Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6#include <linux/sched/prio.h>
7
8
9struct sched_param {
10 int sched_priority;
11};
12
13#include <asm/param.h> /* for HZ */
14
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
21#include <linux/plist.h>
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
27#include <linux/mm_types.h>
28#include <linux/preempt.h>
29
30#include <asm/page.h>
31#include <asm/ptrace.h>
32#include <linux/cputime.h>
33
34#include <linux/smp.h>
35#include <linux/sem.h>
36#include <linux/shm.h>
37#include <linux/signal.h>
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/proportions.h>
44#include <linux/seccomp.h>
45#include <linux/rcupdate.h>
46#include <linux/rculist.h>
47#include <linux/rtmutex.h>
48
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
54#include <linux/kcov.h>
55#include <linux/task_io_accounting.h>
56#include <linux/latencytop.h>
57#include <linux/cred.h>
58#include <linux/llist.h>
59#include <linux/uidgid.h>
60#include <linux/gfp.h>
61#include <linux/magic.h>
62#include <linux/cgroup-defs.h>
63
64#include <asm/processor.h>
65
66#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67
68/*
69 * Extended scheduling parameters data structure.
70 *
71 * This is needed because the original struct sched_param can not be
72 * altered without introducing ABI issues with legacy applications
73 * (e.g., in sched_getparam()).
74 *
75 * However, the possibility of specifying more than just a priority for
76 * the tasks may be useful for a wide variety of application fields, e.g.,
77 * multimedia, streaming, automation and control, and many others.
78 *
79 * This variant (sched_attr) is meant at describing a so-called
80 * sporadic time-constrained task. In such model a task is specified by:
81 * - the activation period or minimum instance inter-arrival time;
82 * - the maximum (or average, depending on the actual scheduling
83 * discipline) computation time of all instances, a.k.a. runtime;
84 * - the deadline (relative to the actual activation time) of each
85 * instance.
86 * Very briefly, a periodic (sporadic) task asks for the execution of
87 * some specific computation --which is typically called an instance--
88 * (at most) every period. Moreover, each instance typically lasts no more
89 * than the runtime and must be completed by time instant t equal to
90 * the instance activation time + the deadline.
91 *
92 * This is reflected by the actual fields of the sched_attr structure:
93 *
94 * @size size of the structure, for fwd/bwd compat.
95 *
96 * @sched_policy task's scheduling policy
97 * @sched_flags for customizing the scheduler behaviour
98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
99 * @sched_priority task's static priority (SCHED_FIFO/RR)
100 * @sched_deadline representative of the task's deadline
101 * @sched_runtime representative of the task's runtime
102 * @sched_period representative of the task's period
103 *
104 * Given this task model, there are a multiplicity of scheduling algorithms
105 * and policies, that can be used to ensure all the tasks will make their
106 * timing constraints.
107 *
108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109 * only user of this new interface. More information about the algorithm
110 * available in the scheduling class file or in Documentation/.
111 */
112struct sched_attr {
113 u32 size;
114
115 u32 sched_policy;
116 u64 sched_flags;
117
118 /* SCHED_NORMAL, SCHED_BATCH */
119 s32 sched_nice;
120
121 /* SCHED_FIFO, SCHED_RR */
122 u32 sched_priority;
123
124 /* SCHED_DEADLINE */
125 u64 sched_runtime;
126 u64 sched_deadline;
127 u64 sched_period;
128};
129
130struct futex_pi_state;
131struct robust_list_head;
132struct bio_list;
133struct fs_struct;
134struct perf_event_context;
135struct blk_plug;
136struct filename;
137struct nameidata;
138
139#define VMACACHE_BITS 2
140#define VMACACHE_SIZE (1U << VMACACHE_BITS)
141#define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
143/*
144 * These are the constant used to fake the fixed-point load-average
145 * counting. Some notes:
146 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
147 * a load-average precision of 10 bits integer + 11 bits fractional
148 * - if you want to count load-averages more often, you need more
149 * precision, or rounding will get you. With 2-second counting freq,
150 * the EXP_n values would be 1981, 2034 and 2043 if still using only
151 * 11 bit fractions.
152 */
153extern unsigned long avenrun[]; /* Load averages */
154extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155
156#define FSHIFT 11 /* nr of bits of precision */
157#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
158#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
159#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
160#define EXP_5 2014 /* 1/exp(5sec/5min) */
161#define EXP_15 2037 /* 1/exp(5sec/15min) */
162
163#define CALC_LOAD(load,exp,n) \
164 load *= exp; \
165 load += n*(FIXED_1-exp); \
166 load >>= FSHIFT;
167
168extern unsigned long total_forks;
169extern int nr_threads;
170DECLARE_PER_CPU(unsigned long, process_counts);
171extern int nr_processes(void);
172extern unsigned long nr_running(void);
173extern bool single_task_running(void);
174extern unsigned long nr_iowait(void);
175extern unsigned long nr_iowait_cpu(int cpu);
176extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
177
178extern void calc_global_load(unsigned long ticks);
179
180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181extern void update_cpu_load_nohz(int active);
182#else
183static inline void update_cpu_load_nohz(int active) { }
184#endif
185
186extern void dump_cpu_task(int cpu);
187
188struct seq_file;
189struct cfs_rq;
190struct task_group;
191#ifdef CONFIG_SCHED_DEBUG
192extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193extern void proc_sched_set_task(struct task_struct *p);
194#endif
195
196/*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
206#define TASK_RUNNING 0
207#define TASK_INTERRUPTIBLE 1
208#define TASK_UNINTERRUPTIBLE 2
209#define __TASK_STOPPED 4
210#define __TASK_TRACED 8
211/* in tsk->exit_state */
212#define EXIT_DEAD 16
213#define EXIT_ZOMBIE 32
214#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
215/* in tsk->state again */
216#define TASK_DEAD 64
217#define TASK_WAKEKILL 128
218#define TASK_WAKING 256
219#define TASK_PARKED 512
220#define TASK_NOLOAD 1024
221#define TASK_STATE_MAX 2048
222
223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
224
225extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
227
228/* Convenience macros for the sake of set_task_state */
229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
232
233#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
234
235/* Convenience macros for the sake of wake_up */
236#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
237#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
238
239/* get_task_state() */
240#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
241 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
242 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
243
244#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
245#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
246#define task_is_stopped_or_traced(task) \
247 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
248#define task_contributes_to_load(task) \
249 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
250 (task->flags & PF_FROZEN) == 0 && \
251 (task->state & TASK_NOLOAD) == 0)
252
253#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255#define __set_task_state(tsk, state_value) \
256 do { \
257 (tsk)->task_state_change = _THIS_IP_; \
258 (tsk)->state = (state_value); \
259 } while (0)
260#define set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
263 smp_store_mb((tsk)->state, (state_value)); \
264 } while (0)
265
266/*
267 * set_current_state() includes a barrier so that the write of current->state
268 * is correctly serialised wrt the caller's subsequent test of whether to
269 * actually sleep:
270 *
271 * set_current_state(TASK_UNINTERRUPTIBLE);
272 * if (do_i_need_to_sleep())
273 * schedule();
274 *
275 * If the caller does not need such serialisation then use __set_current_state()
276 */
277#define __set_current_state(state_value) \
278 do { \
279 current->task_state_change = _THIS_IP_; \
280 current->state = (state_value); \
281 } while (0)
282#define set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
285 smp_store_mb(current->state, (state_value)); \
286 } while (0)
287
288#else
289
290#define __set_task_state(tsk, state_value) \
291 do { (tsk)->state = (state_value); } while (0)
292#define set_task_state(tsk, state_value) \
293 smp_store_mb((tsk)->state, (state_value))
294
295/*
296 * set_current_state() includes a barrier so that the write of current->state
297 * is correctly serialised wrt the caller's subsequent test of whether to
298 * actually sleep:
299 *
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (do_i_need_to_sleep())
302 * schedule();
303 *
304 * If the caller does not need such serialisation then use __set_current_state()
305 */
306#define __set_current_state(state_value) \
307 do { current->state = (state_value); } while (0)
308#define set_current_state(state_value) \
309 smp_store_mb(current->state, (state_value))
310
311#endif
312
313/* Task command name length */
314#define TASK_COMM_LEN 16
315
316#include <linux/spinlock.h>
317
318/*
319 * This serializes "schedule()" and also protects
320 * the run-queue from deletions/modifications (but
321 * _adding_ to the beginning of the run-queue has
322 * a separate lock).
323 */
324extern rwlock_t tasklist_lock;
325extern spinlock_t mmlist_lock;
326
327struct task_struct;
328
329#ifdef CONFIG_PROVE_RCU
330extern int lockdep_tasklist_lock_is_held(void);
331#endif /* #ifdef CONFIG_PROVE_RCU */
332
333extern void sched_init(void);
334extern void sched_init_smp(void);
335extern asmlinkage void schedule_tail(struct task_struct *prev);
336extern void init_idle(struct task_struct *idle, int cpu);
337extern void init_idle_bootup_task(struct task_struct *idle);
338
339extern cpumask_var_t cpu_isolated_map;
340
341extern int runqueue_is_locked(int cpu);
342
343#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
344extern void nohz_balance_enter_idle(int cpu);
345extern void set_cpu_sd_state_idle(void);
346extern int get_nohz_timer_target(void);
347#else
348static inline void nohz_balance_enter_idle(int cpu) { }
349static inline void set_cpu_sd_state_idle(void) { }
350#endif
351
352/*
353 * Only dump TASK_* tasks. (0 for all tasks)
354 */
355extern void show_state_filter(unsigned long state_filter);
356
357static inline void show_state(void)
358{
359 show_state_filter(0);
360}
361
362extern void show_regs(struct pt_regs *);
363
364/*
365 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
366 * task), SP is the stack pointer of the first frame that should be shown in the back
367 * trace (or NULL if the entire call-chain of the task should be shown).
368 */
369extern void show_stack(struct task_struct *task, unsigned long *sp);
370
371extern void cpu_init (void);
372extern void trap_init(void);
373extern void update_process_times(int user);
374extern void scheduler_tick(void);
375
376extern void sched_show_task(struct task_struct *p);
377
378#ifdef CONFIG_LOCKUP_DETECTOR
379extern void touch_softlockup_watchdog_sched(void);
380extern void touch_softlockup_watchdog(void);
381extern void touch_softlockup_watchdog_sync(void);
382extern void touch_all_softlockup_watchdogs(void);
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386extern unsigned int softlockup_panic;
387extern unsigned int hardlockup_panic;
388void lockup_detector_init(void);
389#else
390static inline void touch_softlockup_watchdog_sched(void)
391{
392}
393static inline void touch_softlockup_watchdog(void)
394{
395}
396static inline void touch_softlockup_watchdog_sync(void)
397{
398}
399static inline void touch_all_softlockup_watchdogs(void)
400{
401}
402static inline void lockup_detector_init(void)
403{
404}
405#endif
406
407#ifdef CONFIG_DETECT_HUNG_TASK
408void reset_hung_task_detector(void);
409#else
410static inline void reset_hung_task_detector(void)
411{
412}
413#endif
414
415/* Attach to any functions which should be ignored in wchan output. */
416#define __sched __attribute__((__section__(".sched.text")))
417
418/* Linker adds these: start and end of __sched functions */
419extern char __sched_text_start[], __sched_text_end[];
420
421/* Is this address in the __sched functions? */
422extern int in_sched_functions(unsigned long addr);
423
424#define MAX_SCHEDULE_TIMEOUT LONG_MAX
425extern signed long schedule_timeout(signed long timeout);
426extern signed long schedule_timeout_interruptible(signed long timeout);
427extern signed long schedule_timeout_killable(signed long timeout);
428extern signed long schedule_timeout_uninterruptible(signed long timeout);
429extern signed long schedule_timeout_idle(signed long timeout);
430asmlinkage void schedule(void);
431extern void schedule_preempt_disabled(void);
432
433extern long io_schedule_timeout(long timeout);
434
435static inline void io_schedule(void)
436{
437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438}
439
440struct nsproxy;
441struct user_namespace;
442
443#ifdef CONFIG_MMU
444extern void arch_pick_mmap_layout(struct mm_struct *mm);
445extern unsigned long
446arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448extern unsigned long
449arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
452#else
453static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454#endif
455
456#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457#define SUID_DUMP_USER 1 /* Dump as user of process */
458#define SUID_DUMP_ROOT 2 /* Dump as root */
459
460/* mm flags */
461
462/* for SUID_DUMP_* above */
463#define MMF_DUMPABLE_BITS 2
464#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
465
466extern void set_dumpable(struct mm_struct *mm, int value);
467/*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473static inline int __get_dumpable(unsigned long mm_flags)
474{
475 return mm_flags & MMF_DUMPABLE_MASK;
476}
477
478static inline int get_dumpable(struct mm_struct *mm)
479{
480 return __get_dumpable(mm->flags);
481}
482
483/* coredump filter bits */
484#define MMF_DUMP_ANON_PRIVATE 2
485#define MMF_DUMP_ANON_SHARED 3
486#define MMF_DUMP_MAPPED_PRIVATE 4
487#define MMF_DUMP_MAPPED_SHARED 5
488#define MMF_DUMP_ELF_HEADERS 6
489#define MMF_DUMP_HUGETLB_PRIVATE 7
490#define MMF_DUMP_HUGETLB_SHARED 8
491#define MMF_DUMP_DAX_PRIVATE 9
492#define MMF_DUMP_DAX_SHARED 10
493
494#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
495#define MMF_DUMP_FILTER_BITS 9
496#define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498#define MMF_DUMP_FILTER_DEFAULT \
499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504#else
505# define MMF_DUMP_MASK_DEFAULT_ELF 0
506#endif
507 /* leave room for more dump flags */
508#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
509#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
510#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
511
512#define MMF_HAS_UPROBES 19 /* has uprobes */
513#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
514
515#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
516
517struct sighand_struct {
518 atomic_t count;
519 struct k_sigaction action[_NSIG];
520 spinlock_t siglock;
521 wait_queue_head_t signalfd_wqh;
522};
523
524struct pacct_struct {
525 int ac_flag;
526 long ac_exitcode;
527 unsigned long ac_mem;
528 cputime_t ac_utime, ac_stime;
529 unsigned long ac_minflt, ac_majflt;
530};
531
532struct cpu_itimer {
533 cputime_t expires;
534 cputime_t incr;
535 u32 error;
536 u32 incr_error;
537};
538
539/**
540 * struct prev_cputime - snaphsot of system and user cputime
541 * @utime: time spent in user mode
542 * @stime: time spent in system mode
543 * @lock: protects the above two fields
544 *
545 * Stores previous user/system time values such that we can guarantee
546 * monotonicity.
547 */
548struct prev_cputime {
549#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
550 cputime_t utime;
551 cputime_t stime;
552 raw_spinlock_t lock;
553#endif
554};
555
556static inline void prev_cputime_init(struct prev_cputime *prev)
557{
558#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 prev->utime = prev->stime = 0;
560 raw_spin_lock_init(&prev->lock);
561#endif
562}
563
564/**
565 * struct task_cputime - collected CPU time counts
566 * @utime: time spent in user mode, in &cputime_t units
567 * @stime: time spent in kernel mode, in &cputime_t units
568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
569 *
570 * This structure groups together three kinds of CPU time that are tracked for
571 * threads and thread groups. Most things considering CPU time want to group
572 * these counts together and treat all three of them in parallel.
573 */
574struct task_cputime {
575 cputime_t utime;
576 cputime_t stime;
577 unsigned long long sum_exec_runtime;
578};
579
580/* Alternate field names when used to cache expirations. */
581#define virt_exp utime
582#define prof_exp stime
583#define sched_exp sum_exec_runtime
584
585#define INIT_CPUTIME \
586 (struct task_cputime) { \
587 .utime = 0, \
588 .stime = 0, \
589 .sum_exec_runtime = 0, \
590 }
591
592/*
593 * This is the atomic variant of task_cputime, which can be used for
594 * storing and updating task_cputime statistics without locking.
595 */
596struct task_cputime_atomic {
597 atomic64_t utime;
598 atomic64_t stime;
599 atomic64_t sum_exec_runtime;
600};
601
602#define INIT_CPUTIME_ATOMIC \
603 (struct task_cputime_atomic) { \
604 .utime = ATOMIC64_INIT(0), \
605 .stime = ATOMIC64_INIT(0), \
606 .sum_exec_runtime = ATOMIC64_INIT(0), \
607 }
608
609#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
610
611/*
612 * Disable preemption until the scheduler is running -- use an unconditional
613 * value so that it also works on !PREEMPT_COUNT kernels.
614 *
615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
616 */
617#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
618
619/*
620 * Initial preempt_count value; reflects the preempt_count schedule invariant
621 * which states that during context switches:
622 *
623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624 *
625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626 * Note: See finish_task_switch().
627 */
628#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
629
630/**
631 * struct thread_group_cputimer - thread group interval timer counts
632 * @cputime_atomic: atomic thread group interval timers.
633 * @running: true when there are timers running and
634 * @cputime_atomic receives updates.
635 * @checking_timer: true when a thread in the group is in the
636 * process of checking for thread group timers.
637 *
638 * This structure contains the version of task_cputime, above, that is
639 * used for thread group CPU timer calculations.
640 */
641struct thread_group_cputimer {
642 struct task_cputime_atomic cputime_atomic;
643 bool running;
644 bool checking_timer;
645};
646
647#include <linux/rwsem.h>
648struct autogroup;
649
650/*
651 * NOTE! "signal_struct" does not have its own
652 * locking, because a shared signal_struct always
653 * implies a shared sighand_struct, so locking
654 * sighand_struct is always a proper superset of
655 * the locking of signal_struct.
656 */
657struct signal_struct {
658 atomic_t sigcnt;
659 atomic_t live;
660 int nr_threads;
661 struct list_head thread_head;
662
663 wait_queue_head_t wait_chldexit; /* for wait4() */
664
665 /* current thread group signal load-balancing target: */
666 struct task_struct *curr_target;
667
668 /* shared signal handling: */
669 struct sigpending shared_pending;
670
671 /* thread group exit support */
672 int group_exit_code;
673 /* overloaded:
674 * - notify group_exit_task when ->count is equal to notify_count
675 * - everyone except group_exit_task is stopped during signal delivery
676 * of fatal signals, group_exit_task processes the signal.
677 */
678 int notify_count;
679 struct task_struct *group_exit_task;
680
681 /* thread group stop support, overloads group_exit_code too */
682 int group_stop_count;
683 unsigned int flags; /* see SIGNAL_* flags below */
684
685 /*
686 * PR_SET_CHILD_SUBREAPER marks a process, like a service
687 * manager, to re-parent orphan (double-forking) child processes
688 * to this process instead of 'init'. The service manager is
689 * able to receive SIGCHLD signals and is able to investigate
690 * the process until it calls wait(). All children of this
691 * process will inherit a flag if they should look for a
692 * child_subreaper process at exit.
693 */
694 unsigned int is_child_subreaper:1;
695 unsigned int has_child_subreaper:1;
696
697 /* POSIX.1b Interval Timers */
698 int posix_timer_id;
699 struct list_head posix_timers;
700
701 /* ITIMER_REAL timer for the process */
702 struct hrtimer real_timer;
703 struct pid *leader_pid;
704 ktime_t it_real_incr;
705
706 /*
707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709 * values are defined to 0 and 1 respectively
710 */
711 struct cpu_itimer it[2];
712
713 /*
714 * Thread group totals for process CPU timers.
715 * See thread_group_cputimer(), et al, for details.
716 */
717 struct thread_group_cputimer cputimer;
718
719 /* Earliest-expiration cache. */
720 struct task_cputime cputime_expires;
721
722#ifdef CONFIG_NO_HZ_FULL
723 atomic_t tick_dep_mask;
724#endif
725
726 struct list_head cpu_timers[3];
727
728 struct pid *tty_old_pgrp;
729
730 /* boolean value for session group leader */
731 int leader;
732
733 struct tty_struct *tty; /* NULL if no tty */
734
735#ifdef CONFIG_SCHED_AUTOGROUP
736 struct autogroup *autogroup;
737#endif
738 /*
739 * Cumulative resource counters for dead threads in the group,
740 * and for reaped dead child processes forked by this group.
741 * Live threads maintain their own counters and add to these
742 * in __exit_signal, except for the group leader.
743 */
744 seqlock_t stats_lock;
745 cputime_t utime, stime, cutime, cstime;
746 cputime_t gtime;
747 cputime_t cgtime;
748 struct prev_cputime prev_cputime;
749 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
750 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
751 unsigned long inblock, oublock, cinblock, coublock;
752 unsigned long maxrss, cmaxrss;
753 struct task_io_accounting ioac;
754
755 /*
756 * Cumulative ns of schedule CPU time fo dead threads in the
757 * group, not including a zombie group leader, (This only differs
758 * from jiffies_to_ns(utime + stime) if sched_clock uses something
759 * other than jiffies.)
760 */
761 unsigned long long sum_sched_runtime;
762
763 /*
764 * We don't bother to synchronize most readers of this at all,
765 * because there is no reader checking a limit that actually needs
766 * to get both rlim_cur and rlim_max atomically, and either one
767 * alone is a single word that can safely be read normally.
768 * getrlimit/setrlimit use task_lock(current->group_leader) to
769 * protect this instead of the siglock, because they really
770 * have no need to disable irqs.
771 */
772 struct rlimit rlim[RLIM_NLIMITS];
773
774#ifdef CONFIG_BSD_PROCESS_ACCT
775 struct pacct_struct pacct; /* per-process accounting information */
776#endif
777#ifdef CONFIG_TASKSTATS
778 struct taskstats *stats;
779#endif
780#ifdef CONFIG_AUDIT
781 unsigned audit_tty;
782 struct tty_audit_buf *tty_audit_buf;
783#endif
784
785 oom_flags_t oom_flags;
786 short oom_score_adj; /* OOM kill score adjustment */
787 short oom_score_adj_min; /* OOM kill score adjustment min value.
788 * Only settable by CAP_SYS_RESOURCE. */
789
790 struct mutex cred_guard_mutex; /* guard against foreign influences on
791 * credential calculations
792 * (notably. ptrace) */
793};
794
795/*
796 * Bits in flags field of signal_struct.
797 */
798#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
799#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
800#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
801#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
802/*
803 * Pending notifications to parent.
804 */
805#define SIGNAL_CLD_STOPPED 0x00000010
806#define SIGNAL_CLD_CONTINUED 0x00000020
807#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
808
809#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
810
811/* If true, all threads except ->group_exit_task have pending SIGKILL */
812static inline int signal_group_exit(const struct signal_struct *sig)
813{
814 return (sig->flags & SIGNAL_GROUP_EXIT) ||
815 (sig->group_exit_task != NULL);
816}
817
818/*
819 * Some day this will be a full-fledged user tracking system..
820 */
821struct user_struct {
822 atomic_t __count; /* reference count */
823 atomic_t processes; /* How many processes does this user have? */
824 atomic_t sigpending; /* How many pending signals does this user have? */
825#ifdef CONFIG_INOTIFY_USER
826 atomic_t inotify_watches; /* How many inotify watches does this user have? */
827 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
828#endif
829#ifdef CONFIG_FANOTIFY
830 atomic_t fanotify_listeners;
831#endif
832#ifdef CONFIG_EPOLL
833 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
834#endif
835#ifdef CONFIG_POSIX_MQUEUE
836 /* protected by mq_lock */
837 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
838#endif
839 unsigned long locked_shm; /* How many pages of mlocked shm ? */
840 unsigned long unix_inflight; /* How many files in flight in unix sockets */
841 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
842
843#ifdef CONFIG_KEYS
844 struct key *uid_keyring; /* UID specific keyring */
845 struct key *session_keyring; /* UID's default session keyring */
846#endif
847
848 /* Hash table maintenance information */
849 struct hlist_node uidhash_node;
850 kuid_t uid;
851
852#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
853 atomic_long_t locked_vm;
854#endif
855};
856
857extern int uids_sysfs_init(void);
858
859extern struct user_struct *find_user(kuid_t);
860
861extern struct user_struct root_user;
862#define INIT_USER (&root_user)
863
864
865struct backing_dev_info;
866struct reclaim_state;
867
868#ifdef CONFIG_SCHED_INFO
869struct sched_info {
870 /* cumulative counters */
871 unsigned long pcount; /* # of times run on this cpu */
872 unsigned long long run_delay; /* time spent waiting on a runqueue */
873
874 /* timestamps */
875 unsigned long long last_arrival,/* when we last ran on a cpu */
876 last_queued; /* when we were last queued to run */
877};
878#endif /* CONFIG_SCHED_INFO */
879
880#ifdef CONFIG_TASK_DELAY_ACCT
881struct task_delay_info {
882 spinlock_t lock;
883 unsigned int flags; /* Private per-task flags */
884
885 /* For each stat XXX, add following, aligned appropriately
886 *
887 * struct timespec XXX_start, XXX_end;
888 * u64 XXX_delay;
889 * u32 XXX_count;
890 *
891 * Atomicity of updates to XXX_delay, XXX_count protected by
892 * single lock above (split into XXX_lock if contention is an issue).
893 */
894
895 /*
896 * XXX_count is incremented on every XXX operation, the delay
897 * associated with the operation is added to XXX_delay.
898 * XXX_delay contains the accumulated delay time in nanoseconds.
899 */
900 u64 blkio_start; /* Shared by blkio, swapin */
901 u64 blkio_delay; /* wait for sync block io completion */
902 u64 swapin_delay; /* wait for swapin block io completion */
903 u32 blkio_count; /* total count of the number of sync block */
904 /* io operations performed */
905 u32 swapin_count; /* total count of the number of swapin block */
906 /* io operations performed */
907
908 u64 freepages_start;
909 u64 freepages_delay; /* wait for memory reclaim */
910 u32 freepages_count; /* total count of memory reclaim */
911};
912#endif /* CONFIG_TASK_DELAY_ACCT */
913
914static inline int sched_info_on(void)
915{
916#ifdef CONFIG_SCHEDSTATS
917 return 1;
918#elif defined(CONFIG_TASK_DELAY_ACCT)
919 extern int delayacct_on;
920 return delayacct_on;
921#else
922 return 0;
923#endif
924}
925
926#ifdef CONFIG_SCHEDSTATS
927void force_schedstat_enabled(void);
928#endif
929
930enum cpu_idle_type {
931 CPU_IDLE,
932 CPU_NOT_IDLE,
933 CPU_NEWLY_IDLE,
934 CPU_MAX_IDLE_TYPES
935};
936
937/*
938 * Increase resolution of cpu_capacity calculations
939 */
940#define SCHED_CAPACITY_SHIFT 10
941#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
942
943/*
944 * Wake-queues are lists of tasks with a pending wakeup, whose
945 * callers have already marked the task as woken internally,
946 * and can thus carry on. A common use case is being able to
947 * do the wakeups once the corresponding user lock as been
948 * released.
949 *
950 * We hold reference to each task in the list across the wakeup,
951 * thus guaranteeing that the memory is still valid by the time
952 * the actual wakeups are performed in wake_up_q().
953 *
954 * One per task suffices, because there's never a need for a task to be
955 * in two wake queues simultaneously; it is forbidden to abandon a task
956 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
957 * already in a wake queue, the wakeup will happen soon and the second
958 * waker can just skip it.
959 *
960 * The WAKE_Q macro declares and initializes the list head.
961 * wake_up_q() does NOT reinitialize the list; it's expected to be
962 * called near the end of a function, where the fact that the queue is
963 * not used again will be easy to see by inspection.
964 *
965 * Note that this can cause spurious wakeups. schedule() callers
966 * must ensure the call is done inside a loop, confirming that the
967 * wakeup condition has in fact occurred.
968 */
969struct wake_q_node {
970 struct wake_q_node *next;
971};
972
973struct wake_q_head {
974 struct wake_q_node *first;
975 struct wake_q_node **lastp;
976};
977
978#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
979
980#define WAKE_Q(name) \
981 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
982
983extern void wake_q_add(struct wake_q_head *head,
984 struct task_struct *task);
985extern void wake_up_q(struct wake_q_head *head);
986
987/*
988 * sched-domains (multiprocessor balancing) declarations:
989 */
990#ifdef CONFIG_SMP
991#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
992#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
993#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
994#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
995#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
996#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
997#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
998#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
999#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1000#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1001#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1002#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1003#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1004#define SD_NUMA 0x4000 /* cross-node balancing */
1005
1006#ifdef CONFIG_SCHED_SMT
1007static inline int cpu_smt_flags(void)
1008{
1009 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1010}
1011#endif
1012
1013#ifdef CONFIG_SCHED_MC
1014static inline int cpu_core_flags(void)
1015{
1016 return SD_SHARE_PKG_RESOURCES;
1017}
1018#endif
1019
1020#ifdef CONFIG_NUMA
1021static inline int cpu_numa_flags(void)
1022{
1023 return SD_NUMA;
1024}
1025#endif
1026
1027struct sched_domain_attr {
1028 int relax_domain_level;
1029};
1030
1031#define SD_ATTR_INIT (struct sched_domain_attr) { \
1032 .relax_domain_level = -1, \
1033}
1034
1035extern int sched_domain_level_max;
1036
1037struct sched_group;
1038
1039struct sched_domain {
1040 /* These fields must be setup */
1041 struct sched_domain *parent; /* top domain must be null terminated */
1042 struct sched_domain *child; /* bottom domain must be null terminated */
1043 struct sched_group *groups; /* the balancing groups of the domain */
1044 unsigned long min_interval; /* Minimum balance interval ms */
1045 unsigned long max_interval; /* Maximum balance interval ms */
1046 unsigned int busy_factor; /* less balancing by factor if busy */
1047 unsigned int imbalance_pct; /* No balance until over watermark */
1048 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1049 unsigned int busy_idx;
1050 unsigned int idle_idx;
1051 unsigned int newidle_idx;
1052 unsigned int wake_idx;
1053 unsigned int forkexec_idx;
1054 unsigned int smt_gain;
1055
1056 int nohz_idle; /* NOHZ IDLE status */
1057 int flags; /* See SD_* */
1058 int level;
1059
1060 /* Runtime fields. */
1061 unsigned long last_balance; /* init to jiffies. units in jiffies */
1062 unsigned int balance_interval; /* initialise to 1. units in ms. */
1063 unsigned int nr_balance_failed; /* initialise to 0 */
1064
1065 /* idle_balance() stats */
1066 u64 max_newidle_lb_cost;
1067 unsigned long next_decay_max_lb_cost;
1068
1069#ifdef CONFIG_SCHEDSTATS
1070 /* load_balance() stats */
1071 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1076 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1077 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1078 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1079
1080 /* Active load balancing */
1081 unsigned int alb_count;
1082 unsigned int alb_failed;
1083 unsigned int alb_pushed;
1084
1085 /* SD_BALANCE_EXEC stats */
1086 unsigned int sbe_count;
1087 unsigned int sbe_balanced;
1088 unsigned int sbe_pushed;
1089
1090 /* SD_BALANCE_FORK stats */
1091 unsigned int sbf_count;
1092 unsigned int sbf_balanced;
1093 unsigned int sbf_pushed;
1094
1095 /* try_to_wake_up() stats */
1096 unsigned int ttwu_wake_remote;
1097 unsigned int ttwu_move_affine;
1098 unsigned int ttwu_move_balance;
1099#endif
1100#ifdef CONFIG_SCHED_DEBUG
1101 char *name;
1102#endif
1103 union {
1104 void *private; /* used during construction */
1105 struct rcu_head rcu; /* used during destruction */
1106 };
1107
1108 unsigned int span_weight;
1109 /*
1110 * Span of all CPUs in this domain.
1111 *
1112 * NOTE: this field is variable length. (Allocated dynamically
1113 * by attaching extra space to the end of the structure,
1114 * depending on how many CPUs the kernel has booted up with)
1115 */
1116 unsigned long span[0];
1117};
1118
1119static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1120{
1121 return to_cpumask(sd->span);
1122}
1123
1124extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1125 struct sched_domain_attr *dattr_new);
1126
1127/* Allocate an array of sched domains, for partition_sched_domains(). */
1128cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1129void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1130
1131bool cpus_share_cache(int this_cpu, int that_cpu);
1132
1133typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1134typedef int (*sched_domain_flags_f)(void);
1135
1136#define SDTL_OVERLAP 0x01
1137
1138struct sd_data {
1139 struct sched_domain **__percpu sd;
1140 struct sched_group **__percpu sg;
1141 struct sched_group_capacity **__percpu sgc;
1142};
1143
1144struct sched_domain_topology_level {
1145 sched_domain_mask_f mask;
1146 sched_domain_flags_f sd_flags;
1147 int flags;
1148 int numa_level;
1149 struct sd_data data;
1150#ifdef CONFIG_SCHED_DEBUG
1151 char *name;
1152#endif
1153};
1154
1155extern void set_sched_topology(struct sched_domain_topology_level *tl);
1156extern void wake_up_if_idle(int cpu);
1157
1158#ifdef CONFIG_SCHED_DEBUG
1159# define SD_INIT_NAME(type) .name = #type
1160#else
1161# define SD_INIT_NAME(type)
1162#endif
1163
1164#else /* CONFIG_SMP */
1165
1166struct sched_domain_attr;
1167
1168static inline void
1169partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1170 struct sched_domain_attr *dattr_new)
1171{
1172}
1173
1174static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1175{
1176 return true;
1177}
1178
1179#endif /* !CONFIG_SMP */
1180
1181
1182struct io_context; /* See blkdev.h */
1183
1184
1185#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1186extern void prefetch_stack(struct task_struct *t);
1187#else
1188static inline void prefetch_stack(struct task_struct *t) { }
1189#endif
1190
1191struct audit_context; /* See audit.c */
1192struct mempolicy;
1193struct pipe_inode_info;
1194struct uts_namespace;
1195
1196struct load_weight {
1197 unsigned long weight;
1198 u32 inv_weight;
1199};
1200
1201/*
1202 * The load_avg/util_avg accumulates an infinite geometric series.
1203 * 1) load_avg factors frequency scaling into the amount of time that a
1204 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1205 * aggregated such weights of all runnable and blocked sched_entities.
1206 * 2) util_avg factors frequency and cpu scaling into the amount of time
1207 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1208 * For cfs_rq, it is the aggregated such times of all runnable and
1209 * blocked sched_entities.
1210 * The 64 bit load_sum can:
1211 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1212 * the highest weight (=88761) always runnable, we should not overflow
1213 * 2) for entity, support any load.weight always runnable
1214 */
1215struct sched_avg {
1216 u64 last_update_time, load_sum;
1217 u32 util_sum, period_contrib;
1218 unsigned long load_avg, util_avg;
1219};
1220
1221#ifdef CONFIG_SCHEDSTATS
1222struct sched_statistics {
1223 u64 wait_start;
1224 u64 wait_max;
1225 u64 wait_count;
1226 u64 wait_sum;
1227 u64 iowait_count;
1228 u64 iowait_sum;
1229
1230 u64 sleep_start;
1231 u64 sleep_max;
1232 s64 sum_sleep_runtime;
1233
1234 u64 block_start;
1235 u64 block_max;
1236 u64 exec_max;
1237 u64 slice_max;
1238
1239 u64 nr_migrations_cold;
1240 u64 nr_failed_migrations_affine;
1241 u64 nr_failed_migrations_running;
1242 u64 nr_failed_migrations_hot;
1243 u64 nr_forced_migrations;
1244
1245 u64 nr_wakeups;
1246 u64 nr_wakeups_sync;
1247 u64 nr_wakeups_migrate;
1248 u64 nr_wakeups_local;
1249 u64 nr_wakeups_remote;
1250 u64 nr_wakeups_affine;
1251 u64 nr_wakeups_affine_attempts;
1252 u64 nr_wakeups_passive;
1253 u64 nr_wakeups_idle;
1254};
1255#endif
1256
1257struct sched_entity {
1258 struct load_weight load; /* for load-balancing */
1259 struct rb_node run_node;
1260 struct list_head group_node;
1261 unsigned int on_rq;
1262
1263 u64 exec_start;
1264 u64 sum_exec_runtime;
1265 u64 vruntime;
1266 u64 prev_sum_exec_runtime;
1267
1268 u64 nr_migrations;
1269
1270#ifdef CONFIG_SCHEDSTATS
1271 struct sched_statistics statistics;
1272#endif
1273
1274#ifdef CONFIG_FAIR_GROUP_SCHED
1275 int depth;
1276 struct sched_entity *parent;
1277 /* rq on which this entity is (to be) queued: */
1278 struct cfs_rq *cfs_rq;
1279 /* rq "owned" by this entity/group: */
1280 struct cfs_rq *my_q;
1281#endif
1282
1283#ifdef CONFIG_SMP
1284 /*
1285 * Per entity load average tracking.
1286 *
1287 * Put into separate cache line so it does not
1288 * collide with read-mostly values above.
1289 */
1290 struct sched_avg avg ____cacheline_aligned_in_smp;
1291#endif
1292};
1293
1294struct sched_rt_entity {
1295 struct list_head run_list;
1296 unsigned long timeout;
1297 unsigned long watchdog_stamp;
1298 unsigned int time_slice;
1299 unsigned short on_rq;
1300 unsigned short on_list;
1301
1302 struct sched_rt_entity *back;
1303#ifdef CONFIG_RT_GROUP_SCHED
1304 struct sched_rt_entity *parent;
1305 /* rq on which this entity is (to be) queued: */
1306 struct rt_rq *rt_rq;
1307 /* rq "owned" by this entity/group: */
1308 struct rt_rq *my_q;
1309#endif
1310};
1311
1312struct sched_dl_entity {
1313 struct rb_node rb_node;
1314
1315 /*
1316 * Original scheduling parameters. Copied here from sched_attr
1317 * during sched_setattr(), they will remain the same until
1318 * the next sched_setattr().
1319 */
1320 u64 dl_runtime; /* maximum runtime for each instance */
1321 u64 dl_deadline; /* relative deadline of each instance */
1322 u64 dl_period; /* separation of two instances (period) */
1323 u64 dl_bw; /* dl_runtime / dl_deadline */
1324
1325 /*
1326 * Actual scheduling parameters. Initialized with the values above,
1327 * they are continously updated during task execution. Note that
1328 * the remaining runtime could be < 0 in case we are in overrun.
1329 */
1330 s64 runtime; /* remaining runtime for this instance */
1331 u64 deadline; /* absolute deadline for this instance */
1332 unsigned int flags; /* specifying the scheduler behaviour */
1333
1334 /*
1335 * Some bool flags:
1336 *
1337 * @dl_throttled tells if we exhausted the runtime. If so, the
1338 * task has to wait for a replenishment to be performed at the
1339 * next firing of dl_timer.
1340 *
1341 * @dl_boosted tells if we are boosted due to DI. If so we are
1342 * outside bandwidth enforcement mechanism (but only until we
1343 * exit the critical section);
1344 *
1345 * @dl_yielded tells if task gave up the cpu before consuming
1346 * all its available runtime during the last job.
1347 */
1348 int dl_throttled, dl_boosted, dl_yielded;
1349
1350 /*
1351 * Bandwidth enforcement timer. Each -deadline task has its
1352 * own bandwidth to be enforced, thus we need one timer per task.
1353 */
1354 struct hrtimer dl_timer;
1355};
1356
1357union rcu_special {
1358 struct {
1359 u8 blocked;
1360 u8 need_qs;
1361 u8 exp_need_qs;
1362 u8 pad; /* Otherwise the compiler can store garbage here. */
1363 } b; /* Bits. */
1364 u32 s; /* Set of bits. */
1365};
1366struct rcu_node;
1367
1368enum perf_event_task_context {
1369 perf_invalid_context = -1,
1370 perf_hw_context = 0,
1371 perf_sw_context,
1372 perf_nr_task_contexts,
1373};
1374
1375/* Track pages that require TLB flushes */
1376struct tlbflush_unmap_batch {
1377 /*
1378 * Each bit set is a CPU that potentially has a TLB entry for one of
1379 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1380 */
1381 struct cpumask cpumask;
1382
1383 /* True if any bit in cpumask is set */
1384 bool flush_required;
1385
1386 /*
1387 * If true then the PTE was dirty when unmapped. The entry must be
1388 * flushed before IO is initiated or a stale TLB entry potentially
1389 * allows an update without redirtying the page.
1390 */
1391 bool writable;
1392};
1393
1394struct task_struct {
1395 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1396 void *stack;
1397 atomic_t usage;
1398 unsigned int flags; /* per process flags, defined below */
1399 unsigned int ptrace;
1400
1401#ifdef CONFIG_SMP
1402 struct llist_node wake_entry;
1403 int on_cpu;
1404 unsigned int wakee_flips;
1405 unsigned long wakee_flip_decay_ts;
1406 struct task_struct *last_wakee;
1407
1408 int wake_cpu;
1409#endif
1410 int on_rq;
1411
1412 int prio, static_prio, normal_prio;
1413 unsigned int rt_priority;
1414 const struct sched_class *sched_class;
1415 struct sched_entity se;
1416 struct sched_rt_entity rt;
1417#ifdef CONFIG_CGROUP_SCHED
1418 struct task_group *sched_task_group;
1419#endif
1420 struct sched_dl_entity dl;
1421
1422#ifdef CONFIG_PREEMPT_NOTIFIERS
1423 /* list of struct preempt_notifier: */
1424 struct hlist_head preempt_notifiers;
1425#endif
1426
1427#ifdef CONFIG_BLK_DEV_IO_TRACE
1428 unsigned int btrace_seq;
1429#endif
1430
1431 unsigned int policy;
1432 int nr_cpus_allowed;
1433 cpumask_t cpus_allowed;
1434
1435#ifdef CONFIG_PREEMPT_RCU
1436 int rcu_read_lock_nesting;
1437 union rcu_special rcu_read_unlock_special;
1438 struct list_head rcu_node_entry;
1439 struct rcu_node *rcu_blocked_node;
1440#endif /* #ifdef CONFIG_PREEMPT_RCU */
1441#ifdef CONFIG_TASKS_RCU
1442 unsigned long rcu_tasks_nvcsw;
1443 bool rcu_tasks_holdout;
1444 struct list_head rcu_tasks_holdout_list;
1445 int rcu_tasks_idle_cpu;
1446#endif /* #ifdef CONFIG_TASKS_RCU */
1447
1448#ifdef CONFIG_SCHED_INFO
1449 struct sched_info sched_info;
1450#endif
1451
1452 struct list_head tasks;
1453#ifdef CONFIG_SMP
1454 struct plist_node pushable_tasks;
1455 struct rb_node pushable_dl_tasks;
1456#endif
1457
1458 struct mm_struct *mm, *active_mm;
1459 /* per-thread vma caching */
1460 u32 vmacache_seqnum;
1461 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1462#if defined(SPLIT_RSS_COUNTING)
1463 struct task_rss_stat rss_stat;
1464#endif
1465/* task state */
1466 int exit_state;
1467 int exit_code, exit_signal;
1468 int pdeath_signal; /* The signal sent when the parent dies */
1469 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1470
1471 /* Used for emulating ABI behavior of previous Linux versions */
1472 unsigned int personality;
1473
1474 /* scheduler bits, serialized by scheduler locks */
1475 unsigned sched_reset_on_fork:1;
1476 unsigned sched_contributes_to_load:1;
1477 unsigned sched_migrated:1;
1478 unsigned :0; /* force alignment to the next boundary */
1479
1480 /* unserialized, strictly 'current' */
1481 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1482 unsigned in_iowait:1;
1483#ifdef CONFIG_MEMCG
1484 unsigned memcg_may_oom:1;
1485#ifndef CONFIG_SLOB
1486 unsigned memcg_kmem_skip_account:1;
1487#endif
1488#endif
1489#ifdef CONFIG_COMPAT_BRK
1490 unsigned brk_randomized:1;
1491#endif
1492
1493 unsigned long atomic_flags; /* Flags needing atomic access. */
1494
1495 struct restart_block restart_block;
1496
1497 pid_t pid;
1498 pid_t tgid;
1499
1500#ifdef CONFIG_CC_STACKPROTECTOR
1501 /* Canary value for the -fstack-protector gcc feature */
1502 unsigned long stack_canary;
1503#endif
1504 /*
1505 * pointers to (original) parent process, youngest child, younger sibling,
1506 * older sibling, respectively. (p->father can be replaced with
1507 * p->real_parent->pid)
1508 */
1509 struct task_struct __rcu *real_parent; /* real parent process */
1510 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1511 /*
1512 * children/sibling forms the list of my natural children
1513 */
1514 struct list_head children; /* list of my children */
1515 struct list_head sibling; /* linkage in my parent's children list */
1516 struct task_struct *group_leader; /* threadgroup leader */
1517
1518 /*
1519 * ptraced is the list of tasks this task is using ptrace on.
1520 * This includes both natural children and PTRACE_ATTACH targets.
1521 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1522 */
1523 struct list_head ptraced;
1524 struct list_head ptrace_entry;
1525
1526 /* PID/PID hash table linkage. */
1527 struct pid_link pids[PIDTYPE_MAX];
1528 struct list_head thread_group;
1529 struct list_head thread_node;
1530
1531 struct completion *vfork_done; /* for vfork() */
1532 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1533 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1534
1535 cputime_t utime, stime, utimescaled, stimescaled;
1536 cputime_t gtime;
1537 struct prev_cputime prev_cputime;
1538#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1539 seqcount_t vtime_seqcount;
1540 unsigned long long vtime_snap;
1541 enum {
1542 /* Task is sleeping or running in a CPU with VTIME inactive */
1543 VTIME_INACTIVE = 0,
1544 /* Task runs in userspace in a CPU with VTIME active */
1545 VTIME_USER,
1546 /* Task runs in kernelspace in a CPU with VTIME active */
1547 VTIME_SYS,
1548 } vtime_snap_whence;
1549#endif
1550
1551#ifdef CONFIG_NO_HZ_FULL
1552 atomic_t tick_dep_mask;
1553#endif
1554 unsigned long nvcsw, nivcsw; /* context switch counts */
1555 u64 start_time; /* monotonic time in nsec */
1556 u64 real_start_time; /* boot based time in nsec */
1557/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1558 unsigned long min_flt, maj_flt;
1559
1560 struct task_cputime cputime_expires;
1561 struct list_head cpu_timers[3];
1562
1563/* process credentials */
1564 const struct cred __rcu *real_cred; /* objective and real subjective task
1565 * credentials (COW) */
1566 const struct cred __rcu *cred; /* effective (overridable) subjective task
1567 * credentials (COW) */
1568 char comm[TASK_COMM_LEN]; /* executable name excluding path
1569 - access with [gs]et_task_comm (which lock
1570 it with task_lock())
1571 - initialized normally by setup_new_exec */
1572/* file system info */
1573 struct nameidata *nameidata;
1574#ifdef CONFIG_SYSVIPC
1575/* ipc stuff */
1576 struct sysv_sem sysvsem;
1577 struct sysv_shm sysvshm;
1578#endif
1579#ifdef CONFIG_DETECT_HUNG_TASK
1580/* hung task detection */
1581 unsigned long last_switch_count;
1582#endif
1583/* filesystem information */
1584 struct fs_struct *fs;
1585/* open file information */
1586 struct files_struct *files;
1587/* namespaces */
1588 struct nsproxy *nsproxy;
1589/* signal handlers */
1590 struct signal_struct *signal;
1591 struct sighand_struct *sighand;
1592
1593 sigset_t blocked, real_blocked;
1594 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1595 struct sigpending pending;
1596
1597 unsigned long sas_ss_sp;
1598 size_t sas_ss_size;
1599
1600 struct callback_head *task_works;
1601
1602 struct audit_context *audit_context;
1603#ifdef CONFIG_AUDITSYSCALL
1604 kuid_t loginuid;
1605 unsigned int sessionid;
1606#endif
1607 struct seccomp seccomp;
1608
1609/* Thread group tracking */
1610 u32 parent_exec_id;
1611 u32 self_exec_id;
1612/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1613 * mempolicy */
1614 spinlock_t alloc_lock;
1615
1616 /* Protection of the PI data structures: */
1617 raw_spinlock_t pi_lock;
1618
1619 struct wake_q_node wake_q;
1620
1621#ifdef CONFIG_RT_MUTEXES
1622 /* PI waiters blocked on a rt_mutex held by this task */
1623 struct rb_root pi_waiters;
1624 struct rb_node *pi_waiters_leftmost;
1625 /* Deadlock detection and priority inheritance handling */
1626 struct rt_mutex_waiter *pi_blocked_on;
1627#endif
1628
1629#ifdef CONFIG_DEBUG_MUTEXES
1630 /* mutex deadlock detection */
1631 struct mutex_waiter *blocked_on;
1632#endif
1633#ifdef CONFIG_TRACE_IRQFLAGS
1634 unsigned int irq_events;
1635 unsigned long hardirq_enable_ip;
1636 unsigned long hardirq_disable_ip;
1637 unsigned int hardirq_enable_event;
1638 unsigned int hardirq_disable_event;
1639 int hardirqs_enabled;
1640 int hardirq_context;
1641 unsigned long softirq_disable_ip;
1642 unsigned long softirq_enable_ip;
1643 unsigned int softirq_disable_event;
1644 unsigned int softirq_enable_event;
1645 int softirqs_enabled;
1646 int softirq_context;
1647#endif
1648#ifdef CONFIG_LOCKDEP
1649# define MAX_LOCK_DEPTH 48UL
1650 u64 curr_chain_key;
1651 int lockdep_depth;
1652 unsigned int lockdep_recursion;
1653 struct held_lock held_locks[MAX_LOCK_DEPTH];
1654 gfp_t lockdep_reclaim_gfp;
1655#endif
1656#ifdef CONFIG_UBSAN
1657 unsigned int in_ubsan;
1658#endif
1659
1660/* journalling filesystem info */
1661 void *journal_info;
1662
1663/* stacked block device info */
1664 struct bio_list *bio_list;
1665
1666#ifdef CONFIG_BLOCK
1667/* stack plugging */
1668 struct blk_plug *plug;
1669#endif
1670
1671/* VM state */
1672 struct reclaim_state *reclaim_state;
1673
1674 struct backing_dev_info *backing_dev_info;
1675
1676 struct io_context *io_context;
1677
1678 unsigned long ptrace_message;
1679 siginfo_t *last_siginfo; /* For ptrace use. */
1680 struct task_io_accounting ioac;
1681#if defined(CONFIG_TASK_XACCT)
1682 u64 acct_rss_mem1; /* accumulated rss usage */
1683 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1684 cputime_t acct_timexpd; /* stime + utime since last update */
1685#endif
1686#ifdef CONFIG_CPUSETS
1687 nodemask_t mems_allowed; /* Protected by alloc_lock */
1688 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1689 int cpuset_mem_spread_rotor;
1690 int cpuset_slab_spread_rotor;
1691#endif
1692#ifdef CONFIG_CGROUPS
1693 /* Control Group info protected by css_set_lock */
1694 struct css_set __rcu *cgroups;
1695 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1696 struct list_head cg_list;
1697#endif
1698#ifdef CONFIG_FUTEX
1699 struct robust_list_head __user *robust_list;
1700#ifdef CONFIG_COMPAT
1701 struct compat_robust_list_head __user *compat_robust_list;
1702#endif
1703 struct list_head pi_state_list;
1704 struct futex_pi_state *pi_state_cache;
1705#endif
1706#ifdef CONFIG_PERF_EVENTS
1707 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1708 struct mutex perf_event_mutex;
1709 struct list_head perf_event_list;
1710#endif
1711#ifdef CONFIG_DEBUG_PREEMPT
1712 unsigned long preempt_disable_ip;
1713#endif
1714#ifdef CONFIG_NUMA
1715 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1716 short il_next;
1717 short pref_node_fork;
1718#endif
1719#ifdef CONFIG_NUMA_BALANCING
1720 int numa_scan_seq;
1721 unsigned int numa_scan_period;
1722 unsigned int numa_scan_period_max;
1723 int numa_preferred_nid;
1724 unsigned long numa_migrate_retry;
1725 u64 node_stamp; /* migration stamp */
1726 u64 last_task_numa_placement;
1727 u64 last_sum_exec_runtime;
1728 struct callback_head numa_work;
1729
1730 struct list_head numa_entry;
1731 struct numa_group *numa_group;
1732
1733 /*
1734 * numa_faults is an array split into four regions:
1735 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1736 * in this precise order.
1737 *
1738 * faults_memory: Exponential decaying average of faults on a per-node
1739 * basis. Scheduling placement decisions are made based on these
1740 * counts. The values remain static for the duration of a PTE scan.
1741 * faults_cpu: Track the nodes the process was running on when a NUMA
1742 * hinting fault was incurred.
1743 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1744 * during the current scan window. When the scan completes, the counts
1745 * in faults_memory and faults_cpu decay and these values are copied.
1746 */
1747 unsigned long *numa_faults;
1748 unsigned long total_numa_faults;
1749
1750 /*
1751 * numa_faults_locality tracks if faults recorded during the last
1752 * scan window were remote/local or failed to migrate. The task scan
1753 * period is adapted based on the locality of the faults with different
1754 * weights depending on whether they were shared or private faults
1755 */
1756 unsigned long numa_faults_locality[3];
1757
1758 unsigned long numa_pages_migrated;
1759#endif /* CONFIG_NUMA_BALANCING */
1760
1761#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1762 struct tlbflush_unmap_batch tlb_ubc;
1763#endif
1764
1765 struct rcu_head rcu;
1766
1767 /*
1768 * cache last used pipe for splice
1769 */
1770 struct pipe_inode_info *splice_pipe;
1771
1772 struct page_frag task_frag;
1773
1774#ifdef CONFIG_TASK_DELAY_ACCT
1775 struct task_delay_info *delays;
1776#endif
1777#ifdef CONFIG_FAULT_INJECTION
1778 int make_it_fail;
1779#endif
1780 /*
1781 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1782 * balance_dirty_pages() for some dirty throttling pause
1783 */
1784 int nr_dirtied;
1785 int nr_dirtied_pause;
1786 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1787
1788#ifdef CONFIG_LATENCYTOP
1789 int latency_record_count;
1790 struct latency_record latency_record[LT_SAVECOUNT];
1791#endif
1792 /*
1793 * time slack values; these are used to round up poll() and
1794 * select() etc timeout values. These are in nanoseconds.
1795 */
1796 u64 timer_slack_ns;
1797 u64 default_timer_slack_ns;
1798
1799#ifdef CONFIG_KASAN
1800 unsigned int kasan_depth;
1801#endif
1802#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1803 /* Index of current stored address in ret_stack */
1804 int curr_ret_stack;
1805 /* Stack of return addresses for return function tracing */
1806 struct ftrace_ret_stack *ret_stack;
1807 /* time stamp for last schedule */
1808 unsigned long long ftrace_timestamp;
1809 /*
1810 * Number of functions that haven't been traced
1811 * because of depth overrun.
1812 */
1813 atomic_t trace_overrun;
1814 /* Pause for the tracing */
1815 atomic_t tracing_graph_pause;
1816#endif
1817#ifdef CONFIG_TRACING
1818 /* state flags for use by tracers */
1819 unsigned long trace;
1820 /* bitmask and counter of trace recursion */
1821 unsigned long trace_recursion;
1822#endif /* CONFIG_TRACING */
1823#ifdef CONFIG_KCOV
1824 /* Coverage collection mode enabled for this task (0 if disabled). */
1825 enum kcov_mode kcov_mode;
1826 /* Size of the kcov_area. */
1827 unsigned kcov_size;
1828 /* Buffer for coverage collection. */
1829 void *kcov_area;
1830 /* kcov desciptor wired with this task or NULL. */
1831 struct kcov *kcov;
1832#endif
1833#ifdef CONFIG_MEMCG
1834 struct mem_cgroup *memcg_in_oom;
1835 gfp_t memcg_oom_gfp_mask;
1836 int memcg_oom_order;
1837
1838 /* number of pages to reclaim on returning to userland */
1839 unsigned int memcg_nr_pages_over_high;
1840#endif
1841#ifdef CONFIG_UPROBES
1842 struct uprobe_task *utask;
1843#endif
1844#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1845 unsigned int sequential_io;
1846 unsigned int sequential_io_avg;
1847#endif
1848#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1849 unsigned long task_state_change;
1850#endif
1851 int pagefault_disabled;
1852#ifdef CONFIG_MMU
1853 struct task_struct *oom_reaper_list;
1854#endif
1855/* CPU-specific state of this task */
1856 struct thread_struct thread;
1857/*
1858 * WARNING: on x86, 'thread_struct' contains a variable-sized
1859 * structure. It *MUST* be at the end of 'task_struct'.
1860 *
1861 * Do not put anything below here!
1862 */
1863};
1864
1865#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1866extern int arch_task_struct_size __read_mostly;
1867#else
1868# define arch_task_struct_size (sizeof(struct task_struct))
1869#endif
1870
1871/* Future-safe accessor for struct task_struct's cpus_allowed. */
1872#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1873
1874#define TNF_MIGRATED 0x01
1875#define TNF_NO_GROUP 0x02
1876#define TNF_SHARED 0x04
1877#define TNF_FAULT_LOCAL 0x08
1878#define TNF_MIGRATE_FAIL 0x10
1879
1880#ifdef CONFIG_NUMA_BALANCING
1881extern void task_numa_fault(int last_node, int node, int pages, int flags);
1882extern pid_t task_numa_group_id(struct task_struct *p);
1883extern void set_numabalancing_state(bool enabled);
1884extern void task_numa_free(struct task_struct *p);
1885extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1886 int src_nid, int dst_cpu);
1887#else
1888static inline void task_numa_fault(int last_node, int node, int pages,
1889 int flags)
1890{
1891}
1892static inline pid_t task_numa_group_id(struct task_struct *p)
1893{
1894 return 0;
1895}
1896static inline void set_numabalancing_state(bool enabled)
1897{
1898}
1899static inline void task_numa_free(struct task_struct *p)
1900{
1901}
1902static inline bool should_numa_migrate_memory(struct task_struct *p,
1903 struct page *page, int src_nid, int dst_cpu)
1904{
1905 return true;
1906}
1907#endif
1908
1909static inline struct pid *task_pid(struct task_struct *task)
1910{
1911 return task->pids[PIDTYPE_PID].pid;
1912}
1913
1914static inline struct pid *task_tgid(struct task_struct *task)
1915{
1916 return task->group_leader->pids[PIDTYPE_PID].pid;
1917}
1918
1919/*
1920 * Without tasklist or rcu lock it is not safe to dereference
1921 * the result of task_pgrp/task_session even if task == current,
1922 * we can race with another thread doing sys_setsid/sys_setpgid.
1923 */
1924static inline struct pid *task_pgrp(struct task_struct *task)
1925{
1926 return task->group_leader->pids[PIDTYPE_PGID].pid;
1927}
1928
1929static inline struct pid *task_session(struct task_struct *task)
1930{
1931 return task->group_leader->pids[PIDTYPE_SID].pid;
1932}
1933
1934struct pid_namespace;
1935
1936/*
1937 * the helpers to get the task's different pids as they are seen
1938 * from various namespaces
1939 *
1940 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1941 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1942 * current.
1943 * task_xid_nr_ns() : id seen from the ns specified;
1944 *
1945 * set_task_vxid() : assigns a virtual id to a task;
1946 *
1947 * see also pid_nr() etc in include/linux/pid.h
1948 */
1949pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1950 struct pid_namespace *ns);
1951
1952static inline pid_t task_pid_nr(struct task_struct *tsk)
1953{
1954 return tsk->pid;
1955}
1956
1957static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1958 struct pid_namespace *ns)
1959{
1960 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1961}
1962
1963static inline pid_t task_pid_vnr(struct task_struct *tsk)
1964{
1965 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1966}
1967
1968
1969static inline pid_t task_tgid_nr(struct task_struct *tsk)
1970{
1971 return tsk->tgid;
1972}
1973
1974pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1975
1976static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1977{
1978 return pid_vnr(task_tgid(tsk));
1979}
1980
1981
1982static inline int pid_alive(const struct task_struct *p);
1983static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1984{
1985 pid_t pid = 0;
1986
1987 rcu_read_lock();
1988 if (pid_alive(tsk))
1989 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1990 rcu_read_unlock();
1991
1992 return pid;
1993}
1994
1995static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1996{
1997 return task_ppid_nr_ns(tsk, &init_pid_ns);
1998}
1999
2000static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2001 struct pid_namespace *ns)
2002{
2003 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2004}
2005
2006static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2007{
2008 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2009}
2010
2011
2012static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2013 struct pid_namespace *ns)
2014{
2015 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2016}
2017
2018static inline pid_t task_session_vnr(struct task_struct *tsk)
2019{
2020 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2021}
2022
2023/* obsolete, do not use */
2024static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2025{
2026 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2027}
2028
2029/**
2030 * pid_alive - check that a task structure is not stale
2031 * @p: Task structure to be checked.
2032 *
2033 * Test if a process is not yet dead (at most zombie state)
2034 * If pid_alive fails, then pointers within the task structure
2035 * can be stale and must not be dereferenced.
2036 *
2037 * Return: 1 if the process is alive. 0 otherwise.
2038 */
2039static inline int pid_alive(const struct task_struct *p)
2040{
2041 return p->pids[PIDTYPE_PID].pid != NULL;
2042}
2043
2044/**
2045 * is_global_init - check if a task structure is init. Since init
2046 * is free to have sub-threads we need to check tgid.
2047 * @tsk: Task structure to be checked.
2048 *
2049 * Check if a task structure is the first user space task the kernel created.
2050 *
2051 * Return: 1 if the task structure is init. 0 otherwise.
2052 */
2053static inline int is_global_init(struct task_struct *tsk)
2054{
2055 return task_tgid_nr(tsk) == 1;
2056}
2057
2058extern struct pid *cad_pid;
2059
2060extern void free_task(struct task_struct *tsk);
2061#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2062
2063extern void __put_task_struct(struct task_struct *t);
2064
2065static inline void put_task_struct(struct task_struct *t)
2066{
2067 if (atomic_dec_and_test(&t->usage))
2068 __put_task_struct(t);
2069}
2070
2071#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2072extern void task_cputime(struct task_struct *t,
2073 cputime_t *utime, cputime_t *stime);
2074extern void task_cputime_scaled(struct task_struct *t,
2075 cputime_t *utimescaled, cputime_t *stimescaled);
2076extern cputime_t task_gtime(struct task_struct *t);
2077#else
2078static inline void task_cputime(struct task_struct *t,
2079 cputime_t *utime, cputime_t *stime)
2080{
2081 if (utime)
2082 *utime = t->utime;
2083 if (stime)
2084 *stime = t->stime;
2085}
2086
2087static inline void task_cputime_scaled(struct task_struct *t,
2088 cputime_t *utimescaled,
2089 cputime_t *stimescaled)
2090{
2091 if (utimescaled)
2092 *utimescaled = t->utimescaled;
2093 if (stimescaled)
2094 *stimescaled = t->stimescaled;
2095}
2096
2097static inline cputime_t task_gtime(struct task_struct *t)
2098{
2099 return t->gtime;
2100}
2101#endif
2102extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2103extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2104
2105/*
2106 * Per process flags
2107 */
2108#define PF_EXITING 0x00000004 /* getting shut down */
2109#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2110#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2111#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2112#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2113#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2114#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2115#define PF_DUMPCORE 0x00000200 /* dumped core */
2116#define PF_SIGNALED 0x00000400 /* killed by a signal */
2117#define PF_MEMALLOC 0x00000800 /* Allocating memory */
2118#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2119#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2120#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2121#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2122#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2123#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2124#define PF_KSWAPD 0x00040000 /* I am kswapd */
2125#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2126#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2127#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2128#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2129#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2130#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2131#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2132#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2133#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2134#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2135
2136/*
2137 * Only the _current_ task can read/write to tsk->flags, but other
2138 * tasks can access tsk->flags in readonly mode for example
2139 * with tsk_used_math (like during threaded core dumping).
2140 * There is however an exception to this rule during ptrace
2141 * or during fork: the ptracer task is allowed to write to the
2142 * child->flags of its traced child (same goes for fork, the parent
2143 * can write to the child->flags), because we're guaranteed the
2144 * child is not running and in turn not changing child->flags
2145 * at the same time the parent does it.
2146 */
2147#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2148#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2149#define clear_used_math() clear_stopped_child_used_math(current)
2150#define set_used_math() set_stopped_child_used_math(current)
2151#define conditional_stopped_child_used_math(condition, child) \
2152 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2153#define conditional_used_math(condition) \
2154 conditional_stopped_child_used_math(condition, current)
2155#define copy_to_stopped_child_used_math(child) \
2156 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2157/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2158#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2159#define used_math() tsk_used_math(current)
2160
2161/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2162 * __GFP_FS is also cleared as it implies __GFP_IO.
2163 */
2164static inline gfp_t memalloc_noio_flags(gfp_t flags)
2165{
2166 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2167 flags &= ~(__GFP_IO | __GFP_FS);
2168 return flags;
2169}
2170
2171static inline unsigned int memalloc_noio_save(void)
2172{
2173 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2174 current->flags |= PF_MEMALLOC_NOIO;
2175 return flags;
2176}
2177
2178static inline void memalloc_noio_restore(unsigned int flags)
2179{
2180 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2181}
2182
2183/* Per-process atomic flags. */
2184#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2185#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2186#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2187
2188
2189#define TASK_PFA_TEST(name, func) \
2190 static inline bool task_##func(struct task_struct *p) \
2191 { return test_bit(PFA_##name, &p->atomic_flags); }
2192#define TASK_PFA_SET(name, func) \
2193 static inline void task_set_##func(struct task_struct *p) \
2194 { set_bit(PFA_##name, &p->atomic_flags); }
2195#define TASK_PFA_CLEAR(name, func) \
2196 static inline void task_clear_##func(struct task_struct *p) \
2197 { clear_bit(PFA_##name, &p->atomic_flags); }
2198
2199TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2200TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2201
2202TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2203TASK_PFA_SET(SPREAD_PAGE, spread_page)
2204TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2205
2206TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2207TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2208TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2209
2210/*
2211 * task->jobctl flags
2212 */
2213#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2214
2215#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2216#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2217#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2218#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2219#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2220#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2221#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2222
2223#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2224#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2225#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2226#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2227#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2228#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2229#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2230
2231#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2232#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2233
2234extern bool task_set_jobctl_pending(struct task_struct *task,
2235 unsigned long mask);
2236extern void task_clear_jobctl_trapping(struct task_struct *task);
2237extern void task_clear_jobctl_pending(struct task_struct *task,
2238 unsigned long mask);
2239
2240static inline void rcu_copy_process(struct task_struct *p)
2241{
2242#ifdef CONFIG_PREEMPT_RCU
2243 p->rcu_read_lock_nesting = 0;
2244 p->rcu_read_unlock_special.s = 0;
2245 p->rcu_blocked_node = NULL;
2246 INIT_LIST_HEAD(&p->rcu_node_entry);
2247#endif /* #ifdef CONFIG_PREEMPT_RCU */
2248#ifdef CONFIG_TASKS_RCU
2249 p->rcu_tasks_holdout = false;
2250 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2251 p->rcu_tasks_idle_cpu = -1;
2252#endif /* #ifdef CONFIG_TASKS_RCU */
2253}
2254
2255static inline void tsk_restore_flags(struct task_struct *task,
2256 unsigned long orig_flags, unsigned long flags)
2257{
2258 task->flags &= ~flags;
2259 task->flags |= orig_flags & flags;
2260}
2261
2262extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2263 const struct cpumask *trial);
2264extern int task_can_attach(struct task_struct *p,
2265 const struct cpumask *cs_cpus_allowed);
2266#ifdef CONFIG_SMP
2267extern void do_set_cpus_allowed(struct task_struct *p,
2268 const struct cpumask *new_mask);
2269
2270extern int set_cpus_allowed_ptr(struct task_struct *p,
2271 const struct cpumask *new_mask);
2272#else
2273static inline void do_set_cpus_allowed(struct task_struct *p,
2274 const struct cpumask *new_mask)
2275{
2276}
2277static inline int set_cpus_allowed_ptr(struct task_struct *p,
2278 const struct cpumask *new_mask)
2279{
2280 if (!cpumask_test_cpu(0, new_mask))
2281 return -EINVAL;
2282 return 0;
2283}
2284#endif
2285
2286#ifdef CONFIG_NO_HZ_COMMON
2287void calc_load_enter_idle(void);
2288void calc_load_exit_idle(void);
2289#else
2290static inline void calc_load_enter_idle(void) { }
2291static inline void calc_load_exit_idle(void) { }
2292#endif /* CONFIG_NO_HZ_COMMON */
2293
2294/*
2295 * Do not use outside of architecture code which knows its limitations.
2296 *
2297 * sched_clock() has no promise of monotonicity or bounded drift between
2298 * CPUs, use (which you should not) requires disabling IRQs.
2299 *
2300 * Please use one of the three interfaces below.
2301 */
2302extern unsigned long long notrace sched_clock(void);
2303/*
2304 * See the comment in kernel/sched/clock.c
2305 */
2306extern u64 cpu_clock(int cpu);
2307extern u64 local_clock(void);
2308extern u64 running_clock(void);
2309extern u64 sched_clock_cpu(int cpu);
2310
2311
2312extern void sched_clock_init(void);
2313
2314#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2315static inline void sched_clock_tick(void)
2316{
2317}
2318
2319static inline void sched_clock_idle_sleep_event(void)
2320{
2321}
2322
2323static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2324{
2325}
2326#else
2327/*
2328 * Architectures can set this to 1 if they have specified
2329 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2330 * but then during bootup it turns out that sched_clock()
2331 * is reliable after all:
2332 */
2333extern int sched_clock_stable(void);
2334extern void set_sched_clock_stable(void);
2335extern void clear_sched_clock_stable(void);
2336
2337extern void sched_clock_tick(void);
2338extern void sched_clock_idle_sleep_event(void);
2339extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2340#endif
2341
2342#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2343/*
2344 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2345 * The reason for this explicit opt-in is not to have perf penalty with
2346 * slow sched_clocks.
2347 */
2348extern void enable_sched_clock_irqtime(void);
2349extern void disable_sched_clock_irqtime(void);
2350#else
2351static inline void enable_sched_clock_irqtime(void) {}
2352static inline void disable_sched_clock_irqtime(void) {}
2353#endif
2354
2355extern unsigned long long
2356task_sched_runtime(struct task_struct *task);
2357
2358/* sched_exec is called by processes performing an exec */
2359#ifdef CONFIG_SMP
2360extern void sched_exec(void);
2361#else
2362#define sched_exec() {}
2363#endif
2364
2365extern void sched_clock_idle_sleep_event(void);
2366extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2367
2368#ifdef CONFIG_HOTPLUG_CPU
2369extern void idle_task_exit(void);
2370#else
2371static inline void idle_task_exit(void) {}
2372#endif
2373
2374#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2375extern void wake_up_nohz_cpu(int cpu);
2376#else
2377static inline void wake_up_nohz_cpu(int cpu) { }
2378#endif
2379
2380#ifdef CONFIG_NO_HZ_FULL
2381extern u64 scheduler_tick_max_deferment(void);
2382#endif
2383
2384#ifdef CONFIG_SCHED_AUTOGROUP
2385extern void sched_autogroup_create_attach(struct task_struct *p);
2386extern void sched_autogroup_detach(struct task_struct *p);
2387extern void sched_autogroup_fork(struct signal_struct *sig);
2388extern void sched_autogroup_exit(struct signal_struct *sig);
2389#ifdef CONFIG_PROC_FS
2390extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2391extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2392#endif
2393#else
2394static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2395static inline void sched_autogroup_detach(struct task_struct *p) { }
2396static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2397static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2398#endif
2399
2400extern int yield_to(struct task_struct *p, bool preempt);
2401extern void set_user_nice(struct task_struct *p, long nice);
2402extern int task_prio(const struct task_struct *p);
2403/**
2404 * task_nice - return the nice value of a given task.
2405 * @p: the task in question.
2406 *
2407 * Return: The nice value [ -20 ... 0 ... 19 ].
2408 */
2409static inline int task_nice(const struct task_struct *p)
2410{
2411 return PRIO_TO_NICE((p)->static_prio);
2412}
2413extern int can_nice(const struct task_struct *p, const int nice);
2414extern int task_curr(const struct task_struct *p);
2415extern int idle_cpu(int cpu);
2416extern int sched_setscheduler(struct task_struct *, int,
2417 const struct sched_param *);
2418extern int sched_setscheduler_nocheck(struct task_struct *, int,
2419 const struct sched_param *);
2420extern int sched_setattr(struct task_struct *,
2421 const struct sched_attr *);
2422extern struct task_struct *idle_task(int cpu);
2423/**
2424 * is_idle_task - is the specified task an idle task?
2425 * @p: the task in question.
2426 *
2427 * Return: 1 if @p is an idle task. 0 otherwise.
2428 */
2429static inline bool is_idle_task(const struct task_struct *p)
2430{
2431 return p->pid == 0;
2432}
2433extern struct task_struct *curr_task(int cpu);
2434extern void set_curr_task(int cpu, struct task_struct *p);
2435
2436void yield(void);
2437
2438union thread_union {
2439 struct thread_info thread_info;
2440 unsigned long stack[THREAD_SIZE/sizeof(long)];
2441};
2442
2443#ifndef __HAVE_ARCH_KSTACK_END
2444static inline int kstack_end(void *addr)
2445{
2446 /* Reliable end of stack detection:
2447 * Some APM bios versions misalign the stack
2448 */
2449 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2450}
2451#endif
2452
2453extern union thread_union init_thread_union;
2454extern struct task_struct init_task;
2455
2456extern struct mm_struct init_mm;
2457
2458extern struct pid_namespace init_pid_ns;
2459
2460/*
2461 * find a task by one of its numerical ids
2462 *
2463 * find_task_by_pid_ns():
2464 * finds a task by its pid in the specified namespace
2465 * find_task_by_vpid():
2466 * finds a task by its virtual pid
2467 *
2468 * see also find_vpid() etc in include/linux/pid.h
2469 */
2470
2471extern struct task_struct *find_task_by_vpid(pid_t nr);
2472extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2473 struct pid_namespace *ns);
2474
2475/* per-UID process charging. */
2476extern struct user_struct * alloc_uid(kuid_t);
2477static inline struct user_struct *get_uid(struct user_struct *u)
2478{
2479 atomic_inc(&u->__count);
2480 return u;
2481}
2482extern void free_uid(struct user_struct *);
2483
2484#include <asm/current.h>
2485
2486extern void xtime_update(unsigned long ticks);
2487
2488extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2489extern int wake_up_process(struct task_struct *tsk);
2490extern void wake_up_new_task(struct task_struct *tsk);
2491#ifdef CONFIG_SMP
2492 extern void kick_process(struct task_struct *tsk);
2493#else
2494 static inline void kick_process(struct task_struct *tsk) { }
2495#endif
2496extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2497extern void sched_dead(struct task_struct *p);
2498
2499extern void proc_caches_init(void);
2500extern void flush_signals(struct task_struct *);
2501extern void ignore_signals(struct task_struct *);
2502extern void flush_signal_handlers(struct task_struct *, int force_default);
2503extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2504
2505static inline int kernel_dequeue_signal(siginfo_t *info)
2506{
2507 struct task_struct *tsk = current;
2508 siginfo_t __info;
2509 int ret;
2510
2511 spin_lock_irq(&tsk->sighand->siglock);
2512 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2513 spin_unlock_irq(&tsk->sighand->siglock);
2514
2515 return ret;
2516}
2517
2518static inline void kernel_signal_stop(void)
2519{
2520 spin_lock_irq(¤t->sighand->siglock);
2521 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2522 __set_current_state(TASK_STOPPED);
2523 spin_unlock_irq(¤t->sighand->siglock);
2524
2525 schedule();
2526}
2527
2528extern void release_task(struct task_struct * p);
2529extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2530extern int force_sigsegv(int, struct task_struct *);
2531extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2532extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2533extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2534extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2535 const struct cred *, u32);
2536extern int kill_pgrp(struct pid *pid, int sig, int priv);
2537extern int kill_pid(struct pid *pid, int sig, int priv);
2538extern int kill_proc_info(int, struct siginfo *, pid_t);
2539extern __must_check bool do_notify_parent(struct task_struct *, int);
2540extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2541extern void force_sig(int, struct task_struct *);
2542extern int send_sig(int, struct task_struct *, int);
2543extern int zap_other_threads(struct task_struct *p);
2544extern struct sigqueue *sigqueue_alloc(void);
2545extern void sigqueue_free(struct sigqueue *);
2546extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2547extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2548
2549static inline void restore_saved_sigmask(void)
2550{
2551 if (test_and_clear_restore_sigmask())
2552 __set_current_blocked(¤t->saved_sigmask);
2553}
2554
2555static inline sigset_t *sigmask_to_save(void)
2556{
2557 sigset_t *res = ¤t->blocked;
2558 if (unlikely(test_restore_sigmask()))
2559 res = ¤t->saved_sigmask;
2560 return res;
2561}
2562
2563static inline int kill_cad_pid(int sig, int priv)
2564{
2565 return kill_pid(cad_pid, sig, priv);
2566}
2567
2568/* These can be the second arg to send_sig_info/send_group_sig_info. */
2569#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2570#define SEND_SIG_PRIV ((struct siginfo *) 1)
2571#define SEND_SIG_FORCED ((struct siginfo *) 2)
2572
2573/*
2574 * True if we are on the alternate signal stack.
2575 */
2576static inline int on_sig_stack(unsigned long sp)
2577{
2578#ifdef CONFIG_STACK_GROWSUP
2579 return sp >= current->sas_ss_sp &&
2580 sp - current->sas_ss_sp < current->sas_ss_size;
2581#else
2582 return sp > current->sas_ss_sp &&
2583 sp - current->sas_ss_sp <= current->sas_ss_size;
2584#endif
2585}
2586
2587static inline int sas_ss_flags(unsigned long sp)
2588{
2589 if (!current->sas_ss_size)
2590 return SS_DISABLE;
2591
2592 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2593}
2594
2595static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2596{
2597 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2598#ifdef CONFIG_STACK_GROWSUP
2599 return current->sas_ss_sp;
2600#else
2601 return current->sas_ss_sp + current->sas_ss_size;
2602#endif
2603 return sp;
2604}
2605
2606/*
2607 * Routines for handling mm_structs
2608 */
2609extern struct mm_struct * mm_alloc(void);
2610
2611/* mmdrop drops the mm and the page tables */
2612extern void __mmdrop(struct mm_struct *);
2613static inline void mmdrop(struct mm_struct * mm)
2614{
2615 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2616 __mmdrop(mm);
2617}
2618
2619/* mmput gets rid of the mappings and all user-space */
2620extern void mmput(struct mm_struct *);
2621/* Grab a reference to a task's mm, if it is not already going away */
2622extern struct mm_struct *get_task_mm(struct task_struct *task);
2623/*
2624 * Grab a reference to a task's mm, if it is not already going away
2625 * and ptrace_may_access with the mode parameter passed to it
2626 * succeeds.
2627 */
2628extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2629/* Remove the current tasks stale references to the old mm_struct */
2630extern void mm_release(struct task_struct *, struct mm_struct *);
2631
2632#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2633extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2634 struct task_struct *, unsigned long);
2635#else
2636extern int copy_thread(unsigned long, unsigned long, unsigned long,
2637 struct task_struct *);
2638
2639/* Architectures that haven't opted into copy_thread_tls get the tls argument
2640 * via pt_regs, so ignore the tls argument passed via C. */
2641static inline int copy_thread_tls(
2642 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2643 struct task_struct *p, unsigned long tls)
2644{
2645 return copy_thread(clone_flags, sp, arg, p);
2646}
2647#endif
2648extern void flush_thread(void);
2649extern void exit_thread(void);
2650
2651extern void exit_files(struct task_struct *);
2652extern void __cleanup_sighand(struct sighand_struct *);
2653
2654extern void exit_itimers(struct signal_struct *);
2655extern void flush_itimer_signals(void);
2656
2657extern void do_group_exit(int);
2658
2659extern int do_execve(struct filename *,
2660 const char __user * const __user *,
2661 const char __user * const __user *);
2662extern int do_execveat(int, struct filename *,
2663 const char __user * const __user *,
2664 const char __user * const __user *,
2665 int);
2666extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2667extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2668struct task_struct *fork_idle(int);
2669extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2670
2671extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2672static inline void set_task_comm(struct task_struct *tsk, const char *from)
2673{
2674 __set_task_comm(tsk, from, false);
2675}
2676extern char *get_task_comm(char *to, struct task_struct *tsk);
2677
2678#ifdef CONFIG_SMP
2679void scheduler_ipi(void);
2680extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2681#else
2682static inline void scheduler_ipi(void) { }
2683static inline unsigned long wait_task_inactive(struct task_struct *p,
2684 long match_state)
2685{
2686 return 1;
2687}
2688#endif
2689
2690#define tasklist_empty() \
2691 list_empty(&init_task.tasks)
2692
2693#define next_task(p) \
2694 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2695
2696#define for_each_process(p) \
2697 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2698
2699extern bool current_is_single_threaded(void);
2700
2701/*
2702 * Careful: do_each_thread/while_each_thread is a double loop so
2703 * 'break' will not work as expected - use goto instead.
2704 */
2705#define do_each_thread(g, t) \
2706 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2707
2708#define while_each_thread(g, t) \
2709 while ((t = next_thread(t)) != g)
2710
2711#define __for_each_thread(signal, t) \
2712 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2713
2714#define for_each_thread(p, t) \
2715 __for_each_thread((p)->signal, t)
2716
2717/* Careful: this is a double loop, 'break' won't work as expected. */
2718#define for_each_process_thread(p, t) \
2719 for_each_process(p) for_each_thread(p, t)
2720
2721static inline int get_nr_threads(struct task_struct *tsk)
2722{
2723 return tsk->signal->nr_threads;
2724}
2725
2726static inline bool thread_group_leader(struct task_struct *p)
2727{
2728 return p->exit_signal >= 0;
2729}
2730
2731/* Do to the insanities of de_thread it is possible for a process
2732 * to have the pid of the thread group leader without actually being
2733 * the thread group leader. For iteration through the pids in proc
2734 * all we care about is that we have a task with the appropriate
2735 * pid, we don't actually care if we have the right task.
2736 */
2737static inline bool has_group_leader_pid(struct task_struct *p)
2738{
2739 return task_pid(p) == p->signal->leader_pid;
2740}
2741
2742static inline
2743bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2744{
2745 return p1->signal == p2->signal;
2746}
2747
2748static inline struct task_struct *next_thread(const struct task_struct *p)
2749{
2750 return list_entry_rcu(p->thread_group.next,
2751 struct task_struct, thread_group);
2752}
2753
2754static inline int thread_group_empty(struct task_struct *p)
2755{
2756 return list_empty(&p->thread_group);
2757}
2758
2759#define delay_group_leader(p) \
2760 (thread_group_leader(p) && !thread_group_empty(p))
2761
2762/*
2763 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2764 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2765 * pins the final release of task.io_context. Also protects ->cpuset and
2766 * ->cgroup.subsys[]. And ->vfork_done.
2767 *
2768 * Nests both inside and outside of read_lock(&tasklist_lock).
2769 * It must not be nested with write_lock_irq(&tasklist_lock),
2770 * neither inside nor outside.
2771 */
2772static inline void task_lock(struct task_struct *p)
2773{
2774 spin_lock(&p->alloc_lock);
2775}
2776
2777static inline void task_unlock(struct task_struct *p)
2778{
2779 spin_unlock(&p->alloc_lock);
2780}
2781
2782extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2783 unsigned long *flags);
2784
2785static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2786 unsigned long *flags)
2787{
2788 struct sighand_struct *ret;
2789
2790 ret = __lock_task_sighand(tsk, flags);
2791 (void)__cond_lock(&tsk->sighand->siglock, ret);
2792 return ret;
2793}
2794
2795static inline void unlock_task_sighand(struct task_struct *tsk,
2796 unsigned long *flags)
2797{
2798 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2799}
2800
2801/**
2802 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2803 * @tsk: task causing the changes
2804 *
2805 * All operations which modify a threadgroup - a new thread joining the
2806 * group, death of a member thread (the assertion of PF_EXITING) and
2807 * exec(2) dethreading the process and replacing the leader - are wrapped
2808 * by threadgroup_change_{begin|end}(). This is to provide a place which
2809 * subsystems needing threadgroup stability can hook into for
2810 * synchronization.
2811 */
2812static inline void threadgroup_change_begin(struct task_struct *tsk)
2813{
2814 might_sleep();
2815 cgroup_threadgroup_change_begin(tsk);
2816}
2817
2818/**
2819 * threadgroup_change_end - mark the end of changes to a threadgroup
2820 * @tsk: task causing the changes
2821 *
2822 * See threadgroup_change_begin().
2823 */
2824static inline void threadgroup_change_end(struct task_struct *tsk)
2825{
2826 cgroup_threadgroup_change_end(tsk);
2827}
2828
2829#ifndef __HAVE_THREAD_FUNCTIONS
2830
2831#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2832#define task_stack_page(task) ((task)->stack)
2833
2834static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2835{
2836 *task_thread_info(p) = *task_thread_info(org);
2837 task_thread_info(p)->task = p;
2838}
2839
2840/*
2841 * Return the address of the last usable long on the stack.
2842 *
2843 * When the stack grows down, this is just above the thread
2844 * info struct. Going any lower will corrupt the threadinfo.
2845 *
2846 * When the stack grows up, this is the highest address.
2847 * Beyond that position, we corrupt data on the next page.
2848 */
2849static inline unsigned long *end_of_stack(struct task_struct *p)
2850{
2851#ifdef CONFIG_STACK_GROWSUP
2852 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2853#else
2854 return (unsigned long *)(task_thread_info(p) + 1);
2855#endif
2856}
2857
2858#endif
2859#define task_stack_end_corrupted(task) \
2860 (*(end_of_stack(task)) != STACK_END_MAGIC)
2861
2862static inline int object_is_on_stack(void *obj)
2863{
2864 void *stack = task_stack_page(current);
2865
2866 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2867}
2868
2869extern void thread_info_cache_init(void);
2870
2871#ifdef CONFIG_DEBUG_STACK_USAGE
2872static inline unsigned long stack_not_used(struct task_struct *p)
2873{
2874 unsigned long *n = end_of_stack(p);
2875
2876 do { /* Skip over canary */
2877# ifdef CONFIG_STACK_GROWSUP
2878 n--;
2879# else
2880 n++;
2881# endif
2882 } while (!*n);
2883
2884# ifdef CONFIG_STACK_GROWSUP
2885 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2886# else
2887 return (unsigned long)n - (unsigned long)end_of_stack(p);
2888# endif
2889}
2890#endif
2891extern void set_task_stack_end_magic(struct task_struct *tsk);
2892
2893/* set thread flags in other task's structures
2894 * - see asm/thread_info.h for TIF_xxxx flags available
2895 */
2896static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2897{
2898 set_ti_thread_flag(task_thread_info(tsk), flag);
2899}
2900
2901static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2902{
2903 clear_ti_thread_flag(task_thread_info(tsk), flag);
2904}
2905
2906static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2907{
2908 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2909}
2910
2911static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2912{
2913 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2914}
2915
2916static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2917{
2918 return test_ti_thread_flag(task_thread_info(tsk), flag);
2919}
2920
2921static inline void set_tsk_need_resched(struct task_struct *tsk)
2922{
2923 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2924}
2925
2926static inline void clear_tsk_need_resched(struct task_struct *tsk)
2927{
2928 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2929}
2930
2931static inline int test_tsk_need_resched(struct task_struct *tsk)
2932{
2933 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2934}
2935
2936static inline int restart_syscall(void)
2937{
2938 set_tsk_thread_flag(current, TIF_SIGPENDING);
2939 return -ERESTARTNOINTR;
2940}
2941
2942static inline int signal_pending(struct task_struct *p)
2943{
2944 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2945}
2946
2947static inline int __fatal_signal_pending(struct task_struct *p)
2948{
2949 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2950}
2951
2952static inline int fatal_signal_pending(struct task_struct *p)
2953{
2954 return signal_pending(p) && __fatal_signal_pending(p);
2955}
2956
2957static inline int signal_pending_state(long state, struct task_struct *p)
2958{
2959 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2960 return 0;
2961 if (!signal_pending(p))
2962 return 0;
2963
2964 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2965}
2966
2967/*
2968 * cond_resched() and cond_resched_lock(): latency reduction via
2969 * explicit rescheduling in places that are safe. The return
2970 * value indicates whether a reschedule was done in fact.
2971 * cond_resched_lock() will drop the spinlock before scheduling,
2972 * cond_resched_softirq() will enable bhs before scheduling.
2973 */
2974extern int _cond_resched(void);
2975
2976#define cond_resched() ({ \
2977 ___might_sleep(__FILE__, __LINE__, 0); \
2978 _cond_resched(); \
2979})
2980
2981extern int __cond_resched_lock(spinlock_t *lock);
2982
2983#define cond_resched_lock(lock) ({ \
2984 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2985 __cond_resched_lock(lock); \
2986})
2987
2988extern int __cond_resched_softirq(void);
2989
2990#define cond_resched_softirq() ({ \
2991 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2992 __cond_resched_softirq(); \
2993})
2994
2995static inline void cond_resched_rcu(void)
2996{
2997#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2998 rcu_read_unlock();
2999 cond_resched();
3000 rcu_read_lock();
3001#endif
3002}
3003
3004/*
3005 * Does a critical section need to be broken due to another
3006 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3007 * but a general need for low latency)
3008 */
3009static inline int spin_needbreak(spinlock_t *lock)
3010{
3011#ifdef CONFIG_PREEMPT
3012 return spin_is_contended(lock);
3013#else
3014 return 0;
3015#endif
3016}
3017
3018/*
3019 * Idle thread specific functions to determine the need_resched
3020 * polling state.
3021 */
3022#ifdef TIF_POLLING_NRFLAG
3023static inline int tsk_is_polling(struct task_struct *p)
3024{
3025 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3026}
3027
3028static inline void __current_set_polling(void)
3029{
3030 set_thread_flag(TIF_POLLING_NRFLAG);
3031}
3032
3033static inline bool __must_check current_set_polling_and_test(void)
3034{
3035 __current_set_polling();
3036
3037 /*
3038 * Polling state must be visible before we test NEED_RESCHED,
3039 * paired by resched_curr()
3040 */
3041 smp_mb__after_atomic();
3042
3043 return unlikely(tif_need_resched());
3044}
3045
3046static inline void __current_clr_polling(void)
3047{
3048 clear_thread_flag(TIF_POLLING_NRFLAG);
3049}
3050
3051static inline bool __must_check current_clr_polling_and_test(void)
3052{
3053 __current_clr_polling();
3054
3055 /*
3056 * Polling state must be visible before we test NEED_RESCHED,
3057 * paired by resched_curr()
3058 */
3059 smp_mb__after_atomic();
3060
3061 return unlikely(tif_need_resched());
3062}
3063
3064#else
3065static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3066static inline void __current_set_polling(void) { }
3067static inline void __current_clr_polling(void) { }
3068
3069static inline bool __must_check current_set_polling_and_test(void)
3070{
3071 return unlikely(tif_need_resched());
3072}
3073static inline bool __must_check current_clr_polling_and_test(void)
3074{
3075 return unlikely(tif_need_resched());
3076}
3077#endif
3078
3079static inline void current_clr_polling(void)
3080{
3081 __current_clr_polling();
3082
3083 /*
3084 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3085 * Once the bit is cleared, we'll get IPIs with every new
3086 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3087 * fold.
3088 */
3089 smp_mb(); /* paired with resched_curr() */
3090
3091 preempt_fold_need_resched();
3092}
3093
3094static __always_inline bool need_resched(void)
3095{
3096 return unlikely(tif_need_resched());
3097}
3098
3099/*
3100 * Thread group CPU time accounting.
3101 */
3102void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3103void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3104
3105/*
3106 * Reevaluate whether the task has signals pending delivery.
3107 * Wake the task if so.
3108 * This is required every time the blocked sigset_t changes.
3109 * callers must hold sighand->siglock.
3110 */
3111extern void recalc_sigpending_and_wake(struct task_struct *t);
3112extern void recalc_sigpending(void);
3113
3114extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3115
3116static inline void signal_wake_up(struct task_struct *t, bool resume)
3117{
3118 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3119}
3120static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3121{
3122 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3123}
3124
3125/*
3126 * Wrappers for p->thread_info->cpu access. No-op on UP.
3127 */
3128#ifdef CONFIG_SMP
3129
3130static inline unsigned int task_cpu(const struct task_struct *p)
3131{
3132 return task_thread_info(p)->cpu;
3133}
3134
3135static inline int task_node(const struct task_struct *p)
3136{
3137 return cpu_to_node(task_cpu(p));
3138}
3139
3140extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3141
3142#else
3143
3144static inline unsigned int task_cpu(const struct task_struct *p)
3145{
3146 return 0;
3147}
3148
3149static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3150{
3151}
3152
3153#endif /* CONFIG_SMP */
3154
3155extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3156extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3157
3158#ifdef CONFIG_CGROUP_SCHED
3159extern struct task_group root_task_group;
3160#endif /* CONFIG_CGROUP_SCHED */
3161
3162extern int task_can_switch_user(struct user_struct *up,
3163 struct task_struct *tsk);
3164
3165#ifdef CONFIG_TASK_XACCT
3166static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3167{
3168 tsk->ioac.rchar += amt;
3169}
3170
3171static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3172{
3173 tsk->ioac.wchar += amt;
3174}
3175
3176static inline void inc_syscr(struct task_struct *tsk)
3177{
3178 tsk->ioac.syscr++;
3179}
3180
3181static inline void inc_syscw(struct task_struct *tsk)
3182{
3183 tsk->ioac.syscw++;
3184}
3185#else
3186static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3187{
3188}
3189
3190static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3191{
3192}
3193
3194static inline void inc_syscr(struct task_struct *tsk)
3195{
3196}
3197
3198static inline void inc_syscw(struct task_struct *tsk)
3199{
3200}
3201#endif
3202
3203#ifndef TASK_SIZE_OF
3204#define TASK_SIZE_OF(tsk) TASK_SIZE
3205#endif
3206
3207#ifdef CONFIG_MEMCG
3208extern void mm_update_next_owner(struct mm_struct *mm);
3209#else
3210static inline void mm_update_next_owner(struct mm_struct *mm)
3211{
3212}
3213#endif /* CONFIG_MEMCG */
3214
3215static inline unsigned long task_rlimit(const struct task_struct *tsk,
3216 unsigned int limit)
3217{
3218 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3219}
3220
3221static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3222 unsigned int limit)
3223{
3224 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3225}
3226
3227static inline unsigned long rlimit(unsigned int limit)
3228{
3229 return task_rlimit(current, limit);
3230}
3231
3232static inline unsigned long rlimit_max(unsigned int limit)
3233{
3234 return task_rlimit_max(current, limit);
3235}
3236
3237#ifdef CONFIG_CPU_FREQ
3238struct update_util_data {
3239 void (*func)(struct update_util_data *data,
3240 u64 time, unsigned long util, unsigned long max);
3241};
3242
3243void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3244#endif /* CONFIG_CPU_FREQ */
3245
3246#endif