at v4.6 22 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#include <linux/bug.h> 10#include <linux/mmdebug.h> 11#ifndef __GENERATING_BOUNDS_H 12#include <linux/mm_types.h> 13#include <generated/bounds.h> 14#endif /* !__GENERATING_BOUNDS_H */ 15 16/* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58/* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89 PG_head, /* A head page */ 90 PG_swapcache, /* Swap page: swp_entry_t in private */ 91 PG_mappedtodisk, /* Has blocks allocated on-disk */ 92 PG_reclaim, /* To be reclaimed asap */ 93 PG_swapbacked, /* Page is backed by RAM/swap */ 94 PG_unevictable, /* Page is "unevictable" */ 95#ifdef CONFIG_MMU 96 PG_mlocked, /* Page is vma mlocked */ 97#endif 98#ifdef CONFIG_ARCH_USES_PG_UNCACHED 99 PG_uncached, /* Page has been mapped as uncached */ 100#endif 101#ifdef CONFIG_MEMORY_FAILURE 102 PG_hwpoison, /* hardware poisoned page. Don't touch */ 103#endif 104#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 105 PG_young, 106 PG_idle, 107#endif 108 __NR_PAGEFLAGS, 109 110 /* Filesystems */ 111 PG_checked = PG_owner_priv_1, 112 113 /* Two page bits are conscripted by FS-Cache to maintain local caching 114 * state. These bits are set on pages belonging to the netfs's inodes 115 * when those inodes are being locally cached. 116 */ 117 PG_fscache = PG_private_2, /* page backed by cache */ 118 119 /* XEN */ 120 /* Pinned in Xen as a read-only pagetable page. */ 121 PG_pinned = PG_owner_priv_1, 122 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 123 PG_savepinned = PG_dirty, 124 /* Has a grant mapping of another (foreign) domain's page. */ 125 PG_foreign = PG_owner_priv_1, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129 130 /* Compound pages. Stored in first tail page's flags */ 131 PG_double_map = PG_private_2, 132}; 133 134#ifndef __GENERATING_BOUNDS_H 135 136struct page; /* forward declaration */ 137 138static inline struct page *compound_head(struct page *page) 139{ 140 unsigned long head = READ_ONCE(page->compound_head); 141 142 if (unlikely(head & 1)) 143 return (struct page *) (head - 1); 144 return page; 145} 146 147static __always_inline int PageTail(struct page *page) 148{ 149 return READ_ONCE(page->compound_head) & 1; 150} 151 152static __always_inline int PageCompound(struct page *page) 153{ 154 return test_bit(PG_head, &page->flags) || PageTail(page); 155} 156 157/* 158 * Page flags policies wrt compound pages 159 * 160 * PF_ANY: 161 * the page flag is relevant for small, head and tail pages. 162 * 163 * PF_HEAD: 164 * for compound page all operations related to the page flag applied to 165 * head page. 166 * 167 * PF_NO_TAIL: 168 * modifications of the page flag must be done on small or head pages, 169 * checks can be done on tail pages too. 170 * 171 * PF_NO_COMPOUND: 172 * the page flag is not relevant for compound pages. 173 */ 174#define PF_ANY(page, enforce) page 175#define PF_HEAD(page, enforce) compound_head(page) 176#define PF_NO_TAIL(page, enforce) ({ \ 177 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 178 compound_head(page);}) 179#define PF_NO_COMPOUND(page, enforce) ({ \ 180 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 181 page;}) 182 183/* 184 * Macros to create function definitions for page flags 185 */ 186#define TESTPAGEFLAG(uname, lname, policy) \ 187static __always_inline int Page##uname(struct page *page) \ 188 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 189 190#define SETPAGEFLAG(uname, lname, policy) \ 191static __always_inline void SetPage##uname(struct page *page) \ 192 { set_bit(PG_##lname, &policy(page, 1)->flags); } 193 194#define CLEARPAGEFLAG(uname, lname, policy) \ 195static __always_inline void ClearPage##uname(struct page *page) \ 196 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 197 198#define __SETPAGEFLAG(uname, lname, policy) \ 199static __always_inline void __SetPage##uname(struct page *page) \ 200 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 201 202#define __CLEARPAGEFLAG(uname, lname, policy) \ 203static __always_inline void __ClearPage##uname(struct page *page) \ 204 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 205 206#define TESTSETFLAG(uname, lname, policy) \ 207static __always_inline int TestSetPage##uname(struct page *page) \ 208 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 209 210#define TESTCLEARFLAG(uname, lname, policy) \ 211static __always_inline int TestClearPage##uname(struct page *page) \ 212 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 213 214#define PAGEFLAG(uname, lname, policy) \ 215 TESTPAGEFLAG(uname, lname, policy) \ 216 SETPAGEFLAG(uname, lname, policy) \ 217 CLEARPAGEFLAG(uname, lname, policy) 218 219#define __PAGEFLAG(uname, lname, policy) \ 220 TESTPAGEFLAG(uname, lname, policy) \ 221 __SETPAGEFLAG(uname, lname, policy) \ 222 __CLEARPAGEFLAG(uname, lname, policy) 223 224#define TESTSCFLAG(uname, lname, policy) \ 225 TESTSETFLAG(uname, lname, policy) \ 226 TESTCLEARFLAG(uname, lname, policy) 227 228#define TESTPAGEFLAG_FALSE(uname) \ 229static inline int Page##uname(const struct page *page) { return 0; } 230 231#define SETPAGEFLAG_NOOP(uname) \ 232static inline void SetPage##uname(struct page *page) { } 233 234#define CLEARPAGEFLAG_NOOP(uname) \ 235static inline void ClearPage##uname(struct page *page) { } 236 237#define __CLEARPAGEFLAG_NOOP(uname) \ 238static inline void __ClearPage##uname(struct page *page) { } 239 240#define TESTSETFLAG_FALSE(uname) \ 241static inline int TestSetPage##uname(struct page *page) { return 0; } 242 243#define TESTCLEARFLAG_FALSE(uname) \ 244static inline int TestClearPage##uname(struct page *page) { return 0; } 245 246#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 247 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 248 249#define TESTSCFLAG_FALSE(uname) \ 250 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 251 252__PAGEFLAG(Locked, locked, PF_NO_TAIL) 253PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 254PAGEFLAG(Referenced, referenced, PF_HEAD) 255 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 256 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 257PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 258 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 259PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 260PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 261 TESTCLEARFLAG(Active, active, PF_HEAD) 262__PAGEFLAG(Slab, slab, PF_NO_TAIL) 263__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 264PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 265 266/* Xen */ 267PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 268 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 269PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 270PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 271 272PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 273 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 274PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 275 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 276 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 277 278/* 279 * Private page markings that may be used by the filesystem that owns the page 280 * for its own purposes. 281 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 282 */ 283PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 284 __CLEARPAGEFLAG(Private, private, PF_ANY) 285PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 286PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 287 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 288 289/* 290 * Only test-and-set exist for PG_writeback. The unconditional operators are 291 * risky: they bypass page accounting. 292 */ 293TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) 294 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) 295PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND) 296 297/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 298PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND) 299 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND) 300PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 301 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 302 303#ifdef CONFIG_HIGHMEM 304/* 305 * Must use a macro here due to header dependency issues. page_zone() is not 306 * available at this point. 307 */ 308#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 309#else 310PAGEFLAG_FALSE(HighMem) 311#endif 312 313#ifdef CONFIG_SWAP 314PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND) 315#else 316PAGEFLAG_FALSE(SwapCache) 317#endif 318 319PAGEFLAG(Unevictable, unevictable, PF_HEAD) 320 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 321 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 322 323#ifdef CONFIG_MMU 324PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 325 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 326 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 327#else 328PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 329 TESTSCFLAG_FALSE(Mlocked) 330#endif 331 332#ifdef CONFIG_ARCH_USES_PG_UNCACHED 333PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 334#else 335PAGEFLAG_FALSE(Uncached) 336#endif 337 338#ifdef CONFIG_MEMORY_FAILURE 339PAGEFLAG(HWPoison, hwpoison, PF_ANY) 340TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 341#define __PG_HWPOISON (1UL << PG_hwpoison) 342#else 343PAGEFLAG_FALSE(HWPoison) 344#define __PG_HWPOISON 0 345#endif 346 347#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 348TESTPAGEFLAG(Young, young, PF_ANY) 349SETPAGEFLAG(Young, young, PF_ANY) 350TESTCLEARFLAG(Young, young, PF_ANY) 351PAGEFLAG(Idle, idle, PF_ANY) 352#endif 353 354/* 355 * On an anonymous page mapped into a user virtual memory area, 356 * page->mapping points to its anon_vma, not to a struct address_space; 357 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 358 * 359 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 360 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 361 * and then page->mapping points, not to an anon_vma, but to a private 362 * structure which KSM associates with that merged page. See ksm.h. 363 * 364 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 365 * 366 * Please note that, confusingly, "page_mapping" refers to the inode 367 * address_space which maps the page from disk; whereas "page_mapped" 368 * refers to user virtual address space into which the page is mapped. 369 */ 370#define PAGE_MAPPING_ANON 1 371#define PAGE_MAPPING_KSM 2 372#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 373 374static __always_inline int PageAnon(struct page *page) 375{ 376 page = compound_head(page); 377 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 378} 379 380#ifdef CONFIG_KSM 381/* 382 * A KSM page is one of those write-protected "shared pages" or "merged pages" 383 * which KSM maps into multiple mms, wherever identical anonymous page content 384 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 385 * anon_vma, but to that page's node of the stable tree. 386 */ 387static __always_inline int PageKsm(struct page *page) 388{ 389 page = compound_head(page); 390 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 391 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); 392} 393#else 394TESTPAGEFLAG_FALSE(Ksm) 395#endif 396 397u64 stable_page_flags(struct page *page); 398 399static inline int PageUptodate(struct page *page) 400{ 401 int ret; 402 page = compound_head(page); 403 ret = test_bit(PG_uptodate, &(page)->flags); 404 /* 405 * Must ensure that the data we read out of the page is loaded 406 * _after_ we've loaded page->flags to check for PageUptodate. 407 * We can skip the barrier if the page is not uptodate, because 408 * we wouldn't be reading anything from it. 409 * 410 * See SetPageUptodate() for the other side of the story. 411 */ 412 if (ret) 413 smp_rmb(); 414 415 return ret; 416} 417 418static __always_inline void __SetPageUptodate(struct page *page) 419{ 420 VM_BUG_ON_PAGE(PageTail(page), page); 421 smp_wmb(); 422 __set_bit(PG_uptodate, &page->flags); 423} 424 425static __always_inline void SetPageUptodate(struct page *page) 426{ 427 VM_BUG_ON_PAGE(PageTail(page), page); 428 /* 429 * Memory barrier must be issued before setting the PG_uptodate bit, 430 * so that all previous stores issued in order to bring the page 431 * uptodate are actually visible before PageUptodate becomes true. 432 */ 433 smp_wmb(); 434 set_bit(PG_uptodate, &page->flags); 435} 436 437CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 438 439int test_clear_page_writeback(struct page *page); 440int __test_set_page_writeback(struct page *page, bool keep_write); 441 442#define test_set_page_writeback(page) \ 443 __test_set_page_writeback(page, false) 444#define test_set_page_writeback_keepwrite(page) \ 445 __test_set_page_writeback(page, true) 446 447static inline void set_page_writeback(struct page *page) 448{ 449 test_set_page_writeback(page); 450} 451 452static inline void set_page_writeback_keepwrite(struct page *page) 453{ 454 test_set_page_writeback_keepwrite(page); 455} 456 457__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 458 459static __always_inline void set_compound_head(struct page *page, struct page *head) 460{ 461 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 462} 463 464static __always_inline void clear_compound_head(struct page *page) 465{ 466 WRITE_ONCE(page->compound_head, 0); 467} 468 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE 470static inline void ClearPageCompound(struct page *page) 471{ 472 BUG_ON(!PageHead(page)); 473 ClearPageHead(page); 474} 475#endif 476 477#define PG_head_mask ((1L << PG_head)) 478 479#ifdef CONFIG_HUGETLB_PAGE 480int PageHuge(struct page *page); 481int PageHeadHuge(struct page *page); 482bool page_huge_active(struct page *page); 483#else 484TESTPAGEFLAG_FALSE(Huge) 485TESTPAGEFLAG_FALSE(HeadHuge) 486 487static inline bool page_huge_active(struct page *page) 488{ 489 return 0; 490} 491#endif 492 493 494#ifdef CONFIG_TRANSPARENT_HUGEPAGE 495/* 496 * PageHuge() only returns true for hugetlbfs pages, but not for 497 * normal or transparent huge pages. 498 * 499 * PageTransHuge() returns true for both transparent huge and 500 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 501 * called only in the core VM paths where hugetlbfs pages can't exist. 502 */ 503static inline int PageTransHuge(struct page *page) 504{ 505 VM_BUG_ON_PAGE(PageTail(page), page); 506 return PageHead(page); 507} 508 509/* 510 * PageTransCompound returns true for both transparent huge pages 511 * and hugetlbfs pages, so it should only be called when it's known 512 * that hugetlbfs pages aren't involved. 513 */ 514static inline int PageTransCompound(struct page *page) 515{ 516 return PageCompound(page); 517} 518 519/* 520 * PageTransCompoundMap is the same as PageTransCompound, but it also 521 * guarantees the primary MMU has the entire compound page mapped 522 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 523 * can also map the entire compound page. This allows the secondary 524 * MMUs to call get_user_pages() only once for each compound page and 525 * to immediately map the entire compound page with a single secondary 526 * MMU fault. If there will be a pmd split later, the secondary MMUs 527 * will get an update through the MMU notifier invalidation through 528 * split_huge_pmd(). 529 * 530 * Unlike PageTransCompound, this is safe to be called only while 531 * split_huge_pmd() cannot run from under us, like if protected by the 532 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 533 * positives. 534 */ 535static inline int PageTransCompoundMap(struct page *page) 536{ 537 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 538} 539 540/* 541 * PageTransTail returns true for both transparent huge pages 542 * and hugetlbfs pages, so it should only be called when it's known 543 * that hugetlbfs pages aren't involved. 544 */ 545static inline int PageTransTail(struct page *page) 546{ 547 return PageTail(page); 548} 549 550/* 551 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 552 * as PMDs. 553 * 554 * This is required for optimization of rmap operations for THP: we can postpone 555 * per small page mapcount accounting (and its overhead from atomic operations) 556 * until the first PMD split. 557 * 558 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 559 * by one. This reference will go away with last compound_mapcount. 560 * 561 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 562 */ 563static inline int PageDoubleMap(struct page *page) 564{ 565 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 566} 567 568static inline int TestSetPageDoubleMap(struct page *page) 569{ 570 VM_BUG_ON_PAGE(!PageHead(page), page); 571 return test_and_set_bit(PG_double_map, &page[1].flags); 572} 573 574static inline int TestClearPageDoubleMap(struct page *page) 575{ 576 VM_BUG_ON_PAGE(!PageHead(page), page); 577 return test_and_clear_bit(PG_double_map, &page[1].flags); 578} 579 580#else 581TESTPAGEFLAG_FALSE(TransHuge) 582TESTPAGEFLAG_FALSE(TransCompound) 583TESTPAGEFLAG_FALSE(TransCompoundMap) 584TESTPAGEFLAG_FALSE(TransTail) 585TESTPAGEFLAG_FALSE(DoubleMap) 586 TESTSETFLAG_FALSE(DoubleMap) 587 TESTCLEARFLAG_FALSE(DoubleMap) 588#endif 589 590/* 591 * PageBuddy() indicate that the page is free and in the buddy system 592 * (see mm/page_alloc.c). 593 * 594 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 595 * -2 so that an underflow of the page_mapcount() won't be mistaken 596 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 597 * efficiently by most CPU architectures. 598 */ 599#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 600 601static inline int PageBuddy(struct page *page) 602{ 603 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 604} 605 606static inline void __SetPageBuddy(struct page *page) 607{ 608 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 609 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 610} 611 612static inline void __ClearPageBuddy(struct page *page) 613{ 614 VM_BUG_ON_PAGE(!PageBuddy(page), page); 615 atomic_set(&page->_mapcount, -1); 616} 617 618extern bool is_free_buddy_page(struct page *page); 619 620#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 621 622static inline int PageBalloon(struct page *page) 623{ 624 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 625} 626 627static inline void __SetPageBalloon(struct page *page) 628{ 629 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 630 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 631} 632 633static inline void __ClearPageBalloon(struct page *page) 634{ 635 VM_BUG_ON_PAGE(!PageBalloon(page), page); 636 atomic_set(&page->_mapcount, -1); 637} 638 639/* 640 * If network-based swap is enabled, sl*b must keep track of whether pages 641 * were allocated from pfmemalloc reserves. 642 */ 643static inline int PageSlabPfmemalloc(struct page *page) 644{ 645 VM_BUG_ON_PAGE(!PageSlab(page), page); 646 return PageActive(page); 647} 648 649static inline void SetPageSlabPfmemalloc(struct page *page) 650{ 651 VM_BUG_ON_PAGE(!PageSlab(page), page); 652 SetPageActive(page); 653} 654 655static inline void __ClearPageSlabPfmemalloc(struct page *page) 656{ 657 VM_BUG_ON_PAGE(!PageSlab(page), page); 658 __ClearPageActive(page); 659} 660 661static inline void ClearPageSlabPfmemalloc(struct page *page) 662{ 663 VM_BUG_ON_PAGE(!PageSlab(page), page); 664 ClearPageActive(page); 665} 666 667#ifdef CONFIG_MMU 668#define __PG_MLOCKED (1 << PG_mlocked) 669#else 670#define __PG_MLOCKED 0 671#endif 672 673/* 674 * Flags checked when a page is freed. Pages being freed should not have 675 * these flags set. It they are, there is a problem. 676 */ 677#define PAGE_FLAGS_CHECK_AT_FREE \ 678 (1 << PG_lru | 1 << PG_locked | \ 679 1 << PG_private | 1 << PG_private_2 | \ 680 1 << PG_writeback | 1 << PG_reserved | \ 681 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 682 1 << PG_unevictable | __PG_MLOCKED) 683 684/* 685 * Flags checked when a page is prepped for return by the page allocator. 686 * Pages being prepped should not have these flags set. It they are set, 687 * there has been a kernel bug or struct page corruption. 688 * 689 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 690 * alloc-free cycle to prevent from reusing the page. 691 */ 692#define PAGE_FLAGS_CHECK_AT_PREP \ 693 (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 694 695#define PAGE_FLAGS_PRIVATE \ 696 (1 << PG_private | 1 << PG_private_2) 697/** 698 * page_has_private - Determine if page has private stuff 699 * @page: The page to be checked 700 * 701 * Determine if a page has private stuff, indicating that release routines 702 * should be invoked upon it. 703 */ 704static inline int page_has_private(struct page *page) 705{ 706 return !!(page->flags & PAGE_FLAGS_PRIVATE); 707} 708 709#undef PF_ANY 710#undef PF_HEAD 711#undef PF_NO_TAIL 712#undef PF_NO_COMPOUND 713#endif /* !__GENERATING_BOUNDS_H */ 714 715#endif /* PAGE_FLAGS_H */