at v4.7-rc2 70 kB view raw
1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="KernelCryptoAPI"> 6 <bookinfo> 7 <title>Linux Kernel Crypto API</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Stephan</firstname> 12 <surname>Mueller</surname> 13 <affiliation> 14 <address> 15 <email>smueller@chronox.de</email> 16 </address> 17 </affiliation> 18 </author> 19 <author> 20 <firstname>Marek</firstname> 21 <surname>Vasut</surname> 22 <affiliation> 23 <address> 24 <email>marek@denx.de</email> 25 </address> 26 </affiliation> 27 </author> 28 </authorgroup> 29 30 <copyright> 31 <year>2014</year> 32 <holder>Stephan Mueller</holder> 33 </copyright> 34 35 36 <legalnotice> 37 <para> 38 This documentation is free software; you can redistribute 39 it and/or modify it under the terms of the GNU General Public 40 License as published by the Free Software Foundation; either 41 version 2 of the License, or (at your option) any later 42 version. 43 </para> 44 45 <para> 46 This program is distributed in the hope that it will be 47 useful, but WITHOUT ANY WARRANTY; without even the implied 48 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 49 See the GNU General Public License for more details. 50 </para> 51 52 <para> 53 You should have received a copy of the GNU General Public 54 License along with this program; if not, write to the Free 55 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 56 MA 02111-1307 USA 57 </para> 58 59 <para> 60 For more details see the file COPYING in the source 61 distribution of Linux. 62 </para> 63 </legalnotice> 64 </bookinfo> 65 66 <toc></toc> 67 68 <chapter id="Intro"> 69 <title>Kernel Crypto API Interface Specification</title> 70 71 <sect1><title>Introduction</title> 72 73 <para> 74 The kernel crypto API offers a rich set of cryptographic ciphers as 75 well as other data transformation mechanisms and methods to invoke 76 these. This document contains a description of the API and provides 77 example code. 78 </para> 79 80 <para> 81 To understand and properly use the kernel crypto API a brief 82 explanation of its structure is given. Based on the architecture, 83 the API can be separated into different components. Following the 84 architecture specification, hints to developers of ciphers are 85 provided. Pointers to the API function call documentation are 86 given at the end. 87 </para> 88 89 <para> 90 The kernel crypto API refers to all algorithms as "transformations". 91 Therefore, a cipher handle variable usually has the name "tfm". 92 Besides cryptographic operations, the kernel crypto API also knows 93 compression transformations and handles them the same way as ciphers. 94 </para> 95 96 <para> 97 The kernel crypto API serves the following entity types: 98 99 <itemizedlist> 100 <listitem> 101 <para>consumers requesting cryptographic services</para> 102 </listitem> 103 <listitem> 104 <para>data transformation implementations (typically ciphers) 105 that can be called by consumers using the kernel crypto 106 API</para> 107 </listitem> 108 </itemizedlist> 109 </para> 110 111 <para> 112 This specification is intended for consumers of the kernel crypto 113 API as well as for developers implementing ciphers. This API 114 specification, however, does not discuss all API calls available 115 to data transformation implementations (i.e. implementations of 116 ciphers and other transformations (such as CRC or even compression 117 algorithms) that can register with the kernel crypto API). 118 </para> 119 120 <para> 121 Note: The terms "transformation" and cipher algorithm are used 122 interchangeably. 123 </para> 124 </sect1> 125 126 <sect1><title>Terminology</title> 127 <para> 128 The transformation implementation is an actual code or interface 129 to hardware which implements a certain transformation with precisely 130 defined behavior. 131 </para> 132 133 <para> 134 The transformation object (TFM) is an instance of a transformation 135 implementation. There can be multiple transformation objects 136 associated with a single transformation implementation. Each of 137 those transformation objects is held by a crypto API consumer or 138 another transformation. Transformation object is allocated when a 139 crypto API consumer requests a transformation implementation. 140 The consumer is then provided with a structure, which contains 141 a transformation object (TFM). 142 </para> 143 144 <para> 145 The structure that contains transformation objects may also be 146 referred to as a "cipher handle". Such a cipher handle is always 147 subject to the following phases that are reflected in the API calls 148 applicable to such a cipher handle: 149 </para> 150 151 <orderedlist> 152 <listitem> 153 <para>Initialization of a cipher handle.</para> 154 </listitem> 155 <listitem> 156 <para>Execution of all intended cipher operations applicable 157 for the handle where the cipher handle must be furnished to 158 every API call.</para> 159 </listitem> 160 <listitem> 161 <para>Destruction of a cipher handle.</para> 162 </listitem> 163 </orderedlist> 164 165 <para> 166 When using the initialization API calls, a cipher handle is 167 created and returned to the consumer. Therefore, please refer 168 to all initialization API calls that refer to the data 169 structure type a consumer is expected to receive and subsequently 170 to use. The initialization API calls have all the same naming 171 conventions of crypto_alloc_*. 172 </para> 173 174 <para> 175 The transformation context is private data associated with 176 the transformation object. 177 </para> 178 </sect1> 179 </chapter> 180 181 <chapter id="Architecture"><title>Kernel Crypto API Architecture</title> 182 <sect1><title>Cipher algorithm types</title> 183 <para> 184 The kernel crypto API provides different API calls for the 185 following cipher types: 186 187 <itemizedlist> 188 <listitem><para>Symmetric ciphers</para></listitem> 189 <listitem><para>AEAD ciphers</para></listitem> 190 <listitem><para>Message digest, including keyed message digest</para></listitem> 191 <listitem><para>Random number generation</para></listitem> 192 <listitem><para>User space interface</para></listitem> 193 </itemizedlist> 194 </para> 195 </sect1> 196 197 <sect1><title>Ciphers And Templates</title> 198 <para> 199 The kernel crypto API provides implementations of single block 200 ciphers and message digests. In addition, the kernel crypto API 201 provides numerous "templates" that can be used in conjunction 202 with the single block ciphers and message digests. Templates 203 include all types of block chaining mode, the HMAC mechanism, etc. 204 </para> 205 206 <para> 207 Single block ciphers and message digests can either be directly 208 used by a caller or invoked together with a template to form 209 multi-block ciphers or keyed message digests. 210 </para> 211 212 <para> 213 A single block cipher may even be called with multiple templates. 214 However, templates cannot be used without a single cipher. 215 </para> 216 217 <para> 218 See /proc/crypto and search for "name". For example: 219 220 <itemizedlist> 221 <listitem><para>aes</para></listitem> 222 <listitem><para>ecb(aes)</para></listitem> 223 <listitem><para>cmac(aes)</para></listitem> 224 <listitem><para>ccm(aes)</para></listitem> 225 <listitem><para>rfc4106(gcm(aes))</para></listitem> 226 <listitem><para>sha1</para></listitem> 227 <listitem><para>hmac(sha1)</para></listitem> 228 <listitem><para>authenc(hmac(sha1),cbc(aes))</para></listitem> 229 </itemizedlist> 230 </para> 231 232 <para> 233 In these examples, "aes" and "sha1" are the ciphers and all 234 others are the templates. 235 </para> 236 </sect1> 237 238 <sect1><title>Synchronous And Asynchronous Operation</title> 239 <para> 240 The kernel crypto API provides synchronous and asynchronous 241 API operations. 242 </para> 243 244 <para> 245 When using the synchronous API operation, the caller invokes 246 a cipher operation which is performed synchronously by the 247 kernel crypto API. That means, the caller waits until the 248 cipher operation completes. Therefore, the kernel crypto API 249 calls work like regular function calls. For synchronous 250 operation, the set of API calls is small and conceptually 251 similar to any other crypto library. 252 </para> 253 254 <para> 255 Asynchronous operation is provided by the kernel crypto API 256 which implies that the invocation of a cipher operation will 257 complete almost instantly. That invocation triggers the 258 cipher operation but it does not signal its completion. Before 259 invoking a cipher operation, the caller must provide a callback 260 function the kernel crypto API can invoke to signal the 261 completion of the cipher operation. Furthermore, the caller 262 must ensure it can handle such asynchronous events by applying 263 appropriate locking around its data. The kernel crypto API 264 does not perform any special serialization operation to protect 265 the caller's data integrity. 266 </para> 267 </sect1> 268 269 <sect1><title>Crypto API Cipher References And Priority</title> 270 <para> 271 A cipher is referenced by the caller with a string. That string 272 has the following semantics: 273 274 <programlisting> 275 template(single block cipher) 276 </programlisting> 277 278 where "template" and "single block cipher" is the aforementioned 279 template and single block cipher, respectively. If applicable, 280 additional templates may enclose other templates, such as 281 282 <programlisting> 283 template1(template2(single block cipher))) 284 </programlisting> 285 </para> 286 287 <para> 288 The kernel crypto API may provide multiple implementations of a 289 template or a single block cipher. For example, AES on newer 290 Intel hardware has the following implementations: AES-NI, 291 assembler implementation, or straight C. Now, when using the 292 string "aes" with the kernel crypto API, which cipher 293 implementation is used? The answer to that question is the 294 priority number assigned to each cipher implementation by the 295 kernel crypto API. When a caller uses the string to refer to a 296 cipher during initialization of a cipher handle, the kernel 297 crypto API looks up all implementations providing an 298 implementation with that name and selects the implementation 299 with the highest priority. 300 </para> 301 302 <para> 303 Now, a caller may have the need to refer to a specific cipher 304 implementation and thus does not want to rely on the 305 priority-based selection. To accommodate this scenario, the 306 kernel crypto API allows the cipher implementation to register 307 a unique name in addition to common names. When using that 308 unique name, a caller is therefore always sure to refer to 309 the intended cipher implementation. 310 </para> 311 312 <para> 313 The list of available ciphers is given in /proc/crypto. However, 314 that list does not specify all possible permutations of 315 templates and ciphers. Each block listed in /proc/crypto may 316 contain the following information -- if one of the components 317 listed as follows are not applicable to a cipher, it is not 318 displayed: 319 </para> 320 321 <itemizedlist> 322 <listitem> 323 <para>name: the generic name of the cipher that is subject 324 to the priority-based selection -- this name can be used by 325 the cipher allocation API calls (all names listed above are 326 examples for such generic names)</para> 327 </listitem> 328 <listitem> 329 <para>driver: the unique name of the cipher -- this name can 330 be used by the cipher allocation API calls</para> 331 </listitem> 332 <listitem> 333 <para>module: the kernel module providing the cipher 334 implementation (or "kernel" for statically linked ciphers)</para> 335 </listitem> 336 <listitem> 337 <para>priority: the priority value of the cipher implementation</para> 338 </listitem> 339 <listitem> 340 <para>refcnt: the reference count of the respective cipher 341 (i.e. the number of current consumers of this cipher)</para> 342 </listitem> 343 <listitem> 344 <para>selftest: specification whether the self test for the 345 cipher passed</para> 346 </listitem> 347 <listitem> 348 <para>type: 349 <itemizedlist> 350 <listitem> 351 <para>skcipher for symmetric key ciphers</para> 352 </listitem> 353 <listitem> 354 <para>cipher for single block ciphers that may be used with 355 an additional template</para> 356 </listitem> 357 <listitem> 358 <para>shash for synchronous message digest</para> 359 </listitem> 360 <listitem> 361 <para>ahash for asynchronous message digest</para> 362 </listitem> 363 <listitem> 364 <para>aead for AEAD cipher type</para> 365 </listitem> 366 <listitem> 367 <para>compression for compression type transformations</para> 368 </listitem> 369 <listitem> 370 <para>rng for random number generator</para> 371 </listitem> 372 <listitem> 373 <para>givcipher for cipher with associated IV generator 374 (see the geniv entry below for the specification of the 375 IV generator type used by the cipher implementation)</para> 376 </listitem> 377 </itemizedlist> 378 </para> 379 </listitem> 380 <listitem> 381 <para>blocksize: blocksize of cipher in bytes</para> 382 </listitem> 383 <listitem> 384 <para>keysize: key size in bytes</para> 385 </listitem> 386 <listitem> 387 <para>ivsize: IV size in bytes</para> 388 </listitem> 389 <listitem> 390 <para>seedsize: required size of seed data for random number 391 generator</para> 392 </listitem> 393 <listitem> 394 <para>digestsize: output size of the message digest</para> 395 </listitem> 396 <listitem> 397 <para>geniv: IV generation type: 398 <itemizedlist> 399 <listitem> 400 <para>eseqiv for encrypted sequence number based IV 401 generation</para> 402 </listitem> 403 <listitem> 404 <para>seqiv for sequence number based IV generation</para> 405 </listitem> 406 <listitem> 407 <para>chainiv for chain iv generation</para> 408 </listitem> 409 <listitem> 410 <para>&lt;builtin&gt; is a marker that the cipher implements 411 IV generation and handling as it is specific to the given 412 cipher</para> 413 </listitem> 414 </itemizedlist> 415 </para> 416 </listitem> 417 </itemizedlist> 418 </sect1> 419 420 <sect1><title>Key Sizes</title> 421 <para> 422 When allocating a cipher handle, the caller only specifies the 423 cipher type. Symmetric ciphers, however, typically support 424 multiple key sizes (e.g. AES-128 vs. AES-192 vs. AES-256). 425 These key sizes are determined with the length of the provided 426 key. Thus, the kernel crypto API does not provide a separate 427 way to select the particular symmetric cipher key size. 428 </para> 429 </sect1> 430 431 <sect1><title>Cipher Allocation Type And Masks</title> 432 <para> 433 The different cipher handle allocation functions allow the 434 specification of a type and mask flag. Both parameters have 435 the following meaning (and are therefore not covered in the 436 subsequent sections). 437 </para> 438 439 <para> 440 The type flag specifies the type of the cipher algorithm. 441 The caller usually provides a 0 when the caller wants the 442 default handling. Otherwise, the caller may provide the 443 following selections which match the the aforementioned 444 cipher types: 445 </para> 446 447 <itemizedlist> 448 <listitem> 449 <para>CRYPTO_ALG_TYPE_CIPHER Single block cipher</para> 450 </listitem> 451 <listitem> 452 <para>CRYPTO_ALG_TYPE_COMPRESS Compression</para> 453 </listitem> 454 <listitem> 455 <para>CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with 456 Associated Data (MAC)</para> 457 </listitem> 458 <listitem> 459 <para>CRYPTO_ALG_TYPE_BLKCIPHER Synchronous multi-block cipher</para> 460 </listitem> 461 <listitem> 462 <para>CRYPTO_ALG_TYPE_ABLKCIPHER Asynchronous multi-block cipher</para> 463 </listitem> 464 <listitem> 465 <para>CRYPTO_ALG_TYPE_GIVCIPHER Asynchronous multi-block 466 cipher packed together with an IV generator (see geniv field 467 in the /proc/crypto listing for the known IV generators)</para> 468 </listitem> 469 <listitem> 470 <para>CRYPTO_ALG_TYPE_DIGEST Raw message digest</para> 471 </listitem> 472 <listitem> 473 <para>CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST</para> 474 </listitem> 475 <listitem> 476 <para>CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash</para> 477 </listitem> 478 <listitem> 479 <para>CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash</para> 480 </listitem> 481 <listitem> 482 <para>CRYPTO_ALG_TYPE_RNG Random Number Generation</para> 483 </listitem> 484 <listitem> 485 <para>CRYPTO_ALG_TYPE_AKCIPHER Asymmetric cipher</para> 486 </listitem> 487 <listitem> 488 <para>CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of 489 CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression / 490 decompression instead of performing the operation on one 491 segment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace 492 CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.</para> 493 </listitem> 494 </itemizedlist> 495 496 <para> 497 The mask flag restricts the type of cipher. The only allowed 498 flag is CRYPTO_ALG_ASYNC to restrict the cipher lookup function 499 to asynchronous ciphers. Usually, a caller provides a 0 for the 500 mask flag. 501 </para> 502 503 <para> 504 When the caller provides a mask and type specification, the 505 caller limits the search the kernel crypto API can perform for 506 a suitable cipher implementation for the given cipher name. 507 That means, even when a caller uses a cipher name that exists 508 during its initialization call, the kernel crypto API may not 509 select it due to the used type and mask field. 510 </para> 511 </sect1> 512 513 <sect1><title>Internal Structure of Kernel Crypto API</title> 514 515 <para> 516 The kernel crypto API has an internal structure where a cipher 517 implementation may use many layers and indirections. This section 518 shall help to clarify how the kernel crypto API uses 519 various components to implement the complete cipher. 520 </para> 521 522 <para> 523 The following subsections explain the internal structure based 524 on existing cipher implementations. The first section addresses 525 the most complex scenario where all other scenarios form a logical 526 subset. 527 </para> 528 529 <sect2><title>Generic AEAD Cipher Structure</title> 530 531 <para> 532 The following ASCII art decomposes the kernel crypto API layers 533 when using the AEAD cipher with the automated IV generation. The 534 shown example is used by the IPSEC layer. 535 </para> 536 537 <para> 538 For other use cases of AEAD ciphers, the ASCII art applies as 539 well, but the caller may not use the AEAD cipher with a separate 540 IV generator. In this case, the caller must generate the IV. 541 </para> 542 543 <para> 544 The depicted example decomposes the AEAD cipher of GCM(AES) based 545 on the generic C implementations (gcm.c, aes-generic.c, ctr.c, 546 ghash-generic.c, seqiv.c). The generic implementation serves as an 547 example showing the complete logic of the kernel crypto API. 548 </para> 549 550 <para> 551 It is possible that some streamlined cipher implementations (like 552 AES-NI) provide implementations merging aspects which in the view 553 of the kernel crypto API cannot be decomposed into layers any more. 554 In case of the AES-NI implementation, the CTR mode, the GHASH 555 implementation and the AES cipher are all merged into one cipher 556 implementation registered with the kernel crypto API. In this case, 557 the concept described by the following ASCII art applies too. However, 558 the decomposition of GCM into the individual sub-components 559 by the kernel crypto API is not done any more. 560 </para> 561 562 <para> 563 Each block in the following ASCII art is an independent cipher 564 instance obtained from the kernel crypto API. Each block 565 is accessed by the caller or by other blocks using the API functions 566 defined by the kernel crypto API for the cipher implementation type. 567 </para> 568 569 <para> 570 The blocks below indicate the cipher type as well as the specific 571 logic implemented in the cipher. 572 </para> 573 574 <para> 575 The ASCII art picture also indicates the call structure, i.e. who 576 calls which component. The arrows point to the invoked block 577 where the caller uses the API applicable to the cipher type 578 specified for the block. 579 </para> 580 581 <programlisting> 582<![CDATA[ 583kernel crypto API | IPSEC Layer 584 | 585+-----------+ | 586| | (1) 587| aead | <----------------------------------- esp_output 588| (seqiv) | ---+ 589+-----------+ | 590 | (2) 591+-----------+ | 592| | <--+ (2) 593| aead | <----------------------------------- esp_input 594| (gcm) | ------------+ 595+-----------+ | 596 | (3) | (5) 597 v v 598+-----------+ +-----------+ 599| | | | 600| skcipher | | ahash | 601| (ctr) | ---+ | (ghash) | 602+-----------+ | +-----------+ 603 | 604+-----------+ | (4) 605| | <--+ 606| cipher | 607| (aes) | 608+-----------+ 609]]> 610 </programlisting> 611 612 <para> 613 The following call sequence is applicable when the IPSEC layer 614 triggers an encryption operation with the esp_output function. During 615 configuration, the administrator set up the use of rfc4106(gcm(aes)) as 616 the cipher for ESP. The following call sequence is now depicted in the 617 ASCII art above: 618 </para> 619 620 <orderedlist> 621 <listitem> 622 <para> 623 esp_output() invokes crypto_aead_encrypt() to trigger an encryption 624 operation of the AEAD cipher with IV generator. 625 </para> 626 627 <para> 628 In case of GCM, the SEQIV implementation is registered as GIVCIPHER 629 in crypto_rfc4106_alloc(). 630 </para> 631 632 <para> 633 The SEQIV performs its operation to generate an IV where the core 634 function is seqiv_geniv(). 635 </para> 636 </listitem> 637 638 <listitem> 639 <para> 640 Now, SEQIV uses the AEAD API function calls to invoke the associated 641 AEAD cipher. In our case, during the instantiation of SEQIV, the 642 cipher handle for GCM is provided to SEQIV. This means that SEQIV 643 invokes AEAD cipher operations with the GCM cipher handle. 644 </para> 645 646 <para> 647 During instantiation of the GCM handle, the CTR(AES) and GHASH 648 ciphers are instantiated. The cipher handles for CTR(AES) and GHASH 649 are retained for later use. 650 </para> 651 652 <para> 653 The GCM implementation is responsible to invoke the CTR mode AES and 654 the GHASH cipher in the right manner to implement the GCM 655 specification. 656 </para> 657 </listitem> 658 659 <listitem> 660 <para> 661 The GCM AEAD cipher type implementation now invokes the SKCIPHER API 662 with the instantiated CTR(AES) cipher handle. 663 </para> 664 665 <para> 666 During instantiation of the CTR(AES) cipher, the CIPHER type 667 implementation of AES is instantiated. The cipher handle for AES is 668 retained. 669 </para> 670 671 <para> 672 That means that the SKCIPHER implementation of CTR(AES) only 673 implements the CTR block chaining mode. After performing the block 674 chaining operation, the CIPHER implementation of AES is invoked. 675 </para> 676 </listitem> 677 678 <listitem> 679 <para> 680 The SKCIPHER of CTR(AES) now invokes the CIPHER API with the AES 681 cipher handle to encrypt one block. 682 </para> 683 </listitem> 684 685 <listitem> 686 <para> 687 The GCM AEAD implementation also invokes the GHASH cipher 688 implementation via the AHASH API. 689 </para> 690 </listitem> 691 </orderedlist> 692 693 <para> 694 When the IPSEC layer triggers the esp_input() function, the same call 695 sequence is followed with the only difference that the operation starts 696 with step (2). 697 </para> 698 </sect2> 699 700 <sect2><title>Generic Block Cipher Structure</title> 701 <para> 702 Generic block ciphers follow the same concept as depicted with the ASCII 703 art picture above. 704 </para> 705 706 <para> 707 For example, CBC(AES) is implemented with cbc.c, and aes-generic.c. The 708 ASCII art picture above applies as well with the difference that only 709 step (4) is used and the SKCIPHER block chaining mode is CBC. 710 </para> 711 </sect2> 712 713 <sect2><title>Generic Keyed Message Digest Structure</title> 714 <para> 715 Keyed message digest implementations again follow the same concept as 716 depicted in the ASCII art picture above. 717 </para> 718 719 <para> 720 For example, HMAC(SHA256) is implemented with hmac.c and 721 sha256_generic.c. The following ASCII art illustrates the 722 implementation: 723 </para> 724 725 <programlisting> 726<![CDATA[ 727kernel crypto API | Caller 728 | 729+-----------+ (1) | 730| | <------------------ some_function 731| ahash | 732| (hmac) | ---+ 733+-----------+ | 734 | (2) 735+-----------+ | 736| | <--+ 737| shash | 738| (sha256) | 739+-----------+ 740]]> 741 </programlisting> 742 743 <para> 744 The following call sequence is applicable when a caller triggers 745 an HMAC operation: 746 </para> 747 748 <orderedlist> 749 <listitem> 750 <para> 751 The AHASH API functions are invoked by the caller. The HMAC 752 implementation performs its operation as needed. 753 </para> 754 755 <para> 756 During initialization of the HMAC cipher, the SHASH cipher type of 757 SHA256 is instantiated. The cipher handle for the SHA256 instance is 758 retained. 759 </para> 760 761 <para> 762 At one time, the HMAC implementation requires a SHA256 operation 763 where the SHA256 cipher handle is used. 764 </para> 765 </listitem> 766 767 <listitem> 768 <para> 769 The HMAC instance now invokes the SHASH API with the SHA256 770 cipher handle to calculate the message digest. 771 </para> 772 </listitem> 773 </orderedlist> 774 </sect2> 775 </sect1> 776 </chapter> 777 778 <chapter id="Development"><title>Developing Cipher Algorithms</title> 779 <sect1><title>Registering And Unregistering Transformation</title> 780 <para> 781 There are three distinct types of registration functions in 782 the Crypto API. One is used to register a generic cryptographic 783 transformation, while the other two are specific to HASH 784 transformations and COMPRESSion. We will discuss the latter 785 two in a separate chapter, here we will only look at the 786 generic ones. 787 </para> 788 789 <para> 790 Before discussing the register functions, the data structure 791 to be filled with each, struct crypto_alg, must be considered 792 -- see below for a description of this data structure. 793 </para> 794 795 <para> 796 The generic registration functions can be found in 797 include/linux/crypto.h and their definition can be seen below. 798 The former function registers a single transformation, while 799 the latter works on an array of transformation descriptions. 800 The latter is useful when registering transformations in bulk. 801 </para> 802 803 <programlisting> 804 int crypto_register_alg(struct crypto_alg *alg); 805 int crypto_register_algs(struct crypto_alg *algs, int count); 806 </programlisting> 807 808 <para> 809 The counterparts to those functions are listed below. 810 </para> 811 812 <programlisting> 813 int crypto_unregister_alg(struct crypto_alg *alg); 814 int crypto_unregister_algs(struct crypto_alg *algs, int count); 815 </programlisting> 816 817 <para> 818 Notice that both registration and unregistration functions 819 do return a value, so make sure to handle errors. A return 820 code of zero implies success. Any return code &lt; 0 implies 821 an error. 822 </para> 823 824 <para> 825 The bulk registration / unregistration functions require 826 that struct crypto_alg is an array of count size. These 827 functions simply loop over that array and register / 828 unregister each individual algorithm. If an error occurs, 829 the loop is terminated at the offending algorithm definition. 830 That means, the algorithms prior to the offending algorithm 831 are successfully registered. Note, the caller has no way of 832 knowing which cipher implementations have successfully 833 registered. If this is important to know, the caller should 834 loop through the different implementations using the single 835 instance *_alg functions for each individual implementation. 836 </para> 837 </sect1> 838 839 <sect1><title>Single-Block Symmetric Ciphers [CIPHER]</title> 840 <para> 841 Example of transformations: aes, arc4, ... 842 </para> 843 844 <para> 845 This section describes the simplest of all transformation 846 implementations, that being the CIPHER type used for symmetric 847 ciphers. The CIPHER type is used for transformations which 848 operate on exactly one block at a time and there are no 849 dependencies between blocks at all. 850 </para> 851 852 <sect2><title>Registration specifics</title> 853 <para> 854 The registration of [CIPHER] algorithm is specific in that 855 struct crypto_alg field .cra_type is empty. The .cra_u.cipher 856 has to be filled in with proper callbacks to implement this 857 transformation. 858 </para> 859 860 <para> 861 See struct cipher_alg below. 862 </para> 863 </sect2> 864 865 <sect2><title>Cipher Definition With struct cipher_alg</title> 866 <para> 867 Struct cipher_alg defines a single block cipher. 868 </para> 869 870 <para> 871 Here are schematics of how these functions are called when 872 operated from other part of the kernel. Note that the 873 .cia_setkey() call might happen before or after any of these 874 schematics happen, but must not happen during any of these 875 are in-flight. 876 </para> 877 878 <para> 879 <programlisting> 880 KEY ---. PLAINTEXT ---. 881 v v 882 .cia_setkey() -&gt; .cia_encrypt() 883 | 884 '-----&gt; CIPHERTEXT 885 </programlisting> 886 </para> 887 888 <para> 889 Please note that a pattern where .cia_setkey() is called 890 multiple times is also valid: 891 </para> 892 893 <para> 894 <programlisting> 895 896 KEY1 --. PLAINTEXT1 --. KEY2 --. PLAINTEXT2 --. 897 v v v v 898 .cia_setkey() -&gt; .cia_encrypt() -&gt; .cia_setkey() -&gt; .cia_encrypt() 899 | | 900 '---&gt; CIPHERTEXT1 '---&gt; CIPHERTEXT2 901 </programlisting> 902 </para> 903 904 </sect2> 905 </sect1> 906 907 <sect1><title>Multi-Block Ciphers</title> 908 <para> 909 Example of transformations: cbc(aes), ecb(arc4), ... 910 </para> 911 912 <para> 913 This section describes the multi-block cipher transformation 914 implementations. The multi-block ciphers are 915 used for transformations which operate on scatterlists of 916 data supplied to the transformation functions. They output 917 the result into a scatterlist of data as well. 918 </para> 919 920 <sect2><title>Registration Specifics</title> 921 922 <para> 923 The registration of multi-block cipher algorithms 924 is one of the most standard procedures throughout the crypto API. 925 </para> 926 927 <para> 928 Note, if a cipher implementation requires a proper alignment 929 of data, the caller should use the functions of 930 crypto_skcipher_alignmask() to identify a memory alignment mask. 931 The kernel crypto API is able to process requests that are unaligned. 932 This implies, however, additional overhead as the kernel 933 crypto API needs to perform the realignment of the data which 934 may imply moving of data. 935 </para> 936 </sect2> 937 938 <sect2><title>Cipher Definition With struct blkcipher_alg and ablkcipher_alg</title> 939 <para> 940 Struct blkcipher_alg defines a synchronous block cipher whereas 941 struct ablkcipher_alg defines an asynchronous block cipher. 942 </para> 943 944 <para> 945 Please refer to the single block cipher description for schematics 946 of the block cipher usage. 947 </para> 948 </sect2> 949 950 <sect2><title>Specifics Of Asynchronous Multi-Block Cipher</title> 951 <para> 952 There are a couple of specifics to the asynchronous interface. 953 </para> 954 955 <para> 956 First of all, some of the drivers will want to use the 957 Generic ScatterWalk in case the hardware needs to be fed 958 separate chunks of the scatterlist which contains the 959 plaintext and will contain the ciphertext. Please refer 960 to the ScatterWalk interface offered by the Linux kernel 961 scatter / gather list implementation. 962 </para> 963 </sect2> 964 </sect1> 965 966 <sect1><title>Hashing [HASH]</title> 967 968 <para> 969 Example of transformations: crc32, md5, sha1, sha256,... 970 </para> 971 972 <sect2><title>Registering And Unregistering The Transformation</title> 973 974 <para> 975 There are multiple ways to register a HASH transformation, 976 depending on whether the transformation is synchronous [SHASH] 977 or asynchronous [AHASH] and the amount of HASH transformations 978 we are registering. You can find the prototypes defined in 979 include/crypto/internal/hash.h: 980 </para> 981 982 <programlisting> 983 int crypto_register_ahash(struct ahash_alg *alg); 984 985 int crypto_register_shash(struct shash_alg *alg); 986 int crypto_register_shashes(struct shash_alg *algs, int count); 987 </programlisting> 988 989 <para> 990 The respective counterparts for unregistering the HASH 991 transformation are as follows: 992 </para> 993 994 <programlisting> 995 int crypto_unregister_ahash(struct ahash_alg *alg); 996 997 int crypto_unregister_shash(struct shash_alg *alg); 998 int crypto_unregister_shashes(struct shash_alg *algs, int count); 999 </programlisting> 1000 </sect2> 1001 1002 <sect2><title>Cipher Definition With struct shash_alg and ahash_alg</title> 1003 <para> 1004 Here are schematics of how these functions are called when 1005 operated from other part of the kernel. Note that the .setkey() 1006 call might happen before or after any of these schematics happen, 1007 but must not happen during any of these are in-flight. Please note 1008 that calling .init() followed immediately by .finish() is also a 1009 perfectly valid transformation. 1010 </para> 1011 1012 <programlisting> 1013 I) DATA -----------. 1014 v 1015 .init() -&gt; .update() -&gt; .final() ! .update() might not be called 1016 ^ | | at all in this scenario. 1017 '----' '---&gt; HASH 1018 1019 II) DATA -----------.-----------. 1020 v v 1021 .init() -&gt; .update() -&gt; .finup() ! .update() may not be called 1022 ^ | | at all in this scenario. 1023 '----' '---&gt; HASH 1024 1025 III) DATA -----------. 1026 v 1027 .digest() ! The entire process is handled 1028 | by the .digest() call. 1029 '---------------&gt; HASH 1030 </programlisting> 1031 1032 <para> 1033 Here is a schematic of how the .export()/.import() functions are 1034 called when used from another part of the kernel. 1035 </para> 1036 1037 <programlisting> 1038 KEY--. DATA--. 1039 v v ! .update() may not be called 1040 .setkey() -&gt; .init() -&gt; .update() -&gt; .export() at all in this scenario. 1041 ^ | | 1042 '-----' '--&gt; PARTIAL_HASH 1043 1044 ----------- other transformations happen here ----------- 1045 1046 PARTIAL_HASH--. DATA1--. 1047 v v 1048 .import -&gt; .update() -&gt; .final() ! .update() may not be called 1049 ^ | | at all in this scenario. 1050 '----' '--&gt; HASH1 1051 1052 PARTIAL_HASH--. DATA2-. 1053 v v 1054 .import -&gt; .finup() 1055 | 1056 '---------------&gt; HASH2 1057 </programlisting> 1058 </sect2> 1059 1060 <sect2><title>Specifics Of Asynchronous HASH Transformation</title> 1061 <para> 1062 Some of the drivers will want to use the Generic ScatterWalk 1063 in case the implementation needs to be fed separate chunks of the 1064 scatterlist which contains the input data. The buffer containing 1065 the resulting hash will always be properly aligned to 1066 .cra_alignmask so there is no need to worry about this. 1067 </para> 1068 </sect2> 1069 </sect1> 1070 </chapter> 1071 1072 <chapter id="User"><title>User Space Interface</title> 1073 <sect1><title>Introduction</title> 1074 <para> 1075 The concepts of the kernel crypto API visible to kernel space is fully 1076 applicable to the user space interface as well. Therefore, the kernel 1077 crypto API high level discussion for the in-kernel use cases applies 1078 here as well. 1079 </para> 1080 1081 <para> 1082 The major difference, however, is that user space can only act as a 1083 consumer and never as a provider of a transformation or cipher algorithm. 1084 </para> 1085 1086 <para> 1087 The following covers the user space interface exported by the kernel 1088 crypto API. A working example of this description is libkcapi that 1089 can be obtained from [1]. That library can be used by user space 1090 applications that require cryptographic services from the kernel. 1091 </para> 1092 1093 <para> 1094 Some details of the in-kernel kernel crypto API aspects do not 1095 apply to user space, however. This includes the difference between 1096 synchronous and asynchronous invocations. The user space API call 1097 is fully synchronous. 1098 </para> 1099 1100 <para> 1101 [1] <ulink url="http://www.chronox.de/libkcapi.html">http://www.chronox.de/libkcapi.html</ulink> 1102 </para> 1103 1104 </sect1> 1105 1106 <sect1><title>User Space API General Remarks</title> 1107 <para> 1108 The kernel crypto API is accessible from user space. Currently, 1109 the following ciphers are accessible: 1110 </para> 1111 1112 <itemizedlist> 1113 <listitem> 1114 <para>Message digest including keyed message digest (HMAC, CMAC)</para> 1115 </listitem> 1116 1117 <listitem> 1118 <para>Symmetric ciphers</para> 1119 </listitem> 1120 1121 <listitem> 1122 <para>AEAD ciphers</para> 1123 </listitem> 1124 1125 <listitem> 1126 <para>Random Number Generators</para> 1127 </listitem> 1128 </itemizedlist> 1129 1130 <para> 1131 The interface is provided via socket type using the type AF_ALG. 1132 In addition, the setsockopt option type is SOL_ALG. In case the 1133 user space header files do not export these flags yet, use the 1134 following macros: 1135 </para> 1136 1137 <programlisting> 1138#ifndef AF_ALG 1139#define AF_ALG 38 1140#endif 1141#ifndef SOL_ALG 1142#define SOL_ALG 279 1143#endif 1144 </programlisting> 1145 1146 <para> 1147 A cipher is accessed with the same name as done for the in-kernel 1148 API calls. This includes the generic vs. unique naming schema for 1149 ciphers as well as the enforcement of priorities for generic names. 1150 </para> 1151 1152 <para> 1153 To interact with the kernel crypto API, a socket must be 1154 created by the user space application. User space invokes the cipher 1155 operation with the send()/write() system call family. The result of the 1156 cipher operation is obtained with the read()/recv() system call family. 1157 </para> 1158 1159 <para> 1160 The following API calls assume that the socket descriptor 1161 is already opened by the user space application and discusses only 1162 the kernel crypto API specific invocations. 1163 </para> 1164 1165 <para> 1166 To initialize the socket interface, the following sequence has to 1167 be performed by the consumer: 1168 </para> 1169 1170 <orderedlist> 1171 <listitem> 1172 <para> 1173 Create a socket of type AF_ALG with the struct sockaddr_alg 1174 parameter specified below for the different cipher types. 1175 </para> 1176 </listitem> 1177 1178 <listitem> 1179 <para> 1180 Invoke bind with the socket descriptor 1181 </para> 1182 </listitem> 1183 1184 <listitem> 1185 <para> 1186 Invoke accept with the socket descriptor. The accept system call 1187 returns a new file descriptor that is to be used to interact with 1188 the particular cipher instance. When invoking send/write or recv/read 1189 system calls to send data to the kernel or obtain data from the 1190 kernel, the file descriptor returned by accept must be used. 1191 </para> 1192 </listitem> 1193 </orderedlist> 1194 </sect1> 1195 1196 <sect1><title>In-place Cipher operation</title> 1197 <para> 1198 Just like the in-kernel operation of the kernel crypto API, the user 1199 space interface allows the cipher operation in-place. That means that 1200 the input buffer used for the send/write system call and the output 1201 buffer used by the read/recv system call may be one and the same. 1202 This is of particular interest for symmetric cipher operations where a 1203 copying of the output data to its final destination can be avoided. 1204 </para> 1205 1206 <para> 1207 If a consumer on the other hand wants to maintain the plaintext and 1208 the ciphertext in different memory locations, all a consumer needs 1209 to do is to provide different memory pointers for the encryption and 1210 decryption operation. 1211 </para> 1212 </sect1> 1213 1214 <sect1><title>Message Digest API</title> 1215 <para> 1216 The message digest type to be used for the cipher operation is 1217 selected when invoking the bind syscall. bind requires the caller 1218 to provide a filled struct sockaddr data structure. This data 1219 structure must be filled as follows: 1220 </para> 1221 1222 <programlisting> 1223struct sockaddr_alg sa = { 1224 .salg_family = AF_ALG, 1225 .salg_type = "hash", /* this selects the hash logic in the kernel */ 1226 .salg_name = "sha1" /* this is the cipher name */ 1227}; 1228 </programlisting> 1229 1230 <para> 1231 The salg_type value "hash" applies to message digests and keyed 1232 message digests. Though, a keyed message digest is referenced by 1233 the appropriate salg_name. Please see below for the setsockopt 1234 interface that explains how the key can be set for a keyed message 1235 digest. 1236 </para> 1237 1238 <para> 1239 Using the send() system call, the application provides the data that 1240 should be processed with the message digest. The send system call 1241 allows the following flags to be specified: 1242 </para> 1243 1244 <itemizedlist> 1245 <listitem> 1246 <para> 1247 MSG_MORE: If this flag is set, the send system call acts like a 1248 message digest update function where the final hash is not 1249 yet calculated. If the flag is not set, the send system call 1250 calculates the final message digest immediately. 1251 </para> 1252 </listitem> 1253 </itemizedlist> 1254 1255 <para> 1256 With the recv() system call, the application can read the message 1257 digest from the kernel crypto API. If the buffer is too small for the 1258 message digest, the flag MSG_TRUNC is set by the kernel. 1259 </para> 1260 1261 <para> 1262 In order to set a message digest key, the calling application must use 1263 the setsockopt() option of ALG_SET_KEY. If the key is not set the HMAC 1264 operation is performed without the initial HMAC state change caused by 1265 the key. 1266 </para> 1267 </sect1> 1268 1269 <sect1><title>Symmetric Cipher API</title> 1270 <para> 1271 The operation is very similar to the message digest discussion. 1272 During initialization, the struct sockaddr data structure must be 1273 filled as follows: 1274 </para> 1275 1276 <programlisting> 1277struct sockaddr_alg sa = { 1278 .salg_family = AF_ALG, 1279 .salg_type = "skcipher", /* this selects the symmetric cipher */ 1280 .salg_name = "cbc(aes)" /* this is the cipher name */ 1281}; 1282 </programlisting> 1283 1284 <para> 1285 Before data can be sent to the kernel using the write/send system 1286 call family, the consumer must set the key. The key setting is 1287 described with the setsockopt invocation below. 1288 </para> 1289 1290 <para> 1291 Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is 1292 specified with the data structure provided by the sendmsg() system call. 1293 </para> 1294 1295 <para> 1296 The sendmsg system call parameter of struct msghdr is embedded into the 1297 struct cmsghdr data structure. See recv(2) and cmsg(3) for more 1298 information on how the cmsghdr data structure is used together with the 1299 send/recv system call family. That cmsghdr data structure holds the 1300 following information specified with a separate header instances: 1301 </para> 1302 1303 <itemizedlist> 1304 <listitem> 1305 <para> 1306 specification of the cipher operation type with one of these flags: 1307 </para> 1308 <itemizedlist> 1309 <listitem> 1310 <para>ALG_OP_ENCRYPT - encryption of data</para> 1311 </listitem> 1312 <listitem> 1313 <para>ALG_OP_DECRYPT - decryption of data</para> 1314 </listitem> 1315 </itemizedlist> 1316 </listitem> 1317 1318 <listitem> 1319 <para> 1320 specification of the IV information marked with the flag ALG_SET_IV 1321 </para> 1322 </listitem> 1323 </itemizedlist> 1324 1325 <para> 1326 The send system call family allows the following flag to be specified: 1327 </para> 1328 1329 <itemizedlist> 1330 <listitem> 1331 <para> 1332 MSG_MORE: If this flag is set, the send system call acts like a 1333 cipher update function where more input data is expected 1334 with a subsequent invocation of the send system call. 1335 </para> 1336 </listitem> 1337 </itemizedlist> 1338 1339 <para> 1340 Note: The kernel reports -EINVAL for any unexpected data. The caller 1341 must make sure that all data matches the constraints given in 1342 /proc/crypto for the selected cipher. 1343 </para> 1344 1345 <para> 1346 With the recv() system call, the application can read the result of 1347 the cipher operation from the kernel crypto API. The output buffer 1348 must be at least as large as to hold all blocks of the encrypted or 1349 decrypted data. If the output data size is smaller, only as many 1350 blocks are returned that fit into that output buffer size. 1351 </para> 1352 </sect1> 1353 1354 <sect1><title>AEAD Cipher API</title> 1355 <para> 1356 The operation is very similar to the symmetric cipher discussion. 1357 During initialization, the struct sockaddr data structure must be 1358 filled as follows: 1359 </para> 1360 1361 <programlisting> 1362struct sockaddr_alg sa = { 1363 .salg_family = AF_ALG, 1364 .salg_type = "aead", /* this selects the symmetric cipher */ 1365 .salg_name = "gcm(aes)" /* this is the cipher name */ 1366}; 1367 </programlisting> 1368 1369 <para> 1370 Before data can be sent to the kernel using the write/send system 1371 call family, the consumer must set the key. The key setting is 1372 described with the setsockopt invocation below. 1373 </para> 1374 1375 <para> 1376 In addition, before data can be sent to the kernel using the 1377 write/send system call family, the consumer must set the authentication 1378 tag size. To set the authentication tag size, the caller must use the 1379 setsockopt invocation described below. 1380 </para> 1381 1382 <para> 1383 Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is 1384 specified with the data structure provided by the sendmsg() system call. 1385 </para> 1386 1387 <para> 1388 The sendmsg system call parameter of struct msghdr is embedded into the 1389 struct cmsghdr data structure. See recv(2) and cmsg(3) for more 1390 information on how the cmsghdr data structure is used together with the 1391 send/recv system call family. That cmsghdr data structure holds the 1392 following information specified with a separate header instances: 1393 </para> 1394 1395 <itemizedlist> 1396 <listitem> 1397 <para> 1398 specification of the cipher operation type with one of these flags: 1399 </para> 1400 <itemizedlist> 1401 <listitem> 1402 <para>ALG_OP_ENCRYPT - encryption of data</para> 1403 </listitem> 1404 <listitem> 1405 <para>ALG_OP_DECRYPT - decryption of data</para> 1406 </listitem> 1407 </itemizedlist> 1408 </listitem> 1409 1410 <listitem> 1411 <para> 1412 specification of the IV information marked with the flag ALG_SET_IV 1413 </para> 1414 </listitem> 1415 1416 <listitem> 1417 <para> 1418 specification of the associated authentication data (AAD) with the 1419 flag ALG_SET_AEAD_ASSOCLEN. The AAD is sent to the kernel together 1420 with the plaintext / ciphertext. See below for the memory structure. 1421 </para> 1422 </listitem> 1423 </itemizedlist> 1424 1425 <para> 1426 The send system call family allows the following flag to be specified: 1427 </para> 1428 1429 <itemizedlist> 1430 <listitem> 1431 <para> 1432 MSG_MORE: If this flag is set, the send system call acts like a 1433 cipher update function where more input data is expected 1434 with a subsequent invocation of the send system call. 1435 </para> 1436 </listitem> 1437 </itemizedlist> 1438 1439 <para> 1440 Note: The kernel reports -EINVAL for any unexpected data. The caller 1441 must make sure that all data matches the constraints given in 1442 /proc/crypto for the selected cipher. 1443 </para> 1444 1445 <para> 1446 With the recv() system call, the application can read the result of 1447 the cipher operation from the kernel crypto API. The output buffer 1448 must be at least as large as defined with the memory structure below. 1449 If the output data size is smaller, the cipher operation is not performed. 1450 </para> 1451 1452 <para> 1453 The authenticated decryption operation may indicate an integrity error. 1454 Such breach in integrity is marked with the -EBADMSG error code. 1455 </para> 1456 1457 <sect2><title>AEAD Memory Structure</title> 1458 <para> 1459 The AEAD cipher operates with the following information that 1460 is communicated between user and kernel space as one data stream: 1461 </para> 1462 1463 <itemizedlist> 1464 <listitem> 1465 <para>plaintext or ciphertext</para> 1466 </listitem> 1467 1468 <listitem> 1469 <para>associated authentication data (AAD)</para> 1470 </listitem> 1471 1472 <listitem> 1473 <para>authentication tag</para> 1474 </listitem> 1475 </itemizedlist> 1476 1477 <para> 1478 The sizes of the AAD and the authentication tag are provided with 1479 the sendmsg and setsockopt calls (see there). As the kernel knows 1480 the size of the entire data stream, the kernel is now able to 1481 calculate the right offsets of the data components in the data 1482 stream. 1483 </para> 1484 1485 <para> 1486 The user space caller must arrange the aforementioned information 1487 in the following order: 1488 </para> 1489 1490 <itemizedlist> 1491 <listitem> 1492 <para> 1493 AEAD encryption input: AAD || plaintext 1494 </para> 1495 </listitem> 1496 1497 <listitem> 1498 <para> 1499 AEAD decryption input: AAD || ciphertext || authentication tag 1500 </para> 1501 </listitem> 1502 </itemizedlist> 1503 1504 <para> 1505 The output buffer the user space caller provides must be at least as 1506 large to hold the following data: 1507 </para> 1508 1509 <itemizedlist> 1510 <listitem> 1511 <para> 1512 AEAD encryption output: ciphertext || authentication tag 1513 </para> 1514 </listitem> 1515 1516 <listitem> 1517 <para> 1518 AEAD decryption output: plaintext 1519 </para> 1520 </listitem> 1521 </itemizedlist> 1522 </sect2> 1523 </sect1> 1524 1525 <sect1><title>Random Number Generator API</title> 1526 <para> 1527 Again, the operation is very similar to the other APIs. 1528 During initialization, the struct sockaddr data structure must be 1529 filled as follows: 1530 </para> 1531 1532 <programlisting> 1533struct sockaddr_alg sa = { 1534 .salg_family = AF_ALG, 1535 .salg_type = "rng", /* this selects the symmetric cipher */ 1536 .salg_name = "drbg_nopr_sha256" /* this is the cipher name */ 1537}; 1538 </programlisting> 1539 1540 <para> 1541 Depending on the RNG type, the RNG must be seeded. The seed is provided 1542 using the setsockopt interface to set the key. For example, the 1543 ansi_cprng requires a seed. The DRBGs do not require a seed, but 1544 may be seeded. 1545 </para> 1546 1547 <para> 1548 Using the read()/recvmsg() system calls, random numbers can be obtained. 1549 The kernel generates at most 128 bytes in one call. If user space 1550 requires more data, multiple calls to read()/recvmsg() must be made. 1551 </para> 1552 1553 <para> 1554 WARNING: The user space caller may invoke the initially mentioned 1555 accept system call multiple times. In this case, the returned file 1556 descriptors have the same state. 1557 </para> 1558 1559 </sect1> 1560 1561 <sect1><title>Zero-Copy Interface</title> 1562 <para> 1563 In addition to the send/write/read/recv system call family, the AF_ALG 1564 interface can be accessed with the zero-copy interface of splice/vmsplice. 1565 As the name indicates, the kernel tries to avoid a copy operation into 1566 kernel space. 1567 </para> 1568 1569 <para> 1570 The zero-copy operation requires data to be aligned at the page boundary. 1571 Non-aligned data can be used as well, but may require more operations of 1572 the kernel which would defeat the speed gains obtained from the zero-copy 1573 interface. 1574 </para> 1575 1576 <para> 1577 The system-interent limit for the size of one zero-copy operation is 1578 16 pages. If more data is to be sent to AF_ALG, user space must slice 1579 the input into segments with a maximum size of 16 pages. 1580 </para> 1581 1582 <para> 1583 Zero-copy can be used with the following code example (a complete working 1584 example is provided with libkcapi): 1585 </para> 1586 1587 <programlisting> 1588int pipes[2]; 1589 1590pipe(pipes); 1591/* input data in iov */ 1592vmsplice(pipes[1], iov, iovlen, SPLICE_F_GIFT); 1593/* opfd is the file descriptor returned from accept() system call */ 1594splice(pipes[0], NULL, opfd, NULL, ret, 0); 1595read(opfd, out, outlen); 1596 </programlisting> 1597 1598 </sect1> 1599 1600 <sect1><title>Setsockopt Interface</title> 1601 <para> 1602 In addition to the read/recv and send/write system call handling 1603 to send and retrieve data subject to the cipher operation, a consumer 1604 also needs to set the additional information for the cipher operation. 1605 This additional information is set using the setsockopt system call 1606 that must be invoked with the file descriptor of the open cipher 1607 (i.e. the file descriptor returned by the accept system call). 1608 </para> 1609 1610 <para> 1611 Each setsockopt invocation must use the level SOL_ALG. 1612 </para> 1613 1614 <para> 1615 The setsockopt interface allows setting the following data using 1616 the mentioned optname: 1617 </para> 1618 1619 <itemizedlist> 1620 <listitem> 1621 <para> 1622 ALG_SET_KEY -- Setting the key. Key setting is applicable to: 1623 </para> 1624 <itemizedlist> 1625 <listitem> 1626 <para>the skcipher cipher type (symmetric ciphers)</para> 1627 </listitem> 1628 <listitem> 1629 <para>the hash cipher type (keyed message digests)</para> 1630 </listitem> 1631 <listitem> 1632 <para>the AEAD cipher type</para> 1633 </listitem> 1634 <listitem> 1635 <para>the RNG cipher type to provide the seed</para> 1636 </listitem> 1637 </itemizedlist> 1638 </listitem> 1639 1640 <listitem> 1641 <para> 1642 ALG_SET_AEAD_AUTHSIZE -- Setting the authentication tag size 1643 for AEAD ciphers. For a encryption operation, the authentication 1644 tag of the given size will be generated. For a decryption operation, 1645 the provided ciphertext is assumed to contain an authentication tag 1646 of the given size (see section about AEAD memory layout below). 1647 </para> 1648 </listitem> 1649 </itemizedlist> 1650 1651 </sect1> 1652 1653 <sect1><title>User space API example</title> 1654 <para> 1655 Please see [1] for libkcapi which provides an easy-to-use wrapper 1656 around the aforementioned Netlink kernel interface. [1] also contains 1657 a test application that invokes all libkcapi API calls. 1658 </para> 1659 1660 <para> 1661 [1] <ulink url="http://www.chronox.de/libkcapi.html">http://www.chronox.de/libkcapi.html</ulink> 1662 </para> 1663 1664 </sect1> 1665 1666 </chapter> 1667 1668 <chapter id="API"><title>Programming Interface</title> 1669 <para> 1670 Please note that the kernel crypto API contains the AEAD givcrypt 1671 API (crypto_aead_giv* and aead_givcrypt_* function calls in 1672 include/crypto/aead.h). This API is obsolete and will be removed 1673 in the future. To obtain the functionality of an AEAD cipher with 1674 internal IV generation, use the IV generator as a regular cipher. 1675 For example, rfc4106(gcm(aes)) is the AEAD cipher with external 1676 IV generation and seqniv(rfc4106(gcm(aes))) implies that the kernel 1677 crypto API generates the IV. Different IV generators are available. 1678 </para> 1679 <sect1><title>Block Cipher Context Data Structures</title> 1680!Pinclude/linux/crypto.h Block Cipher Context Data Structures 1681!Finclude/crypto/aead.h aead_request 1682 </sect1> 1683 <sect1><title>Block Cipher Algorithm Definitions</title> 1684!Pinclude/linux/crypto.h Block Cipher Algorithm Definitions 1685!Finclude/linux/crypto.h crypto_alg 1686!Finclude/linux/crypto.h ablkcipher_alg 1687!Finclude/crypto/aead.h aead_alg 1688!Finclude/linux/crypto.h blkcipher_alg 1689!Finclude/linux/crypto.h cipher_alg 1690!Finclude/crypto/rng.h rng_alg 1691 </sect1> 1692 <sect1><title>Symmetric Key Cipher API</title> 1693!Pinclude/crypto/skcipher.h Symmetric Key Cipher API 1694!Finclude/crypto/skcipher.h crypto_alloc_skcipher 1695!Finclude/crypto/skcipher.h crypto_free_skcipher 1696!Finclude/crypto/skcipher.h crypto_has_skcipher 1697!Finclude/crypto/skcipher.h crypto_skcipher_ivsize 1698!Finclude/crypto/skcipher.h crypto_skcipher_blocksize 1699!Finclude/crypto/skcipher.h crypto_skcipher_setkey 1700!Finclude/crypto/skcipher.h crypto_skcipher_reqtfm 1701!Finclude/crypto/skcipher.h crypto_skcipher_encrypt 1702!Finclude/crypto/skcipher.h crypto_skcipher_decrypt 1703 </sect1> 1704 <sect1><title>Symmetric Key Cipher Request Handle</title> 1705!Pinclude/crypto/skcipher.h Symmetric Key Cipher Request Handle 1706!Finclude/crypto/skcipher.h crypto_skcipher_reqsize 1707!Finclude/crypto/skcipher.h skcipher_request_set_tfm 1708!Finclude/crypto/skcipher.h skcipher_request_alloc 1709!Finclude/crypto/skcipher.h skcipher_request_free 1710!Finclude/crypto/skcipher.h skcipher_request_set_callback 1711!Finclude/crypto/skcipher.h skcipher_request_set_crypt 1712 </sect1> 1713 <sect1><title>Asynchronous Block Cipher API - Deprecated</title> 1714!Pinclude/linux/crypto.h Asynchronous Block Cipher API 1715!Finclude/linux/crypto.h crypto_alloc_ablkcipher 1716!Finclude/linux/crypto.h crypto_free_ablkcipher 1717!Finclude/linux/crypto.h crypto_has_ablkcipher 1718!Finclude/linux/crypto.h crypto_ablkcipher_ivsize 1719!Finclude/linux/crypto.h crypto_ablkcipher_blocksize 1720!Finclude/linux/crypto.h crypto_ablkcipher_setkey 1721!Finclude/linux/crypto.h crypto_ablkcipher_reqtfm 1722!Finclude/linux/crypto.h crypto_ablkcipher_encrypt 1723!Finclude/linux/crypto.h crypto_ablkcipher_decrypt 1724 </sect1> 1725 <sect1><title>Asynchronous Cipher Request Handle - Deprecated</title> 1726!Pinclude/linux/crypto.h Asynchronous Cipher Request Handle 1727!Finclude/linux/crypto.h crypto_ablkcipher_reqsize 1728!Finclude/linux/crypto.h ablkcipher_request_set_tfm 1729!Finclude/linux/crypto.h ablkcipher_request_alloc 1730!Finclude/linux/crypto.h ablkcipher_request_free 1731!Finclude/linux/crypto.h ablkcipher_request_set_callback 1732!Finclude/linux/crypto.h ablkcipher_request_set_crypt 1733 </sect1> 1734 <sect1><title>Authenticated Encryption With Associated Data (AEAD) Cipher API</title> 1735!Pinclude/crypto/aead.h Authenticated Encryption With Associated Data (AEAD) Cipher API 1736!Finclude/crypto/aead.h crypto_alloc_aead 1737!Finclude/crypto/aead.h crypto_free_aead 1738!Finclude/crypto/aead.h crypto_aead_ivsize 1739!Finclude/crypto/aead.h crypto_aead_authsize 1740!Finclude/crypto/aead.h crypto_aead_blocksize 1741!Finclude/crypto/aead.h crypto_aead_setkey 1742!Finclude/crypto/aead.h crypto_aead_setauthsize 1743!Finclude/crypto/aead.h crypto_aead_encrypt 1744!Finclude/crypto/aead.h crypto_aead_decrypt 1745 </sect1> 1746 <sect1><title>Asynchronous AEAD Request Handle</title> 1747!Pinclude/crypto/aead.h Asynchronous AEAD Request Handle 1748!Finclude/crypto/aead.h crypto_aead_reqsize 1749!Finclude/crypto/aead.h aead_request_set_tfm 1750!Finclude/crypto/aead.h aead_request_alloc 1751!Finclude/crypto/aead.h aead_request_free 1752!Finclude/crypto/aead.h aead_request_set_callback 1753!Finclude/crypto/aead.h aead_request_set_crypt 1754!Finclude/crypto/aead.h aead_request_set_ad 1755 </sect1> 1756 <sect1><title>Synchronous Block Cipher API - Deprecated</title> 1757!Pinclude/linux/crypto.h Synchronous Block Cipher API 1758!Finclude/linux/crypto.h crypto_alloc_blkcipher 1759!Finclude/linux/crypto.h crypto_free_blkcipher 1760!Finclude/linux/crypto.h crypto_has_blkcipher 1761!Finclude/linux/crypto.h crypto_blkcipher_name 1762!Finclude/linux/crypto.h crypto_blkcipher_ivsize 1763!Finclude/linux/crypto.h crypto_blkcipher_blocksize 1764!Finclude/linux/crypto.h crypto_blkcipher_setkey 1765!Finclude/linux/crypto.h crypto_blkcipher_encrypt 1766!Finclude/linux/crypto.h crypto_blkcipher_encrypt_iv 1767!Finclude/linux/crypto.h crypto_blkcipher_decrypt 1768!Finclude/linux/crypto.h crypto_blkcipher_decrypt_iv 1769!Finclude/linux/crypto.h crypto_blkcipher_set_iv 1770!Finclude/linux/crypto.h crypto_blkcipher_get_iv 1771 </sect1> 1772 <sect1><title>Single Block Cipher API</title> 1773!Pinclude/linux/crypto.h Single Block Cipher API 1774!Finclude/linux/crypto.h crypto_alloc_cipher 1775!Finclude/linux/crypto.h crypto_free_cipher 1776!Finclude/linux/crypto.h crypto_has_cipher 1777!Finclude/linux/crypto.h crypto_cipher_blocksize 1778!Finclude/linux/crypto.h crypto_cipher_setkey 1779!Finclude/linux/crypto.h crypto_cipher_encrypt_one 1780!Finclude/linux/crypto.h crypto_cipher_decrypt_one 1781 </sect1> 1782 <sect1><title>Message Digest Algorithm Definitions</title> 1783!Pinclude/crypto/hash.h Message Digest Algorithm Definitions 1784!Finclude/crypto/hash.h hash_alg_common 1785!Finclude/crypto/hash.h ahash_alg 1786!Finclude/crypto/hash.h shash_alg 1787 </sect1> 1788 <sect1><title>Asynchronous Message Digest API</title> 1789!Pinclude/crypto/hash.h Asynchronous Message Digest API 1790!Finclude/crypto/hash.h crypto_alloc_ahash 1791!Finclude/crypto/hash.h crypto_free_ahash 1792!Finclude/crypto/hash.h crypto_ahash_init 1793!Finclude/crypto/hash.h crypto_ahash_digestsize 1794!Finclude/crypto/hash.h crypto_ahash_reqtfm 1795!Finclude/crypto/hash.h crypto_ahash_reqsize 1796!Finclude/crypto/hash.h crypto_ahash_setkey 1797!Finclude/crypto/hash.h crypto_ahash_finup 1798!Finclude/crypto/hash.h crypto_ahash_final 1799!Finclude/crypto/hash.h crypto_ahash_digest 1800!Finclude/crypto/hash.h crypto_ahash_export 1801!Finclude/crypto/hash.h crypto_ahash_import 1802 </sect1> 1803 <sect1><title>Asynchronous Hash Request Handle</title> 1804!Pinclude/crypto/hash.h Asynchronous Hash Request Handle 1805!Finclude/crypto/hash.h ahash_request_set_tfm 1806!Finclude/crypto/hash.h ahash_request_alloc 1807!Finclude/crypto/hash.h ahash_request_free 1808!Finclude/crypto/hash.h ahash_request_set_callback 1809!Finclude/crypto/hash.h ahash_request_set_crypt 1810 </sect1> 1811 <sect1><title>Synchronous Message Digest API</title> 1812!Pinclude/crypto/hash.h Synchronous Message Digest API 1813!Finclude/crypto/hash.h crypto_alloc_shash 1814!Finclude/crypto/hash.h crypto_free_shash 1815!Finclude/crypto/hash.h crypto_shash_blocksize 1816!Finclude/crypto/hash.h crypto_shash_digestsize 1817!Finclude/crypto/hash.h crypto_shash_descsize 1818!Finclude/crypto/hash.h crypto_shash_setkey 1819!Finclude/crypto/hash.h crypto_shash_digest 1820!Finclude/crypto/hash.h crypto_shash_export 1821!Finclude/crypto/hash.h crypto_shash_import 1822!Finclude/crypto/hash.h crypto_shash_init 1823!Finclude/crypto/hash.h crypto_shash_update 1824!Finclude/crypto/hash.h crypto_shash_final 1825!Finclude/crypto/hash.h crypto_shash_finup 1826 </sect1> 1827 <sect1><title>Crypto API Random Number API</title> 1828!Pinclude/crypto/rng.h Random number generator API 1829!Finclude/crypto/rng.h crypto_alloc_rng 1830!Finclude/crypto/rng.h crypto_rng_alg 1831!Finclude/crypto/rng.h crypto_free_rng 1832!Finclude/crypto/rng.h crypto_rng_generate 1833!Finclude/crypto/rng.h crypto_rng_get_bytes 1834!Finclude/crypto/rng.h crypto_rng_reset 1835!Finclude/crypto/rng.h crypto_rng_seedsize 1836!Cinclude/crypto/rng.h 1837 </sect1> 1838 <sect1><title>Asymmetric Cipher API</title> 1839!Pinclude/crypto/akcipher.h Generic Public Key API 1840!Finclude/crypto/akcipher.h akcipher_alg 1841!Finclude/crypto/akcipher.h akcipher_request 1842!Finclude/crypto/akcipher.h crypto_alloc_akcipher 1843!Finclude/crypto/akcipher.h crypto_free_akcipher 1844!Finclude/crypto/akcipher.h crypto_akcipher_set_pub_key 1845!Finclude/crypto/akcipher.h crypto_akcipher_set_priv_key 1846 </sect1> 1847 <sect1><title>Asymmetric Cipher Request Handle</title> 1848!Finclude/crypto/akcipher.h akcipher_request_alloc 1849!Finclude/crypto/akcipher.h akcipher_request_free 1850!Finclude/crypto/akcipher.h akcipher_request_set_callback 1851!Finclude/crypto/akcipher.h akcipher_request_set_crypt 1852!Finclude/crypto/akcipher.h crypto_akcipher_maxsize 1853!Finclude/crypto/akcipher.h crypto_akcipher_encrypt 1854!Finclude/crypto/akcipher.h crypto_akcipher_decrypt 1855!Finclude/crypto/akcipher.h crypto_akcipher_sign 1856!Finclude/crypto/akcipher.h crypto_akcipher_verify 1857 </sect1> 1858 </chapter> 1859 1860 <chapter id="Code"><title>Code Examples</title> 1861 <sect1><title>Code Example For Symmetric Key Cipher Operation</title> 1862 <programlisting> 1863 1864struct tcrypt_result { 1865 struct completion completion; 1866 int err; 1867}; 1868 1869/* tie all data structures together */ 1870struct skcipher_def { 1871 struct scatterlist sg; 1872 struct crypto_skcipher *tfm; 1873 struct skcipher_request *req; 1874 struct tcrypt_result result; 1875}; 1876 1877/* Callback function */ 1878static void test_skcipher_cb(struct crypto_async_request *req, int error) 1879{ 1880 struct tcrypt_result *result = req-&gt;data; 1881 1882 if (error == -EINPROGRESS) 1883 return; 1884 result-&gt;err = error; 1885 complete(&amp;result-&gt;completion); 1886 pr_info("Encryption finished successfully\n"); 1887} 1888 1889/* Perform cipher operation */ 1890static unsigned int test_skcipher_encdec(struct skcipher_def *sk, 1891 int enc) 1892{ 1893 int rc = 0; 1894 1895 if (enc) 1896 rc = crypto_skcipher_encrypt(sk-&gt;req); 1897 else 1898 rc = crypto_skcipher_decrypt(sk-&gt;req); 1899 1900 switch (rc) { 1901 case 0: 1902 break; 1903 case -EINPROGRESS: 1904 case -EBUSY: 1905 rc = wait_for_completion_interruptible( 1906 &amp;sk-&gt;result.completion); 1907 if (!rc &amp;&amp; !sk-&gt;result.err) { 1908 reinit_completion(&amp;sk-&gt;result.completion); 1909 break; 1910 } 1911 default: 1912 pr_info("skcipher encrypt returned with %d result %d\n", 1913 rc, sk-&gt;result.err); 1914 break; 1915 } 1916 init_completion(&amp;sk-&gt;result.completion); 1917 1918 return rc; 1919} 1920 1921/* Initialize and trigger cipher operation */ 1922static int test_skcipher(void) 1923{ 1924 struct skcipher_def sk; 1925 struct crypto_skcipher *skcipher = NULL; 1926 struct skcipher_request *req = NULL; 1927 char *scratchpad = NULL; 1928 char *ivdata = NULL; 1929 unsigned char key[32]; 1930 int ret = -EFAULT; 1931 1932 skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0); 1933 if (IS_ERR(skcipher)) { 1934 pr_info("could not allocate skcipher handle\n"); 1935 return PTR_ERR(skcipher); 1936 } 1937 1938 req = skcipher_request_alloc(skcipher, GFP_KERNEL); 1939 if (!req) { 1940 pr_info("could not allocate skcipher request\n"); 1941 ret = -ENOMEM; 1942 goto out; 1943 } 1944 1945 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 1946 test_skcipher_cb, 1947 &amp;sk.result); 1948 1949 /* AES 256 with random key */ 1950 get_random_bytes(&amp;key, 32); 1951 if (crypto_skcipher_setkey(skcipher, key, 32)) { 1952 pr_info("key could not be set\n"); 1953 ret = -EAGAIN; 1954 goto out; 1955 } 1956 1957 /* IV will be random */ 1958 ivdata = kmalloc(16, GFP_KERNEL); 1959 if (!ivdata) { 1960 pr_info("could not allocate ivdata\n"); 1961 goto out; 1962 } 1963 get_random_bytes(ivdata, 16); 1964 1965 /* Input data will be random */ 1966 scratchpad = kmalloc(16, GFP_KERNEL); 1967 if (!scratchpad) { 1968 pr_info("could not allocate scratchpad\n"); 1969 goto out; 1970 } 1971 get_random_bytes(scratchpad, 16); 1972 1973 sk.tfm = skcipher; 1974 sk.req = req; 1975 1976 /* We encrypt one block */ 1977 sg_init_one(&amp;sk.sg, scratchpad, 16); 1978 skcipher_request_set_crypt(req, &amp;sk.sg, &amp;sk.sg, 16, ivdata); 1979 init_completion(&amp;sk.result.completion); 1980 1981 /* encrypt data */ 1982 ret = test_skcipher_encdec(&amp;sk, 1); 1983 if (ret) 1984 goto out; 1985 1986 pr_info("Encryption triggered successfully\n"); 1987 1988out: 1989 if (skcipher) 1990 crypto_free_skcipher(skcipher); 1991 if (req) 1992 skcipher_request_free(req); 1993 if (ivdata) 1994 kfree(ivdata); 1995 if (scratchpad) 1996 kfree(scratchpad); 1997 return ret; 1998} 1999 </programlisting> 2000 </sect1> 2001 2002 <sect1><title>Code Example For Use of Operational State Memory With SHASH</title> 2003 <programlisting> 2004 2005struct sdesc { 2006 struct shash_desc shash; 2007 char ctx[]; 2008}; 2009 2010static struct sdescinit_sdesc(struct crypto_shash *alg) 2011{ 2012 struct sdescsdesc; 2013 int size; 2014 2015 size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); 2016 sdesc = kmalloc(size, GFP_KERNEL); 2017 if (!sdesc) 2018 return ERR_PTR(-ENOMEM); 2019 sdesc-&gt;shash.tfm = alg; 2020 sdesc-&gt;shash.flags = 0x0; 2021 return sdesc; 2022} 2023 2024static int calc_hash(struct crypto_shashalg, 2025 const unsigned chardata, unsigned int datalen, 2026 unsigned chardigest) { 2027 struct sdescsdesc; 2028 int ret; 2029 2030 sdesc = init_sdesc(alg); 2031 if (IS_ERR(sdesc)) { 2032 pr_info("trusted_key: can't alloc %s\n", hash_alg); 2033 return PTR_ERR(sdesc); 2034 } 2035 2036 ret = crypto_shash_digest(&amp;sdesc-&gt;shash, data, datalen, digest); 2037 kfree(sdesc); 2038 return ret; 2039} 2040 </programlisting> 2041 </sect1> 2042 2043 <sect1><title>Code Example For Random Number Generator Usage</title> 2044 <programlisting> 2045 2046static int get_random_numbers(u8 *buf, unsigned int len) 2047{ 2048 struct crypto_rngrng = NULL; 2049 chardrbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */ 2050 int ret; 2051 2052 if (!buf || !len) { 2053 pr_debug("No output buffer provided\n"); 2054 return -EINVAL; 2055 } 2056 2057 rng = crypto_alloc_rng(drbg, 0, 0); 2058 if (IS_ERR(rng)) { 2059 pr_debug("could not allocate RNG handle for %s\n", drbg); 2060 return -PTR_ERR(rng); 2061 } 2062 2063 ret = crypto_rng_get_bytes(rng, buf, len); 2064 if (ret &lt; 0) 2065 pr_debug("generation of random numbers failed\n"); 2066 else if (ret == 0) 2067 pr_debug("RNG returned no data"); 2068 else 2069 pr_debug("RNG returned %d bytes of data\n", ret); 2070 2071out: 2072 crypto_free_rng(rng); 2073 return ret; 2074} 2075 </programlisting> 2076 </sect1> 2077 </chapter> 2078 </book>