at v4.7-rc7 24 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mmzone.h> 30#include <linux/writeback.h> 31#include <linux/page-flags.h> 32 33struct mem_cgroup; 34struct page; 35struct mm_struct; 36struct kmem_cache; 37 38/* 39 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 40 * These two lists should keep in accord with each other. 41 */ 42enum mem_cgroup_stat_index { 43 /* 44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 45 */ 46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 47 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 48 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 49 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 50 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */ 51 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 52 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 53 MEM_CGROUP_STAT_NSTATS, 54 /* default hierarchy stats */ 55 MEMCG_KERNEL_STACK = MEM_CGROUP_STAT_NSTATS, 56 MEMCG_SLAB_RECLAIMABLE, 57 MEMCG_SLAB_UNRECLAIMABLE, 58 MEMCG_SOCK, 59 MEMCG_NR_STAT, 60}; 61 62struct mem_cgroup_reclaim_cookie { 63 struct zone *zone; 64 int priority; 65 unsigned int generation; 66}; 67 68enum mem_cgroup_events_index { 69 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 70 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 71 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 72 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 73 MEM_CGROUP_EVENTS_NSTATS, 74 /* default hierarchy events */ 75 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS, 76 MEMCG_HIGH, 77 MEMCG_MAX, 78 MEMCG_OOM, 79 MEMCG_NR_EVENTS, 80}; 81 82/* 83 * Per memcg event counter is incremented at every pagein/pageout. With THP, 84 * it will be incremated by the number of pages. This counter is used for 85 * for trigger some periodic events. This is straightforward and better 86 * than using jiffies etc. to handle periodic memcg event. 87 */ 88enum mem_cgroup_events_target { 89 MEM_CGROUP_TARGET_THRESH, 90 MEM_CGROUP_TARGET_SOFTLIMIT, 91 MEM_CGROUP_TARGET_NUMAINFO, 92 MEM_CGROUP_NTARGETS, 93}; 94 95#ifdef CONFIG_MEMCG 96 97#define MEM_CGROUP_ID_SHIFT 16 98#define MEM_CGROUP_ID_MAX USHRT_MAX 99 100struct mem_cgroup_stat_cpu { 101 long count[MEMCG_NR_STAT]; 102 unsigned long events[MEMCG_NR_EVENTS]; 103 unsigned long nr_page_events; 104 unsigned long targets[MEM_CGROUP_NTARGETS]; 105}; 106 107struct mem_cgroup_reclaim_iter { 108 struct mem_cgroup *position; 109 /* scan generation, increased every round-trip */ 110 unsigned int generation; 111}; 112 113/* 114 * per-zone information in memory controller. 115 */ 116struct mem_cgroup_per_zone { 117 struct lruvec lruvec; 118 unsigned long lru_size[NR_LRU_LISTS]; 119 120 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 121 122 struct rb_node tree_node; /* RB tree node */ 123 unsigned long usage_in_excess;/* Set to the value by which */ 124 /* the soft limit is exceeded*/ 125 bool on_tree; 126 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 127 /* use container_of */ 128}; 129 130struct mem_cgroup_per_node { 131 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 132}; 133 134struct mem_cgroup_threshold { 135 struct eventfd_ctx *eventfd; 136 unsigned long threshold; 137}; 138 139/* For threshold */ 140struct mem_cgroup_threshold_ary { 141 /* An array index points to threshold just below or equal to usage. */ 142 int current_threshold; 143 /* Size of entries[] */ 144 unsigned int size; 145 /* Array of thresholds */ 146 struct mem_cgroup_threshold entries[0]; 147}; 148 149struct mem_cgroup_thresholds { 150 /* Primary thresholds array */ 151 struct mem_cgroup_threshold_ary *primary; 152 /* 153 * Spare threshold array. 154 * This is needed to make mem_cgroup_unregister_event() "never fail". 155 * It must be able to store at least primary->size - 1 entries. 156 */ 157 struct mem_cgroup_threshold_ary *spare; 158}; 159 160enum memcg_kmem_state { 161 KMEM_NONE, 162 KMEM_ALLOCATED, 163 KMEM_ONLINE, 164}; 165 166/* 167 * The memory controller data structure. The memory controller controls both 168 * page cache and RSS per cgroup. We would eventually like to provide 169 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 170 * to help the administrator determine what knobs to tune. 171 */ 172struct mem_cgroup { 173 struct cgroup_subsys_state css; 174 175 /* Accounted resources */ 176 struct page_counter memory; 177 struct page_counter swap; 178 179 /* Legacy consumer-oriented counters */ 180 struct page_counter memsw; 181 struct page_counter kmem; 182 struct page_counter tcpmem; 183 184 /* Normal memory consumption range */ 185 unsigned long low; 186 unsigned long high; 187 188 /* Range enforcement for interrupt charges */ 189 struct work_struct high_work; 190 191 unsigned long soft_limit; 192 193 /* vmpressure notifications */ 194 struct vmpressure vmpressure; 195 196 /* 197 * Should the accounting and control be hierarchical, per subtree? 198 */ 199 bool use_hierarchy; 200 201 /* protected by memcg_oom_lock */ 202 bool oom_lock; 203 int under_oom; 204 205 int swappiness; 206 /* OOM-Killer disable */ 207 int oom_kill_disable; 208 209 /* handle for "memory.events" */ 210 struct cgroup_file events_file; 211 212 /* protect arrays of thresholds */ 213 struct mutex thresholds_lock; 214 215 /* thresholds for memory usage. RCU-protected */ 216 struct mem_cgroup_thresholds thresholds; 217 218 /* thresholds for mem+swap usage. RCU-protected */ 219 struct mem_cgroup_thresholds memsw_thresholds; 220 221 /* For oom notifier event fd */ 222 struct list_head oom_notify; 223 224 /* 225 * Should we move charges of a task when a task is moved into this 226 * mem_cgroup ? And what type of charges should we move ? 227 */ 228 unsigned long move_charge_at_immigrate; 229 /* 230 * set > 0 if pages under this cgroup are moving to other cgroup. 231 */ 232 atomic_t moving_account; 233 /* taken only while moving_account > 0 */ 234 spinlock_t move_lock; 235 struct task_struct *move_lock_task; 236 unsigned long move_lock_flags; 237 /* 238 * percpu counter. 239 */ 240 struct mem_cgroup_stat_cpu __percpu *stat; 241 242 unsigned long socket_pressure; 243 244 /* Legacy tcp memory accounting */ 245 bool tcpmem_active; 246 int tcpmem_pressure; 247 248#ifndef CONFIG_SLOB 249 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 250 int kmemcg_id; 251 enum memcg_kmem_state kmem_state; 252#endif 253 254 int last_scanned_node; 255#if MAX_NUMNODES > 1 256 nodemask_t scan_nodes; 257 atomic_t numainfo_events; 258 atomic_t numainfo_updating; 259#endif 260 261#ifdef CONFIG_CGROUP_WRITEBACK 262 struct list_head cgwb_list; 263 struct wb_domain cgwb_domain; 264#endif 265 266 /* List of events which userspace want to receive */ 267 struct list_head event_list; 268 spinlock_t event_list_lock; 269 270 struct mem_cgroup_per_node *nodeinfo[0]; 271 /* WARNING: nodeinfo must be the last member here */ 272}; 273 274extern struct mem_cgroup *root_mem_cgroup; 275 276static inline bool mem_cgroup_disabled(void) 277{ 278 return !cgroup_subsys_enabled(memory_cgrp_subsys); 279} 280 281/** 282 * mem_cgroup_events - count memory events against a cgroup 283 * @memcg: the memory cgroup 284 * @idx: the event index 285 * @nr: the number of events to account for 286 */ 287static inline void mem_cgroup_events(struct mem_cgroup *memcg, 288 enum mem_cgroup_events_index idx, 289 unsigned int nr) 290{ 291 this_cpu_add(memcg->stat->events[idx], nr); 292 cgroup_file_notify(&memcg->events_file); 293} 294 295bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 296 297int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 298 gfp_t gfp_mask, struct mem_cgroup **memcgp, 299 bool compound); 300void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 301 bool lrucare, bool compound); 302void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 303 bool compound); 304void mem_cgroup_uncharge(struct page *page); 305void mem_cgroup_uncharge_list(struct list_head *page_list); 306 307void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 308 309struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 310struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 311 312bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 313struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 314 315static inline 316struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 317 return css ? container_of(css, struct mem_cgroup, css) : NULL; 318} 319 320#define mem_cgroup_from_counter(counter, member) \ 321 container_of(counter, struct mem_cgroup, member) 322 323struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 324 struct mem_cgroup *, 325 struct mem_cgroup_reclaim_cookie *); 326void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 327 328static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 329{ 330 if (mem_cgroup_disabled()) 331 return 0; 332 333 return memcg->css.id; 334} 335 336/** 337 * mem_cgroup_from_id - look up a memcg from an id 338 * @id: the id to look up 339 * 340 * Caller must hold rcu_read_lock() and use css_tryget() as necessary. 341 */ 342static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 343{ 344 struct cgroup_subsys_state *css; 345 346 css = css_from_id(id, &memory_cgrp_subsys); 347 return mem_cgroup_from_css(css); 348} 349 350/** 351 * parent_mem_cgroup - find the accounting parent of a memcg 352 * @memcg: memcg whose parent to find 353 * 354 * Returns the parent memcg, or NULL if this is the root or the memory 355 * controller is in legacy no-hierarchy mode. 356 */ 357static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 358{ 359 if (!memcg->memory.parent) 360 return NULL; 361 return mem_cgroup_from_counter(memcg->memory.parent, memory); 362} 363 364static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 365 struct mem_cgroup *root) 366{ 367 if (root == memcg) 368 return true; 369 if (!root->use_hierarchy) 370 return false; 371 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 372} 373 374static inline bool mm_match_cgroup(struct mm_struct *mm, 375 struct mem_cgroup *memcg) 376{ 377 struct mem_cgroup *task_memcg; 378 bool match = false; 379 380 rcu_read_lock(); 381 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 382 if (task_memcg) 383 match = mem_cgroup_is_descendant(task_memcg, memcg); 384 rcu_read_unlock(); 385 return match; 386} 387 388struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 389ino_t page_cgroup_ino(struct page *page); 390 391static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 392{ 393 if (mem_cgroup_disabled()) 394 return true; 395 return !!(memcg->css.flags & CSS_ONLINE); 396} 397 398/* 399 * For memory reclaim. 400 */ 401int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 402 403void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 404 int nr_pages); 405 406unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 407 int nid, unsigned int lru_mask); 408 409static inline 410unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 411{ 412 struct mem_cgroup_per_zone *mz; 413 414 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 415 return mz->lru_size[lru]; 416} 417 418void mem_cgroup_handle_over_high(void); 419 420void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 421 struct task_struct *p); 422 423static inline void mem_cgroup_oom_enable(void) 424{ 425 WARN_ON(current->memcg_may_oom); 426 current->memcg_may_oom = 1; 427} 428 429static inline void mem_cgroup_oom_disable(void) 430{ 431 WARN_ON(!current->memcg_may_oom); 432 current->memcg_may_oom = 0; 433} 434 435static inline bool task_in_memcg_oom(struct task_struct *p) 436{ 437 return p->memcg_in_oom; 438} 439 440bool mem_cgroup_oom_synchronize(bool wait); 441 442#ifdef CONFIG_MEMCG_SWAP 443extern int do_swap_account; 444#endif 445 446void lock_page_memcg(struct page *page); 447void unlock_page_memcg(struct page *page); 448 449/** 450 * mem_cgroup_update_page_stat - update page state statistics 451 * @page: the page 452 * @idx: page state item to account 453 * @val: number of pages (positive or negative) 454 * 455 * The @page must be locked or the caller must use lock_page_memcg() 456 * to prevent double accounting when the page is concurrently being 457 * moved to another memcg: 458 * 459 * lock_page(page) or lock_page_memcg(page) 460 * if (TestClearPageState(page)) 461 * mem_cgroup_update_page_stat(page, state, -1); 462 * unlock_page(page) or unlock_page_memcg(page) 463 */ 464static inline void mem_cgroup_update_page_stat(struct page *page, 465 enum mem_cgroup_stat_index idx, int val) 466{ 467 VM_BUG_ON(!(rcu_read_lock_held() || PageLocked(page))); 468 469 if (page->mem_cgroup) 470 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 471} 472 473static inline void mem_cgroup_inc_page_stat(struct page *page, 474 enum mem_cgroup_stat_index idx) 475{ 476 mem_cgroup_update_page_stat(page, idx, 1); 477} 478 479static inline void mem_cgroup_dec_page_stat(struct page *page, 480 enum mem_cgroup_stat_index idx) 481{ 482 mem_cgroup_update_page_stat(page, idx, -1); 483} 484 485unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 486 gfp_t gfp_mask, 487 unsigned long *total_scanned); 488 489static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 490 enum vm_event_item idx) 491{ 492 struct mem_cgroup *memcg; 493 494 if (mem_cgroup_disabled()) 495 return; 496 497 rcu_read_lock(); 498 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 499 if (unlikely(!memcg)) 500 goto out; 501 502 switch (idx) { 503 case PGFAULT: 504 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 505 break; 506 case PGMAJFAULT: 507 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 508 break; 509 default: 510 BUG(); 511 } 512out: 513 rcu_read_unlock(); 514} 515#ifdef CONFIG_TRANSPARENT_HUGEPAGE 516void mem_cgroup_split_huge_fixup(struct page *head); 517#endif 518 519#else /* CONFIG_MEMCG */ 520 521#define MEM_CGROUP_ID_SHIFT 0 522#define MEM_CGROUP_ID_MAX 0 523 524struct mem_cgroup; 525 526static inline bool mem_cgroup_disabled(void) 527{ 528 return true; 529} 530 531static inline void mem_cgroup_events(struct mem_cgroup *memcg, 532 enum mem_cgroup_events_index idx, 533 unsigned int nr) 534{ 535} 536 537static inline bool mem_cgroup_low(struct mem_cgroup *root, 538 struct mem_cgroup *memcg) 539{ 540 return false; 541} 542 543static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 544 gfp_t gfp_mask, 545 struct mem_cgroup **memcgp, 546 bool compound) 547{ 548 *memcgp = NULL; 549 return 0; 550} 551 552static inline void mem_cgroup_commit_charge(struct page *page, 553 struct mem_cgroup *memcg, 554 bool lrucare, bool compound) 555{ 556} 557 558static inline void mem_cgroup_cancel_charge(struct page *page, 559 struct mem_cgroup *memcg, 560 bool compound) 561{ 562} 563 564static inline void mem_cgroup_uncharge(struct page *page) 565{ 566} 567 568static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 569{ 570} 571 572static inline void mem_cgroup_migrate(struct page *old, struct page *new) 573{ 574} 575 576static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 577 struct mem_cgroup *memcg) 578{ 579 return &zone->lruvec; 580} 581 582static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 583 struct zone *zone) 584{ 585 return &zone->lruvec; 586} 587 588static inline bool mm_match_cgroup(struct mm_struct *mm, 589 struct mem_cgroup *memcg) 590{ 591 return true; 592} 593 594static inline bool task_in_mem_cgroup(struct task_struct *task, 595 const struct mem_cgroup *memcg) 596{ 597 return true; 598} 599 600static inline struct mem_cgroup * 601mem_cgroup_iter(struct mem_cgroup *root, 602 struct mem_cgroup *prev, 603 struct mem_cgroup_reclaim_cookie *reclaim) 604{ 605 return NULL; 606} 607 608static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 609 struct mem_cgroup *prev) 610{ 611} 612 613static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 614{ 615 return 0; 616} 617 618static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 619{ 620 WARN_ON_ONCE(id); 621 /* XXX: This should always return root_mem_cgroup */ 622 return NULL; 623} 624 625static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 626{ 627 return true; 628} 629 630static inline unsigned long 631mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 632{ 633 return 0; 634} 635 636static inline unsigned long 637mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 638 int nid, unsigned int lru_mask) 639{ 640 return 0; 641} 642 643static inline void 644mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 645{ 646} 647 648static inline void lock_page_memcg(struct page *page) 649{ 650} 651 652static inline void unlock_page_memcg(struct page *page) 653{ 654} 655 656static inline void mem_cgroup_handle_over_high(void) 657{ 658} 659 660static inline void mem_cgroup_oom_enable(void) 661{ 662} 663 664static inline void mem_cgroup_oom_disable(void) 665{ 666} 667 668static inline bool task_in_memcg_oom(struct task_struct *p) 669{ 670 return false; 671} 672 673static inline bool mem_cgroup_oom_synchronize(bool wait) 674{ 675 return false; 676} 677 678static inline void mem_cgroup_inc_page_stat(struct page *page, 679 enum mem_cgroup_stat_index idx) 680{ 681} 682 683static inline void mem_cgroup_dec_page_stat(struct page *page, 684 enum mem_cgroup_stat_index idx) 685{ 686} 687 688static inline 689unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 690 gfp_t gfp_mask, 691 unsigned long *total_scanned) 692{ 693 return 0; 694} 695 696static inline void mem_cgroup_split_huge_fixup(struct page *head) 697{ 698} 699 700static inline 701void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 702{ 703} 704#endif /* CONFIG_MEMCG */ 705 706#ifdef CONFIG_CGROUP_WRITEBACK 707 708struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 709struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 710void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 711 unsigned long *pheadroom, unsigned long *pdirty, 712 unsigned long *pwriteback); 713 714#else /* CONFIG_CGROUP_WRITEBACK */ 715 716static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 717{ 718 return NULL; 719} 720 721static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 722 unsigned long *pfilepages, 723 unsigned long *pheadroom, 724 unsigned long *pdirty, 725 unsigned long *pwriteback) 726{ 727} 728 729#endif /* CONFIG_CGROUP_WRITEBACK */ 730 731struct sock; 732void sock_update_memcg(struct sock *sk); 733void sock_release_memcg(struct sock *sk); 734bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 735void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 736#ifdef CONFIG_MEMCG 737extern struct static_key_false memcg_sockets_enabled_key; 738#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 739static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 740{ 741 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 742 return true; 743 do { 744 if (time_before(jiffies, memcg->socket_pressure)) 745 return true; 746 } while ((memcg = parent_mem_cgroup(memcg))); 747 return false; 748} 749#else 750#define mem_cgroup_sockets_enabled 0 751static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 752{ 753 return false; 754} 755#endif 756 757#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 758extern struct static_key_false memcg_kmem_enabled_key; 759 760extern int memcg_nr_cache_ids; 761void memcg_get_cache_ids(void); 762void memcg_put_cache_ids(void); 763 764/* 765 * Helper macro to loop through all memcg-specific caches. Callers must still 766 * check if the cache is valid (it is either valid or NULL). 767 * the slab_mutex must be held when looping through those caches 768 */ 769#define for_each_memcg_cache_index(_idx) \ 770 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 771 772static inline bool memcg_kmem_enabled(void) 773{ 774 return static_branch_unlikely(&memcg_kmem_enabled_key); 775} 776 777/* 778 * In general, we'll do everything in our power to not incur in any overhead 779 * for non-memcg users for the kmem functions. Not even a function call, if we 780 * can avoid it. 781 * 782 * Therefore, we'll inline all those functions so that in the best case, we'll 783 * see that kmemcg is off for everybody and proceed quickly. If it is on, 784 * we'll still do most of the flag checking inline. We check a lot of 785 * conditions, but because they are pretty simple, they are expected to be 786 * fast. 787 */ 788int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 789 struct mem_cgroup *memcg); 790int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 791void __memcg_kmem_uncharge(struct page *page, int order); 792 793/* 794 * helper for accessing a memcg's index. It will be used as an index in the 795 * child cache array in kmem_cache, and also to derive its name. This function 796 * will return -1 when this is not a kmem-limited memcg. 797 */ 798static inline int memcg_cache_id(struct mem_cgroup *memcg) 799{ 800 return memcg ? memcg->kmemcg_id : -1; 801} 802 803struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 804void __memcg_kmem_put_cache(struct kmem_cache *cachep); 805 806static inline bool __memcg_kmem_bypass(void) 807{ 808 if (!memcg_kmem_enabled()) 809 return true; 810 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 811 return true; 812 return false; 813} 814 815/** 816 * memcg_kmem_charge: charge a kmem page 817 * @page: page to charge 818 * @gfp: reclaim mode 819 * @order: allocation order 820 * 821 * Returns 0 on success, an error code on failure. 822 */ 823static __always_inline int memcg_kmem_charge(struct page *page, 824 gfp_t gfp, int order) 825{ 826 if (__memcg_kmem_bypass()) 827 return 0; 828 if (!(gfp & __GFP_ACCOUNT)) 829 return 0; 830 return __memcg_kmem_charge(page, gfp, order); 831} 832 833/** 834 * memcg_kmem_uncharge: uncharge a kmem page 835 * @page: page to uncharge 836 * @order: allocation order 837 */ 838static __always_inline void memcg_kmem_uncharge(struct page *page, int order) 839{ 840 if (memcg_kmem_enabled()) 841 __memcg_kmem_uncharge(page, order); 842} 843 844/** 845 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 846 * @cachep: the original global kmem cache 847 * 848 * All memory allocated from a per-memcg cache is charged to the owner memcg. 849 */ 850static __always_inline struct kmem_cache * 851memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 852{ 853 if (__memcg_kmem_bypass()) 854 return cachep; 855 return __memcg_kmem_get_cache(cachep, gfp); 856} 857 858static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 859{ 860 if (memcg_kmem_enabled()) 861 __memcg_kmem_put_cache(cachep); 862} 863 864/** 865 * memcg_kmem_update_page_stat - update kmem page state statistics 866 * @page: the page 867 * @idx: page state item to account 868 * @val: number of pages (positive or negative) 869 */ 870static inline void memcg_kmem_update_page_stat(struct page *page, 871 enum mem_cgroup_stat_index idx, int val) 872{ 873 if (memcg_kmem_enabled() && page->mem_cgroup) 874 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 875} 876 877#else 878#define for_each_memcg_cache_index(_idx) \ 879 for (; NULL; ) 880 881static inline bool memcg_kmem_enabled(void) 882{ 883 return false; 884} 885 886static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 887{ 888 return 0; 889} 890 891static inline void memcg_kmem_uncharge(struct page *page, int order) 892{ 893} 894 895static inline int memcg_cache_id(struct mem_cgroup *memcg) 896{ 897 return -1; 898} 899 900static inline void memcg_get_cache_ids(void) 901{ 902} 903 904static inline void memcg_put_cache_ids(void) 905{ 906} 907 908static inline struct kmem_cache * 909memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 910{ 911 return cachep; 912} 913 914static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 915{ 916} 917 918static inline void memcg_kmem_update_page_stat(struct page *page, 919 enum mem_cgroup_stat_index idx, int val) 920{ 921} 922#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 923 924#endif /* _LINUX_MEMCONTROL_H */