at v4.7 18 kB view raw
1/* 2 * Software multibuffer async crypto daemon. 3 * 4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com> 5 * 6 * Adapted from crypto daemon. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 */ 14 15#include <crypto/algapi.h> 16#include <crypto/internal/hash.h> 17#include <crypto/internal/aead.h> 18#include <crypto/mcryptd.h> 19#include <crypto/crypto_wq.h> 20#include <linux/err.h> 21#include <linux/init.h> 22#include <linux/kernel.h> 23#include <linux/list.h> 24#include <linux/module.h> 25#include <linux/scatterlist.h> 26#include <linux/sched.h> 27#include <linux/slab.h> 28#include <linux/hardirq.h> 29 30#define MCRYPTD_MAX_CPU_QLEN 100 31#define MCRYPTD_BATCH 9 32 33static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 34 unsigned int tail); 35 36struct mcryptd_flush_list { 37 struct list_head list; 38 struct mutex lock; 39}; 40 41static struct mcryptd_flush_list __percpu *mcryptd_flist; 42 43struct hashd_instance_ctx { 44 struct crypto_shash_spawn spawn; 45 struct mcryptd_queue *queue; 46}; 47 48static void mcryptd_queue_worker(struct work_struct *work); 49 50void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay) 51{ 52 struct mcryptd_flush_list *flist; 53 54 if (!cstate->flusher_engaged) { 55 /* put the flusher on the flush list */ 56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 57 mutex_lock(&flist->lock); 58 list_add_tail(&cstate->flush_list, &flist->list); 59 cstate->flusher_engaged = true; 60 cstate->next_flush = jiffies + delay; 61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq, 62 &cstate->flush, delay); 63 mutex_unlock(&flist->lock); 64 } 65} 66EXPORT_SYMBOL(mcryptd_arm_flusher); 67 68static int mcryptd_init_queue(struct mcryptd_queue *queue, 69 unsigned int max_cpu_qlen) 70{ 71 int cpu; 72 struct mcryptd_cpu_queue *cpu_queue; 73 74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue); 75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue); 76 if (!queue->cpu_queue) 77 return -ENOMEM; 78 for_each_possible_cpu(cpu) { 79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue); 81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker); 83 } 84 return 0; 85} 86 87static void mcryptd_fini_queue(struct mcryptd_queue *queue) 88{ 89 int cpu; 90 struct mcryptd_cpu_queue *cpu_queue; 91 92 for_each_possible_cpu(cpu) { 93 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 94 BUG_ON(cpu_queue->queue.qlen); 95 } 96 free_percpu(queue->cpu_queue); 97} 98 99static int mcryptd_enqueue_request(struct mcryptd_queue *queue, 100 struct crypto_async_request *request, 101 struct mcryptd_hash_request_ctx *rctx) 102{ 103 int cpu, err; 104 struct mcryptd_cpu_queue *cpu_queue; 105 106 cpu = get_cpu(); 107 cpu_queue = this_cpu_ptr(queue->cpu_queue); 108 rctx->tag.cpu = cpu; 109 110 err = crypto_enqueue_request(&cpu_queue->queue, request); 111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n", 112 cpu, cpu_queue, request); 113 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 114 put_cpu(); 115 116 return err; 117} 118 119/* 120 * Try to opportunisticlly flush the partially completed jobs if 121 * crypto daemon is the only task running. 122 */ 123static void mcryptd_opportunistic_flush(void) 124{ 125 struct mcryptd_flush_list *flist; 126 struct mcryptd_alg_cstate *cstate; 127 128 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 129 while (single_task_running()) { 130 mutex_lock(&flist->lock); 131 cstate = list_first_entry_or_null(&flist->list, 132 struct mcryptd_alg_cstate, flush_list); 133 if (!cstate || !cstate->flusher_engaged) { 134 mutex_unlock(&flist->lock); 135 return; 136 } 137 list_del(&cstate->flush_list); 138 cstate->flusher_engaged = false; 139 mutex_unlock(&flist->lock); 140 cstate->alg_state->flusher(cstate); 141 } 142} 143 144/* 145 * Called in workqueue context, do one real cryption work (via 146 * req->complete) and reschedule itself if there are more work to 147 * do. 148 */ 149static void mcryptd_queue_worker(struct work_struct *work) 150{ 151 struct mcryptd_cpu_queue *cpu_queue; 152 struct crypto_async_request *req, *backlog; 153 int i; 154 155 /* 156 * Need to loop through more than once for multi-buffer to 157 * be effective. 158 */ 159 160 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work); 161 i = 0; 162 while (i < MCRYPTD_BATCH || single_task_running()) { 163 /* 164 * preempt_disable/enable is used to prevent 165 * being preempted by mcryptd_enqueue_request() 166 */ 167 local_bh_disable(); 168 preempt_disable(); 169 backlog = crypto_get_backlog(&cpu_queue->queue); 170 req = crypto_dequeue_request(&cpu_queue->queue); 171 preempt_enable(); 172 local_bh_enable(); 173 174 if (!req) { 175 mcryptd_opportunistic_flush(); 176 return; 177 } 178 179 if (backlog) 180 backlog->complete(backlog, -EINPROGRESS); 181 req->complete(req, 0); 182 if (!cpu_queue->queue.qlen) 183 return; 184 ++i; 185 } 186 if (cpu_queue->queue.qlen) 187 queue_work(kcrypto_wq, &cpu_queue->work); 188} 189 190void mcryptd_flusher(struct work_struct *__work) 191{ 192 struct mcryptd_alg_cstate *alg_cpu_state; 193 struct mcryptd_alg_state *alg_state; 194 struct mcryptd_flush_list *flist; 195 int cpu; 196 197 cpu = smp_processor_id(); 198 alg_cpu_state = container_of(to_delayed_work(__work), 199 struct mcryptd_alg_cstate, flush); 200 alg_state = alg_cpu_state->alg_state; 201 if (alg_cpu_state->cpu != cpu) 202 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n", 203 cpu, alg_cpu_state->cpu); 204 205 if (alg_cpu_state->flusher_engaged) { 206 flist = per_cpu_ptr(mcryptd_flist, cpu); 207 mutex_lock(&flist->lock); 208 list_del(&alg_cpu_state->flush_list); 209 alg_cpu_state->flusher_engaged = false; 210 mutex_unlock(&flist->lock); 211 alg_state->flusher(alg_cpu_state); 212 } 213} 214EXPORT_SYMBOL_GPL(mcryptd_flusher); 215 216static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm) 217{ 218 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 219 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 220 221 return ictx->queue; 222} 223 224static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 225 unsigned int tail) 226{ 227 char *p; 228 struct crypto_instance *inst; 229 int err; 230 231 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 232 if (!p) 233 return ERR_PTR(-ENOMEM); 234 235 inst = (void *)(p + head); 236 237 err = -ENAMETOOLONG; 238 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 239 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 240 goto out_free_inst; 241 242 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 243 244 inst->alg.cra_priority = alg->cra_priority + 50; 245 inst->alg.cra_blocksize = alg->cra_blocksize; 246 inst->alg.cra_alignmask = alg->cra_alignmask; 247 248out: 249 return p; 250 251out_free_inst: 252 kfree(p); 253 p = ERR_PTR(err); 254 goto out; 255} 256 257static inline void mcryptd_check_internal(struct rtattr **tb, u32 *type, 258 u32 *mask) 259{ 260 struct crypto_attr_type *algt; 261 262 algt = crypto_get_attr_type(tb); 263 if (IS_ERR(algt)) 264 return; 265 if ((algt->type & CRYPTO_ALG_INTERNAL)) 266 *type |= CRYPTO_ALG_INTERNAL; 267 if ((algt->mask & CRYPTO_ALG_INTERNAL)) 268 *mask |= CRYPTO_ALG_INTERNAL; 269} 270 271static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm) 272{ 273 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 274 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 275 struct crypto_shash_spawn *spawn = &ictx->spawn; 276 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 277 struct crypto_shash *hash; 278 279 hash = crypto_spawn_shash(spawn); 280 if (IS_ERR(hash)) 281 return PTR_ERR(hash); 282 283 ctx->child = hash; 284 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 285 sizeof(struct mcryptd_hash_request_ctx) + 286 crypto_shash_descsize(hash)); 287 return 0; 288} 289 290static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm) 291{ 292 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 293 294 crypto_free_shash(ctx->child); 295} 296 297static int mcryptd_hash_setkey(struct crypto_ahash *parent, 298 const u8 *key, unsigned int keylen) 299{ 300 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 301 struct crypto_shash *child = ctx->child; 302 int err; 303 304 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 305 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & 306 CRYPTO_TFM_REQ_MASK); 307 err = crypto_shash_setkey(child, key, keylen); 308 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) & 309 CRYPTO_TFM_RES_MASK); 310 return err; 311} 312 313static int mcryptd_hash_enqueue(struct ahash_request *req, 314 crypto_completion_t complete) 315{ 316 int ret; 317 318 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 319 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 320 struct mcryptd_queue *queue = 321 mcryptd_get_queue(crypto_ahash_tfm(tfm)); 322 323 rctx->complete = req->base.complete; 324 req->base.complete = complete; 325 326 ret = mcryptd_enqueue_request(queue, &req->base, rctx); 327 328 return ret; 329} 330 331static void mcryptd_hash_init(struct crypto_async_request *req_async, int err) 332{ 333 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 334 struct crypto_shash *child = ctx->child; 335 struct ahash_request *req = ahash_request_cast(req_async); 336 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 337 struct shash_desc *desc = &rctx->desc; 338 339 if (unlikely(err == -EINPROGRESS)) 340 goto out; 341 342 desc->tfm = child; 343 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 344 345 err = crypto_shash_init(desc); 346 347 req->base.complete = rctx->complete; 348 349out: 350 local_bh_disable(); 351 rctx->complete(&req->base, err); 352 local_bh_enable(); 353} 354 355static int mcryptd_hash_init_enqueue(struct ahash_request *req) 356{ 357 return mcryptd_hash_enqueue(req, mcryptd_hash_init); 358} 359 360static void mcryptd_hash_update(struct crypto_async_request *req_async, int err) 361{ 362 struct ahash_request *req = ahash_request_cast(req_async); 363 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 364 365 if (unlikely(err == -EINPROGRESS)) 366 goto out; 367 368 err = shash_ahash_mcryptd_update(req, &rctx->desc); 369 if (err) { 370 req->base.complete = rctx->complete; 371 goto out; 372 } 373 374 return; 375out: 376 local_bh_disable(); 377 rctx->complete(&req->base, err); 378 local_bh_enable(); 379} 380 381static int mcryptd_hash_update_enqueue(struct ahash_request *req) 382{ 383 return mcryptd_hash_enqueue(req, mcryptd_hash_update); 384} 385 386static void mcryptd_hash_final(struct crypto_async_request *req_async, int err) 387{ 388 struct ahash_request *req = ahash_request_cast(req_async); 389 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 390 391 if (unlikely(err == -EINPROGRESS)) 392 goto out; 393 394 err = shash_ahash_mcryptd_final(req, &rctx->desc); 395 if (err) { 396 req->base.complete = rctx->complete; 397 goto out; 398 } 399 400 return; 401out: 402 local_bh_disable(); 403 rctx->complete(&req->base, err); 404 local_bh_enable(); 405} 406 407static int mcryptd_hash_final_enqueue(struct ahash_request *req) 408{ 409 return mcryptd_hash_enqueue(req, mcryptd_hash_final); 410} 411 412static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err) 413{ 414 struct ahash_request *req = ahash_request_cast(req_async); 415 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 416 417 if (unlikely(err == -EINPROGRESS)) 418 goto out; 419 420 err = shash_ahash_mcryptd_finup(req, &rctx->desc); 421 422 if (err) { 423 req->base.complete = rctx->complete; 424 goto out; 425 } 426 427 return; 428out: 429 local_bh_disable(); 430 rctx->complete(&req->base, err); 431 local_bh_enable(); 432} 433 434static int mcryptd_hash_finup_enqueue(struct ahash_request *req) 435{ 436 return mcryptd_hash_enqueue(req, mcryptd_hash_finup); 437} 438 439static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err) 440{ 441 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 442 struct crypto_shash *child = ctx->child; 443 struct ahash_request *req = ahash_request_cast(req_async); 444 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 445 struct shash_desc *desc = &rctx->desc; 446 447 if (unlikely(err == -EINPROGRESS)) 448 goto out; 449 450 desc->tfm = child; 451 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */ 452 453 err = shash_ahash_mcryptd_digest(req, desc); 454 455 if (err) { 456 req->base.complete = rctx->complete; 457 goto out; 458 } 459 460 return; 461out: 462 local_bh_disable(); 463 rctx->complete(&req->base, err); 464 local_bh_enable(); 465} 466 467static int mcryptd_hash_digest_enqueue(struct ahash_request *req) 468{ 469 return mcryptd_hash_enqueue(req, mcryptd_hash_digest); 470} 471 472static int mcryptd_hash_export(struct ahash_request *req, void *out) 473{ 474 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 475 476 return crypto_shash_export(&rctx->desc, out); 477} 478 479static int mcryptd_hash_import(struct ahash_request *req, const void *in) 480{ 481 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 482 483 return crypto_shash_import(&rctx->desc, in); 484} 485 486static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 487 struct mcryptd_queue *queue) 488{ 489 struct hashd_instance_ctx *ctx; 490 struct ahash_instance *inst; 491 struct shash_alg *salg; 492 struct crypto_alg *alg; 493 u32 type = 0; 494 u32 mask = 0; 495 int err; 496 497 mcryptd_check_internal(tb, &type, &mask); 498 499 salg = shash_attr_alg(tb[1], type, mask); 500 if (IS_ERR(salg)) 501 return PTR_ERR(salg); 502 503 alg = &salg->base; 504 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name); 505 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(), 506 sizeof(*ctx)); 507 err = PTR_ERR(inst); 508 if (IS_ERR(inst)) 509 goto out_put_alg; 510 511 ctx = ahash_instance_ctx(inst); 512 ctx->queue = queue; 513 514 err = crypto_init_shash_spawn(&ctx->spawn, salg, 515 ahash_crypto_instance(inst)); 516 if (err) 517 goto out_free_inst; 518 519 type = CRYPTO_ALG_ASYNC; 520 if (alg->cra_flags & CRYPTO_ALG_INTERNAL) 521 type |= CRYPTO_ALG_INTERNAL; 522 inst->alg.halg.base.cra_flags = type; 523 524 inst->alg.halg.digestsize = salg->digestsize; 525 inst->alg.halg.statesize = salg->statesize; 526 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx); 527 528 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm; 529 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm; 530 531 inst->alg.init = mcryptd_hash_init_enqueue; 532 inst->alg.update = mcryptd_hash_update_enqueue; 533 inst->alg.final = mcryptd_hash_final_enqueue; 534 inst->alg.finup = mcryptd_hash_finup_enqueue; 535 inst->alg.export = mcryptd_hash_export; 536 inst->alg.import = mcryptd_hash_import; 537 inst->alg.setkey = mcryptd_hash_setkey; 538 inst->alg.digest = mcryptd_hash_digest_enqueue; 539 540 err = ahash_register_instance(tmpl, inst); 541 if (err) { 542 crypto_drop_shash(&ctx->spawn); 543out_free_inst: 544 kfree(inst); 545 } 546 547out_put_alg: 548 crypto_mod_put(alg); 549 return err; 550} 551 552static struct mcryptd_queue mqueue; 553 554static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 555{ 556 struct crypto_attr_type *algt; 557 558 algt = crypto_get_attr_type(tb); 559 if (IS_ERR(algt)) 560 return PTR_ERR(algt); 561 562 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 563 case CRYPTO_ALG_TYPE_DIGEST: 564 return mcryptd_create_hash(tmpl, tb, &mqueue); 565 break; 566 } 567 568 return -EINVAL; 569} 570 571static void mcryptd_free(struct crypto_instance *inst) 572{ 573 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 574 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 575 576 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 577 case CRYPTO_ALG_TYPE_AHASH: 578 crypto_drop_shash(&hctx->spawn); 579 kfree(ahash_instance(inst)); 580 return; 581 default: 582 crypto_drop_spawn(&ctx->spawn); 583 kfree(inst); 584 } 585} 586 587static struct crypto_template mcryptd_tmpl = { 588 .name = "mcryptd", 589 .create = mcryptd_create, 590 .free = mcryptd_free, 591 .module = THIS_MODULE, 592}; 593 594struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name, 595 u32 type, u32 mask) 596{ 597 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 598 struct crypto_ahash *tfm; 599 600 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME, 601 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 602 return ERR_PTR(-EINVAL); 603 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask); 604 if (IS_ERR(tfm)) 605 return ERR_CAST(tfm); 606 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 607 crypto_free_ahash(tfm); 608 return ERR_PTR(-EINVAL); 609 } 610 611 return __mcryptd_ahash_cast(tfm); 612} 613EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash); 614 615int shash_ahash_mcryptd_digest(struct ahash_request *req, 616 struct shash_desc *desc) 617{ 618 int err; 619 620 err = crypto_shash_init(desc) ?: 621 shash_ahash_mcryptd_finup(req, desc); 622 623 return err; 624} 625EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest); 626 627int shash_ahash_mcryptd_update(struct ahash_request *req, 628 struct shash_desc *desc) 629{ 630 struct crypto_shash *tfm = desc->tfm; 631 struct shash_alg *shash = crypto_shash_alg(tfm); 632 633 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 634 635 return shash->update(desc, NULL, 0); 636} 637EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update); 638 639int shash_ahash_mcryptd_finup(struct ahash_request *req, 640 struct shash_desc *desc) 641{ 642 struct crypto_shash *tfm = desc->tfm; 643 struct shash_alg *shash = crypto_shash_alg(tfm); 644 645 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 646 647 return shash->finup(desc, NULL, 0, req->result); 648} 649EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup); 650 651int shash_ahash_mcryptd_final(struct ahash_request *req, 652 struct shash_desc *desc) 653{ 654 struct crypto_shash *tfm = desc->tfm; 655 struct shash_alg *shash = crypto_shash_alg(tfm); 656 657 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 658 659 return shash->final(desc, req->result); 660} 661EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final); 662 663struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm) 664{ 665 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 666 667 return ctx->child; 668} 669EXPORT_SYMBOL_GPL(mcryptd_ahash_child); 670 671struct shash_desc *mcryptd_shash_desc(struct ahash_request *req) 672{ 673 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 674 return &rctx->desc; 675} 676EXPORT_SYMBOL_GPL(mcryptd_shash_desc); 677 678void mcryptd_free_ahash(struct mcryptd_ahash *tfm) 679{ 680 crypto_free_ahash(&tfm->base); 681} 682EXPORT_SYMBOL_GPL(mcryptd_free_ahash); 683 684 685static int __init mcryptd_init(void) 686{ 687 int err, cpu; 688 struct mcryptd_flush_list *flist; 689 690 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list); 691 for_each_possible_cpu(cpu) { 692 flist = per_cpu_ptr(mcryptd_flist, cpu); 693 INIT_LIST_HEAD(&flist->list); 694 mutex_init(&flist->lock); 695 } 696 697 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN); 698 if (err) { 699 free_percpu(mcryptd_flist); 700 return err; 701 } 702 703 err = crypto_register_template(&mcryptd_tmpl); 704 if (err) { 705 mcryptd_fini_queue(&mqueue); 706 free_percpu(mcryptd_flist); 707 } 708 709 return err; 710} 711 712static void __exit mcryptd_exit(void) 713{ 714 mcryptd_fini_queue(&mqueue); 715 crypto_unregister_template(&mcryptd_tmpl); 716 free_percpu(mcryptd_flist); 717} 718 719subsys_initcall(mcryptd_init); 720module_exit(mcryptd_exit); 721 722MODULE_LICENSE("GPL"); 723MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); 724MODULE_ALIAS_CRYPTO("mcryptd");