONF_CHECK_X(pch_pfit.size); 12775 } 12776 12777 PIPE_CONF_CHECK_I(scaler_state.scaler_id); 12778 } 12779 12780 /* BDW+ don't expose a synchronous way to read the state */ 12781 if (IS_HASWELL(dev)) 12782 PIPE_CONF_CHECK_I(ips_enabled); 12783 12784 PIPE_CONF_CHECK_I(double_wide); 12785 12786 PIPE_CONF_CHECK_X(ddi_pll_sel); 12787 12788 PIPE_CONF_CHECK_P(shared_dpll); 12789 PIPE_CONF_CHECK_X(dpll_hw_state.dpll); 12790 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); 12791 PIPE_CONF_CHECK_X(dpll_hw_state.fp0); 12792 PIPE_CONF_CHECK_X(dpll_hw_state.fp1); 12793 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); 12794 PIPE_CONF_CHECK_X(dpll_hw_state.spll); 12795 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); 12796 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); 12797 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); 12798 12799 PIPE_CONF_CHECK_X(dsi_pll.ctrl); 12800 PIPE_CONF_CHECK_X(dsi_pll.div); 12801 12802 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) 12803 PIPE_CONF_CHECK_I(pipe_bpp); 12804 12805 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock); 12806 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); 12807 12808#undef PIPE_CONF_CHECK_X 12809#undef PIPE_CONF_CHECK_I 12810#undef PIPE_CONF_CHECK_P 12811#undef PIPE_CONF_CHECK_FLAGS 12812#undef PIPE_CONF_CHECK_CLOCK_FUZZY 12813#undef PIPE_CONF_QUIRK 12814#undef INTEL_ERR_OR_DBG_KMS 12815 12816 return ret; 12817} 12818 12819static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv, 12820 const struct intel_crtc_state *pipe_config) 12821{ 12822 if (pipe_config->has_pch_encoder) { 12823 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config), 12824 &pipe_config->fdi_m_n); 12825 int dotclock = pipe_config->base.adjusted_mode.crtc_clock; 12826 12827 /* 12828 * FDI already provided one idea for the dotclock. 12829 * Yell if the encoder disagrees. 12830 */ 12831 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock), 12832 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", 12833 fdi_dotclock, dotclock); 12834 } 12835} 12836 12837static void verify_wm_state(struct drm_crtc *crtc, 12838 struct drm_crtc_state *new_state) 12839{ 12840 struct drm_device *dev = crtc->dev; 12841 struct drm_i915_private *dev_priv = dev->dev_private; 12842 struct skl_ddb_allocation hw_ddb, *sw_ddb; 12843 struct skl_ddb_entry *hw_entry, *sw_entry; 12844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12845 const enum pipe pipe = intel_crtc->pipe; 12846 int plane; 12847 12848 if (INTEL_INFO(dev)->gen < 9 || !new_state->active) 12849 return; 12850 12851 skl_ddb_get_hw_state(dev_priv, &hw_ddb); 12852 sw_ddb = &dev_priv->wm.skl_hw.ddb; 12853 12854 /* planes */ 12855 for_each_plane(dev_priv, pipe, plane) { 12856 hw_entry = &hw_ddb.plane[pipe][plane]; 12857 sw_entry = &sw_ddb->plane[pipe][plane]; 12858 12859 if (skl_ddb_entry_equal(hw_entry, sw_entry)) 12860 continue; 12861 12862 DRM_ERROR("mismatch in DDB state pipe %c plane %d " 12863 "(expected (%u,%u), found (%u,%u))\n", 12864 pipe_name(pipe), plane + 1, 12865 sw_entry->start, sw_entry->end, 12866 hw_entry->start, hw_entry->end); 12867 } 12868 12869 /* cursor */ 12870 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR]; 12871 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR]; 12872 12873 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) { 12874 DRM_ERROR("mismatch in DDB state pipe %c cursor " 12875 "(expected (%u,%u), found (%u,%u))\n", 12876 pipe_name(pipe), 12877 sw_entry->start, sw_entry->end, 12878 hw_entry->start, hw_entry->end); 12879 } 12880} 12881 12882static void 12883verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc) 12884{ 12885 struct drm_connector *connector; 12886 12887 drm_for_each_connector(connector, dev) { 12888 struct drm_encoder *encoder = connector->encoder; 12889 struct drm_connector_state *state = connector->state; 12890 12891 if (state->crtc != crtc) 12892 continue; 12893 12894 intel_connector_verify_state(to_intel_connector(connector)); 12895 12896 I915_STATE_WARN(state->best_encoder != encoder, 12897 "connector's atomic encoder doesn't match legacy encoder\n"); 12898 } 12899} 12900 12901static void 12902verify_encoder_state(struct drm_device *dev) 12903{ 12904 struct intel_encoder *encoder; 12905 struct intel_connector *connector; 12906 12907 for_each_intel_encoder(dev, encoder) { 12908 bool enabled = false; 12909 enum pipe pipe; 12910 12911 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", 12912 encoder->base.base.id, 12913 encoder->base.name); 12914 12915 for_each_intel_connector(dev, connector) { 12916 if (connector->base.state->best_encoder != &encoder->base) 12917 continue; 12918 enabled = true; 12919 12920 I915_STATE_WARN(connector->base.state->crtc != 12921 encoder->base.crtc, 12922 "connector's crtc doesn't match encoder crtc\n"); 12923 } 12924 12925 I915_STATE_WARN(!!encoder->base.crtc != enabled, 12926 "encoder's enabled state mismatch " 12927 "(expected %i, found %i)\n", 12928 !!encoder->base.crtc, enabled); 12929 12930 if (!encoder->base.crtc) { 12931 bool active; 12932 12933 active = encoder->get_hw_state(encoder, &pipe); 12934 I915_STATE_WARN(active, 12935 "encoder detached but still enabled on pipe %c.\n", 12936 pipe_name(pipe)); 12937 } 12938 } 12939} 12940 12941static void 12942verify_crtc_state(struct drm_crtc *crtc, 12943 struct drm_crtc_state *old_crtc_state, 12944 struct drm_crtc_state *new_crtc_state) 12945{ 12946 struct drm_device *dev = crtc->dev; 12947 struct drm_i915_private *dev_priv = dev->dev_private; 12948 struct intel_encoder *encoder; 12949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 12950 struct intel_crtc_state *pipe_config, *sw_config; 12951 struct drm_atomic_state *old_state; 12952 bool active; 12953 12954 old_state = old_crtc_state->state; 12955 __drm_atomic_helper_crtc_destroy_state(old_crtc_state); 12956 pipe_config = to_intel_crtc_state(old_crtc_state); 12957 memset(pipe_config, 0, sizeof(*pipe_config)); 12958 pipe_config->base.crtc = crtc; 12959 pipe_config->base.state = old_state; 12960 12961 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id); 12962 12963 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config); 12964 12965 /* hw state is inconsistent with the pipe quirk */ 12966 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || 12967 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) 12968 active = new_crtc_state->active; 12969 12970 I915_STATE_WARN(new_crtc_state->active != active, 12971 "crtc active state doesn't match with hw state " 12972 "(expected %i, found %i)\n", new_crtc_state->active, active); 12973 12974 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active, 12975 "transitional active state does not match atomic hw state " 12976 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active); 12977 12978 for_each_encoder_on_crtc(dev, crtc, encoder) { 12979 enum pipe pipe; 12980 12981 active = encoder->get_hw_state(encoder, &pipe); 12982 I915_STATE_WARN(active != new_crtc_state->active, 12983 "[ENCODER:%i] active %i with crtc active %i\n", 12984 encoder->base.base.id, active, new_crtc_state->active); 12985 12986 I915_STATE_WARN(active && intel_crtc->pipe != pipe, 12987 "Encoder connected to wrong pipe %c\n", 12988 pipe_name(pipe)); 12989 12990 if (active) 12991 encoder->get_config(encoder, pipe_config); 12992 } 12993 12994 if (!new_crtc_state->active) 12995 return; 12996 12997 intel_pipe_config_sanity_check(dev_priv, pipe_config); 12998 12999 sw_config = to_intel_crtc_state(crtc->state); 13000 if (!intel_pipe_config_compare(dev, sw_config, 13001 pipe_config, false)) { 13002 I915_STATE_WARN(1, "pipe state doesn't match!\n"); 13003 intel_dump_pipe_config(intel_crtc, pipe_config, 13004 "[hw state]"); 13005 intel_dump_pipe_config(intel_crtc, sw_config, 13006 "[sw state]"); 13007 } 13008} 13009 13010static void 13011verify_single_dpll_state(struct drm_i915_private *dev_priv, 13012 struct intel_shared_dpll *pll, 13013 struct drm_crtc *crtc, 13014 struct drm_crtc_state *new_state) 13015{ 13016 struct intel_dpll_hw_state dpll_hw_state; 13017 unsigned crtc_mask; 13018 bool active; 13019 13020 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); 13021 13022 DRM_DEBUG_KMS("%s\n", pll->name); 13023 13024 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state); 13025 13026 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) { 13027 I915_STATE_WARN(!pll->on && pll->active_mask, 13028 "pll in active use but not on in sw tracking\n"); 13029 I915_STATE_WARN(pll->on && !pll->active_mask, 13030 "pll is on but not used by any active crtc\n"); 13031 I915_STATE_WARN(pll->on != active, 13032 "pll on state mismatch (expected %i, found %i)\n", 13033 pll->on, active); 13034 } 13035 13036 if (!crtc) { 13037 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask, 13038 "more active pll users than references: %x vs %x\n", 13039 pll->active_mask, pll->config.crtc_mask); 13040 13041 return; 13042 } 13043 13044 crtc_mask = 1 << drm_crtc_index(crtc); 13045 13046 if (new_state->active) 13047 I915_STATE_WARN(!(pll->active_mask & crtc_mask), 13048 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n", 13049 pipe_name(drm_crtc_index(crtc)), pll->active_mask); 13050 else 13051 I915_STATE_WARN(pll->active_mask & crtc_mask, 13052 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n", 13053 pipe_name(drm_crtc_index(crtc)), pll->active_mask); 13054 13055 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask), 13056 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n", 13057 crtc_mask, pll->config.crtc_mask); 13058 13059 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, 13060 &dpll_hw_state, 13061 sizeof(dpll_hw_state)), 13062 "pll hw state mismatch\n"); 13063} 13064 13065static void 13066verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc, 13067 struct drm_crtc_state *old_crtc_state, 13068 struct drm_crtc_state *new_crtc_state) 13069{ 13070 struct drm_i915_private *dev_priv = dev->dev_private; 13071 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state); 13072 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state); 13073 13074 if (new_state->shared_dpll) 13075 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state); 13076 13077 if (old_state->shared_dpll && 13078 old_state->shared_dpll != new_state->shared_dpll) { 13079 unsigned crtc_mask = 1 << drm_crtc_index(crtc); 13080 struct intel_shared_dpll *pll = old_state->shared_dpll; 13081 13082 I915_STATE_WARN(pll->active_mask & crtc_mask, 13083 "pll active mismatch (didn't expect pipe %c in active mask)\n", 13084 pipe_name(drm_crtc_index(crtc))); 13085 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask, 13086 "pll enabled crtcs mismatch (found %x in enabled mask)\n", 13087 pipe_name(drm_crtc_index(crtc))); 13088 } 13089} 13090 13091static void 13092intel_modeset_verify_crtc(struct drm_crtc *crtc, 13093 struct drm_crtc_state *old_state, 13094 struct drm_crtc_state *new_state) 13095{ 13096 if (!needs_modeset(new_state) && 13097 !to_intel_crtc_state(new_state)->update_pipe) 13098 return; 13099 13100 verify_wm_state(crtc, new_state); 13101 verify_connector_state(crtc->dev, crtc); 13102 verify_crtc_state(crtc, old_state, new_state); 13103 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state); 13104} 13105 13106static void 13107verify_disabled_dpll_state(struct drm_device *dev) 13108{ 13109 struct drm_i915_private *dev_priv = dev->dev_private; 13110 int i; 13111 13112 for (i = 0; i < dev_priv->num_shared_dpll; i++) 13113 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL); 13114} 13115 13116static void 13117intel_modeset_verify_disabled(struct drm_device *dev) 13118{ 13119 verify_encoder_state(dev); 13120 verify_connector_state(dev, NULL); 13121 verify_disabled_dpll_state(dev); 13122} 13123 13124static void update_scanline_offset(struct intel_crtc *crtc) 13125{ 13126 struct drm_device *dev = crtc->base.dev; 13127 13128 /* 13129 * The scanline counter increments at the leading edge of hsync. 13130 * 13131 * On most platforms it starts counting from vtotal-1 on the 13132 * first active line. That means the scanline counter value is 13133 * always one less than what we would expect. Ie. just after 13134 * start of vblank, which also occurs at start of hsync (on the 13135 * last active line), the scanline counter will read vblank_start-1. 13136 * 13137 * On gen2 the scanline counter starts counting from 1 instead 13138 * of vtotal-1, so we have to subtract one (or rather add vtotal-1 13139 * to keep the value positive), instead of adding one. 13140 * 13141 * On HSW+ the behaviour of the scanline counter depends on the output 13142 * type. For DP ports it behaves like most other platforms, but on HDMI 13143 * there's an extra 1 line difference. So we need to add two instead of 13144 * one to the value. 13145 */ 13146 if (IS_GEN2(dev)) { 13147 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode; 13148 int vtotal; 13149 13150 vtotal = adjusted_mode->crtc_vtotal; 13151 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 13152 vtotal /= 2; 13153 13154 crtc->scanline_offset = vtotal - 1; 13155 } else if (HAS_DDI(dev) && 13156 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) { 13157 crtc->scanline_offset = 2; 13158 } else 13159 crtc->scanline_offset = 1; 13160} 13161 13162static void intel_modeset_clear_plls(struct drm_atomic_state *state) 13163{ 13164 struct drm_device *dev = state->dev; 13165 struct drm_i915_private *dev_priv = to_i915(dev); 13166 struct intel_shared_dpll_config *shared_dpll = NULL; 13167 struct drm_crtc *crtc; 13168 struct drm_crtc_state *crtc_state; 13169 int i; 13170 13171 if (!dev_priv->display.crtc_compute_clock) 13172 return; 13173 13174 for_each_crtc_in_state(state, crtc, crtc_state, i) { 13175 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 13176 struct intel_shared_dpll *old_dpll = 13177 to_intel_crtc_state(crtc->state)->shared_dpll; 13178 13179 if (!needs_modeset(crtc_state)) 13180 continue; 13181 13182 to_intel_crtc_state(crtc_state)->shared_dpll = NULL; 13183 13184 if (!old_dpll) 13185 continue; 13186 13187 if (!shared_dpll) 13188 shared_dpll = intel_atomic_get_shared_dpll_state(state); 13189 13190 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc); 13191 } 13192} 13193 13194/* 13195 * This implements the workaround described in the "notes" section of the mode 13196 * set sequence documentation. When going from no pipes or single pipe to 13197 * multiple pipes, and planes are enabled after the pipe, we need to wait at 13198 * least 2 vblanks on the first pipe before enabling planes on the second pipe. 13199 */ 13200static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state) 13201{ 13202 struct drm_crtc_state *crtc_state; 13203 struct intel_crtc *intel_crtc; 13204 struct drm_crtc *crtc; 13205 struct intel_crtc_state *first_crtc_state = NULL; 13206 struct intel_crtc_state *other_crtc_state = NULL; 13207 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; 13208 int i; 13209 13210 /* look at all crtc's that are going to be enabled in during modeset */ 13211 for_each_crtc_in_state(state, crtc, crtc_state, i) { 13212 intel_crtc = to_intel_crtc(crtc); 13213 13214 if (!crtc_state->active || !needs_modeset(crtc_state)) 13215 continue; 13216 13217 if (first_crtc_state) { 13218 other_crtc_state = to_intel_crtc_state(crtc_state); 13219 break; 13220 } else { 13221 first_crtc_state = to_intel_crtc_state(crtc_state); 13222 first_pipe = intel_crtc->pipe; 13223 } 13224 } 13225 13226 /* No workaround needed? */ 13227 if (!first_crtc_state) 13228 return 0; 13229 13230 /* w/a possibly needed, check how many crtc's are already enabled. */ 13231 for_each_intel_crtc(state->dev, intel_crtc) { 13232 struct intel_crtc_state *pipe_config; 13233 13234 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc); 13235 if (IS_ERR(pipe_config)) 13236 return PTR_ERR(pipe_config); 13237 13238 pipe_config->hsw_workaround_pipe = INVALID_PIPE; 13239 13240 if (!pipe_config->base.active || 13241 needs_modeset(&pipe_config->base)) 13242 continue; 13243 13244 /* 2 or more enabled crtcs means no need for w/a */ 13245 if (enabled_pipe != INVALID_PIPE) 13246 return 0; 13247 13248 enabled_pipe = intel_crtc->pipe; 13249 } 13250 13251 if (enabled_pipe != INVALID_PIPE) 13252 first_crtc_state->hsw_workaround_pipe = enabled_pipe; 13253 else if (other_crtc_state) 13254 other_crtc_state->hsw_workaround_pipe = first_pipe; 13255 13256 return 0; 13257} 13258 13259static int intel_modeset_all_pipes(struct drm_atomic_state *state) 13260{ 13261 struct drm_crtc *crtc; 13262 struct drm_crtc_state *crtc_state; 13263 int ret = 0; 13264 13265 /* add all active pipes to the state */ 13266 for_each_crtc(state->dev, crtc) { 13267 crtc_state = drm_atomic_get_crtc_state(state, crtc); 13268 if (IS_ERR(crtc_state)) 13269 return PTR_ERR(crtc_state); 13270 13271 if (!crtc_state->active || needs_modeset(crtc_state)) 13272 continue; 13273 13274 crtc_state->mode_changed = true; 13275 13276 ret = drm_atomic_add_affected_connectors(state, crtc); 13277 if (ret) 13278 break; 13279 13280 ret = drm_atomic_add_affected_planes(state, crtc); 13281 if (ret) 13282 break; 13283 } 13284 13285 return ret; 13286} 13287 13288static int intel_modeset_checks(struct drm_atomic_state *state) 13289{ 13290 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 13291 struct drm_i915_private *dev_priv = state->dev->dev_private; 13292 struct drm_crtc *crtc; 13293 struct drm_crtc_state *crtc_state; 13294 int ret = 0, i; 13295 13296 if (!check_digital_port_conflicts(state)) { 13297 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); 13298 return -EINVAL; 13299 } 13300 13301 intel_state->modeset = true; 13302 intel_state->active_crtcs = dev_priv->active_crtcs; 13303 13304 for_each_crtc_in_state(state, crtc, crtc_state, i) { 13305 if (crtc_state->active) 13306 intel_state->active_crtcs |= 1 << i; 13307 else 13308 intel_state->active_crtcs &= ~(1 << i); 13309 } 13310 13311 /* 13312 * See if the config requires any additional preparation, e.g. 13313 * to adjust global state with pipes off. We need to do this 13314 * here so we can get the modeset_pipe updated config for the new 13315 * mode set on this crtc. For other crtcs we need to use the 13316 * adjusted_mode bits in the crtc directly. 13317 */ 13318 if (dev_priv->display.modeset_calc_cdclk) { 13319 ret = dev_priv->display.modeset_calc_cdclk(state); 13320 13321 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq) 13322 ret = intel_modeset_all_pipes(state); 13323 13324 if (ret < 0) 13325 return ret; 13326 13327 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n", 13328 intel_state->cdclk, intel_state->dev_cdclk); 13329 } else 13330 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq; 13331 13332 intel_modeset_clear_plls(state); 13333 13334 if (IS_HASWELL(dev_priv)) 13335 return haswell_mode_set_planes_workaround(state); 13336 13337 return 0; 13338} 13339 13340/* 13341 * Handle calculation of various watermark data at the end of the atomic check 13342 * phase. The code here should be run after the per-crtc and per-plane 'check' 13343 * handlers to ensure that all derived state has been updated. 13344 */ 13345static void calc_watermark_data(struct drm_atomic_state *state) 13346{ 13347 struct drm_device *dev = state->dev; 13348 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 13349 struct drm_crtc *crtc; 13350 struct drm_crtc_state *cstate; 13351 struct drm_plane *plane; 13352 struct drm_plane_state *pstate; 13353 13354 /* 13355 * Calculate watermark configuration details now that derived 13356 * plane/crtc state is all properly updated. 13357 */ 13358 drm_for_each_crtc(crtc, dev) { 13359 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?: 13360 crtc->state; 13361 13362 if (cstate->active) 13363 intel_state->wm_config.num_pipes_active++; 13364 } 13365 drm_for_each_legacy_plane(plane, dev) { 13366 pstate = drm_atomic_get_existing_plane_state(state, plane) ?: 13367 plane->state; 13368 13369 if (!to_intel_plane_state(pstate)->visible) 13370 continue; 13371 13372 intel_state->wm_config.sprites_enabled = true; 13373 if (pstate->crtc_w != pstate->src_w >> 16 || 13374 pstate->crtc_h != pstate->src_h >> 16) 13375 intel_state->wm_config.sprites_scaled = true; 13376 } 13377} 13378 13379/** 13380 * intel_atomic_check - validate state object 13381 * @dev: drm device 13382 * @state: state to validate 13383 */ 13384static int intel_atomic_check(struct drm_device *dev, 13385 struct drm_atomic_state *state) 13386{ 13387 struct drm_i915_private *dev_priv = to_i915(dev); 13388 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 13389 struct drm_crtc *crtc; 13390 struct drm_crtc_state *crtc_state; 13391 int ret, i; 13392 bool any_ms = false; 13393 13394 ret = drm_atomic_helper_check_modeset(dev, state); 13395 if (ret) 13396 return ret; 13397 13398 for_each_crtc_in_state(state, crtc, crtc_state, i) { 13399 struct intel_crtc_state *pipe_config = 13400 to_intel_crtc_state(crtc_state); 13401 13402 /* Catch I915_MODE_FLAG_INHERITED */ 13403 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags) 13404 crtc_state->mode_changed = true; 13405 13406 if (!crtc_state->enable) { 13407 if (needs_modeset(crtc_state)) 13408 any_ms = true; 13409 continue; 13410 } 13411 13412 if (!needs_modeset(crtc_state)) 13413 continue; 13414 13415 /* FIXME: For only active_changed we shouldn't need to do any 13416 * state recomputation at all. */ 13417 13418 ret = drm_atomic_add_affected_connectors(state, crtc); 13419 if (ret) 13420 return ret; 13421 13422 ret = intel_modeset_pipe_config(crtc, pipe_config); 13423 if (ret) 13424 return ret; 13425 13426 if (i915.fastboot && 13427 intel_pipe_config_compare(dev, 13428 to_intel_crtc_state(crtc->state), 13429 pipe_config, true)) { 13430 crtc_state->mode_changed = false; 13431 to_intel_crtc_state(crtc_state)->update_pipe = true; 13432 } 13433 13434 if (needs_modeset(crtc_state)) { 13435 any_ms = true; 13436 13437 ret = drm_atomic_add_affected_planes(state, crtc); 13438 if (ret) 13439 return ret; 13440 } 13441 13442 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config, 13443 needs_modeset(crtc_state) ? 13444 "[modeset]" : "[fastset]"); 13445 } 13446 13447 if (any_ms) { 13448 ret = intel_modeset_checks(state); 13449 13450 if (ret) 13451 return ret; 13452 } else 13453 intel_state->cdclk = dev_priv->cdclk_freq; 13454 13455 ret = drm_atomic_helper_check_planes(dev, state); 13456 if (ret) 13457 return ret; 13458 13459 intel_fbc_choose_crtc(dev_priv, state); 13460 calc_watermark_data(state); 13461 13462 return 0; 13463} 13464 13465static int intel_atomic_prepare_commit(struct drm_device *dev, 13466 struct drm_atomic_state *state, 13467 bool nonblock) 13468{ 13469 struct drm_i915_private *dev_priv = dev->dev_private; 13470 struct drm_plane_state *plane_state; 13471 struct drm_crtc_state *crtc_state; 13472 struct drm_plane *plane; 13473 struct drm_crtc *crtc; 13474 int i, ret; 13475 13476 if (nonblock) { 13477 DRM_DEBUG_KMS("i915 does not yet support nonblocking commit\n"); 13478 return -EINVAL; 13479 } 13480 13481 for_each_crtc_in_state(state, crtc, crtc_state, i) { 13482 if (state->legacy_cursor_update) 13483 continue; 13484 13485 ret = intel_crtc_wait_for_pending_flips(crtc); 13486 if (ret) 13487 return ret; 13488 13489 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2) 13490 flush_workqueue(dev_priv->wq); 13491 } 13492 13493 ret = mutex_lock_interruptible(&dev->struct_mutex); 13494 if (ret) 13495 return ret; 13496 13497 ret = drm_atomic_helper_prepare_planes(dev, state); 13498 mutex_unlock(&dev->struct_mutex); 13499 13500 if (!ret && !nonblock) { 13501 for_each_plane_in_state(state, plane, plane_state, i) { 13502 struct intel_plane_state *intel_plane_state = 13503 to_intel_plane_state(plane_state); 13504 13505 if (!intel_plane_state->wait_req) 13506 continue; 13507 13508 ret = __i915_wait_request(intel_plane_state->wait_req, 13509 true, NULL, NULL); 13510 if (ret) { 13511 /* Any hang should be swallowed by the wait */ 13512 WARN_ON(ret == -EIO); 13513 mutex_lock(&dev->struct_mutex); 13514 drm_atomic_helper_cleanup_planes(dev, state); 13515 mutex_unlock(&dev->struct_mutex); 13516 break; 13517 } 13518 } 13519 } 13520 13521 return ret; 13522} 13523 13524static void intel_atomic_wait_for_vblanks(struct drm_device *dev, 13525 struct drm_i915_private *dev_priv, 13526 unsigned crtc_mask) 13527{ 13528 unsigned last_vblank_count[I915_MAX_PIPES]; 13529 enum pipe pipe; 13530 int ret; 13531 13532 if (!crtc_mask) 13533 return; 13534 13535 for_each_pipe(dev_priv, pipe) { 13536 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 13537 13538 if (!((1 << pipe) & crtc_mask)) 13539 continue; 13540 13541 ret = drm_crtc_vblank_get(crtc); 13542 if (WARN_ON(ret != 0)) { 13543 crtc_mask &= ~(1 << pipe); 13544 continue; 13545 } 13546 13547 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc); 13548 } 13549 13550 for_each_pipe(dev_priv, pipe) { 13551 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; 13552 long lret; 13553 13554 if (!((1 << pipe) & crtc_mask)) 13555 continue; 13556 13557 lret = wait_event_timeout(dev->vblank[pipe].queue, 13558 last_vblank_count[pipe] != 13559 drm_crtc_vblank_count(crtc), 13560 msecs_to_jiffies(50)); 13561 13562 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe)); 13563 13564 drm_crtc_vblank_put(crtc); 13565 } 13566} 13567 13568static bool needs_vblank_wait(struct intel_crtc_state *crtc_state) 13569{ 13570 /* fb updated, need to unpin old fb */ 13571 if (crtc_state->fb_changed) 13572 return true; 13573 13574 /* wm changes, need vblank before final wm's */ 13575 if (crtc_state->update_wm_post) 13576 return true; 13577 13578 /* 13579 * cxsr is re-enabled after vblank. 13580 * This is already handled by crtc_state->update_wm_post, 13581 * but added for clarity. 13582 */ 13583 if (crtc_state->disable_cxsr) 13584 return true; 13585 13586 return false; 13587} 13588 13589/** 13590 * intel_atomic_commit - commit validated state object 13591 * @dev: DRM device 13592 * @state: the top-level driver state object 13593 * @nonblock: nonblocking commit 13594 * 13595 * This function commits a top-level state object that has been validated 13596 * with drm_atomic_helper_check(). 13597 * 13598 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment 13599 * we can only handle plane-related operations and do not yet support 13600 * nonblocking commit. 13601 * 13602 * RETURNS 13603 * Zero for success or -errno. 13604 */ 13605static int intel_atomic_commit(struct drm_device *dev, 13606 struct drm_atomic_state *state, 13607 bool nonblock) 13608{ 13609 struct intel_atomic_state *intel_state = to_intel_atomic_state(state); 13610 struct drm_i915_private *dev_priv = dev->dev_private; 13611 struct drm_crtc_state *old_crtc_state; 13612 struct drm_crtc *crtc; 13613 struct intel_crtc_state *intel_cstate; 13614 int ret = 0, i; 13615 bool hw_check = intel_state->modeset; 13616 unsigned long put_domains[I915_MAX_PIPES] = {}; 13617 unsigned crtc_vblank_mask = 0; 13618 13619 ret = intel_atomic_prepare_commit(dev, state, nonblock); 13620 if (ret) { 13621 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret); 13622 return ret; 13623 } 13624 13625 drm_atomic_helper_swap_state(dev, state); 13626 dev_priv->wm.config = intel_state->wm_config; 13627 intel_shared_dpll_commit(state); 13628 13629 if (intel_state->modeset) { 13630 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk, 13631 sizeof(intel_state->min_pixclk)); 13632 dev_priv->active_crtcs = intel_state->active_crtcs; 13633 dev_priv->atomic_cdclk_freq = intel_state->cdclk; 13634 13635 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); 13636 } 13637 13638 for_each_crtc_in_state(state, crtc, old_crtc_state, i) { 13639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 13640 13641 if (needs_modeset(crtc->state) || 13642 to_intel_crtc_state(crtc->state)->update_pipe) { 13643 hw_check = true; 13644 13645 put_domains[to_intel_crtc(crtc)->pipe] = 13646 modeset_get_crtc_power_domains(crtc, 13647 to_intel_crtc_state(crtc->state)); 13648 } 13649 13650 if (!needs_modeset(crtc->state)) 13651 continue; 13652 13653 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state)); 13654 13655 if (old_crtc_state->active) { 13656 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask); 13657 dev_priv->display.crtc_disable(crtc); 13658 intel_crtc->active = false; 13659 intel_fbc_disable(intel_crtc); 13660 intel_disable_shared_dpll(intel_crtc); 13661 13662 /* 13663 * Underruns don't always raise 13664 * interrupts, so check manually. 13665 */ 13666 intel_check_cpu_fifo_underruns(dev_priv); 13667 intel_check_pch_fifo_underruns(dev_priv); 13668 13669 if (!crtc->state->active) 13670 intel_update_watermarks(crtc); 13671 } 13672 } 13673 13674 /* Only after disabling all output pipelines that will be changed can we 13675 * update the the output configuration. */ 13676 intel_modeset_update_crtc_state(state); 13677 13678 if (intel_state->modeset) { 13679 drm_atomic_helper_update_legacy_modeset_state(state->dev, state); 13680 13681 if (dev_priv->display.modeset_commit_cdclk && 13682 intel_state->dev_cdclk != dev_priv->cdclk_freq) 13683 dev_priv->display.modeset_commit_cdclk(state); 13684 13685 intel_modeset_verify_disabled(dev); 13686 } 13687 13688 /* Now enable the clocks, plane, pipe, and connectors that we set up. */ 13689 for_each_crtc_in_state(state, crtc, old_crtc_state, i) { 13690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 13691 bool modeset = needs_modeset(crtc->state); 13692 struct intel_crtc_state *pipe_config = 13693 to_intel_crtc_state(crtc->state); 13694 bool update_pipe = !modeset && pipe_config->update_pipe; 13695 13696 if (modeset && crtc->state->active) { 13697 update_scanline_offset(to_intel_crtc(crtc)); 13698 dev_priv->display.crtc_enable(crtc); 13699 } 13700 13701 if (!modeset) 13702 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state)); 13703 13704 if (crtc->state->active && 13705 drm_atomic_get_existing_plane_state(state, crtc->primary)) 13706 intel_fbc_enable(intel_crtc); 13707 13708 if (crtc->state->active && 13709 (crtc->state->planes_changed || update_pipe)) 13710 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state); 13711 13712 if (pipe_config->base.active && needs_vblank_wait(pipe_config)) 13713 crtc_vblank_mask |= 1 << i; 13714 } 13715 13716 /* FIXME: add subpixel order */ 13717 13718 if (!state->legacy_cursor_update) 13719 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask); 13720 13721 /* 13722 * Now that the vblank has passed, we can go ahead and program the 13723 * optimal watermarks on platforms that need two-step watermark 13724 * programming. 13725 * 13726 * TODO: Move this (and other cleanup) to an async worker eventually. 13727 */ 13728 for_each_crtc_in_state(state, crtc, old_crtc_state, i) { 13729 intel_cstate = to_intel_crtc_state(crtc->state); 13730 13731 if (dev_priv->display.optimize_watermarks) 13732 dev_priv->display.optimize_watermarks(intel_cstate); 13733 } 13734 13735 for_each_crtc_in_state(state, crtc, old_crtc_state, i) { 13736 intel_post_plane_update(to_intel_crtc_state(old_crtc_state)); 13737 13738 if (put_domains[i]) 13739 modeset_put_power_domains(dev_priv, put_domains[i]); 13740 13741 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state); 13742 } 13743 13744 if (intel_state->modeset) 13745 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET); 13746 13747 mutex_lock(&dev->struct_mutex); 13748 drm_atomic_helper_cleanup_planes(dev, state); 13749 mutex_unlock(&dev->struct_mutex); 13750 13751 drm_atomic_state_free(state); 13752 13753 /* As one of the primary mmio accessors, KMS has a high likelihood 13754 * of triggering bugs in unclaimed access. After we finish 13755 * modesetting, see if an error has been flagged, and if so 13756 * enable debugging for the next modeset - and hope we catch 13757 * the culprit. 13758 * 13759 * XXX note that we assume display power is on at this point. 13760 * This might hold true now but we need to add pm helper to check 13761 * unclaimed only when the hardware is on, as atomic commits 13762 * can happen also when the device is completely off. 13763 */ 13764 intel_uncore_arm_unclaimed_mmio_detection(dev_priv); 13765 13766 return 0; 13767} 13768 13769void intel_crtc_restore_mode(struct drm_crtc *crtc) 13770{ 13771 struct drm_device *dev = crtc->dev; 13772 struct drm_atomic_state *state; 13773 struct drm_crtc_state *crtc_state; 13774 int ret; 13775 13776 state = drm_atomic_state_alloc(dev); 13777 if (!state) { 13778 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory", 13779 crtc->base.id); 13780 return; 13781 } 13782 13783 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); 13784 13785retry: 13786 crtc_state = drm_atomic_get_crtc_state(state, crtc); 13787 ret = PTR_ERR_OR_ZERO(crtc_state); 13788 if (!ret) { 13789 if (!crtc_state->active) 13790 goto out; 13791 13792 crtc_state->mode_changed = true; 13793 ret = drm_atomic_commit(state); 13794 } 13795 13796 if (ret == -EDEADLK) { 13797 drm_atomic_state_clear(state); 13798 drm_modeset_backoff(state->acquire_ctx); 13799 goto retry; 13800 } 13801 13802 if (ret) 13803out: 13804 drm_atomic_state_free(state); 13805} 13806 13807#undef for_each_intel_crtc_masked 13808 13809static const struct drm_crtc_funcs intel_crtc_funcs = { 13810 .gamma_set = drm_atomic_helper_legacy_gamma_set, 13811 .set_config = drm_atomic_helper_set_config, 13812 .set_property = drm_atomic_helper_crtc_set_property, 13813 .destroy = intel_crtc_destroy, 13814 .page_flip = intel_crtc_page_flip, 13815 .atomic_duplicate_state = intel_crtc_duplicate_state, 13816 .atomic_destroy_state = intel_crtc_destroy_state, 13817}; 13818 13819/** 13820 * intel_prepare_plane_fb - Prepare fb for usage on plane 13821 * @plane: drm plane to prepare for 13822 * @fb: framebuffer to prepare for presentation 13823 * 13824 * Prepares a framebuffer for usage on a display plane. Generally this 13825 * involves pinning the underlying object and updating the frontbuffer tracking 13826 * bits. Some older platforms need special physical address handling for 13827 * cursor planes. 13828 * 13829 * Must be called with struct_mutex held. 13830 * 13831 * Returns 0 on success, negative error code on failure. 13832 */ 13833int 13834intel_prepare_plane_fb(struct drm_plane *plane, 13835 const struct drm_plane_state *new_state) 13836{ 13837 struct drm_device *dev = plane->dev; 13838 struct drm_framebuffer *fb = new_state->fb; 13839 struct intel_plane *intel_plane = to_intel_plane(plane); 13840 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 13841 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb); 13842 int ret = 0; 13843 13844 if (!obj && !old_obj) 13845 return 0; 13846 13847 if (old_obj) { 13848 struct drm_crtc_state *crtc_state = 13849 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc); 13850 13851 /* Big Hammer, we also need to ensure that any pending 13852 * MI_WAIT_FOR_EVENT inside a user batch buffer on the 13853 * current scanout is retired before unpinning the old 13854 * framebuffer. Note that we rely on userspace rendering 13855 * into the buffer attached to the pipe they are waiting 13856 * on. If not, userspace generates a GPU hang with IPEHR 13857 * point to the MI_WAIT_FOR_EVENT. 13858 * 13859 * This should only fail upon a hung GPU, in which case we 13860 * can safely continue. 13861 */ 13862 if (needs_modeset(crtc_state)) 13863 ret = i915_gem_object_wait_rendering(old_obj, true); 13864 if (ret) { 13865 /* GPU hangs should have been swallowed by the wait */ 13866 WARN_ON(ret == -EIO); 13867 return ret; 13868 } 13869 } 13870 13871 /* For framebuffer backed by dmabuf, wait for fence */ 13872 if (obj && obj->base.dma_buf) { 13873 long lret; 13874 13875 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv, 13876 false, true, 13877 MAX_SCHEDULE_TIMEOUT); 13878 if (lret == -ERESTARTSYS) 13879 return lret; 13880 13881 WARN(lret < 0, "waiting returns %li\n", lret); 13882 } 13883 13884 if (!obj) { 13885 ret = 0; 13886 } else if (plane->type == DRM_PLANE_TYPE_CURSOR && 13887 INTEL_INFO(dev)->cursor_needs_physical) { 13888 int align = IS_I830(dev) ? 16 * 1024 : 256; 13889 ret = i915_gem_object_attach_phys(obj, align); 13890 if (ret) 13891 DRM_DEBUG_KMS("failed to attach phys object\n"); 13892 } else { 13893 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation); 13894 } 13895 13896 if (ret == 0) { 13897 if (obj) { 13898 struct intel_plane_state *plane_state = 13899 to_intel_plane_state(new_state); 13900 13901 i915_gem_request_assign(&plane_state->wait_req, 13902 obj->last_write_req); 13903 } 13904 13905 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit); 13906 } 13907 13908 return ret; 13909} 13910 13911/** 13912 * intel_cleanup_plane_fb - Cleans up an fb after plane use 13913 * @plane: drm plane to clean up for 13914 * @fb: old framebuffer that was on plane 13915 * 13916 * Cleans up a framebuffer that has just been removed from a plane. 13917 * 13918 * Must be called with struct_mutex held. 13919 */ 13920void 13921intel_cleanup_plane_fb(struct drm_plane *plane, 13922 const struct drm_plane_state *old_state) 13923{ 13924 struct drm_device *dev = plane->dev; 13925 struct intel_plane *intel_plane = to_intel_plane(plane); 13926 struct intel_plane_state *old_intel_state; 13927 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb); 13928 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb); 13929 13930 old_intel_state = to_intel_plane_state(old_state); 13931 13932 if (!obj && !old_obj) 13933 return; 13934 13935 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR || 13936 !INTEL_INFO(dev)->cursor_needs_physical)) 13937 intel_unpin_fb_obj(old_state->fb, old_state->rotation); 13938 13939 /* prepare_fb aborted? */ 13940 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) || 13941 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit))) 13942 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit); 13943 13944 i915_gem_request_assign(&old_intel_state->wait_req, NULL); 13945} 13946 13947int 13948skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state) 13949{ 13950 int max_scale; 13951 struct drm_device *dev; 13952 struct drm_i915_private *dev_priv; 13953 int crtc_clock, cdclk; 13954 13955 if (!intel_crtc || !crtc_state->base.enable) 13956 return DRM_PLANE_HELPER_NO_SCALING; 13957 13958 dev = intel_crtc->base.dev; 13959 dev_priv = dev->dev_private; 13960 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock; 13961 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk; 13962 13963 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock)) 13964 return DRM_PLANE_HELPER_NO_SCALING; 13965 13966 /* 13967 * skl max scale is lower of: 13968 * close to 3 but not 3, -1 is for that purpose 13969 * or 13970 * cdclk/crtc_clock 13971 */ 13972 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock)); 13973 13974 return max_scale; 13975} 13976 13977static int 13978intel_check_primary_plane(struct drm_plane *plane, 13979 struct intel_crtc_state *crtc_state, 13980 struct intel_plane_state *state) 13981{ 13982 struct drm_crtc *crtc = state->base.crtc; 13983 struct drm_framebuffer *fb = state->base.fb; 13984 int min_scale = DRM_PLANE_HELPER_NO_SCALING; 13985 int max_scale = DRM_PLANE_HELPER_NO_SCALING; 13986 bool can_position = false; 13987 13988 if (INTEL_INFO(plane->dev)->gen >= 9) { 13989 /* use scaler when colorkey is not required */ 13990 if (state->ckey.flags == I915_SET_COLORKEY_NONE) { 13991 min_scale = 1; 13992 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state); 13993 } 13994 can_position = true; 13995 } 13996 13997 return drm_plane_helper_check_update(plane, crtc, fb, &state->src, 13998 &state->dst, &state->clip, 13999 min_scale, max_scale, 14000 can_position, true, 14001 &state->visible); 14002} 14003 14004static void intel_begin_crtc_commit(struct drm_crtc *crtc, 14005 struct drm_crtc_state *old_crtc_state) 14006{ 14007 struct drm_device *dev = crtc->dev; 14008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 14009 struct intel_crtc_state *old_intel_state = 14010 to_intel_crtc_state(old_crtc_state); 14011 bool modeset = needs_modeset(crtc->state); 14012 14013 /* Perform vblank evasion around commit operation */ 14014 intel_pipe_update_start(intel_crtc); 14015 14016 if (modeset) 14017 return; 14018 14019 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) { 14020 intel_color_set_csc(crtc->state); 14021 intel_color_load_luts(crtc->state); 14022 } 14023 14024 if (to_intel_crtc_state(crtc->state)->update_pipe) 14025 intel_update_pipe_config(intel_crtc, old_intel_state); 14026 else if (INTEL_INFO(dev)->gen >= 9) 14027 skl_detach_scalers(intel_crtc); 14028} 14029 14030static void intel_finish_crtc_commit(struct drm_crtc *crtc, 14031 struct drm_crtc_state *old_crtc_state) 14032{ 14033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 14034 14035 intel_pipe_update_end(intel_crtc); 14036} 14037 14038/** 14039 * intel_plane_destroy - destroy a plane 14040 * @plane: plane to destroy 14041 * 14042 * Common destruction function for all types of planes (primary, cursor, 14043 * sprite). 14044 */ 14045void intel_plane_destroy(struct drm_plane *plane) 14046{ 14047 struct intel_plane *intel_plane = to_intel_plane(plane); 14048 drm_plane_cleanup(plane); 14049 kfree(intel_plane); 14050} 14051 14052const struct drm_plane_funcs intel_plane_funcs = { 14053 .update_plane = drm_atomic_helper_update_plane, 14054 .disable_plane = drm_atomic_helper_disable_plane, 14055 .destroy = intel_plane_destroy, 14056 .set_property = drm_atomic_helper_plane_set_property, 14057 .atomic_get_property = intel_plane_atomic_get_property, 14058 .atomic_set_property = intel_plane_atomic_set_property, 14059 .atomic_duplicate_state = intel_plane_duplicate_state, 14060 .atomic_destroy_state = intel_plane_destroy_state, 14061 14062}; 14063 14064static struct drm_plane *intel_primary_plane_create(struct drm_device *dev, 14065 int pipe) 14066{ 14067 struct intel_plane *primary = NULL; 14068 struct intel_plane_state *state = NULL; 14069 const uint32_t *intel_primary_formats; 14070 unsigned int num_formats; 14071 int ret; 14072 14073 primary = kzalloc(sizeof(*primary), GFP_KERNEL); 14074 if (!primary) 14075 goto fail; 14076 14077 state = intel_create_plane_state(&primary->base); 14078 if (!state) 14079 goto fail; 14080 primary->base.state = &state->base; 14081 14082 primary->can_scale = false; 14083 primary->max_downscale = 1; 14084 if (INTEL_INFO(dev)->gen >= 9) { 14085 primary->can_scale = true; 14086 state->scaler_id = -1; 14087 } 14088 primary->pipe = pipe; 14089 primary->plane = pipe; 14090 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe); 14091 primary->check_plane = intel_check_primary_plane; 14092 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) 14093 primary->plane = !pipe; 14094 14095 if (INTEL_INFO(dev)->gen >= 9) { 14096 intel_primary_formats = skl_primary_formats; 14097 num_formats = ARRAY_SIZE(skl_primary_formats); 14098 14099 primary->update_plane = skylake_update_primary_plane; 14100 primary->disable_plane = skylake_disable_primary_plane; 14101 } else if (HAS_PCH_SPLIT(dev)) { 14102 intel_primary_formats = i965_primary_formats; 14103 num_formats = ARRAY_SIZE(i965_primary_formats); 14104 14105 primary->update_plane = ironlake_update_primary_plane; 14106 primary->disable_plane = i9xx_disable_primary_plane; 14107 } else if (INTEL_INFO(dev)->gen >= 4) { 14108 intel_primary_formats = i965_primary_formats; 14109 num_formats = ARRAY_SIZE(i965_primary_formats); 14110 14111 primary->update_plane = i9xx_update_primary_plane; 14112 primary->disable_plane = i9xx_disable_primary_plane; 14113 } else { 14114 intel_primary_formats = i8xx_primary_formats; 14115 num_formats = ARRAY_SIZE(i8xx_primary_formats); 14116 14117 primary->update_plane = i9xx_update_primary_plane; 14118 primary->disable_plane = i9xx_disable_primary_plane; 14119 } 14120 14121 ret = drm_universal_plane_init(dev, &primary->base, 0, 14122 &intel_plane_funcs, 14123 intel_primary_formats, num_formats, 14124 DRM_PLANE_TYPE_PRIMARY, NULL); 14125 if (ret) 14126 goto fail; 14127 14128 if (INTEL_INFO(dev)->gen >= 4) 14129 intel_create_rotation_property(dev, primary); 14130 14131 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs); 14132 14133 return &primary->base; 14134 14135fail: 14136 kfree(state); 14137 kfree(primary); 14138 14139 return NULL; 14140} 14141 14142void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane) 14143{ 14144 if (!dev->mode_config.rotation_property) { 14145 unsigned long flags = BIT(DRM_ROTATE_0) | 14146 BIT(DRM_ROTATE_180); 14147 14148 if (INTEL_INFO(dev)->gen >= 9) 14149 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270); 14150 14151 dev->mode_config.rotation_property = 14152 drm_mode_create_rotation_property(dev, flags); 14153 } 14154 if (dev->mode_config.rotation_property) 14155 drm_object_attach_property(&plane->base.base, 14156 dev->mode_config.rotation_property, 14157 plane->base.state->rotation); 14158} 14159 14160static int 14161intel_check_cursor_plane(struct drm_plane *plane, 14162 struct intel_crtc_state *crtc_state, 14163 struct intel_plane_state *state) 14164{ 14165 struct drm_crtc *crtc = crtc_state->base.crtc; 14166 struct drm_framebuffer *fb = state->base.fb; 14167 struct drm_i915_gem_object *obj = intel_fb_obj(fb); 14168 enum pipe pipe = to_intel_plane(plane)->pipe; 14169 unsigned stride; 14170 int ret; 14171 14172 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src, 14173 &state->dst, &state->clip, 14174 DRM_PLANE_HELPER_NO_SCALING, 14175 DRM_PLANE_HELPER_NO_SCALING, 14176 true, true, &state->visible); 14177 if (ret) 14178 return ret; 14179 14180 /* if we want to turn off the cursor ignore width and height */ 14181 if (!obj) 14182 return 0; 14183 14184 /* Check for which cursor types we support */ 14185 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) { 14186 DRM_DEBUG("Cursor dimension %dx%d not supported\n", 14187 state->base.crtc_w, state->base.crtc_h); 14188 return -EINVAL; 14189 } 14190 14191 stride = roundup_pow_of_two(state->base.crtc_w) * 4; 14192 if (obj->base.size < stride * state->base.crtc_h) { 14193 DRM_DEBUG_KMS("buffer is too small\n"); 14194 return -ENOMEM; 14195 } 14196 14197 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) { 14198 DRM_DEBUG_KMS("cursor cannot be tiled\n"); 14199 return -EINVAL; 14200 } 14201 14202 /* 14203 * There's something wrong with the cursor on CHV pipe C. 14204 * If it straddles the left edge of the screen then 14205 * moving it away from the edge or disabling it often 14206 * results in a pipe underrun, and often that can lead to 14207 * dead pipe (constant underrun reported, and it scans 14208 * out just a solid color). To recover from that, the 14209 * display power well must be turned off and on again. 14210 * Refuse the put the cursor into that compromised position. 14211 */ 14212 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C && 14213 state->visible && state->base.crtc_x < 0) { 14214 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n"); 14215 return -EINVAL; 14216 } 14217 14218 return 0; 14219} 14220 14221static void 14222intel_disable_cursor_plane(struct drm_plane *plane, 14223 struct drm_crtc *crtc) 14224{ 14225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 14226 14227 intel_crtc->cursor_addr = 0; 14228 intel_crtc_update_cursor(crtc, NULL); 14229} 14230 14231static void 14232intel_update_cursor_plane(struct drm_plane *plane, 14233 const struct intel_crtc_state *crtc_state, 14234 const struct intel_plane_state *state) 14235{ 14236 struct drm_crtc *crtc = crtc_state->base.crtc; 14237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 14238 struct drm_device *dev = plane->dev; 14239 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb); 14240 uint32_t addr; 14241 14242 if (!obj) 14243 addr = 0; 14244 else if (!INTEL_INFO(dev)->cursor_needs_physical) 14245 addr = i915_gem_obj_ggtt_offset(obj); 14246 else 14247 addr = obj->phys_handle->busaddr; 14248 14249 intel_crtc->cursor_addr = addr; 14250 intel_crtc_update_cursor(crtc, state); 14251} 14252 14253static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev, 14254 int pipe) 14255{ 14256 struct intel_plane *cursor = NULL; 14257 struct intel_plane_state *state = NULL; 14258 int ret; 14259 14260 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL); 14261 if (!cursor) 14262 goto fail; 14263 14264 state = intel_create_plane_state(&cursor->base); 14265 if (!state) 14266 goto fail; 14267 cursor->base.state = &state->base; 14268 14269 cursor->can_scale = false; 14270 cursor->max_downscale = 1; 14271 cursor->pipe = pipe; 14272 cursor->plane = pipe; 14273 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe); 14274 cursor->check_plane = intel_check_cursor_plane; 14275 cursor->update_plane = intel_update_cursor_plane; 14276 cursor->disable_plane = intel_disable_cursor_plane; 14277 14278 ret = drm_universal_plane_init(dev, &cursor->base, 0, 14279 &intel_plane_funcs, 14280 intel_cursor_formats, 14281 ARRAY_SIZE(intel_cursor_formats), 14282 DRM_PLANE_TYPE_CURSOR, NULL); 14283 if (ret) 14284 goto fail; 14285 14286 if (INTEL_INFO(dev)->gen >= 4) { 14287 if (!dev->mode_config.rotation_property) 14288 dev->mode_config.rotation_property = 14289 drm_mode_create_rotation_property(dev, 14290 BIT(DRM_ROTATE_0) | 14291 BIT(DRM_ROTATE_180)); 14292 if (dev->mode_config.rotation_property) 14293 drm_object_attach_property(&cursor->base.base, 14294 dev->mode_config.rotation_property, 14295 state->base.rotation); 14296 } 14297 14298 if (INTEL_INFO(dev)->gen >=9) 14299 state->scaler_id = -1; 14300 14301 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs); 14302 14303 return &cursor->base; 14304 14305fail: 14306 kfree(state); 14307 kfree(cursor); 14308 14309 return NULL; 14310} 14311 14312static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc, 14313 struct intel_crtc_state *crtc_state) 14314{ 14315 int i; 14316 struct intel_scaler *intel_scaler; 14317 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; 14318 14319 for (i = 0; i < intel_crtc->num_scalers; i++) { 14320 intel_scaler = &scaler_state->scalers[i]; 14321 intel_scaler->in_use = 0; 14322 intel_scaler->mode = PS_SCALER_MODE_DYN; 14323 } 14324 14325 scaler_state->scaler_id = -1; 14326} 14327 14328static void intel_crtc_init(struct drm_device *dev, int pipe) 14329{ 14330 struct drm_i915_private *dev_priv = dev->dev_private; 14331 struct intel_crtc *intel_crtc; 14332 struct intel_crtc_state *crtc_state = NULL; 14333 struct drm_plane *primary = NULL; 14334 struct drm_plane *cursor = NULL; 14335 int ret; 14336 14337 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); 14338 if (intel_crtc == NULL) 14339 return; 14340 14341 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); 14342 if (!crtc_state) 14343 goto fail; 14344 intel_crtc->config = crtc_state; 14345 intel_crtc->base.state = &crtc_state->base; 14346 crtc_state->base.crtc = &intel_crtc->base; 14347 14348 /* initialize shared scalers */ 14349 if (INTEL_INFO(dev)->gen >= 9) { 14350 if (pipe == PIPE_C) 14351 intel_crtc->num_scalers = 1; 14352 else 14353 intel_crtc->num_scalers = SKL_NUM_SCALERS; 14354 14355 skl_init_scalers(dev, intel_crtc, crtc_state); 14356 } 14357 14358 primary = intel_primary_plane_create(dev, pipe); 14359 if (!primary) 14360 goto fail; 14361 14362 cursor = intel_cursor_plane_create(dev, pipe); 14363 if (!cursor) 14364 goto fail; 14365 14366 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary, 14367 cursor, &intel_crtc_funcs, NULL); 14368 if (ret) 14369 goto fail; 14370 14371 /* 14372 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port 14373 * is hooked to pipe B. Hence we want plane A feeding pipe B. 14374 */ 14375 intel_crtc->pipe = pipe; 14376 intel_crtc->plane = pipe; 14377 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) { 14378 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); 14379 intel_crtc->plane = !pipe; 14380 } 14381 14382 intel_crtc->cursor_base = ~0; 14383 intel_crtc->cursor_cntl = ~0; 14384 intel_crtc->cursor_size = ~0; 14385 14386 intel_crtc->wm.cxsr_allowed = true; 14387 14388 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || 14389 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); 14390 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; 14391 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; 14392 14393 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); 14394 14395 intel_color_init(&intel_crtc->base); 14396 14397 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); 14398 return; 14399 14400fail: 14401 if (primary) 14402 drm_plane_cleanup(primary); 14403 if (cursor) 14404 drm_plane_cleanup(cursor); 14405 kfree(crtc_state); 14406 kfree(intel_crtc); 14407} 14408 14409enum pipe intel_get_pipe_from_connector(struct intel_connector *connector) 14410{ 14411 struct drm_encoder *encoder = connector->base.encoder; 14412 struct drm_device *dev = connector->base.dev; 14413 14414 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); 14415 14416 if (!encoder || WARN_ON(!encoder->crtc)) 14417 return INVALID_PIPE; 14418 14419 return to_intel_crtc(encoder->crtc)->pipe; 14420} 14421 14422int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, 14423 struct drm_file *file) 14424{ 14425 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; 14426 struct drm_crtc *drmmode_crtc; 14427 struct intel_crtc *crtc; 14428 14429 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id); 14430 14431 if (!drmmode_crtc) { 14432 DRM_ERROR("no such CRTC id\n"); 14433 return -ENOENT; 14434 } 14435 14436 crtc = to_intel_crtc(drmmode_crtc); 14437 pipe_from_crtc_id->pipe = crtc->pipe; 14438 14439 return 0; 14440} 14441 14442static int intel_encoder_clones(struct intel_encoder *encoder) 14443{ 14444 struct drm_device *dev = encoder->base.dev; 14445 struct intel_encoder *source_encoder; 14446 int index_mask = 0; 14447 int entry = 0; 14448 14449 for_each_intel_encoder(dev, source_encoder) { 14450 if (encoders_cloneable(encoder, source_encoder)) 14451 index_mask |= (1 << entry); 14452 14453 entry++; 14454 } 14455 14456 return index_mask; 14457} 14458 14459static bool has_edp_a(struct drm_device *dev) 14460{ 14461 struct drm_i915_private *dev_priv = dev->dev_private; 14462 14463 if (!IS_MOBILE(dev)) 14464 return false; 14465 14466 if ((I915_READ(DP_A) & DP_DETECTED) == 0) 14467 return false; 14468 14469 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) 14470 return false; 14471 14472 return true; 14473} 14474 14475static bool intel_crt_present(struct drm_device *dev) 14476{ 14477 struct drm_i915_private *dev_priv = dev->dev_private; 14478 14479 if (INTEL_INFO(dev)->gen >= 9) 14480 return false; 14481 14482 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev)) 14483 return false; 14484 14485 if (IS_CHERRYVIEW(dev)) 14486 return false; 14487 14488 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) 14489 return false; 14490 14491 /* DDI E can't be used if DDI A requires 4 lanes */ 14492 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) 14493 return false; 14494 14495 if (!dev_priv->vbt.int_crt_support) 14496 return false; 14497 14498 return true; 14499} 14500 14501static void intel_setup_outputs(struct drm_device *dev) 14502{ 14503 struct drm_i915_private *dev_priv = dev->dev_private; 14504 struct intel_encoder *encoder; 14505 bool dpd_is_edp = false; 14506 14507 intel_lvds_init(dev); 14508 14509 if (intel_crt_present(dev)) 14510 intel_crt_init(dev); 14511 14512 if (IS_BROXTON(dev)) { 14513 /* 14514 * FIXME: Broxton doesn't support port detection via the 14515 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to 14516 * detect the ports. 14517 */ 14518 intel_ddi_init(dev, PORT_A); 14519 intel_ddi_init(dev, PORT_B); 14520 intel_ddi_init(dev, PORT_C); 14521 14522 intel_dsi_init(dev); 14523 } else if (HAS_DDI(dev)) { 14524 int found; 14525 14526 /* 14527 * Haswell uses DDI functions to detect digital outputs. 14528 * On SKL pre-D0 the strap isn't connected, so we assume 14529 * it's there. 14530 */ 14531 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; 14532 /* WaIgnoreDDIAStrap: skl */ 14533 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) 14534 intel_ddi_init(dev, PORT_A); 14535 14536 /* DDI B, C and D detection is indicated by the SFUSE_STRAP 14537 * register */ 14538 found = I915_READ(SFUSE_STRAP); 14539 14540 if (found & SFUSE_STRAP_DDIB_DETECTED) 14541 intel_ddi_init(dev, PORT_B); 14542 if (found & SFUSE_STRAP_DDIC_DETECTED) 14543 intel_ddi_init(dev, PORT_C); 14544 if (found & SFUSE_STRAP_DDID_DETECTED) 14545 intel_ddi_init(dev, PORT_D); 14546 /* 14547 * On SKL we don't have a way to detect DDI-E so we rely on VBT. 14548 */ 14549 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && 14550 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp || 14551 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi || 14552 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi)) 14553 intel_ddi_init(dev, PORT_E); 14554 14555 } else if (HAS_PCH_SPLIT(dev)) { 14556 int found; 14557 dpd_is_edp = intel_dp_is_edp(dev, PORT_D); 14558 14559 if (has_edp_a(dev)) 14560 intel_dp_init(dev, DP_A, PORT_A); 14561 14562 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { 14563 /* PCH SDVOB multiplex with HDMIB */ 14564 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B); 14565 if (!found) 14566 intel_hdmi_init(dev, PCH_HDMIB, PORT_B); 14567 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) 14568 intel_dp_init(dev, PCH_DP_B, PORT_B); 14569 } 14570 14571 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) 14572 intel_hdmi_init(dev, PCH_HDMIC, PORT_C); 14573 14574 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) 14575 intel_hdmi_init(dev, PCH_HDMID, PORT_D); 14576 14577 if (I915_READ(PCH_DP_C) & DP_DETECTED) 14578 intel_dp_init(dev, PCH_DP_C, PORT_C); 14579 14580 if (I915_READ(PCH_DP_D) & DP_DETECTED) 14581 intel_dp_init(dev, PCH_DP_D, PORT_D); 14582 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) { 14583 bool has_edp, has_port; 14584 14585 /* 14586 * The DP_DETECTED bit is the latched state of the DDC 14587 * SDA pin at boot. However since eDP doesn't require DDC 14588 * (no way to plug in a DP->HDMI dongle) the DDC pins for 14589 * eDP ports may have been muxed to an alternate function. 14590 * Thus we can't rely on the DP_DETECTED bit alone to detect 14591 * eDP ports. Consult the VBT as well as DP_DETECTED to 14592 * detect eDP ports. 14593 * 14594 * Sadly the straps seem to be missing sometimes even for HDMI 14595 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap 14596 * and VBT for the presence of the port. Additionally we can't 14597 * trust the port type the VBT declares as we've seen at least 14598 * HDMI ports that the VBT claim are DP or eDP. 14599 */ 14600 has_edp = intel_dp_is_edp(dev, PORT_B); 14601 has_port = intel_bios_is_port_present(dev_priv, PORT_B); 14602 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port) 14603 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B); 14604 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) 14605 intel_hdmi_init(dev, VLV_HDMIB, PORT_B); 14606 14607 has_edp = intel_dp_is_edp(dev, PORT_C); 14608 has_port = intel_bios_is_port_present(dev_priv, PORT_C); 14609 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port) 14610 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C); 14611 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) 14612 intel_hdmi_init(dev, VLV_HDMIC, PORT_C); 14613 14614 if (IS_CHERRYVIEW(dev)) { 14615 /* 14616 * eDP not supported on port D, 14617 * so no need to worry about it 14618 */ 14619 has_port = intel_bios_is_port_present(dev_priv, PORT_D); 14620 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port) 14621 intel_dp_init(dev, CHV_DP_D, PORT_D); 14622 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port) 14623 intel_hdmi_init(dev, CHV_HDMID, PORT_D); 14624 } 14625 14626 intel_dsi_init(dev); 14627 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) { 14628 bool found = false; 14629 14630 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 14631 DRM_DEBUG_KMS("probing SDVOB\n"); 14632 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B); 14633 if (!found && IS_G4X(dev)) { 14634 DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); 14635 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B); 14636 } 14637 14638 if (!found && IS_G4X(dev)) 14639 intel_dp_init(dev, DP_B, PORT_B); 14640 } 14641 14642 /* Before G4X SDVOC doesn't have its own detect register */ 14643 14644 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { 14645 DRM_DEBUG_KMS("probing SDVOC\n"); 14646 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C); 14647 } 14648 14649 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { 14650 14651 if (IS_G4X(dev)) { 14652 DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); 14653 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C); 14654 } 14655 if (IS_G4X(dev)) 14656 intel_dp_init(dev, DP_C, PORT_C); 14657 } 14658 14659 if (IS_G4X(dev) && 14660 (I915_READ(DP_D) & DP_DETECTED)) 14661 intel_dp_init(dev, DP_D, PORT_D); 14662 } else if (IS_GEN2(dev)) 14663 intel_dvo_init(dev); 14664 14665 if (SUPPORTS_TV(dev)) 14666 intel_tv_init(dev); 14667 14668 intel_psr_init(dev); 14669 14670 for_each_intel_encoder(dev, encoder) { 14671 encoder->base.possible_crtcs = encoder->crtc_mask; 14672 encoder->base.possible_clones = 14673 intel_encoder_clones(encoder); 14674 } 14675 14676 intel_init_pch_refclk(dev); 14677 14678 drm_helper_move_panel_connectors_to_head(dev); 14679} 14680 14681static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) 14682{ 14683 struct drm_device *dev = fb->dev; 14684 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 14685 14686 drm_framebuffer_cleanup(fb); 14687 mutex_lock(&dev->struct_mutex); 14688 WARN_ON(!intel_fb->obj->framebuffer_references--); 14689 drm_gem_object_unreference(&intel_fb->obj->base); 14690 mutex_unlock(&dev->struct_mutex); 14691 kfree(intel_fb); 14692} 14693 14694static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, 14695 struct drm_file *file, 14696 unsigned int *handle) 14697{ 14698 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 14699 struct drm_i915_gem_object *obj = intel_fb->obj; 14700 14701 if (obj->userptr.mm) { 14702 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n"); 14703 return -EINVAL; 14704 } 14705 14706 return drm_gem_handle_create(file, &obj->base, handle); 14707} 14708 14709static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, 14710 struct drm_file *file, 14711 unsigned flags, unsigned color, 14712 struct drm_clip_rect *clips, 14713 unsigned num_clips) 14714{ 14715 struct drm_device *dev = fb->dev; 14716 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); 14717 struct drm_i915_gem_object *obj = intel_fb->obj; 14718 14719 mutex_lock(&dev->struct_mutex); 14720 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB); 14721 mutex_unlock(&dev->struct_mutex); 14722 14723 return 0; 14724} 14725 14726static const struct drm_framebuffer_funcs intel_fb_funcs = { 14727 .destroy = intel_user_framebuffer_destroy, 14728 .create_handle = intel_user_framebuffer_create_handle, 14729 .dirty = intel_user_framebuffer_dirty, 14730}; 14731 14732static 14733u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier, 14734 uint32_t pixel_format) 14735{ 14736 u32 gen = INTEL_INFO(dev)->gen; 14737 14738 if (gen >= 9) { 14739 int cpp = drm_format_plane_cpp(pixel_format, 0); 14740 14741 /* "The stride in bytes must not exceed the of the size of 8K 14742 * pixels and 32K bytes." 14743 */ 14744 return min(8192 * cpp, 32768); 14745 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { 14746 return 32*1024; 14747 } else if (gen >= 4) { 14748 if (fb_modifier == I915_FORMAT_MOD_X_TILED) 14749 return 16*1024; 14750 else 14751 return 32*1024; 14752 } else if (gen >= 3) { 14753 if (fb_modifier == I915_FORMAT_MOD_X_TILED) 14754 return 8*1024; 14755 else 14756 return 16*1024; 14757 } else { 14758 /* XXX DSPC is limited to 4k tiled */ 14759 return 8*1024; 14760 } 14761} 14762 14763static int intel_framebuffer_init(struct drm_device *dev, 14764 struct intel_framebuffer *intel_fb, 14765 struct drm_mode_fb_cmd2 *mode_cmd, 14766 struct drm_i915_gem_object *obj) 14767{ 14768 struct drm_i915_private *dev_priv = to_i915(dev); 14769 unsigned int aligned_height; 14770 int ret; 14771 u32 pitch_limit, stride_alignment; 14772 14773 WARN_ON(!mutex_is_locked(&dev->struct_mutex)); 14774 14775 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { 14776 /* Enforce that fb modifier and tiling mode match, but only for 14777 * X-tiled. This is needed for FBC. */ 14778 if (!!(obj->tiling_mode == I915_TILING_X) != 14779 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) { 14780 DRM_DEBUG("tiling_mode doesn't match fb modifier\n"); 14781 return -EINVAL; 14782 } 14783 } else { 14784 if (obj->tiling_mode == I915_TILING_X) 14785 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; 14786 else if (obj->tiling_mode == I915_TILING_Y) { 14787 DRM_DEBUG("No Y tiling for legacy addfb\n"); 14788 return -EINVAL; 14789 } 14790 } 14791 14792 /* Passed in modifier sanity checking. */ 14793 switch (mode_cmd->modifier[0]) { 14794 case I915_FORMAT_MOD_Y_TILED: 14795 case I915_FORMAT_MOD_Yf_TILED: 14796 if (INTEL_INFO(dev)->gen < 9) { 14797 DRM_DEBUG("Unsupported tiling 0x%llx!\n", 14798 mode_cmd->modifier[0]); 14799 return -EINVAL; 14800 } 14801 case DRM_FORMAT_MOD_NONE: 14802 case I915_FORMAT_MOD_X_TILED: 14803 break; 14804 default: 14805 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n", 14806 mode_cmd->modifier[0]); 14807 return -EINVAL; 14808 } 14809 14810 stride_alignment = intel_fb_stride_alignment(dev_priv, 14811 mode_cmd->modifier[0], 14812 mode_cmd->pixel_format); 14813 if (mode_cmd->pitches[0] & (stride_alignment - 1)) { 14814 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n", 14815 mode_cmd->pitches[0], stride_alignment); 14816 return -EINVAL; 14817 } 14818 14819 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0], 14820 mode_cmd->pixel_format); 14821 if (mode_cmd->pitches[0] > pitch_limit) { 14822 DRM_DEBUG("%s pitch (%u) must be at less than %d\n", 14823 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ? 14824 "tiled" : "linear", 14825 mode_cmd->pitches[0], pitch_limit); 14826 return -EINVAL; 14827 } 14828 14829 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED && 14830 mode_cmd->pitches[0] != obj->stride) { 14831 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", 14832 mode_cmd->pitches[0], obj->stride); 14833 return -EINVAL; 14834 } 14835 14836 /* Reject formats not supported by any plane early. */ 14837 switch (mode_cmd->pixel_format) { 14838 case DRM_FORMAT_C8: 14839 case DRM_FORMAT_RGB565: 14840 case DRM_FORMAT_XRGB8888: 14841 case DRM_FORMAT_ARGB8888: 14842 break; 14843 case DRM_FORMAT_XRGB1555: 14844 if (INTEL_INFO(dev)->gen > 3) { 14845 DRM_DEBUG("unsupported pixel format: %s\n", 14846 drm_get_format_name(mode_cmd->pixel_format)); 14847 return -EINVAL; 14848 } 14849 break; 14850 case DRM_FORMAT_ABGR8888: 14851 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && 14852 INTEL_INFO(dev)->gen < 9) { 14853 DRM_DEBUG("unsupported pixel format: %s\n", 14854 drm_get_format_name(mode_cmd->pixel_format)); 14855 return -EINVAL; 14856 } 14857 break; 14858 case DRM_FORMAT_XBGR8888: 14859 case DRM_FORMAT_XRGB2101010: 14860 case DRM_FORMAT_XBGR2101010: 14861 if (INTEL_INFO(dev)->gen < 4) { 14862 DRM_DEBUG("unsupported pixel format: %s\n", 14863 drm_get_format_name(mode_cmd->pixel_format)); 14864 return -EINVAL; 14865 } 14866 break; 14867 case DRM_FORMAT_ABGR2101010: 14868 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) { 14869 DRM_DEBUG("unsupported pixel format: %s\n", 14870 drm_get_format_name(mode_cmd->pixel_format)); 14871 return -EINVAL; 14872 } 14873 break; 14874 case DRM_FORMAT_YUYV: 14875 case DRM_FORMAT_UYVY: 14876 case DRM_FORMAT_YVYU: 14877 case DRM_FORMAT_VYUY: 14878 if (INTEL_INFO(dev)->gen < 5) { 14879 DRM_DEBUG("unsupported pixel format: %s\n", 14880 drm_get_format_name(mode_cmd->pixel_format)); 14881 return -EINVAL; 14882 } 14883 break; 14884 default: 14885 DRM_DEBUG("unsupported pixel format: %s\n", 14886 drm_get_format_name(mode_cmd->pixel_format)); 14887 return -EINVAL; 14888 } 14889 14890 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ 14891 if (mode_cmd->offsets[0] != 0) 14892 return -EINVAL; 14893 14894 aligned_height = intel_fb_align_height(dev, mode_cmd->height, 14895 mode_cmd->pixel_format, 14896 mode_cmd->modifier[0]); 14897 /* FIXME drm helper for size checks (especially planar formats)? */ 14898 if (obj->base.size < aligned_height * mode_cmd->pitches[0]) 14899 return -EINVAL; 14900 14901 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); 14902 intel_fb->obj = obj; 14903 14904 intel_fill_fb_info(dev_priv, &intel_fb->base); 14905 14906 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); 14907 if (ret) { 14908 DRM_ERROR("framebuffer init failed %d\n", ret); 14909 return ret; 14910 } 14911 14912 intel_fb->obj->framebuffer_references++; 14913 14914 return 0; 14915} 14916 14917static struct drm_framebuffer * 14918intel_user_framebuffer_create(struct drm_device *dev, 14919 struct drm_file *filp, 14920 const struct drm_mode_fb_cmd2 *user_mode_cmd) 14921{ 14922 struct drm_framebuffer *fb; 14923 struct drm_i915_gem_object *obj; 14924 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; 14925 14926 obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0])); 14927 if (&obj->base == NULL) 14928 return ERR_PTR(-ENOENT); 14929 14930 fb = intel_framebuffer_create(dev, &mode_cmd, obj); 14931 if (IS_ERR(fb)) 14932 drm_gem_object_unreference_unlocked(&obj->base); 14933 14934 return fb; 14935} 14936 14937#ifndef CONFIG_DRM_FBDEV_EMULATION 14938static inline void intel_fbdev_output_poll_changed(struct drm_device *dev) 14939{ 14940} 14941#endif 14942 14943static const struct drm_mode_config_funcs intel_mode_funcs = { 14944 .fb_create = intel_user_framebuffer_create, 14945 .output_poll_changed = intel_fbdev_output_poll_changed, 14946 .atomic_check = intel_atomic_check, 14947 .atomic_commit = intel_atomic_commit, 14948 .atomic_state_alloc = intel_atomic_state_alloc, 14949 .atomic_state_clear = intel_atomic_state_clear, 14950}; 14951 14952/** 14953 * intel_init_display_hooks - initialize the display modesetting hooks 14954 * @dev_priv: device private 14955 */ 14956void intel_init_display_hooks(struct drm_i915_private *dev_priv) 14957{ 14958 if (INTEL_INFO(dev_priv)->gen >= 9) { 14959 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 14960 dev_priv->display.get_initial_plane_config = 14961 skylake_get_initial_plane_config; 14962 dev_priv->display.crtc_compute_clock = 14963 haswell_crtc_compute_clock; 14964 dev_priv->display.crtc_enable = haswell_crtc_enable; 14965 dev_priv->display.crtc_disable = haswell_crtc_disable; 14966 } else if (HAS_DDI(dev_priv)) { 14967 dev_priv->display.get_pipe_config = haswell_get_pipe_config; 14968 dev_priv->display.get_initial_plane_config = 14969 ironlake_get_initial_plane_config; 14970 dev_priv->display.crtc_compute_clock = 14971 haswell_crtc_compute_clock; 14972 dev_priv->display.crtc_enable = haswell_crtc_enable; 14973 dev_priv->display.crtc_disable = haswell_crtc_disable; 14974 } else if (HAS_PCH_SPLIT(dev_priv)) { 14975 dev_priv->display.get_pipe_config = ironlake_get_pipe_config; 14976 dev_priv->display.get_initial_plane_config = 14977 ironlake_get_initial_plane_config; 14978 dev_priv->display.crtc_compute_clock = 14979 ironlake_crtc_compute_clock; 14980 dev_priv->display.crtc_enable = ironlake_crtc_enable; 14981 dev_priv->display.crtc_disable = ironlake_crtc_disable; 14982 } else if (IS_CHERRYVIEW(dev_priv)) { 14983 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 14984 dev_priv->display.get_initial_plane_config = 14985 i9xx_get_initial_plane_config; 14986 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; 14987 dev_priv->display.crtc_enable = valleyview_crtc_enable; 14988 dev_priv->display.crtc_disable = i9xx_crtc_disable; 14989 } else if (IS_VALLEYVIEW(dev_priv)) { 14990 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 14991 dev_priv->display.get_initial_plane_config = 14992 i9xx_get_initial_plane_config; 14993 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; 14994 dev_priv->display.crtc_enable = valleyview_crtc_enable; 14995 dev_priv->display.crtc_disable = i9xx_crtc_disable; 14996 } else if (IS_G4X(dev_priv)) { 14997 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 14998 dev_priv->display.get_initial_plane_config = 14999 i9xx_get_initial_plane_config; 15000 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; 15001 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15002 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15003 } else if (IS_PINEVIEW(dev_priv)) { 15004 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15005 dev_priv->display.get_initial_plane_config = 15006 i9xx_get_initial_plane_config; 15007 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; 15008 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15009 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15010 } else if (!IS_GEN2(dev_priv)) { 15011 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15012 dev_priv->display.get_initial_plane_config = 15013 i9xx_get_initial_plane_config; 15014 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; 15015 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15016 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15017 } else { 15018 dev_priv->display.get_pipe_config = i9xx_get_pipe_config; 15019 dev_priv->display.get_initial_plane_config = 15020 i9xx_get_initial_plane_config; 15021 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; 15022 dev_priv->display.crtc_enable = i9xx_crtc_enable; 15023 dev_priv->display.crtc_disable = i9xx_crtc_disable; 15024 } 15025 15026 /* Returns the core display clock speed */ 15027 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) 15028 dev_priv->display.get_display_clock_speed = 15029 skylake_get_display_clock_speed; 15030 else if (IS_BROXTON(dev_priv)) 15031 dev_priv->display.get_display_clock_speed = 15032 broxton_get_display_clock_speed; 15033 else if (IS_BROADWELL(dev_priv)) 15034 dev_priv->display.get_display_clock_speed = 15035 broadwell_get_display_clock_speed; 15036 else if (IS_HASWELL(dev_priv)) 15037 dev_priv->display.get_display_clock_speed = 15038 haswell_get_display_clock_speed; 15039 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 15040 dev_priv->display.get_display_clock_speed = 15041 valleyview_get_display_clock_speed; 15042 else if (IS_GEN5(dev_priv)) 15043 dev_priv->display.get_display_clock_speed = 15044 ilk_get_display_clock_speed; 15045 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) || 15046 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) 15047 dev_priv->display.get_display_clock_speed = 15048 i945_get_display_clock_speed; 15049 else if (IS_GM45(dev_priv)) 15050 dev_priv->display.get_display_clock_speed = 15051 gm45_get_display_clock_speed; 15052 else if (IS_CRESTLINE(dev_priv)) 15053 dev_priv->display.get_display_clock_speed = 15054 i965gm_get_display_clock_speed; 15055 else if (IS_PINEVIEW(dev_priv)) 15056 dev_priv->display.get_display_clock_speed = 15057 pnv_get_display_clock_speed; 15058 else if (IS_G33(dev_priv) || IS_G4X(dev_priv)) 15059 dev_priv->display.get_display_clock_speed = 15060 g33_get_display_clock_speed; 15061 else if (IS_I915G(dev_priv)) 15062 dev_priv->display.get_display_clock_speed = 15063 i915_get_display_clock_speed; 15064 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv)) 15065 dev_priv->display.get_display_clock_speed = 15066 i9xx_misc_get_display_clock_speed; 15067 else if (IS_I915GM(dev_priv)) 15068 dev_priv->display.get_display_clock_speed = 15069 i915gm_get_display_clock_speed; 15070 else if (IS_I865G(dev_priv)) 15071 dev_priv->display.get_display_clock_speed = 15072 i865_get_display_clock_speed; 15073 else if (IS_I85X(dev_priv)) 15074 dev_priv->display.get_display_clock_speed = 15075 i85x_get_display_clock_speed; 15076 else { /* 830 */ 15077 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n"); 15078 dev_priv->display.get_display_clock_speed = 15079 i830_get_display_clock_speed; 15080 } 15081 15082 if (IS_GEN5(dev_priv)) { 15083 dev_priv->display.fdi_link_train = ironlake_fdi_link_train; 15084 } else if (IS_GEN6(dev_priv)) { 15085 dev_priv->display.fdi_link_train = gen6_fdi_link_train; 15086 } else if (IS_IVYBRIDGE(dev_priv)) { 15087 /* FIXME: detect B0+ stepping and use auto training */ 15088 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; 15089 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 15090 dev_priv->display.fdi_link_train = hsw_fdi_link_train; 15091 if (IS_BROADWELL(dev_priv)) { 15092 dev_priv->display.modeset_commit_cdclk = 15093 broadwell_modeset_commit_cdclk; 15094 dev_priv->display.modeset_calc_cdclk = 15095 broadwell_modeset_calc_cdclk; 15096 } 15097 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 15098 dev_priv->display.modeset_commit_cdclk = 15099 valleyview_modeset_commit_cdclk; 15100 dev_priv->display.modeset_calc_cdclk = 15101 valleyview_modeset_calc_cdclk; 15102 } else if (IS_BROXTON(dev_priv)) { 15103 dev_priv->display.modeset_commit_cdclk = 15104 broxton_modeset_commit_cdclk; 15105 dev_priv->display.modeset_calc_cdclk = 15106 broxton_modeset_calc_cdclk; 15107 } 15108 15109 switch (INTEL_INFO(dev_priv)->gen) { 15110 case 2: 15111 dev_priv->display.queue_flip = intel_gen2_queue_flip; 15112 break; 15113 15114 case 3: 15115 dev_priv->display.queue_flip = intel_gen3_queue_flip; 15116 break; 15117 15118 case 4: 15119 case 5: 15120 dev_priv->display.queue_flip = intel_gen4_queue_flip; 15121 break; 15122 15123 case 6: 15124 dev_priv->display.queue_flip = intel_gen6_queue_flip; 15125 break; 15126 case 7: 15127 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */ 15128 dev_priv->display.queue_flip = intel_gen7_queue_flip; 15129 break; 15130 case 9: 15131 /* Drop through - unsupported since execlist only. */ 15132 default: 15133 /* Default just returns -ENODEV to indicate unsupported */ 15134 dev_priv->display.queue_flip = intel_default_queue_flip; 15135 } 15136} 15137 15138/* 15139 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, 15140 * resume, or other times. This quirk makes sure that's the case for 15141 * affected systems. 15142 */ 15143static void quirk_pipea_force(struct drm_device *dev) 15144{ 15145 struct drm_i915_private *dev_priv = dev->dev_private; 15146 15147 dev_priv->quirks |= QUIRK_PIPEA_FORCE; 15148 DRM_INFO("applying pipe a force quirk\n"); 15149} 15150 15151static void quirk_pipeb_force(struct drm_device *dev) 15152{ 15153 struct drm_i915_private *dev_priv = dev->dev_private; 15154 15155 dev_priv->quirks |= QUIRK_PIPEB_FORCE; 15156 DRM_INFO("applying pipe b force quirk\n"); 15157} 15158 15159/* 15160 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason 15161 */ 15162static void quirk_ssc_force_disable(struct drm_device *dev) 15163{ 15164 struct drm_i915_private *dev_priv = dev->dev_private; 15165 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; 15166 DRM_INFO("applying lvds SSC disable quirk\n"); 15167} 15168 15169/* 15170 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight 15171 * brightness value 15172 */ 15173static void quirk_invert_brightness(struct drm_device *dev) 15174{ 15175 struct drm_i915_private *dev_priv = dev->dev_private; 15176 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; 15177 DRM_INFO("applying inverted panel brightness quirk\n"); 15178} 15179 15180/* Some VBT's incorrectly indicate no backlight is present */ 15181static void quirk_backlight_present(struct drm_device *dev) 15182{ 15183 struct drm_i915_private *dev_priv = dev->dev_private; 15184 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT; 15185 DRM_INFO("applying backlight present quirk\n"); 15186} 15187 15188struct intel_quirk { 15189 int device; 15190 int subsystem_vendor; 15191 int subsystem_device; 15192 void (*hook)(struct drm_device *dev); 15193}; 15194 15195/* For systems that don't have a meaningful PCI subdevice/subvendor ID */ 15196struct intel_dmi_quirk { 15197 void (*hook)(struct drm_device *dev); 15198 const struct dmi_system_id (*dmi_id_list)[]; 15199}; 15200 15201static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) 15202{ 15203 DRM_INFO("Backlight polarity reversed on %s\n", id->ident); 15204 return 1; 15205} 15206 15207static const struct intel_dmi_quirk intel_dmi_quirks[] = { 15208 { 15209 .dmi_id_list = &(const struct dmi_system_id[]) { 15210 { 15211 .callback = intel_dmi_reverse_brightness, 15212 .ident = "NCR Corporation", 15213 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), 15214 DMI_MATCH(DMI_PRODUCT_NAME, ""), 15215 }, 15216 }, 15217 { } /* terminating entry */ 15218 }, 15219 .hook = quirk_invert_brightness, 15220 }, 15221}; 15222 15223static struct intel_quirk intel_quirks[] = { 15224 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ 15225 { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, 15226 15227 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ 15228 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, 15229 15230 /* 830 needs to leave pipe A & dpll A up */ 15231 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, 15232 15233 /* 830 needs to leave pipe B & dpll B up */ 15234 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force }, 15235 15236 /* Lenovo U160 cannot use SSC on LVDS */ 15237 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, 15238 15239 /* Sony Vaio Y cannot use SSC on LVDS */ 15240 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, 15241 15242 /* Acer Aspire 5734Z must invert backlight brightness */ 15243 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, 15244 15245 /* Acer/eMachines G725 */ 15246 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, 15247 15248 /* Acer/eMachines e725 */ 15249 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, 15250 15251 /* Acer/Packard Bell NCL20 */ 15252 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, 15253 15254 /* Acer Aspire 4736Z */ 15255 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, 15256 15257 /* Acer Aspire 5336 */ 15258 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness }, 15259 15260 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */ 15261 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present }, 15262 15263 /* Acer C720 Chromebook (Core i3 4005U) */ 15264 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present }, 15265 15266 /* Apple Macbook 2,1 (Core 2 T7400) */ 15267 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present }, 15268 15269 /* Apple Macbook 4,1 */ 15270 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present }, 15271 15272 /* Toshiba CB35 Chromebook (Celeron 2955U) */ 15273 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present }, 15274 15275 /* HP Chromebook 14 (Celeron 2955U) */ 15276 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present }, 15277 15278 /* Dell Chromebook 11 */ 15279 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present }, 15280 15281 /* Dell Chromebook 11 (2015 version) */ 15282 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present }, 15283}; 15284 15285static void intel_init_quirks(struct drm_device *dev) 15286{ 15287 struct pci_dev *d = dev->pdev; 15288 int i; 15289 15290 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { 15291 struct intel_quirk *q = &intel_quirks[i]; 15292 15293 if (d->device == q->device && 15294 (d->subsystem_vendor == q->subsystem_vendor || 15295 q->subsystem_vendor == PCI_ANY_ID) && 15296 (d->subsystem_device == q->subsystem_device || 15297 q->subsystem_device == PCI_ANY_ID)) 15298 q->hook(dev); 15299 } 15300 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { 15301 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) 15302 intel_dmi_quirks[i].hook(dev); 15303 } 15304} 15305 15306/* Disable the VGA plane that we never use */ 15307static void i915_disable_vga(struct drm_device *dev) 15308{ 15309 struct drm_i915_private *dev_priv = dev->dev_private; 15310 u8 sr1; 15311 i915_reg_t vga_reg = i915_vgacntrl_reg(dev); 15312 15313 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ 15314 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); 15315 outb(SR01, VGA_SR_INDEX); 15316 sr1 = inb(VGA_SR_DATA); 15317 outb(sr1 | 1<<5, VGA_SR_DATA); 15318 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); 15319 udelay(300); 15320 15321 I915_WRITE(vga_reg, VGA_DISP_DISABLE); 15322 POSTING_READ(vga_reg); 15323} 15324 15325void intel_modeset_init_hw(struct drm_device *dev) 15326{ 15327 struct drm_i915_private *dev_priv = dev->dev_private; 15328 15329 intel_update_cdclk(dev); 15330 15331 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq; 15332 15333 intel_init_clock_gating(dev); 15334 intel_enable_gt_powersave(dev); 15335} 15336 15337/* 15338 * Calculate what we think the watermarks should be for the state we've read 15339 * out of the hardware and then immediately program those watermarks so that 15340 * we ensure the hardware settings match our internal state. 15341 * 15342 * We can calculate what we think WM's should be by creating a duplicate of the 15343 * current state (which was constructed during hardware readout) and running it 15344 * through the atomic check code to calculate new watermark values in the 15345 * state object. 15346 */ 15347static void sanitize_watermarks(struct drm_device *dev) 15348{ 15349 struct drm_i915_private *dev_priv = to_i915(dev); 15350 struct drm_atomic_state *state; 15351 struct drm_crtc *crtc; 15352 struct drm_crtc_state *cstate; 15353 struct drm_modeset_acquire_ctx ctx; 15354 int ret; 15355 int i; 15356 15357 /* Only supported on platforms that use atomic watermark design */ 15358 if (!dev_priv->display.optimize_watermarks) 15359 return; 15360 15361 /* 15362 * We need to hold connection_mutex before calling duplicate_state so 15363 * that the connector loop is protected. 15364 */ 15365 drm_modeset_acquire_init(&ctx, 0); 15366retry: 15367 ret = drm_modeset_lock_all_ctx(dev, &ctx); 15368 if (ret == -EDEADLK) { 15369 drm_modeset_backoff(&ctx); 15370 goto retry; 15371 } else if (WARN_ON(ret)) { 15372 goto fail; 15373 } 15374 15375 state = drm_atomic_helper_duplicate_state(dev, &ctx); 15376 if (WARN_ON(IS_ERR(state))) 15377 goto fail; 15378 15379 /* 15380 * Hardware readout is the only time we don't want to calculate 15381 * intermediate watermarks (since we don't trust the current 15382 * watermarks). 15383 */ 15384 to_intel_atomic_state(state)->skip_intermediate_wm = true; 15385 15386 ret = intel_atomic_check(dev, state); 15387 if (ret) { 15388 /* 15389 * If we fail here, it means that the hardware appears to be 15390 * programmed in a way that shouldn't be possible, given our 15391 * understanding of watermark requirements. This might mean a 15392 * mistake in the hardware readout code or a mistake in the 15393 * watermark calculations for a given platform. Raise a WARN 15394 * so that this is noticeable. 15395 * 15396 * If this actually happens, we'll have to just leave the 15397 * BIOS-programmed watermarks untouched and hope for the best. 15398 */ 15399 WARN(true, "Could not determine valid watermarks for inherited state\n"); 15400 goto fail; 15401 } 15402 15403 /* Write calculated watermark values back */ 15404 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config; 15405 for_each_crtc_in_state(state, crtc, cstate, i) { 15406 struct intel_crtc_state *cs = to_intel_crtc_state(cstate); 15407 15408 cs->wm.need_postvbl_update = true; 15409 dev_priv->display.optimize_watermarks(cs); 15410 } 15411 15412 drm_atomic_state_free(state); 15413fail: 15414 drm_modeset_drop_locks(&ctx); 15415 drm_modeset_acquire_fini(&ctx); 15416} 15417 15418void intel_modeset_init(struct drm_device *dev) 15419{ 15420 struct drm_i915_private *dev_priv = to_i915(dev); 15421 struct i915_ggtt *ggtt = &dev_priv->ggtt; 15422 int sprite, ret; 15423 enum pipe pipe; 15424 struct intel_crtc *crtc; 15425 15426 drm_mode_config_init(dev); 15427 15428 dev->mode_config.min_width = 0; 15429 dev->mode_config.min_height = 0; 15430 15431 dev->mode_config.preferred_depth = 24; 15432 dev->mode_config.prefer_shadow = 1; 15433 15434 dev->mode_config.allow_fb_modifiers = true; 15435 15436 dev->mode_config.funcs = &intel_mode_funcs; 15437 15438 intel_init_quirks(dev); 15439 15440 intel_init_pm(dev); 15441 15442 if (INTEL_INFO(dev)->num_pipes == 0) 15443 return; 15444 15445 /* 15446 * There may be no VBT; and if the BIOS enabled SSC we can 15447 * just keep using it to avoid unnecessary flicker. Whereas if the 15448 * BIOS isn't using it, don't assume it will work even if the VBT 15449 * indicates as much. 15450 */ 15451 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { 15452 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) & 15453 DREF_SSC1_ENABLE); 15454 15455 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) { 15456 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n", 15457 bios_lvds_use_ssc ? "en" : "dis", 15458 dev_priv->vbt.lvds_use_ssc ? "en" : "dis"); 15459 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc; 15460 } 15461 } 15462 15463 if (IS_GEN2(dev)) { 15464 dev->mode_config.max_width = 2048; 15465 dev->mode_config.max_height = 2048; 15466 } else if (IS_GEN3(dev)) { 15467 dev->mode_config.max_width = 4096; 15468 dev->mode_config.max_height = 4096; 15469 } else { 15470 dev->mode_config.max_width = 8192; 15471 dev->mode_config.max_height = 8192; 15472 } 15473 15474 if (IS_845G(dev) || IS_I865G(dev)) { 15475 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512; 15476 dev->mode_config.cursor_height = 1023; 15477 } else if (IS_GEN2(dev)) { 15478 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH; 15479 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT; 15480 } else { 15481 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH; 15482 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT; 15483 } 15484 15485 dev->mode_config.fb_base = ggtt->mappable_base; 15486 15487 DRM_DEBUG_KMS("%d display pipe%s available.\n", 15488 INTEL_INFO(dev)->num_pipes, 15489 INTEL_INFO(dev)->num_pipes > 1 ? "s" : ""); 15490 15491 for_each_pipe(dev_priv, pipe) { 15492 intel_crtc_init(dev, pipe); 15493 for_each_sprite(dev_priv, pipe, sprite) { 15494 ret = intel_plane_init(dev, pipe, sprite); 15495 if (ret) 15496 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n", 15497 pipe_name(pipe), sprite_name(pipe, sprite), ret); 15498 } 15499 } 15500 15501 intel_update_czclk(dev_priv); 15502 intel_update_rawclk(dev_priv); 15503 intel_update_cdclk(dev); 15504 15505 intel_shared_dpll_init(dev); 15506 15507 /* Just disable it once at startup */ 15508 i915_disable_vga(dev); 15509 intel_setup_outputs(dev); 15510 15511 drm_modeset_lock_all(dev); 15512 intel_modeset_setup_hw_state(dev); 15513 drm_modeset_unlock_all(dev); 15514 15515 for_each_intel_crtc(dev, crtc) { 15516 struct intel_initial_plane_config plane_config = {}; 15517 15518 if (!crtc->active) 15519 continue; 15520 15521 /* 15522 * Note that reserving the BIOS fb up front prevents us 15523 * from stuffing other stolen allocations like the ring 15524 * on top. This prevents some ugliness at boot time, and 15525 * can even allow for smooth boot transitions if the BIOS 15526 * fb is large enough for the active pipe configuration. 15527 */ 15528 dev_priv->display.get_initial_plane_config(crtc, 15529 &plane_config); 15530 15531 /* 15532 * If the fb is shared between multiple heads, we'll 15533 * just get the first one. 15534 */ 15535 intel_find_initial_plane_obj(crtc, &plane_config); 15536 } 15537 15538 /* 15539 * Make sure hardware watermarks really match the state we read out. 15540 * Note that we need to do this after reconstructing the BIOS fb's 15541 * since the watermark calculation done here will use pstate->fb. 15542 */ 15543 sanitize_watermarks(dev); 15544} 15545 15546static void intel_enable_pipe_a(struct drm_device *dev) 15547{ 15548 struct intel_connector *connector; 15549 struct drm_connector *crt = NULL; 15550 struct intel_load_detect_pipe load_detect_temp; 15551 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx; 15552 15553 /* We can't just switch on the pipe A, we need to set things up with a 15554 * proper mode and output configuration. As a gross hack, enable pipe A 15555 * by enabling the load detect pipe once. */ 15556 for_each_intel_connector(dev, connector) { 15557 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { 15558 crt = &connector->base; 15559 break; 15560 } 15561 } 15562 15563 if (!crt) 15564 return; 15565 15566 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx)) 15567 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx); 15568} 15569 15570static bool 15571intel_check_plane_mapping(struct intel_crtc *crtc) 15572{ 15573 struct drm_device *dev = crtc->base.dev; 15574 struct drm_i915_private *dev_priv = dev->dev_private; 15575 u32 val; 15576 15577 if (INTEL_INFO(dev)->num_pipes == 1) 15578 return true; 15579 15580 val = I915_READ(DSPCNTR(!crtc->plane)); 15581 15582 if ((val & DISPLAY_PLANE_ENABLE) && 15583 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) 15584 return false; 15585 15586 return true; 15587} 15588 15589static bool intel_crtc_has_encoders(struct intel_crtc *crtc) 15590{ 15591 struct drm_device *dev = crtc->base.dev; 15592 struct intel_encoder *encoder; 15593 15594 for_each_encoder_on_crtc(dev, &crtc->base, encoder) 15595 return true; 15596 15597 return false; 15598} 15599 15600static bool intel_encoder_has_connectors(struct intel_encoder *encoder) 15601{ 15602 struct drm_device *dev = encoder->base.dev; 15603 struct intel_connector *connector; 15604 15605 for_each_connector_on_encoder(dev, &encoder->base, connector) 15606 return true; 15607 15608 return false; 15609} 15610 15611static void intel_sanitize_crtc(struct intel_crtc *crtc) 15612{ 15613 struct drm_device *dev = crtc->base.dev; 15614 struct drm_i915_private *dev_priv = dev->dev_private; 15615 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder; 15616 15617 /* Clear any frame start delays used for debugging left by the BIOS */ 15618 if (!transcoder_is_dsi(cpu_transcoder)) { 15619 i915_reg_t reg = PIPECONF(cpu_transcoder); 15620 15621 I915_WRITE(reg, 15622 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); 15623 } 15624 15625 /* restore vblank interrupts to correct state */ 15626 drm_crtc_vblank_reset(&crtc->base); 15627 if (crtc->active) { 15628 struct intel_plane *plane; 15629 15630 drm_crtc_vblank_on(&crtc->base); 15631 15632 /* Disable everything but the primary plane */ 15633 for_each_intel_plane_on_crtc(dev, crtc, plane) { 15634 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) 15635 continue; 15636 15637 plane->disable_plane(&plane->base, &crtc->base); 15638 } 15639 } 15640 15641 /* We need to sanitize the plane -> pipe mapping first because this will 15642 * disable the crtc (and hence change the state) if it is wrong. Note 15643 * that gen4+ has a fixed plane -> pipe mapping. */ 15644 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { 15645 bool plane; 15646 15647 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", 15648 crtc->base.base.id); 15649 15650 /* Pipe has the wrong plane attached and the plane is active. 15651 * Temporarily change the plane mapping and disable everything 15652 * ... */ 15653 plane = crtc->plane; 15654 to_intel_plane_state(crtc->base.primary->state)->visible = true; 15655 crtc->plane = !plane; 15656 intel_crtc_disable_noatomic(&crtc->base); 15657 crtc->plane = plane; 15658 } 15659 15660 if (dev_priv->quirks & QUIRK_PIPEA_FORCE && 15661 crtc->pipe == PIPE_A && !crtc->active) { 15662 /* BIOS forgot to enable pipe A, this mostly happens after 15663 * resume. Force-enable the pipe to fix this, the update_dpms 15664 * call below we restore the pipe to the right state, but leave 15665 * the required bits on. */ 15666 intel_enable_pipe_a(dev); 15667 } 15668 15669 /* Adjust the state of the output pipe according to whether we 15670 * have active connectors/encoders. */ 15671 if (crtc->active && !intel_crtc_has_encoders(crtc)) 15672 intel_crtc_disable_noatomic(&crtc->base); 15673 15674 if (crtc->active || HAS_GMCH_DISPLAY(dev)) { 15675 /* 15676 * We start out with underrun reporting disabled to avoid races. 15677 * For correct bookkeeping mark this on active crtcs. 15678 * 15679 * Also on gmch platforms we dont have any hardware bits to 15680 * disable the underrun reporting. Which means we need to start 15681 * out with underrun reporting disabled also on inactive pipes, 15682 * since otherwise we'll complain about the garbage we read when 15683 * e.g. coming up after runtime pm. 15684 * 15685 * No protection against concurrent access is required - at 15686 * worst a fifo underrun happens which also sets this to false. 15687 */ 15688 crtc->cpu_fifo_underrun_disabled = true; 15689 crtc->pch_fifo_underrun_disabled = true; 15690 } 15691} 15692 15693static void intel_sanitize_encoder(struct intel_encoder *encoder) 15694{ 15695 struct intel_connector *connector; 15696 struct drm_device *dev = encoder->base.dev; 15697 15698 /* We need to check both for a crtc link (meaning that the 15699 * encoder is active and trying to read from a pipe) and the 15700 * pipe itself being active. */ 15701 bool has_active_crtc = encoder->base.crtc && 15702 to_intel_crtc(encoder->base.crtc)->active; 15703 15704 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) { 15705 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", 15706 encoder->base.base.id, 15707 encoder->base.name); 15708 15709 /* Connector is active, but has no active pipe. This is 15710 * fallout from our resume register restoring. Disable 15711 * the encoder manually again. */ 15712 if (encoder->base.crtc) { 15713 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", 15714 encoder->base.base.id, 15715 encoder->base.name); 15716 encoder->disable(encoder); 15717 if (encoder->post_disable) 15718 encoder->post_disable(encoder); 15719 } 15720 encoder->base.crtc = NULL; 15721 15722 /* Inconsistent output/port/pipe state happens presumably due to 15723 * a bug in one of the get_hw_state functions. Or someplace else 15724 * in our code, like the register restore mess on resume. Clamp 15725 * things to off as a safer default. */ 15726 for_each_intel_connector(dev, connector) { 15727 if (connector->encoder != encoder) 15728 continue; 15729 connector->base.dpms = DRM_MODE_DPMS_OFF; 15730 connector->base.encoder = NULL; 15731 } 15732 } 15733 /* Enabled encoders without active connectors will be fixed in 15734 * the crtc fixup. */ 15735} 15736 15737void i915_redisable_vga_power_on(struct drm_device *dev) 15738{ 15739 struct drm_i915_private *dev_priv = dev->dev_private; 15740 i915_reg_t vga_reg = i915_vgacntrl_reg(dev); 15741 15742 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { 15743 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); 15744 i915_disable_vga(dev); 15745 } 15746} 15747 15748void i915_redisable_vga(struct drm_device *dev) 15749{ 15750 struct drm_i915_private *dev_priv = dev->dev_private; 15751 15752 /* This function can be called both from intel_modeset_setup_hw_state or 15753 * at a very early point in our resume sequence, where the power well 15754 * structures are not yet restored. Since this function is at a very 15755 * paranoid "someone might have enabled VGA while we were not looking" 15756 * level, just check if the power well is enabled instead of trying to 15757 * follow the "don't touch the power well if we don't need it" policy 15758 * the rest of the driver uses. */ 15759 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA)) 15760 return; 15761 15762 i915_redisable_vga_power_on(dev); 15763 15764 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA); 15765} 15766 15767static bool primary_get_hw_state(struct intel_plane *plane) 15768{ 15769 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 15770 15771 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE; 15772} 15773 15774/* FIXME read out full plane state for all planes */ 15775static void readout_plane_state(struct intel_crtc *crtc) 15776{ 15777 struct drm_plane *primary = crtc->base.primary; 15778 struct intel_plane_state *plane_state = 15779 to_intel_plane_state(primary->state); 15780 15781 plane_state->visible = crtc->active && 15782 primary_get_hw_state(to_intel_plane(primary)); 15783 15784 if (plane_state->visible) 15785 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary); 15786} 15787 15788static void intel_modeset_readout_hw_state(struct drm_device *dev) 15789{ 15790 struct drm_i915_private *dev_priv = dev->dev_private; 15791 enum pipe pipe; 15792 struct intel_crtc *crtc; 15793 struct intel_encoder *encoder; 15794 struct intel_connector *connector; 15795 int i; 15796 15797 dev_priv->active_crtcs = 0; 15798 15799 for_each_intel_crtc(dev, crtc) { 15800 struct intel_crtc_state *crtc_state = crtc->config; 15801 int pixclk = 0; 15802 15803 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base); 15804 memset(crtc_state, 0, sizeof(*crtc_state)); 15805 crtc_state->base.crtc = &crtc->base; 15806 15807 crtc_state->base.active = crtc_state->base.enable = 15808 dev_priv->display.get_pipe_config(crtc, crtc_state); 15809 15810 crtc->base.enabled = crtc_state->base.enable; 15811 crtc->active = crtc_state->base.active; 15812 15813 if (crtc_state->base.active) { 15814 dev_priv->active_crtcs |= 1 << crtc->pipe; 15815 15816 if (IS_BROADWELL(dev_priv)) { 15817 pixclk = ilk_pipe_pixel_rate(crtc_state); 15818 15819 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */ 15820 if (crtc_state->ips_enabled) 15821 pixclk = DIV_ROUND_UP(pixclk * 100, 95); 15822 } else if (IS_VALLEYVIEW(dev_priv) || 15823 IS_CHERRYVIEW(dev_priv) || 15824 IS_BROXTON(dev_priv)) 15825 pixclk = crtc_state->base.adjusted_mode.crtc_clock; 15826 else 15827 WARN_ON(dev_priv->display.modeset_calc_cdclk); 15828 } 15829 15830 dev_priv->min_pixclk[crtc->pipe] = pixclk; 15831 15832 readout_plane_state(crtc); 15833 15834 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", 15835 crtc->base.base.id, 15836 crtc->active ? "enabled" : "disabled"); 15837 } 15838 15839 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 15840 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 15841 15842 pll->on = pll->funcs.get_hw_state(dev_priv, pll, 15843 &pll->config.hw_state); 15844 pll->config.crtc_mask = 0; 15845 for_each_intel_crtc(dev, crtc) { 15846 if (crtc->active && crtc->config->shared_dpll == pll) 15847 pll->config.crtc_mask |= 1 << crtc->pipe; 15848 } 15849 pll->active_mask = pll->config.crtc_mask; 15850 15851 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", 15852 pll->name, pll->config.crtc_mask, pll->on); 15853 } 15854 15855 for_each_intel_encoder(dev, encoder) { 15856 pipe = 0; 15857 15858 if (encoder->get_hw_state(encoder, &pipe)) { 15859 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 15860 encoder->base.crtc = &crtc->base; 15861 encoder->get_config(encoder, crtc->config); 15862 } else { 15863 encoder->base.crtc = NULL; 15864 } 15865 15866 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", 15867 encoder->base.base.id, 15868 encoder->base.name, 15869 encoder->base.crtc ? "enabled" : "disabled", 15870 pipe_name(pipe)); 15871 } 15872 15873 for_each_intel_connector(dev, connector) { 15874 if (connector->get_hw_state(connector)) { 15875 connector->base.dpms = DRM_MODE_DPMS_ON; 15876 15877 encoder = connector->encoder; 15878 connector->base.encoder = &encoder->base; 15879 15880 if (encoder->base.crtc && 15881 encoder->base.crtc->state->active) { 15882 /* 15883 * This has to be done during hardware readout 15884 * because anything calling .crtc_disable may 15885 * rely on the connector_mask being accurate. 15886 */ 15887 encoder->base.crtc->state->connector_mask |= 15888 1 << drm_connector_index(&connector->base); 15889 encoder->base.crtc->state->encoder_mask |= 15890 1 << drm_encoder_index(&encoder->base); 15891 } 15892 15893 } else { 15894 connector->base.dpms = DRM_MODE_DPMS_OFF; 15895 connector->base.encoder = NULL; 15896 } 15897 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", 15898 connector->base.base.id, 15899 connector->base.name, 15900 connector->base.encoder ? "enabled" : "disabled"); 15901 } 15902 15903 for_each_intel_crtc(dev, crtc) { 15904 crtc->base.hwmode = crtc->config->base.adjusted_mode; 15905 15906 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode)); 15907 if (crtc->base.state->active) { 15908 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config); 15909 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config); 15910 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode)); 15911 15912 /* 15913 * The initial mode needs to be set in order to keep 15914 * the atomic core happy. It wants a valid mode if the 15915 * crtc's enabled, so we do the above call. 15916 * 15917 * At this point some state updated by the connectors 15918 * in their ->detect() callback has not run yet, so 15919 * no recalculation can be done yet. 15920 * 15921 * Even if we could do a recalculation and modeset 15922 * right now it would cause a double modeset if 15923 * fbdev or userspace chooses a different initial mode. 15924 * 15925 * If that happens, someone indicated they wanted a 15926 * mode change, which means it's safe to do a full 15927 * recalculation. 15928 */ 15929 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED; 15930 15931 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode); 15932 update_scanline_offset(crtc); 15933 } 15934 15935 intel_pipe_config_sanity_check(dev_priv, crtc->config); 15936 } 15937} 15938 15939/* Scan out the current hw modeset state, 15940 * and sanitizes it to the current state 15941 */ 15942static void 15943intel_modeset_setup_hw_state(struct drm_device *dev) 15944{ 15945 struct drm_i915_private *dev_priv = dev->dev_private; 15946 enum pipe pipe; 15947 struct intel_crtc *crtc; 15948 struct intel_encoder *encoder; 15949 int i; 15950 15951 intel_modeset_readout_hw_state(dev); 15952 15953 /* HW state is read out, now we need to sanitize this mess. */ 15954 for_each_intel_encoder(dev, encoder) { 15955 intel_sanitize_encoder(encoder); 15956 } 15957 15958 for_each_pipe(dev_priv, pipe) { 15959 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); 15960 intel_sanitize_crtc(crtc); 15961 intel_dump_pipe_config(crtc, crtc->config, 15962 "[setup_hw_state]"); 15963 } 15964 15965 intel_modeset_update_connector_atomic_state(dev); 15966 15967 for (i = 0; i < dev_priv->num_shared_dpll; i++) { 15968 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; 15969 15970 if (!pll->on || pll->active_mask) 15971 continue; 15972 15973 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name); 15974 15975 pll->funcs.disable(dev_priv, pll); 15976 pll->on = false; 15977 } 15978 15979 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) 15980 vlv_wm_get_hw_state(dev); 15981 else if (IS_GEN9(dev)) 15982 skl_wm_get_hw_state(dev); 15983 else if (HAS_PCH_SPLIT(dev)) 15984 ilk_wm_get_hw_state(dev); 15985 15986 for_each_intel_crtc(dev, crtc) { 15987 unsigned long put_domains; 15988 15989 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config); 15990 if (WARN_ON(put_domains)) 15991 modeset_put_power_domains(dev_priv, put_domains); 15992 } 15993 intel_display_set_init_power(dev_priv, false); 15994 15995 intel_fbc_init_pipe_state(dev_priv); 15996} 15997 15998void intel_display_resume(struct drm_device *dev) 15999{ 16000 struct drm_i915_private *dev_priv = to_i915(dev); 16001 struct drm_atomic_state *state = dev_priv->modeset_restore_state; 16002 struct drm_modeset_acquire_ctx ctx; 16003 int ret; 16004 bool setup = false; 16005 16006 dev_priv->modeset_restore_state = NULL; 16007 16008 /* 16009 * This is a cludge because with real atomic modeset mode_config.mutex 16010 * won't be taken. Unfortunately some probed state like 16011 * audio_codec_enable is still protected by mode_config.mutex, so lock 16012 * it here for now. 16013 */ 16014 mutex_lock(&dev->mode_config.mutex); 16015 drm_modeset_acquire_init(&ctx, 0); 16016 16017retry: 16018 ret = drm_modeset_lock_all_ctx(dev, &ctx); 16019 16020 if (ret == 0 && !setup) { 16021 setup = true; 16022 16023 intel_modeset_setup_hw_state(dev); 16024 i915_redisable_vga(dev); 16025 } 16026 16027 if (ret == 0 && state) { 16028 struct drm_crtc_state *crtc_state; 16029 struct drm_crtc *crtc; 16030 int i; 16031 16032 state->acquire_ctx = &ctx; 16033 16034 /* ignore any reset values/BIOS leftovers in the WM registers */ 16035 to_intel_atomic_state(state)->skip_intermediate_wm = true; 16036 16037 for_each_crtc_in_state(state, crtc, crtc_state, i) { 16038 /* 16039 * Force recalculation even if we restore 16040 * current state. With fast modeset this may not result 16041 * in a modeset when the state is compatible. 16042 */ 16043 crtc_state->mode_changed = true; 16044 } 16045 16046 ret = drm_atomic_commit(state); 16047 } 16048 16049 if (ret == -EDEADLK) { 16050 drm_modeset_backoff(&ctx); 16051 goto retry; 16052 } 16053 16054 drm_modeset_drop_locks(&ctx); 16055 drm_modeset_acquire_fini(&ctx); 16056 mutex_unlock(&dev->mode_config.mutex); 16057 16058 if (ret) { 16059 DRM_ERROR("Restoring old state failed with %i\n", ret); 16060 drm_atomic_state_free(state); 16061 } 16062} 16063 16064void intel_modeset_gem_init(struct drm_device *dev) 16065{ 16066 struct drm_crtc *c; 16067 struct drm_i915_gem_object *obj; 16068 int ret; 16069 16070 intel_init_gt_powersave(dev); 16071 16072 intel_modeset_init_hw(dev); 16073 16074 intel_setup_overlay(dev); 16075 16076 /* 16077 * Make sure any fbs we allocated at startup are properly 16078 * pinned & fenced. When we do the allocation it's too early 16079 * for this. 16080 */ 16081 for_each_crtc(dev, c) { 16082 obj = intel_fb_obj(c->primary->fb); 16083 if (obj == NULL) 16084 continue; 16085 16086 mutex_lock(&dev->struct_mutex); 16087 ret = intel_pin_and_fence_fb_obj(c->primary->fb, 16088 c->primary->state->rotation); 16089 mutex_unlock(&dev->struct_mutex); 16090 if (ret) { 16091 DRM_ERROR("failed to pin boot fb on pipe %d\n", 16092 to_intel_crtc(c)->pipe); 16093 drm_framebuffer_unreference(c->primary->fb); 16094 c->primary->fb = NULL; 16095 c->primary->crtc = c->primary->state->crtc = NULL; 16096 update_state_fb(c->primary); 16097 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary)); 16098 } 16099 } 16100 16101 intel_backlight_register(dev); 16102} 16103 16104void intel_connector_unregister(struct intel_connector *intel_connector) 16105{ 16106 struct drm_connector *connector = &intel_connector->base; 16107 16108 intel_panel_destroy_backlight(connector); 16109 drm_connector_unregister(connector); 16110} 16111 16112void intel_modeset_cleanup(struct drm_device *dev) 16113{ 16114 struct drm_i915_private *dev_priv = dev->dev_private; 16115 struct intel_connector *connector; 16116 16117 intel_disable_gt_powersave(dev); 16118 16119 intel_backlight_unregister(dev); 16120 16121 /* 16122 * Interrupts and polling as the first thing to avoid creating havoc. 16123 * Too much stuff here (turning of connectors, ...) would 16124 * experience fancy races otherwise. 16125 */ 16126 intel_irq_uninstall(dev_priv); 16127 16128 /* 16129 * Due to the hpd irq storm handling the hotplug work can re-arm the 16130 * poll handlers. Hence disable polling after hpd handling is shut down. 16131 */ 16132 drm_kms_helper_poll_fini(dev); 16133 16134 intel_unregister_dsm_handler(); 16135 16136 intel_fbc_global_disable(dev_priv); 16137 16138 /* flush any delayed tasks or pending work */ 16139 flush_scheduled_work(); 16140 16141 /* destroy the backlight and sysfs files before encoders/connectors */ 16142 for_each_intel_connector(dev, connector) 16143 connector->unregister(connector); 16144 16145 drm_mode_config_cleanup(dev); 16146 16147 intel_cleanup_overlay(dev); 16148 16149 intel_cleanup_gt_powersave(dev); 16150 16151 intel_teardown_gmbus(dev); 16152} 16153 16154/* 16155 * Return which encoder is currently attached for connector. 16156 */ 16157struct drm_encoder *intel_best_encoder(struct drm_connector *connector) 16158{ 16159 return &intel_attached_encoder(connector)->base; 16160} 16161 16162void intel_connector_attach_encoder(struct intel_connector *connector, 16163 struct intel_encoder *encoder) 16164{ 16165 connector->encoder = encoder; 16166 drm_mode_connector_attach_encoder(&connector->base, 16167 &encoder->base); 16168} 16169 16170/* 16171 * set vga decode state - true == enable VGA decode 16172 */ 16173int intel_modeset_vga_set_state(struct drm_device *dev, bool state) 16174{ 16175 struct drm_i915_private *dev_priv = dev->dev_private; 16176 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; 16177 u16 gmch_ctrl; 16178 16179 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { 16180 DRM_ERROR("failed to read control word\n"); 16181 return -EIO; 16182 } 16183 16184 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) 16185 return 0; 16186 16187 if (state) 16188 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; 16189 else 16190 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; 16191 16192 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { 16193 DRM_ERROR("failed to write control word\n"); 16194 return -EIO; 16195 } 16196 16197 return 0; 16198} 16199 16200struct intel_display_error_state { 16201 16202 u32 power_well_driver; 16203 16204 int num_transcoders; 16205 16206 struct intel_cursor_error_state { 16207 u32 control; 16208 u32 position; 16209 u32 base; 16210 u32 size; 16211 } cursor[I915_MAX_PIPES]; 16212 16213 struct intel_pipe_error_state { 16214 bool power_domain_on; 16215 u32 source; 16216 u32 stat; 16217 } pipe[I915_MAX_PIPES]; 16218 16219 struct intel_plane_error_state { 16220 u32 control; 16221 u32 stride; 16222 u32 size; 16223 u32 pos; 16224 u32 addr; 16225 u32 surface; 16226 u32 tile_offset; 16227 } plane[I915_MAX_PIPES]; 16228 16229 struct intel_transcoder_error_state { 16230 bool power_domain_on; 16231 enum transcoder cpu_transcoder; 16232 16233 u32 conf; 16234 16235 u32 htotal; 16236 u32 hblank; 16237 u32 hsync; 16238 u32 vtotal; 16239 u32 vblank; 16240 u32 vsync; 16241 } transcoder[4]; 16242}; 16243 16244struct intel_display_error_state * 16245intel_display_capture_error_state(struct drm_device *dev) 16246{ 16247 struct drm_i915_private *dev_priv = dev->dev_private; 16248 struct intel_display_error_state *error; 16249 int transcoders[] = { 16250 TRANSCODER_A, 16251 TRANSCODER_B, 16252 TRANSCODER_C, 16253 TRANSCODER_EDP, 16254 }; 16255 int i; 16256 16257 if (INTEL_INFO(dev)->num_pipes == 0) 16258 return NULL; 16259 16260 error = kzalloc(sizeof(*error), GFP_ATOMIC); 16261 if (error == NULL) 16262 return NULL; 16263 16264 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 16265 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER); 16266 16267 for_each_pipe(dev_priv, i) { 16268 error->pipe[i].power_domain_on = 16269 __intel_display_power_is_enabled(dev_priv, 16270 POWER_DOMAIN_PIPE(i)); 16271 if (!error->pipe[i].power_domain_on) 16272 continue; 16273 16274 error->cursor[i].control = I915_READ(CURCNTR(i)); 16275 error->cursor[i].position = I915_READ(CURPOS(i)); 16276 error->cursor[i].base = I915_READ(CURBASE(i)); 16277 16278 error->plane[i].control = I915_READ(DSPCNTR(i)); 16279 error->plane[i].stride = I915_READ(DSPSTRIDE(i)); 16280 if (INTEL_INFO(dev)->gen <= 3) { 16281 error->plane[i].size = I915_READ(DSPSIZE(i)); 16282 error->plane[i].pos = I915_READ(DSPPOS(i)); 16283 } 16284 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) 16285 error->plane[i].addr = I915_READ(DSPADDR(i)); 16286 if (INTEL_INFO(dev)->gen >= 4) { 16287 error->plane[i].surface = I915_READ(DSPSURF(i)); 16288 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); 16289 } 16290 16291 error->pipe[i].source = I915_READ(PIPESRC(i)); 16292 16293 if (HAS_GMCH_DISPLAY(dev)) 16294 error->pipe[i].stat = I915_READ(PIPESTAT(i)); 16295 } 16296 16297 /* Note: this does not include DSI transcoders. */ 16298 error->num_transcoders = INTEL_INFO(dev)->num_pipes; 16299 if (HAS_DDI(dev_priv)) 16300 error->num_transcoders++; /* Account for eDP. */ 16301 16302 for (i = 0; i < error->num_transcoders; i++) { 16303 enum transcoder cpu_transcoder = transcoders[i]; 16304 16305 error->transcoder[i].power_domain_on = 16306 __intel_display_power_is_enabled(dev_priv, 16307 POWER_DOMAIN_TRANSCODER(cpu_transcoder)); 16308 if (!error->transcoder[i].power_domain_on) 16309 continue; 16310 16311 error->transcoder[i].cpu_transcoder = cpu_transcoder; 16312 16313 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); 16314 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); 16315 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); 16316 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); 16317 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); 16318 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); 16319 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); 16320 } 16321 16322 return error; 16323} 16324 16325#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) 16326 16327void 16328intel_display_print_error_state(struct drm_i915_error_state_buf *m, 16329 struct drm_device *dev, 16330 struct intel_display_error_state *error) 16331{ 16332 struct drm_i915_private *dev_priv = dev->dev_private; 16333 int i; 16334 16335 if (!error) 16336 return; 16337 16338 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes); 16339 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) 16340 err_printf(m, "PWR_WELL_CTL2: %08x\n", 16341 error->power_well_driver); 16342 for_each_pipe(dev_priv, i) { 16343 err_printf(m, "Pipe [%d]:\n", i); 16344 err_printf(m, " Power: %s\n", 16345 onoff(error->pipe[i].power_domain_on)); 16346 err_printf(m, " SRC: %08x\n", error->pipe[i].source); 16347 err_printf(m, " STAT: %08x\n", error->pipe[i].stat); 16348 16349 err_printf(m, "Plane [%d]:\n", i); 16350 err_printf(m, " CNTR: %08x\n", error->plane[i].control); 16351 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); 16352 if (INTEL_INFO(dev)->gen <= 3) { 16353 err_printf(m, " SIZE: %08x\n", error->plane[i].size); 16354 err_printf(m, " POS: %08x\n", error->plane[i].pos); 16355 } 16356 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) 16357 err_printf(m, " ADDR: %08x\n", error->plane[i].addr); 16358 if (INTEL_INFO(dev)->gen >= 4) { 16359 err_printf(m, " SURF: %08x\n", error->plane[i].surface); 16360 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); 16361 } 16362 16363 err_printf(m, "Cursor [%d]:\n", i); 16364 err_printf(m, " CNTR: %08x\n", error->cursor[i].control); 16365 err_printf(m, " POS: %08x\n", error->cursor[i].position); 16366 err_printf(m, " BASE: %08x\n", error->cursor[i].base); 16367 } 16368 16369 for (i = 0; i < error->num_transcoders; i++) { 16370 err_printf(m, "CPU transcoder: %s\n", 16371 transcoder_name(error->transcoder[i].cpu_transcoder)); 16372 err_printf(m, " Power: %s\n", 16373 onoff(error->transcoder[i].power_domain_on)); 16374 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); 16375 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); 16376 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); 16377 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); 16378 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); 16379 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); 16380 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); 16381 } 16382}