at v4.6 135 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54#include <uapi/linux/pkt_cls.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59/* 802.11 specific */ 60struct wireless_dev; 61/* 802.15.4 specific */ 62struct wpan_dev; 63struct mpls_dev; 64 65void netdev_set_default_ethtool_ops(struct net_device *dev, 66 const struct ethtool_ops *ops); 67 68/* Backlog congestion levels */ 69#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 70#define NET_RX_DROP 1 /* packet dropped */ 71 72/* 73 * Transmit return codes: transmit return codes originate from three different 74 * namespaces: 75 * 76 * - qdisc return codes 77 * - driver transmit return codes 78 * - errno values 79 * 80 * Drivers are allowed to return any one of those in their hard_start_xmit() 81 * function. Real network devices commonly used with qdiscs should only return 82 * the driver transmit return codes though - when qdiscs are used, the actual 83 * transmission happens asynchronously, so the value is not propagated to 84 * higher layers. Virtual network devices transmit synchronously; in this case 85 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 86 * others are propagated to higher layers. 87 */ 88 89/* qdisc ->enqueue() return codes. */ 90#define NET_XMIT_SUCCESS 0x00 91#define NET_XMIT_DROP 0x01 /* skb dropped */ 92#define NET_XMIT_CN 0x02 /* congestion notification */ 93#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 94#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 95 96/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 97 * indicates that the device will soon be dropping packets, or already drops 98 * some packets of the same priority; prompting us to send less aggressively. */ 99#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 100#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 101 102/* Driver transmit return codes */ 103#define NETDEV_TX_MASK 0xf0 104 105enum netdev_tx { 106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 107 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 110}; 111typedef enum netdev_tx netdev_tx_t; 112 113/* 114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 116 */ 117static inline bool dev_xmit_complete(int rc) 118{ 119 /* 120 * Positive cases with an skb consumed by a driver: 121 * - successful transmission (rc == NETDEV_TX_OK) 122 * - error while transmitting (rc < 0) 123 * - error while queueing to a different device (rc & NET_XMIT_MASK) 124 */ 125 if (likely(rc < NET_XMIT_MASK)) 126 return true; 127 128 return false; 129} 130 131/* 132 * Compute the worst-case header length according to the protocols 133 * used. 134 */ 135 136#if defined(CONFIG_HYPERV_NET) 137# define LL_MAX_HEADER 128 138#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 139# if defined(CONFIG_MAC80211_MESH) 140# define LL_MAX_HEADER 128 141# else 142# define LL_MAX_HEADER 96 143# endif 144#else 145# define LL_MAX_HEADER 32 146#endif 147 148#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 150#define MAX_HEADER LL_MAX_HEADER 151#else 152#define MAX_HEADER (LL_MAX_HEADER + 48) 153#endif 154 155/* 156 * Old network device statistics. Fields are native words 157 * (unsigned long) so they can be read and written atomically. 158 */ 159 160struct net_device_stats { 161 unsigned long rx_packets; 162 unsigned long tx_packets; 163 unsigned long rx_bytes; 164 unsigned long tx_bytes; 165 unsigned long rx_errors; 166 unsigned long tx_errors; 167 unsigned long rx_dropped; 168 unsigned long tx_dropped; 169 unsigned long multicast; 170 unsigned long collisions; 171 unsigned long rx_length_errors; 172 unsigned long rx_over_errors; 173 unsigned long rx_crc_errors; 174 unsigned long rx_frame_errors; 175 unsigned long rx_fifo_errors; 176 unsigned long rx_missed_errors; 177 unsigned long tx_aborted_errors; 178 unsigned long tx_carrier_errors; 179 unsigned long tx_fifo_errors; 180 unsigned long tx_heartbeat_errors; 181 unsigned long tx_window_errors; 182 unsigned long rx_compressed; 183 unsigned long tx_compressed; 184}; 185 186 187#include <linux/cache.h> 188#include <linux/skbuff.h> 189 190#ifdef CONFIG_RPS 191#include <linux/static_key.h> 192extern struct static_key rps_needed; 193#endif 194 195struct neighbour; 196struct neigh_parms; 197struct sk_buff; 198 199struct netdev_hw_addr { 200 struct list_head list; 201 unsigned char addr[MAX_ADDR_LEN]; 202 unsigned char type; 203#define NETDEV_HW_ADDR_T_LAN 1 204#define NETDEV_HW_ADDR_T_SAN 2 205#define NETDEV_HW_ADDR_T_SLAVE 3 206#define NETDEV_HW_ADDR_T_UNICAST 4 207#define NETDEV_HW_ADDR_T_MULTICAST 5 208 bool global_use; 209 int sync_cnt; 210 int refcount; 211 int synced; 212 struct rcu_head rcu_head; 213}; 214 215struct netdev_hw_addr_list { 216 struct list_head list; 217 int count; 218}; 219 220#define netdev_hw_addr_list_count(l) ((l)->count) 221#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 222#define netdev_hw_addr_list_for_each(ha, l) \ 223 list_for_each_entry(ha, &(l)->list, list) 224 225#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 226#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 227#define netdev_for_each_uc_addr(ha, dev) \ 228 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 229 230#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 231#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 232#define netdev_for_each_mc_addr(ha, dev) \ 233 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 234 235struct hh_cache { 236 u16 hh_len; 237 u16 __pad; 238 seqlock_t hh_lock; 239 240 /* cached hardware header; allow for machine alignment needs. */ 241#define HH_DATA_MOD 16 242#define HH_DATA_OFF(__len) \ 243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 244#define HH_DATA_ALIGN(__len) \ 245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 247}; 248 249/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 250 * Alternative is: 251 * dev->hard_header_len ? (dev->hard_header_len + 252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 253 * 254 * We could use other alignment values, but we must maintain the 255 * relationship HH alignment <= LL alignment. 256 */ 257#define LL_RESERVED_SPACE(dev) \ 258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 259#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 261 262struct header_ops { 263 int (*create) (struct sk_buff *skb, struct net_device *dev, 264 unsigned short type, const void *daddr, 265 const void *saddr, unsigned int len); 266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 268 void (*cache_update)(struct hh_cache *hh, 269 const struct net_device *dev, 270 const unsigned char *haddr); 271 bool (*validate)(const char *ll_header, unsigned int len); 272}; 273 274/* These flag bits are private to the generic network queueing 275 * layer; they may not be explicitly referenced by any other 276 * code. 277 */ 278 279enum netdev_state_t { 280 __LINK_STATE_START, 281 __LINK_STATE_PRESENT, 282 __LINK_STATE_NOCARRIER, 283 __LINK_STATE_LINKWATCH_PENDING, 284 __LINK_STATE_DORMANT, 285}; 286 287 288/* 289 * This structure holds boot-time configured netdevice settings. They 290 * are then used in the device probing. 291 */ 292struct netdev_boot_setup { 293 char name[IFNAMSIZ]; 294 struct ifmap map; 295}; 296#define NETDEV_BOOT_SETUP_MAX 8 297 298int __init netdev_boot_setup(char *str); 299 300/* 301 * Structure for NAPI scheduling similar to tasklet but with weighting 302 */ 303struct napi_struct { 304 /* The poll_list must only be managed by the entity which 305 * changes the state of the NAPI_STATE_SCHED bit. This means 306 * whoever atomically sets that bit can add this napi_struct 307 * to the per-CPU poll_list, and whoever clears that bit 308 * can remove from the list right before clearing the bit. 309 */ 310 struct list_head poll_list; 311 312 unsigned long state; 313 int weight; 314 unsigned int gro_count; 315 int (*poll)(struct napi_struct *, int); 316#ifdef CONFIG_NETPOLL 317 spinlock_t poll_lock; 318 int poll_owner; 319#endif 320 struct net_device *dev; 321 struct sk_buff *gro_list; 322 struct sk_buff *skb; 323 struct hrtimer timer; 324 struct list_head dev_list; 325 struct hlist_node napi_hash_node; 326 unsigned int napi_id; 327}; 328 329enum { 330 NAPI_STATE_SCHED, /* Poll is scheduled */ 331 NAPI_STATE_DISABLE, /* Disable pending */ 332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 335}; 336 337enum gro_result { 338 GRO_MERGED, 339 GRO_MERGED_FREE, 340 GRO_HELD, 341 GRO_NORMAL, 342 GRO_DROP, 343}; 344typedef enum gro_result gro_result_t; 345 346/* 347 * enum rx_handler_result - Possible return values for rx_handlers. 348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 349 * further. 350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 351 * case skb->dev was changed by rx_handler. 352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 353 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 354 * 355 * rx_handlers are functions called from inside __netif_receive_skb(), to do 356 * special processing of the skb, prior to delivery to protocol handlers. 357 * 358 * Currently, a net_device can only have a single rx_handler registered. Trying 359 * to register a second rx_handler will return -EBUSY. 360 * 361 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 362 * To unregister a rx_handler on a net_device, use 363 * netdev_rx_handler_unregister(). 364 * 365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 366 * do with the skb. 367 * 368 * If the rx_handler consumed the skb in some way, it should return 369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 370 * the skb to be delivered in some other way. 371 * 372 * If the rx_handler changed skb->dev, to divert the skb to another 373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 374 * new device will be called if it exists. 375 * 376 * If the rx_handler decides the skb should be ignored, it should return 377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 378 * are registered on exact device (ptype->dev == skb->dev). 379 * 380 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 381 * delivered, it should return RX_HANDLER_PASS. 382 * 383 * A device without a registered rx_handler will behave as if rx_handler 384 * returned RX_HANDLER_PASS. 385 */ 386 387enum rx_handler_result { 388 RX_HANDLER_CONSUMED, 389 RX_HANDLER_ANOTHER, 390 RX_HANDLER_EXACT, 391 RX_HANDLER_PASS, 392}; 393typedef enum rx_handler_result rx_handler_result_t; 394typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 395 396void __napi_schedule(struct napi_struct *n); 397void __napi_schedule_irqoff(struct napi_struct *n); 398 399static inline bool napi_disable_pending(struct napi_struct *n) 400{ 401 return test_bit(NAPI_STATE_DISABLE, &n->state); 402} 403 404/** 405 * napi_schedule_prep - check if NAPI can be scheduled 406 * @n: NAPI context 407 * 408 * Test if NAPI routine is already running, and if not mark 409 * it as running. This is used as a condition variable to 410 * insure only one NAPI poll instance runs. We also make 411 * sure there is no pending NAPI disable. 412 */ 413static inline bool napi_schedule_prep(struct napi_struct *n) 414{ 415 return !napi_disable_pending(n) && 416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 417} 418 419/** 420 * napi_schedule - schedule NAPI poll 421 * @n: NAPI context 422 * 423 * Schedule NAPI poll routine to be called if it is not already 424 * running. 425 */ 426static inline void napi_schedule(struct napi_struct *n) 427{ 428 if (napi_schedule_prep(n)) 429 __napi_schedule(n); 430} 431 432/** 433 * napi_schedule_irqoff - schedule NAPI poll 434 * @n: NAPI context 435 * 436 * Variant of napi_schedule(), assuming hard irqs are masked. 437 */ 438static inline void napi_schedule_irqoff(struct napi_struct *n) 439{ 440 if (napi_schedule_prep(n)) 441 __napi_schedule_irqoff(n); 442} 443 444/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 445static inline bool napi_reschedule(struct napi_struct *napi) 446{ 447 if (napi_schedule_prep(napi)) { 448 __napi_schedule(napi); 449 return true; 450 } 451 return false; 452} 453 454void __napi_complete(struct napi_struct *n); 455void napi_complete_done(struct napi_struct *n, int work_done); 456/** 457 * napi_complete - NAPI processing complete 458 * @n: NAPI context 459 * 460 * Mark NAPI processing as complete. 461 * Consider using napi_complete_done() instead. 462 */ 463static inline void napi_complete(struct napi_struct *n) 464{ 465 return napi_complete_done(n, 0); 466} 467 468/** 469 * napi_hash_add - add a NAPI to global hashtable 470 * @napi: NAPI context 471 * 472 * Generate a new napi_id and store a @napi under it in napi_hash. 473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL). 474 * Note: This is normally automatically done from netif_napi_add(), 475 * so might disappear in a future Linux version. 476 */ 477void napi_hash_add(struct napi_struct *napi); 478 479/** 480 * napi_hash_del - remove a NAPI from global table 481 * @napi: NAPI context 482 * 483 * Warning: caller must observe RCU grace period 484 * before freeing memory containing @napi, if 485 * this function returns true. 486 * Note: core networking stack automatically calls it 487 * from netif_napi_del(). 488 * Drivers might want to call this helper to combine all 489 * the needed RCU grace periods into a single one. 490 */ 491bool napi_hash_del(struct napi_struct *napi); 492 493/** 494 * napi_disable - prevent NAPI from scheduling 495 * @n: NAPI context 496 * 497 * Stop NAPI from being scheduled on this context. 498 * Waits till any outstanding processing completes. 499 */ 500void napi_disable(struct napi_struct *n); 501 502/** 503 * napi_enable - enable NAPI scheduling 504 * @n: NAPI context 505 * 506 * Resume NAPI from being scheduled on this context. 507 * Must be paired with napi_disable. 508 */ 509static inline void napi_enable(struct napi_struct *n) 510{ 511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 512 smp_mb__before_atomic(); 513 clear_bit(NAPI_STATE_SCHED, &n->state); 514 clear_bit(NAPI_STATE_NPSVC, &n->state); 515} 516 517/** 518 * napi_synchronize - wait until NAPI is not running 519 * @n: NAPI context 520 * 521 * Wait until NAPI is done being scheduled on this context. 522 * Waits till any outstanding processing completes but 523 * does not disable future activations. 524 */ 525static inline void napi_synchronize(const struct napi_struct *n) 526{ 527 if (IS_ENABLED(CONFIG_SMP)) 528 while (test_bit(NAPI_STATE_SCHED, &n->state)) 529 msleep(1); 530 else 531 barrier(); 532} 533 534enum netdev_queue_state_t { 535 __QUEUE_STATE_DRV_XOFF, 536 __QUEUE_STATE_STACK_XOFF, 537 __QUEUE_STATE_FROZEN, 538}; 539 540#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 541#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 542#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 543 544#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 545#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 546 QUEUE_STATE_FROZEN) 547#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 548 QUEUE_STATE_FROZEN) 549 550/* 551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 552 * netif_tx_* functions below are used to manipulate this flag. The 553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 554 * queue independently. The netif_xmit_*stopped functions below are called 555 * to check if the queue has been stopped by the driver or stack (either 556 * of the XOFF bits are set in the state). Drivers should not need to call 557 * netif_xmit*stopped functions, they should only be using netif_tx_*. 558 */ 559 560struct netdev_queue { 561/* 562 * read-mostly part 563 */ 564 struct net_device *dev; 565 struct Qdisc __rcu *qdisc; 566 struct Qdisc *qdisc_sleeping; 567#ifdef CONFIG_SYSFS 568 struct kobject kobj; 569#endif 570#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 571 int numa_node; 572#endif 573/* 574 * write-mostly part 575 */ 576 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 577 int xmit_lock_owner; 578 /* 579 * please use this field instead of dev->trans_start 580 */ 581 unsigned long trans_start; 582 583 /* 584 * Number of TX timeouts for this queue 585 * (/sys/class/net/DEV/Q/trans_timeout) 586 */ 587 unsigned long trans_timeout; 588 589 unsigned long state; 590 591#ifdef CONFIG_BQL 592 struct dql dql; 593#endif 594 unsigned long tx_maxrate; 595} ____cacheline_aligned_in_smp; 596 597static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 598{ 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 return q->numa_node; 601#else 602 return NUMA_NO_NODE; 603#endif 604} 605 606static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 607{ 608#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 609 q->numa_node = node; 610#endif 611} 612 613#ifdef CONFIG_RPS 614/* 615 * This structure holds an RPS map which can be of variable length. The 616 * map is an array of CPUs. 617 */ 618struct rps_map { 619 unsigned int len; 620 struct rcu_head rcu; 621 u16 cpus[0]; 622}; 623#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 624 625/* 626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 627 * tail pointer for that CPU's input queue at the time of last enqueue, and 628 * a hardware filter index. 629 */ 630struct rps_dev_flow { 631 u16 cpu; 632 u16 filter; 633 unsigned int last_qtail; 634}; 635#define RPS_NO_FILTER 0xffff 636 637/* 638 * The rps_dev_flow_table structure contains a table of flow mappings. 639 */ 640struct rps_dev_flow_table { 641 unsigned int mask; 642 struct rcu_head rcu; 643 struct rps_dev_flow flows[0]; 644}; 645#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 646 ((_num) * sizeof(struct rps_dev_flow))) 647 648/* 649 * The rps_sock_flow_table contains mappings of flows to the last CPU 650 * on which they were processed by the application (set in recvmsg). 651 * Each entry is a 32bit value. Upper part is the high-order bits 652 * of flow hash, lower part is CPU number. 653 * rps_cpu_mask is used to partition the space, depending on number of 654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 656 * meaning we use 32-6=26 bits for the hash. 657 */ 658struct rps_sock_flow_table { 659 u32 mask; 660 661 u32 ents[0] ____cacheline_aligned_in_smp; 662}; 663#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 664 665#define RPS_NO_CPU 0xffff 666 667extern u32 rps_cpu_mask; 668extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 669 670static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 671 u32 hash) 672{ 673 if (table && hash) { 674 unsigned int index = hash & table->mask; 675 u32 val = hash & ~rps_cpu_mask; 676 677 /* We only give a hint, preemption can change CPU under us */ 678 val |= raw_smp_processor_id(); 679 680 if (table->ents[index] != val) 681 table->ents[index] = val; 682 } 683} 684 685#ifdef CONFIG_RFS_ACCEL 686bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 687 u16 filter_id); 688#endif 689#endif /* CONFIG_RPS */ 690 691/* This structure contains an instance of an RX queue. */ 692struct netdev_rx_queue { 693#ifdef CONFIG_RPS 694 struct rps_map __rcu *rps_map; 695 struct rps_dev_flow_table __rcu *rps_flow_table; 696#endif 697 struct kobject kobj; 698 struct net_device *dev; 699} ____cacheline_aligned_in_smp; 700 701/* 702 * RX queue sysfs structures and functions. 703 */ 704struct rx_queue_attribute { 705 struct attribute attr; 706 ssize_t (*show)(struct netdev_rx_queue *queue, 707 struct rx_queue_attribute *attr, char *buf); 708 ssize_t (*store)(struct netdev_rx_queue *queue, 709 struct rx_queue_attribute *attr, const char *buf, size_t len); 710}; 711 712#ifdef CONFIG_XPS 713/* 714 * This structure holds an XPS map which can be of variable length. The 715 * map is an array of queues. 716 */ 717struct xps_map { 718 unsigned int len; 719 unsigned int alloc_len; 720 struct rcu_head rcu; 721 u16 queues[0]; 722}; 723#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 724#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 725 - sizeof(struct xps_map)) / sizeof(u16)) 726 727/* 728 * This structure holds all XPS maps for device. Maps are indexed by CPU. 729 */ 730struct xps_dev_maps { 731 struct rcu_head rcu; 732 struct xps_map __rcu *cpu_map[0]; 733}; 734#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 735 (nr_cpu_ids * sizeof(struct xps_map *))) 736#endif /* CONFIG_XPS */ 737 738#define TC_MAX_QUEUE 16 739#define TC_BITMASK 15 740/* HW offloaded queuing disciplines txq count and offset maps */ 741struct netdev_tc_txq { 742 u16 count; 743 u16 offset; 744}; 745 746#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 747/* 748 * This structure is to hold information about the device 749 * configured to run FCoE protocol stack. 750 */ 751struct netdev_fcoe_hbainfo { 752 char manufacturer[64]; 753 char serial_number[64]; 754 char hardware_version[64]; 755 char driver_version[64]; 756 char optionrom_version[64]; 757 char firmware_version[64]; 758 char model[256]; 759 char model_description[256]; 760}; 761#endif 762 763#define MAX_PHYS_ITEM_ID_LEN 32 764 765/* This structure holds a unique identifier to identify some 766 * physical item (port for example) used by a netdevice. 767 */ 768struct netdev_phys_item_id { 769 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 770 unsigned char id_len; 771}; 772 773static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 774 struct netdev_phys_item_id *b) 775{ 776 return a->id_len == b->id_len && 777 memcmp(a->id, b->id, a->id_len) == 0; 778} 779 780typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 781 struct sk_buff *skb); 782 783/* These structures hold the attributes of qdisc and classifiers 784 * that are being passed to the netdevice through the setup_tc op. 785 */ 786enum { 787 TC_SETUP_MQPRIO, 788 TC_SETUP_CLSU32, 789 TC_SETUP_CLSFLOWER, 790}; 791 792struct tc_cls_u32_offload; 793 794struct tc_to_netdev { 795 unsigned int type; 796 union { 797 u8 tc; 798 struct tc_cls_u32_offload *cls_u32; 799 struct tc_cls_flower_offload *cls_flower; 800 }; 801}; 802 803 804/* 805 * This structure defines the management hooks for network devices. 806 * The following hooks can be defined; unless noted otherwise, they are 807 * optional and can be filled with a null pointer. 808 * 809 * int (*ndo_init)(struct net_device *dev); 810 * This function is called once when a network device is registered. 811 * The network device can use this for any late stage initialization 812 * or semantic validation. It can fail with an error code which will 813 * be propagated back to register_netdev. 814 * 815 * void (*ndo_uninit)(struct net_device *dev); 816 * This function is called when device is unregistered or when registration 817 * fails. It is not called if init fails. 818 * 819 * int (*ndo_open)(struct net_device *dev); 820 * This function is called when a network device transitions to the up 821 * state. 822 * 823 * int (*ndo_stop)(struct net_device *dev); 824 * This function is called when a network device transitions to the down 825 * state. 826 * 827 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 828 * struct net_device *dev); 829 * Called when a packet needs to be transmitted. 830 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 831 * the queue before that can happen; it's for obsolete devices and weird 832 * corner cases, but the stack really does a non-trivial amount 833 * of useless work if you return NETDEV_TX_BUSY. 834 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 835 * Required; cannot be NULL. 836 * 837 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 838 * netdev_features_t features); 839 * Adjusts the requested feature flags according to device-specific 840 * constraints, and returns the resulting flags. Must not modify 841 * the device state. 842 * 843 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 844 * void *accel_priv, select_queue_fallback_t fallback); 845 * Called to decide which queue to use when device supports multiple 846 * transmit queues. 847 * 848 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 849 * This function is called to allow device receiver to make 850 * changes to configuration when multicast or promiscuous is enabled. 851 * 852 * void (*ndo_set_rx_mode)(struct net_device *dev); 853 * This function is called device changes address list filtering. 854 * If driver handles unicast address filtering, it should set 855 * IFF_UNICAST_FLT in its priv_flags. 856 * 857 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 858 * This function is called when the Media Access Control address 859 * needs to be changed. If this interface is not defined, the 860 * MAC address can not be changed. 861 * 862 * int (*ndo_validate_addr)(struct net_device *dev); 863 * Test if Media Access Control address is valid for the device. 864 * 865 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 866 * Called when a user requests an ioctl which can't be handled by 867 * the generic interface code. If not defined ioctls return 868 * not supported error code. 869 * 870 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 871 * Used to set network devices bus interface parameters. This interface 872 * is retained for legacy reasons; new devices should use the bus 873 * interface (PCI) for low level management. 874 * 875 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 876 * Called when a user wants to change the Maximum Transfer Unit 877 * of a device. If not defined, any request to change MTU will 878 * will return an error. 879 * 880 * void (*ndo_tx_timeout)(struct net_device *dev); 881 * Callback used when the transmitter has not made any progress 882 * for dev->watchdog ticks. 883 * 884 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 885 * struct rtnl_link_stats64 *storage); 886 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 887 * Called when a user wants to get the network device usage 888 * statistics. Drivers must do one of the following: 889 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 890 * rtnl_link_stats64 structure passed by the caller. 891 * 2. Define @ndo_get_stats to update a net_device_stats structure 892 * (which should normally be dev->stats) and return a pointer to 893 * it. The structure may be changed asynchronously only if each 894 * field is written atomically. 895 * 3. Update dev->stats asynchronously and atomically, and define 896 * neither operation. 897 * 898 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 899 * If device supports VLAN filtering this function is called when a 900 * VLAN id is registered. 901 * 902 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 903 * If device supports VLAN filtering this function is called when a 904 * VLAN id is unregistered. 905 * 906 * void (*ndo_poll_controller)(struct net_device *dev); 907 * 908 * SR-IOV management functions. 909 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 910 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 911 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 912 * int max_tx_rate); 913 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 914 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 915 * int (*ndo_get_vf_config)(struct net_device *dev, 916 * int vf, struct ifla_vf_info *ivf); 917 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 918 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 919 * struct nlattr *port[]); 920 * 921 * Enable or disable the VF ability to query its RSS Redirection Table and 922 * Hash Key. This is needed since on some devices VF share this information 923 * with PF and querying it may introduce a theoretical security risk. 924 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 925 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 926 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 927 * Called to setup 'tc' number of traffic classes in the net device. This 928 * is always called from the stack with the rtnl lock held and netif tx 929 * queues stopped. This allows the netdevice to perform queue management 930 * safely. 931 * 932 * Fiber Channel over Ethernet (FCoE) offload functions. 933 * int (*ndo_fcoe_enable)(struct net_device *dev); 934 * Called when the FCoE protocol stack wants to start using LLD for FCoE 935 * so the underlying device can perform whatever needed configuration or 936 * initialization to support acceleration of FCoE traffic. 937 * 938 * int (*ndo_fcoe_disable)(struct net_device *dev); 939 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 940 * so the underlying device can perform whatever needed clean-ups to 941 * stop supporting acceleration of FCoE traffic. 942 * 943 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 944 * struct scatterlist *sgl, unsigned int sgc); 945 * Called when the FCoE Initiator wants to initialize an I/O that 946 * is a possible candidate for Direct Data Placement (DDP). The LLD can 947 * perform necessary setup and returns 1 to indicate the device is set up 948 * successfully to perform DDP on this I/O, otherwise this returns 0. 949 * 950 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 951 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 952 * indicated by the FC exchange id 'xid', so the underlying device can 953 * clean up and reuse resources for later DDP requests. 954 * 955 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 956 * struct scatterlist *sgl, unsigned int sgc); 957 * Called when the FCoE Target wants to initialize an I/O that 958 * is a possible candidate for Direct Data Placement (DDP). The LLD can 959 * perform necessary setup and returns 1 to indicate the device is set up 960 * successfully to perform DDP on this I/O, otherwise this returns 0. 961 * 962 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 963 * struct netdev_fcoe_hbainfo *hbainfo); 964 * Called when the FCoE Protocol stack wants information on the underlying 965 * device. This information is utilized by the FCoE protocol stack to 966 * register attributes with Fiber Channel management service as per the 967 * FC-GS Fabric Device Management Information(FDMI) specification. 968 * 969 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 970 * Called when the underlying device wants to override default World Wide 971 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 972 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 973 * protocol stack to use. 974 * 975 * RFS acceleration. 976 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 977 * u16 rxq_index, u32 flow_id); 978 * Set hardware filter for RFS. rxq_index is the target queue index; 979 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 980 * Return the filter ID on success, or a negative error code. 981 * 982 * Slave management functions (for bridge, bonding, etc). 983 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 984 * Called to make another netdev an underling. 985 * 986 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 987 * Called to release previously enslaved netdev. 988 * 989 * Feature/offload setting functions. 990 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 991 * Called to update device configuration to new features. Passed 992 * feature set might be less than what was returned by ndo_fix_features()). 993 * Must return >0 or -errno if it changed dev->features itself. 994 * 995 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 996 * struct net_device *dev, 997 * const unsigned char *addr, u16 vid, u16 flags) 998 * Adds an FDB entry to dev for addr. 999 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1000 * struct net_device *dev, 1001 * const unsigned char *addr, u16 vid) 1002 * Deletes the FDB entry from dev coresponding to addr. 1003 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1004 * struct net_device *dev, struct net_device *filter_dev, 1005 * int idx) 1006 * Used to add FDB entries to dump requests. Implementers should add 1007 * entries to skb and update idx with the number of entries. 1008 * 1009 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1010 * u16 flags) 1011 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1012 * struct net_device *dev, u32 filter_mask, 1013 * int nlflags) 1014 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1015 * u16 flags); 1016 * 1017 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1018 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1019 * which do not represent real hardware may define this to allow their 1020 * userspace components to manage their virtual carrier state. Devices 1021 * that determine carrier state from physical hardware properties (eg 1022 * network cables) or protocol-dependent mechanisms (eg 1023 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1024 * 1025 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1026 * struct netdev_phys_item_id *ppid); 1027 * Called to get ID of physical port of this device. If driver does 1028 * not implement this, it is assumed that the hw is not able to have 1029 * multiple net devices on single physical port. 1030 * 1031 * void (*ndo_add_vxlan_port)(struct net_device *dev, 1032 * sa_family_t sa_family, __be16 port); 1033 * Called by vxlan to notify a driver about the UDP port and socket 1034 * address family that vxlan is listening to. It is called only when 1035 * a new port starts listening. The operation is protected by the 1036 * vxlan_net->sock_lock. 1037 * 1038 * void (*ndo_add_geneve_port)(struct net_device *dev, 1039 * sa_family_t sa_family, __be16 port); 1040 * Called by geneve to notify a driver about the UDP port and socket 1041 * address family that geneve is listnening to. It is called only when 1042 * a new port starts listening. The operation is protected by the 1043 * geneve_net->sock_lock. 1044 * 1045 * void (*ndo_del_geneve_port)(struct net_device *dev, 1046 * sa_family_t sa_family, __be16 port); 1047 * Called by geneve to notify the driver about a UDP port and socket 1048 * address family that geneve is not listening to anymore. The operation 1049 * is protected by the geneve_net->sock_lock. 1050 * 1051 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1052 * sa_family_t sa_family, __be16 port); 1053 * Called by vxlan to notify the driver about a UDP port and socket 1054 * address family that vxlan is not listening to anymore. The operation 1055 * is protected by the vxlan_net->sock_lock. 1056 * 1057 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1058 * struct net_device *dev) 1059 * Called by upper layer devices to accelerate switching or other 1060 * station functionality into hardware. 'pdev is the lowerdev 1061 * to use for the offload and 'dev' is the net device that will 1062 * back the offload. Returns a pointer to the private structure 1063 * the upper layer will maintain. 1064 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1065 * Called by upper layer device to delete the station created 1066 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1067 * the station and priv is the structure returned by the add 1068 * operation. 1069 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1070 * struct net_device *dev, 1071 * void *priv); 1072 * Callback to use for xmit over the accelerated station. This 1073 * is used in place of ndo_start_xmit on accelerated net 1074 * devices. 1075 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1076 * struct net_device *dev 1077 * netdev_features_t features); 1078 * Called by core transmit path to determine if device is capable of 1079 * performing offload operations on a given packet. This is to give 1080 * the device an opportunity to implement any restrictions that cannot 1081 * be otherwise expressed by feature flags. The check is called with 1082 * the set of features that the stack has calculated and it returns 1083 * those the driver believes to be appropriate. 1084 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1085 * int queue_index, u32 maxrate); 1086 * Called when a user wants to set a max-rate limitation of specific 1087 * TX queue. 1088 * int (*ndo_get_iflink)(const struct net_device *dev); 1089 * Called to get the iflink value of this device. 1090 * void (*ndo_change_proto_down)(struct net_device *dev, 1091 * bool proto_down); 1092 * This function is used to pass protocol port error state information 1093 * to the switch driver. The switch driver can react to the proto_down 1094 * by doing a phys down on the associated switch port. 1095 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1096 * This function is used to get egress tunnel information for given skb. 1097 * This is useful for retrieving outer tunnel header parameters while 1098 * sampling packet. 1099 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1100 * This function is used to specify the headroom that the skb must 1101 * consider when allocation skb during packet reception. Setting 1102 * appropriate rx headroom value allows avoiding skb head copy on 1103 * forward. Setting a negative value resets the rx headroom to the 1104 * default value. 1105 * 1106 */ 1107struct net_device_ops { 1108 int (*ndo_init)(struct net_device *dev); 1109 void (*ndo_uninit)(struct net_device *dev); 1110 int (*ndo_open)(struct net_device *dev); 1111 int (*ndo_stop)(struct net_device *dev); 1112 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1113 struct net_device *dev); 1114 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1115 struct net_device *dev, 1116 netdev_features_t features); 1117 u16 (*ndo_select_queue)(struct net_device *dev, 1118 struct sk_buff *skb, 1119 void *accel_priv, 1120 select_queue_fallback_t fallback); 1121 void (*ndo_change_rx_flags)(struct net_device *dev, 1122 int flags); 1123 void (*ndo_set_rx_mode)(struct net_device *dev); 1124 int (*ndo_set_mac_address)(struct net_device *dev, 1125 void *addr); 1126 int (*ndo_validate_addr)(struct net_device *dev); 1127 int (*ndo_do_ioctl)(struct net_device *dev, 1128 struct ifreq *ifr, int cmd); 1129 int (*ndo_set_config)(struct net_device *dev, 1130 struct ifmap *map); 1131 int (*ndo_change_mtu)(struct net_device *dev, 1132 int new_mtu); 1133 int (*ndo_neigh_setup)(struct net_device *dev, 1134 struct neigh_parms *); 1135 void (*ndo_tx_timeout) (struct net_device *dev); 1136 1137 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1138 struct rtnl_link_stats64 *storage); 1139 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1140 1141 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1142 __be16 proto, u16 vid); 1143 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1144 __be16 proto, u16 vid); 1145#ifdef CONFIG_NET_POLL_CONTROLLER 1146 void (*ndo_poll_controller)(struct net_device *dev); 1147 int (*ndo_netpoll_setup)(struct net_device *dev, 1148 struct netpoll_info *info); 1149 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1150#endif 1151#ifdef CONFIG_NET_RX_BUSY_POLL 1152 int (*ndo_busy_poll)(struct napi_struct *dev); 1153#endif 1154 int (*ndo_set_vf_mac)(struct net_device *dev, 1155 int queue, u8 *mac); 1156 int (*ndo_set_vf_vlan)(struct net_device *dev, 1157 int queue, u16 vlan, u8 qos); 1158 int (*ndo_set_vf_rate)(struct net_device *dev, 1159 int vf, int min_tx_rate, 1160 int max_tx_rate); 1161 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1162 int vf, bool setting); 1163 int (*ndo_set_vf_trust)(struct net_device *dev, 1164 int vf, bool setting); 1165 int (*ndo_get_vf_config)(struct net_device *dev, 1166 int vf, 1167 struct ifla_vf_info *ivf); 1168 int (*ndo_set_vf_link_state)(struct net_device *dev, 1169 int vf, int link_state); 1170 int (*ndo_get_vf_stats)(struct net_device *dev, 1171 int vf, 1172 struct ifla_vf_stats 1173 *vf_stats); 1174 int (*ndo_set_vf_port)(struct net_device *dev, 1175 int vf, 1176 struct nlattr *port[]); 1177 int (*ndo_get_vf_port)(struct net_device *dev, 1178 int vf, struct sk_buff *skb); 1179 int (*ndo_set_vf_guid)(struct net_device *dev, 1180 int vf, u64 guid, 1181 int guid_type); 1182 int (*ndo_set_vf_rss_query_en)( 1183 struct net_device *dev, 1184 int vf, bool setting); 1185 int (*ndo_setup_tc)(struct net_device *dev, 1186 u32 handle, 1187 __be16 protocol, 1188 struct tc_to_netdev *tc); 1189#if IS_ENABLED(CONFIG_FCOE) 1190 int (*ndo_fcoe_enable)(struct net_device *dev); 1191 int (*ndo_fcoe_disable)(struct net_device *dev); 1192 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1193 u16 xid, 1194 struct scatterlist *sgl, 1195 unsigned int sgc); 1196 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1197 u16 xid); 1198 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1199 u16 xid, 1200 struct scatterlist *sgl, 1201 unsigned int sgc); 1202 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1203 struct netdev_fcoe_hbainfo *hbainfo); 1204#endif 1205 1206#if IS_ENABLED(CONFIG_LIBFCOE) 1207#define NETDEV_FCOE_WWNN 0 1208#define NETDEV_FCOE_WWPN 1 1209 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1210 u64 *wwn, int type); 1211#endif 1212 1213#ifdef CONFIG_RFS_ACCEL 1214 int (*ndo_rx_flow_steer)(struct net_device *dev, 1215 const struct sk_buff *skb, 1216 u16 rxq_index, 1217 u32 flow_id); 1218#endif 1219 int (*ndo_add_slave)(struct net_device *dev, 1220 struct net_device *slave_dev); 1221 int (*ndo_del_slave)(struct net_device *dev, 1222 struct net_device *slave_dev); 1223 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1224 netdev_features_t features); 1225 int (*ndo_set_features)(struct net_device *dev, 1226 netdev_features_t features); 1227 int (*ndo_neigh_construct)(struct neighbour *n); 1228 void (*ndo_neigh_destroy)(struct neighbour *n); 1229 1230 int (*ndo_fdb_add)(struct ndmsg *ndm, 1231 struct nlattr *tb[], 1232 struct net_device *dev, 1233 const unsigned char *addr, 1234 u16 vid, 1235 u16 flags); 1236 int (*ndo_fdb_del)(struct ndmsg *ndm, 1237 struct nlattr *tb[], 1238 struct net_device *dev, 1239 const unsigned char *addr, 1240 u16 vid); 1241 int (*ndo_fdb_dump)(struct sk_buff *skb, 1242 struct netlink_callback *cb, 1243 struct net_device *dev, 1244 struct net_device *filter_dev, 1245 int idx); 1246 1247 int (*ndo_bridge_setlink)(struct net_device *dev, 1248 struct nlmsghdr *nlh, 1249 u16 flags); 1250 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1251 u32 pid, u32 seq, 1252 struct net_device *dev, 1253 u32 filter_mask, 1254 int nlflags); 1255 int (*ndo_bridge_dellink)(struct net_device *dev, 1256 struct nlmsghdr *nlh, 1257 u16 flags); 1258 int (*ndo_change_carrier)(struct net_device *dev, 1259 bool new_carrier); 1260 int (*ndo_get_phys_port_id)(struct net_device *dev, 1261 struct netdev_phys_item_id *ppid); 1262 int (*ndo_get_phys_port_name)(struct net_device *dev, 1263 char *name, size_t len); 1264 void (*ndo_add_vxlan_port)(struct net_device *dev, 1265 sa_family_t sa_family, 1266 __be16 port); 1267 void (*ndo_del_vxlan_port)(struct net_device *dev, 1268 sa_family_t sa_family, 1269 __be16 port); 1270 void (*ndo_add_geneve_port)(struct net_device *dev, 1271 sa_family_t sa_family, 1272 __be16 port); 1273 void (*ndo_del_geneve_port)(struct net_device *dev, 1274 sa_family_t sa_family, 1275 __be16 port); 1276 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1277 struct net_device *dev); 1278 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1279 void *priv); 1280 1281 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1282 struct net_device *dev, 1283 void *priv); 1284 int (*ndo_get_lock_subclass)(struct net_device *dev); 1285 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1286 int queue_index, 1287 u32 maxrate); 1288 int (*ndo_get_iflink)(const struct net_device *dev); 1289 int (*ndo_change_proto_down)(struct net_device *dev, 1290 bool proto_down); 1291 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1292 struct sk_buff *skb); 1293 void (*ndo_set_rx_headroom)(struct net_device *dev, 1294 int needed_headroom); 1295}; 1296 1297/** 1298 * enum net_device_priv_flags - &struct net_device priv_flags 1299 * 1300 * These are the &struct net_device, they are only set internally 1301 * by drivers and used in the kernel. These flags are invisible to 1302 * userspace; this means that the order of these flags can change 1303 * during any kernel release. 1304 * 1305 * You should have a pretty good reason to be extending these flags. 1306 * 1307 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1308 * @IFF_EBRIDGE: Ethernet bridging device 1309 * @IFF_BONDING: bonding master or slave 1310 * @IFF_ISATAP: ISATAP interface (RFC4214) 1311 * @IFF_WAN_HDLC: WAN HDLC device 1312 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1313 * release skb->dst 1314 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1315 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1316 * @IFF_MACVLAN_PORT: device used as macvlan port 1317 * @IFF_BRIDGE_PORT: device used as bridge port 1318 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1319 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1320 * @IFF_UNICAST_FLT: Supports unicast filtering 1321 * @IFF_TEAM_PORT: device used as team port 1322 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1323 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1324 * change when it's running 1325 * @IFF_MACVLAN: Macvlan device 1326 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1327 * underlying stacked devices 1328 * @IFF_IPVLAN_MASTER: IPvlan master device 1329 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1330 * @IFF_L3MDEV_MASTER: device is an L3 master device 1331 * @IFF_NO_QUEUE: device can run without qdisc attached 1332 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1333 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1334 * @IFF_TEAM: device is a team device 1335 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1336 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1337 * entity (i.e. the master device for bridged veth) 1338 * @IFF_MACSEC: device is a MACsec device 1339 */ 1340enum netdev_priv_flags { 1341 IFF_802_1Q_VLAN = 1<<0, 1342 IFF_EBRIDGE = 1<<1, 1343 IFF_BONDING = 1<<2, 1344 IFF_ISATAP = 1<<3, 1345 IFF_WAN_HDLC = 1<<4, 1346 IFF_XMIT_DST_RELEASE = 1<<5, 1347 IFF_DONT_BRIDGE = 1<<6, 1348 IFF_DISABLE_NETPOLL = 1<<7, 1349 IFF_MACVLAN_PORT = 1<<8, 1350 IFF_BRIDGE_PORT = 1<<9, 1351 IFF_OVS_DATAPATH = 1<<10, 1352 IFF_TX_SKB_SHARING = 1<<11, 1353 IFF_UNICAST_FLT = 1<<12, 1354 IFF_TEAM_PORT = 1<<13, 1355 IFF_SUPP_NOFCS = 1<<14, 1356 IFF_LIVE_ADDR_CHANGE = 1<<15, 1357 IFF_MACVLAN = 1<<16, 1358 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1359 IFF_IPVLAN_MASTER = 1<<18, 1360 IFF_IPVLAN_SLAVE = 1<<19, 1361 IFF_L3MDEV_MASTER = 1<<20, 1362 IFF_NO_QUEUE = 1<<21, 1363 IFF_OPENVSWITCH = 1<<22, 1364 IFF_L3MDEV_SLAVE = 1<<23, 1365 IFF_TEAM = 1<<24, 1366 IFF_RXFH_CONFIGURED = 1<<25, 1367 IFF_PHONY_HEADROOM = 1<<26, 1368 IFF_MACSEC = 1<<27, 1369}; 1370 1371#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1372#define IFF_EBRIDGE IFF_EBRIDGE 1373#define IFF_BONDING IFF_BONDING 1374#define IFF_ISATAP IFF_ISATAP 1375#define IFF_WAN_HDLC IFF_WAN_HDLC 1376#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1377#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1378#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1379#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1380#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1381#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1382#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1383#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1384#define IFF_TEAM_PORT IFF_TEAM_PORT 1385#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1386#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1387#define IFF_MACVLAN IFF_MACVLAN 1388#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1389#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1390#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1391#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1392#define IFF_NO_QUEUE IFF_NO_QUEUE 1393#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1394#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1395#define IFF_TEAM IFF_TEAM 1396#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1397#define IFF_MACSEC IFF_MACSEC 1398 1399/** 1400 * struct net_device - The DEVICE structure. 1401 * Actually, this whole structure is a big mistake. It mixes I/O 1402 * data with strictly "high-level" data, and it has to know about 1403 * almost every data structure used in the INET module. 1404 * 1405 * @name: This is the first field of the "visible" part of this structure 1406 * (i.e. as seen by users in the "Space.c" file). It is the name 1407 * of the interface. 1408 * 1409 * @name_hlist: Device name hash chain, please keep it close to name[] 1410 * @ifalias: SNMP alias 1411 * @mem_end: Shared memory end 1412 * @mem_start: Shared memory start 1413 * @base_addr: Device I/O address 1414 * @irq: Device IRQ number 1415 * 1416 * @carrier_changes: Stats to monitor carrier on<->off transitions 1417 * 1418 * @state: Generic network queuing layer state, see netdev_state_t 1419 * @dev_list: The global list of network devices 1420 * @napi_list: List entry used for polling NAPI devices 1421 * @unreg_list: List entry when we are unregistering the 1422 * device; see the function unregister_netdev 1423 * @close_list: List entry used when we are closing the device 1424 * @ptype_all: Device-specific packet handlers for all protocols 1425 * @ptype_specific: Device-specific, protocol-specific packet handlers 1426 * 1427 * @adj_list: Directly linked devices, like slaves for bonding 1428 * @all_adj_list: All linked devices, *including* neighbours 1429 * @features: Currently active device features 1430 * @hw_features: User-changeable features 1431 * 1432 * @wanted_features: User-requested features 1433 * @vlan_features: Mask of features inheritable by VLAN devices 1434 * 1435 * @hw_enc_features: Mask of features inherited by encapsulating devices 1436 * This field indicates what encapsulation 1437 * offloads the hardware is capable of doing, 1438 * and drivers will need to set them appropriately. 1439 * 1440 * @mpls_features: Mask of features inheritable by MPLS 1441 * 1442 * @ifindex: interface index 1443 * @group: The group the device belongs to 1444 * 1445 * @stats: Statistics struct, which was left as a legacy, use 1446 * rtnl_link_stats64 instead 1447 * 1448 * @rx_dropped: Dropped packets by core network, 1449 * do not use this in drivers 1450 * @tx_dropped: Dropped packets by core network, 1451 * do not use this in drivers 1452 * @rx_nohandler: nohandler dropped packets by core network on 1453 * inactive devices, do not use this in drivers 1454 * 1455 * @wireless_handlers: List of functions to handle Wireless Extensions, 1456 * instead of ioctl, 1457 * see <net/iw_handler.h> for details. 1458 * @wireless_data: Instance data managed by the core of wireless extensions 1459 * 1460 * @netdev_ops: Includes several pointers to callbacks, 1461 * if one wants to override the ndo_*() functions 1462 * @ethtool_ops: Management operations 1463 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1464 * of Layer 2 headers. 1465 * 1466 * @flags: Interface flags (a la BSD) 1467 * @priv_flags: Like 'flags' but invisible to userspace, 1468 * see if.h for the definitions 1469 * @gflags: Global flags ( kept as legacy ) 1470 * @padded: How much padding added by alloc_netdev() 1471 * @operstate: RFC2863 operstate 1472 * @link_mode: Mapping policy to operstate 1473 * @if_port: Selectable AUI, TP, ... 1474 * @dma: DMA channel 1475 * @mtu: Interface MTU value 1476 * @type: Interface hardware type 1477 * @hard_header_len: Maximum hardware header length. 1478 * 1479 * @needed_headroom: Extra headroom the hardware may need, but not in all 1480 * cases can this be guaranteed 1481 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1482 * cases can this be guaranteed. Some cases also use 1483 * LL_MAX_HEADER instead to allocate the skb 1484 * 1485 * interface address info: 1486 * 1487 * @perm_addr: Permanent hw address 1488 * @addr_assign_type: Hw address assignment type 1489 * @addr_len: Hardware address length 1490 * @neigh_priv_len; Used in neigh_alloc(), 1491 * initialized only in atm/clip.c 1492 * @dev_id: Used to differentiate devices that share 1493 * the same link layer address 1494 * @dev_port: Used to differentiate devices that share 1495 * the same function 1496 * @addr_list_lock: XXX: need comments on this one 1497 * @uc_promisc: Counter that indicates promiscuous mode 1498 * has been enabled due to the need to listen to 1499 * additional unicast addresses in a device that 1500 * does not implement ndo_set_rx_mode() 1501 * @uc: unicast mac addresses 1502 * @mc: multicast mac addresses 1503 * @dev_addrs: list of device hw addresses 1504 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1505 * @promiscuity: Number of times the NIC is told to work in 1506 * promiscuous mode; if it becomes 0 the NIC will 1507 * exit promiscuous mode 1508 * @allmulti: Counter, enables or disables allmulticast mode 1509 * 1510 * @vlan_info: VLAN info 1511 * @dsa_ptr: dsa specific data 1512 * @tipc_ptr: TIPC specific data 1513 * @atalk_ptr: AppleTalk link 1514 * @ip_ptr: IPv4 specific data 1515 * @dn_ptr: DECnet specific data 1516 * @ip6_ptr: IPv6 specific data 1517 * @ax25_ptr: AX.25 specific data 1518 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1519 * 1520 * @last_rx: Time of last Rx 1521 * @dev_addr: Hw address (before bcast, 1522 * because most packets are unicast) 1523 * 1524 * @_rx: Array of RX queues 1525 * @num_rx_queues: Number of RX queues 1526 * allocated at register_netdev() time 1527 * @real_num_rx_queues: Number of RX queues currently active in device 1528 * 1529 * @rx_handler: handler for received packets 1530 * @rx_handler_data: XXX: need comments on this one 1531 * @ingress_queue: XXX: need comments on this one 1532 * @broadcast: hw bcast address 1533 * 1534 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1535 * indexed by RX queue number. Assigned by driver. 1536 * This must only be set if the ndo_rx_flow_steer 1537 * operation is defined 1538 * @index_hlist: Device index hash chain 1539 * 1540 * @_tx: Array of TX queues 1541 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1542 * @real_num_tx_queues: Number of TX queues currently active in device 1543 * @qdisc: Root qdisc from userspace point of view 1544 * @tx_queue_len: Max frames per queue allowed 1545 * @tx_global_lock: XXX: need comments on this one 1546 * 1547 * @xps_maps: XXX: need comments on this one 1548 * 1549 * @offload_fwd_mark: Offload device fwding mark 1550 * 1551 * @trans_start: Time (in jiffies) of last Tx 1552 * @watchdog_timeo: Represents the timeout that is used by 1553 * the watchdog (see dev_watchdog()) 1554 * @watchdog_timer: List of timers 1555 * 1556 * @pcpu_refcnt: Number of references to this device 1557 * @todo_list: Delayed register/unregister 1558 * @link_watch_list: XXX: need comments on this one 1559 * 1560 * @reg_state: Register/unregister state machine 1561 * @dismantle: Device is going to be freed 1562 * @rtnl_link_state: This enum represents the phases of creating 1563 * a new link 1564 * 1565 * @destructor: Called from unregister, 1566 * can be used to call free_netdev 1567 * @npinfo: XXX: need comments on this one 1568 * @nd_net: Network namespace this network device is inside 1569 * 1570 * @ml_priv: Mid-layer private 1571 * @lstats: Loopback statistics 1572 * @tstats: Tunnel statistics 1573 * @dstats: Dummy statistics 1574 * @vstats: Virtual ethernet statistics 1575 * 1576 * @garp_port: GARP 1577 * @mrp_port: MRP 1578 * 1579 * @dev: Class/net/name entry 1580 * @sysfs_groups: Space for optional device, statistics and wireless 1581 * sysfs groups 1582 * 1583 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1584 * @rtnl_link_ops: Rtnl_link_ops 1585 * 1586 * @gso_max_size: Maximum size of generic segmentation offload 1587 * @gso_max_segs: Maximum number of segments that can be passed to the 1588 * NIC for GSO 1589 * @gso_min_segs: Minimum number of segments that can be passed to the 1590 * NIC for GSO 1591 * 1592 * @dcbnl_ops: Data Center Bridging netlink ops 1593 * @num_tc: Number of traffic classes in the net device 1594 * @tc_to_txq: XXX: need comments on this one 1595 * @prio_tc_map XXX: need comments on this one 1596 * 1597 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1598 * 1599 * @priomap: XXX: need comments on this one 1600 * @phydev: Physical device may attach itself 1601 * for hardware timestamping 1602 * 1603 * @qdisc_tx_busylock: XXX: need comments on this one 1604 * 1605 * @proto_down: protocol port state information can be sent to the 1606 * switch driver and used to set the phys state of the 1607 * switch port. 1608 * 1609 * FIXME: cleanup struct net_device such that network protocol info 1610 * moves out. 1611 */ 1612 1613struct net_device { 1614 char name[IFNAMSIZ]; 1615 struct hlist_node name_hlist; 1616 char *ifalias; 1617 /* 1618 * I/O specific fields 1619 * FIXME: Merge these and struct ifmap into one 1620 */ 1621 unsigned long mem_end; 1622 unsigned long mem_start; 1623 unsigned long base_addr; 1624 int irq; 1625 1626 atomic_t carrier_changes; 1627 1628 /* 1629 * Some hardware also needs these fields (state,dev_list, 1630 * napi_list,unreg_list,close_list) but they are not 1631 * part of the usual set specified in Space.c. 1632 */ 1633 1634 unsigned long state; 1635 1636 struct list_head dev_list; 1637 struct list_head napi_list; 1638 struct list_head unreg_list; 1639 struct list_head close_list; 1640 struct list_head ptype_all; 1641 struct list_head ptype_specific; 1642 1643 struct { 1644 struct list_head upper; 1645 struct list_head lower; 1646 } adj_list; 1647 1648 struct { 1649 struct list_head upper; 1650 struct list_head lower; 1651 } all_adj_list; 1652 1653 netdev_features_t features; 1654 netdev_features_t hw_features; 1655 netdev_features_t wanted_features; 1656 netdev_features_t vlan_features; 1657 netdev_features_t hw_enc_features; 1658 netdev_features_t mpls_features; 1659 1660 int ifindex; 1661 int group; 1662 1663 struct net_device_stats stats; 1664 1665 atomic_long_t rx_dropped; 1666 atomic_long_t tx_dropped; 1667 atomic_long_t rx_nohandler; 1668 1669#ifdef CONFIG_WIRELESS_EXT 1670 const struct iw_handler_def *wireless_handlers; 1671 struct iw_public_data *wireless_data; 1672#endif 1673 const struct net_device_ops *netdev_ops; 1674 const struct ethtool_ops *ethtool_ops; 1675#ifdef CONFIG_NET_SWITCHDEV 1676 const struct switchdev_ops *switchdev_ops; 1677#endif 1678#ifdef CONFIG_NET_L3_MASTER_DEV 1679 const struct l3mdev_ops *l3mdev_ops; 1680#endif 1681 1682 const struct header_ops *header_ops; 1683 1684 unsigned int flags; 1685 unsigned int priv_flags; 1686 1687 unsigned short gflags; 1688 unsigned short padded; 1689 1690 unsigned char operstate; 1691 unsigned char link_mode; 1692 1693 unsigned char if_port; 1694 unsigned char dma; 1695 1696 unsigned int mtu; 1697 unsigned short type; 1698 unsigned short hard_header_len; 1699 1700 unsigned short needed_headroom; 1701 unsigned short needed_tailroom; 1702 1703 /* Interface address info. */ 1704 unsigned char perm_addr[MAX_ADDR_LEN]; 1705 unsigned char addr_assign_type; 1706 unsigned char addr_len; 1707 unsigned short neigh_priv_len; 1708 unsigned short dev_id; 1709 unsigned short dev_port; 1710 spinlock_t addr_list_lock; 1711 unsigned char name_assign_type; 1712 bool uc_promisc; 1713 struct netdev_hw_addr_list uc; 1714 struct netdev_hw_addr_list mc; 1715 struct netdev_hw_addr_list dev_addrs; 1716 1717#ifdef CONFIG_SYSFS 1718 struct kset *queues_kset; 1719#endif 1720 unsigned int promiscuity; 1721 unsigned int allmulti; 1722 1723 1724 /* Protocol-specific pointers */ 1725 1726#if IS_ENABLED(CONFIG_VLAN_8021Q) 1727 struct vlan_info __rcu *vlan_info; 1728#endif 1729#if IS_ENABLED(CONFIG_NET_DSA) 1730 struct dsa_switch_tree *dsa_ptr; 1731#endif 1732#if IS_ENABLED(CONFIG_TIPC) 1733 struct tipc_bearer __rcu *tipc_ptr; 1734#endif 1735 void *atalk_ptr; 1736 struct in_device __rcu *ip_ptr; 1737 struct dn_dev __rcu *dn_ptr; 1738 struct inet6_dev __rcu *ip6_ptr; 1739 void *ax25_ptr; 1740 struct wireless_dev *ieee80211_ptr; 1741 struct wpan_dev *ieee802154_ptr; 1742#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1743 struct mpls_dev __rcu *mpls_ptr; 1744#endif 1745 1746/* 1747 * Cache lines mostly used on receive path (including eth_type_trans()) 1748 */ 1749 unsigned long last_rx; 1750 1751 /* Interface address info used in eth_type_trans() */ 1752 unsigned char *dev_addr; 1753 1754#ifdef CONFIG_SYSFS 1755 struct netdev_rx_queue *_rx; 1756 1757 unsigned int num_rx_queues; 1758 unsigned int real_num_rx_queues; 1759#endif 1760 1761 unsigned long gro_flush_timeout; 1762 rx_handler_func_t __rcu *rx_handler; 1763 void __rcu *rx_handler_data; 1764 1765#ifdef CONFIG_NET_CLS_ACT 1766 struct tcf_proto __rcu *ingress_cl_list; 1767#endif 1768 struct netdev_queue __rcu *ingress_queue; 1769#ifdef CONFIG_NETFILTER_INGRESS 1770 struct list_head nf_hooks_ingress; 1771#endif 1772 1773 unsigned char broadcast[MAX_ADDR_LEN]; 1774#ifdef CONFIG_RFS_ACCEL 1775 struct cpu_rmap *rx_cpu_rmap; 1776#endif 1777 struct hlist_node index_hlist; 1778 1779/* 1780 * Cache lines mostly used on transmit path 1781 */ 1782 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1783 unsigned int num_tx_queues; 1784 unsigned int real_num_tx_queues; 1785 struct Qdisc *qdisc; 1786 unsigned long tx_queue_len; 1787 spinlock_t tx_global_lock; 1788 int watchdog_timeo; 1789 1790#ifdef CONFIG_XPS 1791 struct xps_dev_maps __rcu *xps_maps; 1792#endif 1793#ifdef CONFIG_NET_CLS_ACT 1794 struct tcf_proto __rcu *egress_cl_list; 1795#endif 1796#ifdef CONFIG_NET_SWITCHDEV 1797 u32 offload_fwd_mark; 1798#endif 1799 1800 /* These may be needed for future network-power-down code. */ 1801 1802 /* 1803 * trans_start here is expensive for high speed devices on SMP, 1804 * please use netdev_queue->trans_start instead. 1805 */ 1806 unsigned long trans_start; 1807 1808 struct timer_list watchdog_timer; 1809 1810 int __percpu *pcpu_refcnt; 1811 struct list_head todo_list; 1812 1813 struct list_head link_watch_list; 1814 1815 enum { NETREG_UNINITIALIZED=0, 1816 NETREG_REGISTERED, /* completed register_netdevice */ 1817 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1818 NETREG_UNREGISTERED, /* completed unregister todo */ 1819 NETREG_RELEASED, /* called free_netdev */ 1820 NETREG_DUMMY, /* dummy device for NAPI poll */ 1821 } reg_state:8; 1822 1823 bool dismantle; 1824 1825 enum { 1826 RTNL_LINK_INITIALIZED, 1827 RTNL_LINK_INITIALIZING, 1828 } rtnl_link_state:16; 1829 1830 void (*destructor)(struct net_device *dev); 1831 1832#ifdef CONFIG_NETPOLL 1833 struct netpoll_info __rcu *npinfo; 1834#endif 1835 1836 possible_net_t nd_net; 1837 1838 /* mid-layer private */ 1839 union { 1840 void *ml_priv; 1841 struct pcpu_lstats __percpu *lstats; 1842 struct pcpu_sw_netstats __percpu *tstats; 1843 struct pcpu_dstats __percpu *dstats; 1844 struct pcpu_vstats __percpu *vstats; 1845 }; 1846 1847 struct garp_port __rcu *garp_port; 1848 struct mrp_port __rcu *mrp_port; 1849 1850 struct device dev; 1851 const struct attribute_group *sysfs_groups[4]; 1852 const struct attribute_group *sysfs_rx_queue_group; 1853 1854 const struct rtnl_link_ops *rtnl_link_ops; 1855 1856 /* for setting kernel sock attribute on TCP connection setup */ 1857#define GSO_MAX_SIZE 65536 1858 unsigned int gso_max_size; 1859#define GSO_MAX_SEGS 65535 1860 u16 gso_max_segs; 1861 u16 gso_min_segs; 1862#ifdef CONFIG_DCB 1863 const struct dcbnl_rtnl_ops *dcbnl_ops; 1864#endif 1865 u8 num_tc; 1866 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1867 u8 prio_tc_map[TC_BITMASK + 1]; 1868 1869#if IS_ENABLED(CONFIG_FCOE) 1870 unsigned int fcoe_ddp_xid; 1871#endif 1872#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1873 struct netprio_map __rcu *priomap; 1874#endif 1875 struct phy_device *phydev; 1876 struct lock_class_key *qdisc_tx_busylock; 1877 bool proto_down; 1878}; 1879#define to_net_dev(d) container_of(d, struct net_device, dev) 1880 1881#define NETDEV_ALIGN 32 1882 1883static inline 1884int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1885{ 1886 return dev->prio_tc_map[prio & TC_BITMASK]; 1887} 1888 1889static inline 1890int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1891{ 1892 if (tc >= dev->num_tc) 1893 return -EINVAL; 1894 1895 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1896 return 0; 1897} 1898 1899static inline 1900void netdev_reset_tc(struct net_device *dev) 1901{ 1902 dev->num_tc = 0; 1903 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1904 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1905} 1906 1907static inline 1908int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1909{ 1910 if (tc >= dev->num_tc) 1911 return -EINVAL; 1912 1913 dev->tc_to_txq[tc].count = count; 1914 dev->tc_to_txq[tc].offset = offset; 1915 return 0; 1916} 1917 1918static inline 1919int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1920{ 1921 if (num_tc > TC_MAX_QUEUE) 1922 return -EINVAL; 1923 1924 dev->num_tc = num_tc; 1925 return 0; 1926} 1927 1928static inline 1929int netdev_get_num_tc(struct net_device *dev) 1930{ 1931 return dev->num_tc; 1932} 1933 1934static inline 1935struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1936 unsigned int index) 1937{ 1938 return &dev->_tx[index]; 1939} 1940 1941static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1942 const struct sk_buff *skb) 1943{ 1944 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1945} 1946 1947static inline void netdev_for_each_tx_queue(struct net_device *dev, 1948 void (*f)(struct net_device *, 1949 struct netdev_queue *, 1950 void *), 1951 void *arg) 1952{ 1953 unsigned int i; 1954 1955 for (i = 0; i < dev->num_tx_queues; i++) 1956 f(dev, &dev->_tx[i], arg); 1957} 1958 1959struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1960 struct sk_buff *skb, 1961 void *accel_priv); 1962 1963/* returns the headroom that the master device needs to take in account 1964 * when forwarding to this dev 1965 */ 1966static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1967{ 1968 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1969} 1970 1971static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1972{ 1973 if (dev->netdev_ops->ndo_set_rx_headroom) 1974 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1975} 1976 1977/* set the device rx headroom to the dev's default */ 1978static inline void netdev_reset_rx_headroom(struct net_device *dev) 1979{ 1980 netdev_set_rx_headroom(dev, -1); 1981} 1982 1983/* 1984 * Net namespace inlines 1985 */ 1986static inline 1987struct net *dev_net(const struct net_device *dev) 1988{ 1989 return read_pnet(&dev->nd_net); 1990} 1991 1992static inline 1993void dev_net_set(struct net_device *dev, struct net *net) 1994{ 1995 write_pnet(&dev->nd_net, net); 1996} 1997 1998static inline bool netdev_uses_dsa(struct net_device *dev) 1999{ 2000#if IS_ENABLED(CONFIG_NET_DSA) 2001 if (dev->dsa_ptr != NULL) 2002 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2003#endif 2004 return false; 2005} 2006 2007/** 2008 * netdev_priv - access network device private data 2009 * @dev: network device 2010 * 2011 * Get network device private data 2012 */ 2013static inline void *netdev_priv(const struct net_device *dev) 2014{ 2015 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2016} 2017 2018/* Set the sysfs physical device reference for the network logical device 2019 * if set prior to registration will cause a symlink during initialization. 2020 */ 2021#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2022 2023/* Set the sysfs device type for the network logical device to allow 2024 * fine-grained identification of different network device types. For 2025 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2026 */ 2027#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2028 2029/* Default NAPI poll() weight 2030 * Device drivers are strongly advised to not use bigger value 2031 */ 2032#define NAPI_POLL_WEIGHT 64 2033 2034/** 2035 * netif_napi_add - initialize a NAPI context 2036 * @dev: network device 2037 * @napi: NAPI context 2038 * @poll: polling function 2039 * @weight: default weight 2040 * 2041 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2042 * *any* of the other NAPI-related functions. 2043 */ 2044void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2045 int (*poll)(struct napi_struct *, int), int weight); 2046 2047/** 2048 * netif_tx_napi_add - initialize a NAPI context 2049 * @dev: network device 2050 * @napi: NAPI context 2051 * @poll: polling function 2052 * @weight: default weight 2053 * 2054 * This variant of netif_napi_add() should be used from drivers using NAPI 2055 * to exclusively poll a TX queue. 2056 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2057 */ 2058static inline void netif_tx_napi_add(struct net_device *dev, 2059 struct napi_struct *napi, 2060 int (*poll)(struct napi_struct *, int), 2061 int weight) 2062{ 2063 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2064 netif_napi_add(dev, napi, poll, weight); 2065} 2066 2067/** 2068 * netif_napi_del - remove a NAPI context 2069 * @napi: NAPI context 2070 * 2071 * netif_napi_del() removes a NAPI context from the network device NAPI list 2072 */ 2073void netif_napi_del(struct napi_struct *napi); 2074 2075struct napi_gro_cb { 2076 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2077 void *frag0; 2078 2079 /* Length of frag0. */ 2080 unsigned int frag0_len; 2081 2082 /* This indicates where we are processing relative to skb->data. */ 2083 int data_offset; 2084 2085 /* This is non-zero if the packet cannot be merged with the new skb. */ 2086 u16 flush; 2087 2088 /* Save the IP ID here and check when we get to the transport layer */ 2089 u16 flush_id; 2090 2091 /* Number of segments aggregated. */ 2092 u16 count; 2093 2094 /* Start offset for remote checksum offload */ 2095 u16 gro_remcsum_start; 2096 2097 /* jiffies when first packet was created/queued */ 2098 unsigned long age; 2099 2100 /* Used in ipv6_gro_receive() and foo-over-udp */ 2101 u16 proto; 2102 2103 /* This is non-zero if the packet may be of the same flow. */ 2104 u8 same_flow:1; 2105 2106 /* Used in tunnel GRO receive */ 2107 u8 encap_mark:1; 2108 2109 /* GRO checksum is valid */ 2110 u8 csum_valid:1; 2111 2112 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2113 u8 csum_cnt:3; 2114 2115 /* Free the skb? */ 2116 u8 free:2; 2117#define NAPI_GRO_FREE 1 2118#define NAPI_GRO_FREE_STOLEN_HEAD 2 2119 2120 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2121 u8 is_ipv6:1; 2122 2123 /* Used in GRE, set in fou/gue_gro_receive */ 2124 u8 is_fou:1; 2125 2126 /* 6 bit hole */ 2127 2128 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2129 __wsum csum; 2130 2131 /* used in skb_gro_receive() slow path */ 2132 struct sk_buff *last; 2133}; 2134 2135#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2136 2137struct packet_type { 2138 __be16 type; /* This is really htons(ether_type). */ 2139 struct net_device *dev; /* NULL is wildcarded here */ 2140 int (*func) (struct sk_buff *, 2141 struct net_device *, 2142 struct packet_type *, 2143 struct net_device *); 2144 bool (*id_match)(struct packet_type *ptype, 2145 struct sock *sk); 2146 void *af_packet_priv; 2147 struct list_head list; 2148}; 2149 2150struct offload_callbacks { 2151 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2152 netdev_features_t features); 2153 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2154 struct sk_buff *skb); 2155 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2156}; 2157 2158struct packet_offload { 2159 __be16 type; /* This is really htons(ether_type). */ 2160 u16 priority; 2161 struct offload_callbacks callbacks; 2162 struct list_head list; 2163}; 2164 2165struct udp_offload; 2166 2167/* 'skb->encapsulation' is set before gro_complete() is called. gro_complete() 2168 * must set 'skb->inner_mac_header' to the beginning of tunnel payload. 2169 */ 2170struct udp_offload_callbacks { 2171 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2172 struct sk_buff *skb, 2173 struct udp_offload *uoff); 2174 int (*gro_complete)(struct sk_buff *skb, 2175 int nhoff, 2176 struct udp_offload *uoff); 2177}; 2178 2179struct udp_offload { 2180 __be16 port; 2181 u8 ipproto; 2182 struct udp_offload_callbacks callbacks; 2183}; 2184 2185/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2186struct pcpu_sw_netstats { 2187 u64 rx_packets; 2188 u64 rx_bytes; 2189 u64 tx_packets; 2190 u64 tx_bytes; 2191 struct u64_stats_sync syncp; 2192}; 2193 2194#define __netdev_alloc_pcpu_stats(type, gfp) \ 2195({ \ 2196 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2197 if (pcpu_stats) { \ 2198 int __cpu; \ 2199 for_each_possible_cpu(__cpu) { \ 2200 typeof(type) *stat; \ 2201 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2202 u64_stats_init(&stat->syncp); \ 2203 } \ 2204 } \ 2205 pcpu_stats; \ 2206}) 2207 2208#define netdev_alloc_pcpu_stats(type) \ 2209 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2210 2211enum netdev_lag_tx_type { 2212 NETDEV_LAG_TX_TYPE_UNKNOWN, 2213 NETDEV_LAG_TX_TYPE_RANDOM, 2214 NETDEV_LAG_TX_TYPE_BROADCAST, 2215 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2216 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2217 NETDEV_LAG_TX_TYPE_HASH, 2218}; 2219 2220struct netdev_lag_upper_info { 2221 enum netdev_lag_tx_type tx_type; 2222}; 2223 2224struct netdev_lag_lower_state_info { 2225 u8 link_up : 1, 2226 tx_enabled : 1; 2227}; 2228 2229#include <linux/notifier.h> 2230 2231/* netdevice notifier chain. Please remember to update the rtnetlink 2232 * notification exclusion list in rtnetlink_event() when adding new 2233 * types. 2234 */ 2235#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2236#define NETDEV_DOWN 0x0002 2237#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2238 detected a hardware crash and restarted 2239 - we can use this eg to kick tcp sessions 2240 once done */ 2241#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2242#define NETDEV_REGISTER 0x0005 2243#define NETDEV_UNREGISTER 0x0006 2244#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2245#define NETDEV_CHANGEADDR 0x0008 2246#define NETDEV_GOING_DOWN 0x0009 2247#define NETDEV_CHANGENAME 0x000A 2248#define NETDEV_FEAT_CHANGE 0x000B 2249#define NETDEV_BONDING_FAILOVER 0x000C 2250#define NETDEV_PRE_UP 0x000D 2251#define NETDEV_PRE_TYPE_CHANGE 0x000E 2252#define NETDEV_POST_TYPE_CHANGE 0x000F 2253#define NETDEV_POST_INIT 0x0010 2254#define NETDEV_UNREGISTER_FINAL 0x0011 2255#define NETDEV_RELEASE 0x0012 2256#define NETDEV_NOTIFY_PEERS 0x0013 2257#define NETDEV_JOIN 0x0014 2258#define NETDEV_CHANGEUPPER 0x0015 2259#define NETDEV_RESEND_IGMP 0x0016 2260#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2261#define NETDEV_CHANGEINFODATA 0x0018 2262#define NETDEV_BONDING_INFO 0x0019 2263#define NETDEV_PRECHANGEUPPER 0x001A 2264#define NETDEV_CHANGELOWERSTATE 0x001B 2265 2266int register_netdevice_notifier(struct notifier_block *nb); 2267int unregister_netdevice_notifier(struct notifier_block *nb); 2268 2269struct netdev_notifier_info { 2270 struct net_device *dev; 2271}; 2272 2273struct netdev_notifier_change_info { 2274 struct netdev_notifier_info info; /* must be first */ 2275 unsigned int flags_changed; 2276}; 2277 2278struct netdev_notifier_changeupper_info { 2279 struct netdev_notifier_info info; /* must be first */ 2280 struct net_device *upper_dev; /* new upper dev */ 2281 bool master; /* is upper dev master */ 2282 bool linking; /* is the notification for link or unlink */ 2283 void *upper_info; /* upper dev info */ 2284}; 2285 2286struct netdev_notifier_changelowerstate_info { 2287 struct netdev_notifier_info info; /* must be first */ 2288 void *lower_state_info; /* is lower dev state */ 2289}; 2290 2291static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2292 struct net_device *dev) 2293{ 2294 info->dev = dev; 2295} 2296 2297static inline struct net_device * 2298netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2299{ 2300 return info->dev; 2301} 2302 2303int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2304 2305 2306extern rwlock_t dev_base_lock; /* Device list lock */ 2307 2308#define for_each_netdev(net, d) \ 2309 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2310#define for_each_netdev_reverse(net, d) \ 2311 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2312#define for_each_netdev_rcu(net, d) \ 2313 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2314#define for_each_netdev_safe(net, d, n) \ 2315 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2316#define for_each_netdev_continue(net, d) \ 2317 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2318#define for_each_netdev_continue_rcu(net, d) \ 2319 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2320#define for_each_netdev_in_bond_rcu(bond, slave) \ 2321 for_each_netdev_rcu(&init_net, slave) \ 2322 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2323#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2324 2325static inline struct net_device *next_net_device(struct net_device *dev) 2326{ 2327 struct list_head *lh; 2328 struct net *net; 2329 2330 net = dev_net(dev); 2331 lh = dev->dev_list.next; 2332 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2333} 2334 2335static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2336{ 2337 struct list_head *lh; 2338 struct net *net; 2339 2340 net = dev_net(dev); 2341 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2342 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2343} 2344 2345static inline struct net_device *first_net_device(struct net *net) 2346{ 2347 return list_empty(&net->dev_base_head) ? NULL : 2348 net_device_entry(net->dev_base_head.next); 2349} 2350 2351static inline struct net_device *first_net_device_rcu(struct net *net) 2352{ 2353 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2354 2355 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2356} 2357 2358int netdev_boot_setup_check(struct net_device *dev); 2359unsigned long netdev_boot_base(const char *prefix, int unit); 2360struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2361 const char *hwaddr); 2362struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2363struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2364void dev_add_pack(struct packet_type *pt); 2365void dev_remove_pack(struct packet_type *pt); 2366void __dev_remove_pack(struct packet_type *pt); 2367void dev_add_offload(struct packet_offload *po); 2368void dev_remove_offload(struct packet_offload *po); 2369 2370int dev_get_iflink(const struct net_device *dev); 2371int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2372struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2373 unsigned short mask); 2374struct net_device *dev_get_by_name(struct net *net, const char *name); 2375struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2376struct net_device *__dev_get_by_name(struct net *net, const char *name); 2377int dev_alloc_name(struct net_device *dev, const char *name); 2378int dev_open(struct net_device *dev); 2379int dev_close(struct net_device *dev); 2380int dev_close_many(struct list_head *head, bool unlink); 2381void dev_disable_lro(struct net_device *dev); 2382int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2383int dev_queue_xmit(struct sk_buff *skb); 2384int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2385int register_netdevice(struct net_device *dev); 2386void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2387void unregister_netdevice_many(struct list_head *head); 2388static inline void unregister_netdevice(struct net_device *dev) 2389{ 2390 unregister_netdevice_queue(dev, NULL); 2391} 2392 2393int netdev_refcnt_read(const struct net_device *dev); 2394void free_netdev(struct net_device *dev); 2395void netdev_freemem(struct net_device *dev); 2396void synchronize_net(void); 2397int init_dummy_netdev(struct net_device *dev); 2398 2399DECLARE_PER_CPU(int, xmit_recursion); 2400static inline int dev_recursion_level(void) 2401{ 2402 return this_cpu_read(xmit_recursion); 2403} 2404 2405struct net_device *dev_get_by_index(struct net *net, int ifindex); 2406struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2407struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2408int netdev_get_name(struct net *net, char *name, int ifindex); 2409int dev_restart(struct net_device *dev); 2410int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2411 2412static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2413{ 2414 return NAPI_GRO_CB(skb)->data_offset; 2415} 2416 2417static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2418{ 2419 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2420} 2421 2422static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2423{ 2424 NAPI_GRO_CB(skb)->data_offset += len; 2425} 2426 2427static inline void *skb_gro_header_fast(struct sk_buff *skb, 2428 unsigned int offset) 2429{ 2430 return NAPI_GRO_CB(skb)->frag0 + offset; 2431} 2432 2433static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2434{ 2435 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2436} 2437 2438static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2439 unsigned int offset) 2440{ 2441 if (!pskb_may_pull(skb, hlen)) 2442 return NULL; 2443 2444 NAPI_GRO_CB(skb)->frag0 = NULL; 2445 NAPI_GRO_CB(skb)->frag0_len = 0; 2446 return skb->data + offset; 2447} 2448 2449static inline void *skb_gro_network_header(struct sk_buff *skb) 2450{ 2451 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2452 skb_network_offset(skb); 2453} 2454 2455static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2456 const void *start, unsigned int len) 2457{ 2458 if (NAPI_GRO_CB(skb)->csum_valid) 2459 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2460 csum_partial(start, len, 0)); 2461} 2462 2463/* GRO checksum functions. These are logical equivalents of the normal 2464 * checksum functions (in skbuff.h) except that they operate on the GRO 2465 * offsets and fields in sk_buff. 2466 */ 2467 2468__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2469 2470static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2471{ 2472 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2473} 2474 2475static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2476 bool zero_okay, 2477 __sum16 check) 2478{ 2479 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2480 skb_checksum_start_offset(skb) < 2481 skb_gro_offset(skb)) && 2482 !skb_at_gro_remcsum_start(skb) && 2483 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2484 (!zero_okay || check)); 2485} 2486 2487static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2488 __wsum psum) 2489{ 2490 if (NAPI_GRO_CB(skb)->csum_valid && 2491 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2492 return 0; 2493 2494 NAPI_GRO_CB(skb)->csum = psum; 2495 2496 return __skb_gro_checksum_complete(skb); 2497} 2498 2499static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2500{ 2501 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2502 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2503 NAPI_GRO_CB(skb)->csum_cnt--; 2504 } else { 2505 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2506 * verified a new top level checksum or an encapsulated one 2507 * during GRO. This saves work if we fallback to normal path. 2508 */ 2509 __skb_incr_checksum_unnecessary(skb); 2510 } 2511} 2512 2513#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2514 compute_pseudo) \ 2515({ \ 2516 __sum16 __ret = 0; \ 2517 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2518 __ret = __skb_gro_checksum_validate_complete(skb, \ 2519 compute_pseudo(skb, proto)); \ 2520 if (__ret) \ 2521 __skb_mark_checksum_bad(skb); \ 2522 else \ 2523 skb_gro_incr_csum_unnecessary(skb); \ 2524 __ret; \ 2525}) 2526 2527#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2528 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2529 2530#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2531 compute_pseudo) \ 2532 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2533 2534#define skb_gro_checksum_simple_validate(skb) \ 2535 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2536 2537static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2538{ 2539 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2540 !NAPI_GRO_CB(skb)->csum_valid); 2541} 2542 2543static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2544 __sum16 check, __wsum pseudo) 2545{ 2546 NAPI_GRO_CB(skb)->csum = ~pseudo; 2547 NAPI_GRO_CB(skb)->csum_valid = 1; 2548} 2549 2550#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2551do { \ 2552 if (__skb_gro_checksum_convert_check(skb)) \ 2553 __skb_gro_checksum_convert(skb, check, \ 2554 compute_pseudo(skb, proto)); \ 2555} while (0) 2556 2557struct gro_remcsum { 2558 int offset; 2559 __wsum delta; 2560}; 2561 2562static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2563{ 2564 grc->offset = 0; 2565 grc->delta = 0; 2566} 2567 2568static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2569 unsigned int off, size_t hdrlen, 2570 int start, int offset, 2571 struct gro_remcsum *grc, 2572 bool nopartial) 2573{ 2574 __wsum delta; 2575 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2576 2577 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2578 2579 if (!nopartial) { 2580 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2581 return ptr; 2582 } 2583 2584 ptr = skb_gro_header_fast(skb, off); 2585 if (skb_gro_header_hard(skb, off + plen)) { 2586 ptr = skb_gro_header_slow(skb, off + plen, off); 2587 if (!ptr) 2588 return NULL; 2589 } 2590 2591 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2592 start, offset); 2593 2594 /* Adjust skb->csum since we changed the packet */ 2595 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2596 2597 grc->offset = off + hdrlen + offset; 2598 grc->delta = delta; 2599 2600 return ptr; 2601} 2602 2603static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2604 struct gro_remcsum *grc) 2605{ 2606 void *ptr; 2607 size_t plen = grc->offset + sizeof(u16); 2608 2609 if (!grc->delta) 2610 return; 2611 2612 ptr = skb_gro_header_fast(skb, grc->offset); 2613 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2614 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2615 if (!ptr) 2616 return; 2617 } 2618 2619 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2620} 2621 2622struct skb_csum_offl_spec { 2623 __u16 ipv4_okay:1, 2624 ipv6_okay:1, 2625 encap_okay:1, 2626 ip_options_okay:1, 2627 ext_hdrs_okay:1, 2628 tcp_okay:1, 2629 udp_okay:1, 2630 sctp_okay:1, 2631 vlan_okay:1, 2632 no_encapped_ipv6:1, 2633 no_not_encapped:1; 2634}; 2635 2636bool __skb_csum_offload_chk(struct sk_buff *skb, 2637 const struct skb_csum_offl_spec *spec, 2638 bool *csum_encapped, 2639 bool csum_help); 2640 2641static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2642 const struct skb_csum_offl_spec *spec, 2643 bool *csum_encapped, 2644 bool csum_help) 2645{ 2646 if (skb->ip_summed != CHECKSUM_PARTIAL) 2647 return false; 2648 2649 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2650} 2651 2652static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2653 const struct skb_csum_offl_spec *spec) 2654{ 2655 bool csum_encapped; 2656 2657 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2658} 2659 2660static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2661{ 2662 static const struct skb_csum_offl_spec csum_offl_spec = { 2663 .ipv4_okay = 1, 2664 .ip_options_okay = 1, 2665 .ipv6_okay = 1, 2666 .vlan_okay = 1, 2667 .tcp_okay = 1, 2668 .udp_okay = 1, 2669 }; 2670 2671 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2672} 2673 2674static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2675{ 2676 static const struct skb_csum_offl_spec csum_offl_spec = { 2677 .ipv4_okay = 1, 2678 .ip_options_okay = 1, 2679 .tcp_okay = 1, 2680 .udp_okay = 1, 2681 .vlan_okay = 1, 2682 }; 2683 2684 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2685} 2686 2687static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2688 unsigned short type, 2689 const void *daddr, const void *saddr, 2690 unsigned int len) 2691{ 2692 if (!dev->header_ops || !dev->header_ops->create) 2693 return 0; 2694 2695 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2696} 2697 2698static inline int dev_parse_header(const struct sk_buff *skb, 2699 unsigned char *haddr) 2700{ 2701 const struct net_device *dev = skb->dev; 2702 2703 if (!dev->header_ops || !dev->header_ops->parse) 2704 return 0; 2705 return dev->header_ops->parse(skb, haddr); 2706} 2707 2708/* ll_header must have at least hard_header_len allocated */ 2709static inline bool dev_validate_header(const struct net_device *dev, 2710 char *ll_header, int len) 2711{ 2712 if (likely(len >= dev->hard_header_len)) 2713 return true; 2714 2715 if (capable(CAP_SYS_RAWIO)) { 2716 memset(ll_header + len, 0, dev->hard_header_len - len); 2717 return true; 2718 } 2719 2720 if (dev->header_ops && dev->header_ops->validate) 2721 return dev->header_ops->validate(ll_header, len); 2722 2723 return false; 2724} 2725 2726typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2727int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2728static inline int unregister_gifconf(unsigned int family) 2729{ 2730 return register_gifconf(family, NULL); 2731} 2732 2733#ifdef CONFIG_NET_FLOW_LIMIT 2734#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2735struct sd_flow_limit { 2736 u64 count; 2737 unsigned int num_buckets; 2738 unsigned int history_head; 2739 u16 history[FLOW_LIMIT_HISTORY]; 2740 u8 buckets[]; 2741}; 2742 2743extern int netdev_flow_limit_table_len; 2744#endif /* CONFIG_NET_FLOW_LIMIT */ 2745 2746/* 2747 * Incoming packets are placed on per-CPU queues 2748 */ 2749struct softnet_data { 2750 struct list_head poll_list; 2751 struct sk_buff_head process_queue; 2752 2753 /* stats */ 2754 unsigned int processed; 2755 unsigned int time_squeeze; 2756 unsigned int cpu_collision; 2757 unsigned int received_rps; 2758#ifdef CONFIG_RPS 2759 struct softnet_data *rps_ipi_list; 2760#endif 2761#ifdef CONFIG_NET_FLOW_LIMIT 2762 struct sd_flow_limit __rcu *flow_limit; 2763#endif 2764 struct Qdisc *output_queue; 2765 struct Qdisc **output_queue_tailp; 2766 struct sk_buff *completion_queue; 2767 2768#ifdef CONFIG_RPS 2769 /* Elements below can be accessed between CPUs for RPS */ 2770 struct call_single_data csd ____cacheline_aligned_in_smp; 2771 struct softnet_data *rps_ipi_next; 2772 unsigned int cpu; 2773 unsigned int input_queue_head; 2774 unsigned int input_queue_tail; 2775#endif 2776 unsigned int dropped; 2777 struct sk_buff_head input_pkt_queue; 2778 struct napi_struct backlog; 2779 2780}; 2781 2782static inline void input_queue_head_incr(struct softnet_data *sd) 2783{ 2784#ifdef CONFIG_RPS 2785 sd->input_queue_head++; 2786#endif 2787} 2788 2789static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2790 unsigned int *qtail) 2791{ 2792#ifdef CONFIG_RPS 2793 *qtail = ++sd->input_queue_tail; 2794#endif 2795} 2796 2797DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2798 2799void __netif_schedule(struct Qdisc *q); 2800void netif_schedule_queue(struct netdev_queue *txq); 2801 2802static inline void netif_tx_schedule_all(struct net_device *dev) 2803{ 2804 unsigned int i; 2805 2806 for (i = 0; i < dev->num_tx_queues; i++) 2807 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2808} 2809 2810static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2811{ 2812 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2813} 2814 2815/** 2816 * netif_start_queue - allow transmit 2817 * @dev: network device 2818 * 2819 * Allow upper layers to call the device hard_start_xmit routine. 2820 */ 2821static inline void netif_start_queue(struct net_device *dev) 2822{ 2823 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2824} 2825 2826static inline void netif_tx_start_all_queues(struct net_device *dev) 2827{ 2828 unsigned int i; 2829 2830 for (i = 0; i < dev->num_tx_queues; i++) { 2831 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2832 netif_tx_start_queue(txq); 2833 } 2834} 2835 2836void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2837 2838/** 2839 * netif_wake_queue - restart transmit 2840 * @dev: network device 2841 * 2842 * Allow upper layers to call the device hard_start_xmit routine. 2843 * Used for flow control when transmit resources are available. 2844 */ 2845static inline void netif_wake_queue(struct net_device *dev) 2846{ 2847 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2848} 2849 2850static inline void netif_tx_wake_all_queues(struct net_device *dev) 2851{ 2852 unsigned int i; 2853 2854 for (i = 0; i < dev->num_tx_queues; i++) { 2855 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2856 netif_tx_wake_queue(txq); 2857 } 2858} 2859 2860static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2861{ 2862 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2863} 2864 2865/** 2866 * netif_stop_queue - stop transmitted packets 2867 * @dev: network device 2868 * 2869 * Stop upper layers calling the device hard_start_xmit routine. 2870 * Used for flow control when transmit resources are unavailable. 2871 */ 2872static inline void netif_stop_queue(struct net_device *dev) 2873{ 2874 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2875} 2876 2877void netif_tx_stop_all_queues(struct net_device *dev); 2878 2879static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2880{ 2881 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2882} 2883 2884/** 2885 * netif_queue_stopped - test if transmit queue is flowblocked 2886 * @dev: network device 2887 * 2888 * Test if transmit queue on device is currently unable to send. 2889 */ 2890static inline bool netif_queue_stopped(const struct net_device *dev) 2891{ 2892 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2893} 2894 2895static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2896{ 2897 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2898} 2899 2900static inline bool 2901netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2902{ 2903 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2904} 2905 2906static inline bool 2907netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2908{ 2909 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2910} 2911 2912/** 2913 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2914 * @dev_queue: pointer to transmit queue 2915 * 2916 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2917 * to give appropriate hint to the CPU. 2918 */ 2919static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2920{ 2921#ifdef CONFIG_BQL 2922 prefetchw(&dev_queue->dql.num_queued); 2923#endif 2924} 2925 2926/** 2927 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2928 * @dev_queue: pointer to transmit queue 2929 * 2930 * BQL enabled drivers might use this helper in their TX completion path, 2931 * to give appropriate hint to the CPU. 2932 */ 2933static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2934{ 2935#ifdef CONFIG_BQL 2936 prefetchw(&dev_queue->dql.limit); 2937#endif 2938} 2939 2940static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2941 unsigned int bytes) 2942{ 2943#ifdef CONFIG_BQL 2944 dql_queued(&dev_queue->dql, bytes); 2945 2946 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2947 return; 2948 2949 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2950 2951 /* 2952 * The XOFF flag must be set before checking the dql_avail below, 2953 * because in netdev_tx_completed_queue we update the dql_completed 2954 * before checking the XOFF flag. 2955 */ 2956 smp_mb(); 2957 2958 /* check again in case another CPU has just made room avail */ 2959 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2960 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2961#endif 2962} 2963 2964/** 2965 * netdev_sent_queue - report the number of bytes queued to hardware 2966 * @dev: network device 2967 * @bytes: number of bytes queued to the hardware device queue 2968 * 2969 * Report the number of bytes queued for sending/completion to the network 2970 * device hardware queue. @bytes should be a good approximation and should 2971 * exactly match netdev_completed_queue() @bytes 2972 */ 2973static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2974{ 2975 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2976} 2977 2978static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2979 unsigned int pkts, unsigned int bytes) 2980{ 2981#ifdef CONFIG_BQL 2982 if (unlikely(!bytes)) 2983 return; 2984 2985 dql_completed(&dev_queue->dql, bytes); 2986 2987 /* 2988 * Without the memory barrier there is a small possiblity that 2989 * netdev_tx_sent_queue will miss the update and cause the queue to 2990 * be stopped forever 2991 */ 2992 smp_mb(); 2993 2994 if (dql_avail(&dev_queue->dql) < 0) 2995 return; 2996 2997 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2998 netif_schedule_queue(dev_queue); 2999#endif 3000} 3001 3002/** 3003 * netdev_completed_queue - report bytes and packets completed by device 3004 * @dev: network device 3005 * @pkts: actual number of packets sent over the medium 3006 * @bytes: actual number of bytes sent over the medium 3007 * 3008 * Report the number of bytes and packets transmitted by the network device 3009 * hardware queue over the physical medium, @bytes must exactly match the 3010 * @bytes amount passed to netdev_sent_queue() 3011 */ 3012static inline void netdev_completed_queue(struct net_device *dev, 3013 unsigned int pkts, unsigned int bytes) 3014{ 3015 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3016} 3017 3018static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3019{ 3020#ifdef CONFIG_BQL 3021 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3022 dql_reset(&q->dql); 3023#endif 3024} 3025 3026/** 3027 * netdev_reset_queue - reset the packets and bytes count of a network device 3028 * @dev_queue: network device 3029 * 3030 * Reset the bytes and packet count of a network device and clear the 3031 * software flow control OFF bit for this network device 3032 */ 3033static inline void netdev_reset_queue(struct net_device *dev_queue) 3034{ 3035 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3036} 3037 3038/** 3039 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3040 * @dev: network device 3041 * @queue_index: given tx queue index 3042 * 3043 * Returns 0 if given tx queue index >= number of device tx queues, 3044 * otherwise returns the originally passed tx queue index. 3045 */ 3046static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3047{ 3048 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3049 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3050 dev->name, queue_index, 3051 dev->real_num_tx_queues); 3052 return 0; 3053 } 3054 3055 return queue_index; 3056} 3057 3058/** 3059 * netif_running - test if up 3060 * @dev: network device 3061 * 3062 * Test if the device has been brought up. 3063 */ 3064static inline bool netif_running(const struct net_device *dev) 3065{ 3066 return test_bit(__LINK_STATE_START, &dev->state); 3067} 3068 3069/* 3070 * Routines to manage the subqueues on a device. We only need start, 3071 * stop, and a check if it's stopped. All other device management is 3072 * done at the overall netdevice level. 3073 * Also test the device if we're multiqueue. 3074 */ 3075 3076/** 3077 * netif_start_subqueue - allow sending packets on subqueue 3078 * @dev: network device 3079 * @queue_index: sub queue index 3080 * 3081 * Start individual transmit queue of a device with multiple transmit queues. 3082 */ 3083static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3084{ 3085 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3086 3087 netif_tx_start_queue(txq); 3088} 3089 3090/** 3091 * netif_stop_subqueue - stop sending packets on subqueue 3092 * @dev: network device 3093 * @queue_index: sub queue index 3094 * 3095 * Stop individual transmit queue of a device with multiple transmit queues. 3096 */ 3097static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3098{ 3099 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3100 netif_tx_stop_queue(txq); 3101} 3102 3103/** 3104 * netif_subqueue_stopped - test status of subqueue 3105 * @dev: network device 3106 * @queue_index: sub queue index 3107 * 3108 * Check individual transmit queue of a device with multiple transmit queues. 3109 */ 3110static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3111 u16 queue_index) 3112{ 3113 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3114 3115 return netif_tx_queue_stopped(txq); 3116} 3117 3118static inline bool netif_subqueue_stopped(const struct net_device *dev, 3119 struct sk_buff *skb) 3120{ 3121 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3122} 3123 3124void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3125 3126#ifdef CONFIG_XPS 3127int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3128 u16 index); 3129#else 3130static inline int netif_set_xps_queue(struct net_device *dev, 3131 const struct cpumask *mask, 3132 u16 index) 3133{ 3134 return 0; 3135} 3136#endif 3137 3138u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3139 unsigned int num_tx_queues); 3140 3141/* 3142 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3143 * as a distribution range limit for the returned value. 3144 */ 3145static inline u16 skb_tx_hash(const struct net_device *dev, 3146 struct sk_buff *skb) 3147{ 3148 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3149} 3150 3151/** 3152 * netif_is_multiqueue - test if device has multiple transmit queues 3153 * @dev: network device 3154 * 3155 * Check if device has multiple transmit queues 3156 */ 3157static inline bool netif_is_multiqueue(const struct net_device *dev) 3158{ 3159 return dev->num_tx_queues > 1; 3160} 3161 3162int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3163 3164#ifdef CONFIG_SYSFS 3165int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3166#else 3167static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3168 unsigned int rxq) 3169{ 3170 return 0; 3171} 3172#endif 3173 3174#ifdef CONFIG_SYSFS 3175static inline unsigned int get_netdev_rx_queue_index( 3176 struct netdev_rx_queue *queue) 3177{ 3178 struct net_device *dev = queue->dev; 3179 int index = queue - dev->_rx; 3180 3181 BUG_ON(index >= dev->num_rx_queues); 3182 return index; 3183} 3184#endif 3185 3186#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3187int netif_get_num_default_rss_queues(void); 3188 3189enum skb_free_reason { 3190 SKB_REASON_CONSUMED, 3191 SKB_REASON_DROPPED, 3192}; 3193 3194void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3195void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3196 3197/* 3198 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3199 * interrupt context or with hardware interrupts being disabled. 3200 * (in_irq() || irqs_disabled()) 3201 * 3202 * We provide four helpers that can be used in following contexts : 3203 * 3204 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3205 * replacing kfree_skb(skb) 3206 * 3207 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3208 * Typically used in place of consume_skb(skb) in TX completion path 3209 * 3210 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3211 * replacing kfree_skb(skb) 3212 * 3213 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3214 * and consumed a packet. Used in place of consume_skb(skb) 3215 */ 3216static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3217{ 3218 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3219} 3220 3221static inline void dev_consume_skb_irq(struct sk_buff *skb) 3222{ 3223 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3224} 3225 3226static inline void dev_kfree_skb_any(struct sk_buff *skb) 3227{ 3228 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3229} 3230 3231static inline void dev_consume_skb_any(struct sk_buff *skb) 3232{ 3233 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3234} 3235 3236int netif_rx(struct sk_buff *skb); 3237int netif_rx_ni(struct sk_buff *skb); 3238int netif_receive_skb(struct sk_buff *skb); 3239gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3240void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3241struct sk_buff *napi_get_frags(struct napi_struct *napi); 3242gro_result_t napi_gro_frags(struct napi_struct *napi); 3243struct packet_offload *gro_find_receive_by_type(__be16 type); 3244struct packet_offload *gro_find_complete_by_type(__be16 type); 3245 3246static inline void napi_free_frags(struct napi_struct *napi) 3247{ 3248 kfree_skb(napi->skb); 3249 napi->skb = NULL; 3250} 3251 3252int netdev_rx_handler_register(struct net_device *dev, 3253 rx_handler_func_t *rx_handler, 3254 void *rx_handler_data); 3255void netdev_rx_handler_unregister(struct net_device *dev); 3256 3257bool dev_valid_name(const char *name); 3258int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3259int dev_ethtool(struct net *net, struct ifreq *); 3260unsigned int dev_get_flags(const struct net_device *); 3261int __dev_change_flags(struct net_device *, unsigned int flags); 3262int dev_change_flags(struct net_device *, unsigned int); 3263void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3264 unsigned int gchanges); 3265int dev_change_name(struct net_device *, const char *); 3266int dev_set_alias(struct net_device *, const char *, size_t); 3267int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3268int dev_set_mtu(struct net_device *, int); 3269void dev_set_group(struct net_device *, int); 3270int dev_set_mac_address(struct net_device *, struct sockaddr *); 3271int dev_change_carrier(struct net_device *, bool new_carrier); 3272int dev_get_phys_port_id(struct net_device *dev, 3273 struct netdev_phys_item_id *ppid); 3274int dev_get_phys_port_name(struct net_device *dev, 3275 char *name, size_t len); 3276int dev_change_proto_down(struct net_device *dev, bool proto_down); 3277struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3278struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3279 struct netdev_queue *txq, int *ret); 3280int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3281int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3282bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 3283 3284extern int netdev_budget; 3285 3286/* Called by rtnetlink.c:rtnl_unlock() */ 3287void netdev_run_todo(void); 3288 3289/** 3290 * dev_put - release reference to device 3291 * @dev: network device 3292 * 3293 * Release reference to device to allow it to be freed. 3294 */ 3295static inline void dev_put(struct net_device *dev) 3296{ 3297 this_cpu_dec(*dev->pcpu_refcnt); 3298} 3299 3300/** 3301 * dev_hold - get reference to device 3302 * @dev: network device 3303 * 3304 * Hold reference to device to keep it from being freed. 3305 */ 3306static inline void dev_hold(struct net_device *dev) 3307{ 3308 this_cpu_inc(*dev->pcpu_refcnt); 3309} 3310 3311/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3312 * and _off may be called from IRQ context, but it is caller 3313 * who is responsible for serialization of these calls. 3314 * 3315 * The name carrier is inappropriate, these functions should really be 3316 * called netif_lowerlayer_*() because they represent the state of any 3317 * kind of lower layer not just hardware media. 3318 */ 3319 3320void linkwatch_init_dev(struct net_device *dev); 3321void linkwatch_fire_event(struct net_device *dev); 3322void linkwatch_forget_dev(struct net_device *dev); 3323 3324/** 3325 * netif_carrier_ok - test if carrier present 3326 * @dev: network device 3327 * 3328 * Check if carrier is present on device 3329 */ 3330static inline bool netif_carrier_ok(const struct net_device *dev) 3331{ 3332 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3333} 3334 3335unsigned long dev_trans_start(struct net_device *dev); 3336 3337void __netdev_watchdog_up(struct net_device *dev); 3338 3339void netif_carrier_on(struct net_device *dev); 3340 3341void netif_carrier_off(struct net_device *dev); 3342 3343/** 3344 * netif_dormant_on - mark device as dormant. 3345 * @dev: network device 3346 * 3347 * Mark device as dormant (as per RFC2863). 3348 * 3349 * The dormant state indicates that the relevant interface is not 3350 * actually in a condition to pass packets (i.e., it is not 'up') but is 3351 * in a "pending" state, waiting for some external event. For "on- 3352 * demand" interfaces, this new state identifies the situation where the 3353 * interface is waiting for events to place it in the up state. 3354 */ 3355static inline void netif_dormant_on(struct net_device *dev) 3356{ 3357 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3358 linkwatch_fire_event(dev); 3359} 3360 3361/** 3362 * netif_dormant_off - set device as not dormant. 3363 * @dev: network device 3364 * 3365 * Device is not in dormant state. 3366 */ 3367static inline void netif_dormant_off(struct net_device *dev) 3368{ 3369 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3370 linkwatch_fire_event(dev); 3371} 3372 3373/** 3374 * netif_dormant - test if carrier present 3375 * @dev: network device 3376 * 3377 * Check if carrier is present on device 3378 */ 3379static inline bool netif_dormant(const struct net_device *dev) 3380{ 3381 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3382} 3383 3384 3385/** 3386 * netif_oper_up - test if device is operational 3387 * @dev: network device 3388 * 3389 * Check if carrier is operational 3390 */ 3391static inline bool netif_oper_up(const struct net_device *dev) 3392{ 3393 return (dev->operstate == IF_OPER_UP || 3394 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3395} 3396 3397/** 3398 * netif_device_present - is device available or removed 3399 * @dev: network device 3400 * 3401 * Check if device has not been removed from system. 3402 */ 3403static inline bool netif_device_present(struct net_device *dev) 3404{ 3405 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3406} 3407 3408void netif_device_detach(struct net_device *dev); 3409 3410void netif_device_attach(struct net_device *dev); 3411 3412/* 3413 * Network interface message level settings 3414 */ 3415 3416enum { 3417 NETIF_MSG_DRV = 0x0001, 3418 NETIF_MSG_PROBE = 0x0002, 3419 NETIF_MSG_LINK = 0x0004, 3420 NETIF_MSG_TIMER = 0x0008, 3421 NETIF_MSG_IFDOWN = 0x0010, 3422 NETIF_MSG_IFUP = 0x0020, 3423 NETIF_MSG_RX_ERR = 0x0040, 3424 NETIF_MSG_TX_ERR = 0x0080, 3425 NETIF_MSG_TX_QUEUED = 0x0100, 3426 NETIF_MSG_INTR = 0x0200, 3427 NETIF_MSG_TX_DONE = 0x0400, 3428 NETIF_MSG_RX_STATUS = 0x0800, 3429 NETIF_MSG_PKTDATA = 0x1000, 3430 NETIF_MSG_HW = 0x2000, 3431 NETIF_MSG_WOL = 0x4000, 3432}; 3433 3434#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3435#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3436#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3437#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3438#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3439#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3440#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3441#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3442#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3443#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3444#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3445#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3446#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3447#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3448#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3449 3450static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3451{ 3452 /* use default */ 3453 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3454 return default_msg_enable_bits; 3455 if (debug_value == 0) /* no output */ 3456 return 0; 3457 /* set low N bits */ 3458 return (1 << debug_value) - 1; 3459} 3460 3461static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3462{ 3463 spin_lock(&txq->_xmit_lock); 3464 txq->xmit_lock_owner = cpu; 3465} 3466 3467static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3468{ 3469 spin_lock_bh(&txq->_xmit_lock); 3470 txq->xmit_lock_owner = smp_processor_id(); 3471} 3472 3473static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3474{ 3475 bool ok = spin_trylock(&txq->_xmit_lock); 3476 if (likely(ok)) 3477 txq->xmit_lock_owner = smp_processor_id(); 3478 return ok; 3479} 3480 3481static inline void __netif_tx_unlock(struct netdev_queue *txq) 3482{ 3483 txq->xmit_lock_owner = -1; 3484 spin_unlock(&txq->_xmit_lock); 3485} 3486 3487static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3488{ 3489 txq->xmit_lock_owner = -1; 3490 spin_unlock_bh(&txq->_xmit_lock); 3491} 3492 3493static inline void txq_trans_update(struct netdev_queue *txq) 3494{ 3495 if (txq->xmit_lock_owner != -1) 3496 txq->trans_start = jiffies; 3497} 3498 3499/** 3500 * netif_tx_lock - grab network device transmit lock 3501 * @dev: network device 3502 * 3503 * Get network device transmit lock 3504 */ 3505static inline void netif_tx_lock(struct net_device *dev) 3506{ 3507 unsigned int i; 3508 int cpu; 3509 3510 spin_lock(&dev->tx_global_lock); 3511 cpu = smp_processor_id(); 3512 for (i = 0; i < dev->num_tx_queues; i++) { 3513 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3514 3515 /* We are the only thread of execution doing a 3516 * freeze, but we have to grab the _xmit_lock in 3517 * order to synchronize with threads which are in 3518 * the ->hard_start_xmit() handler and already 3519 * checked the frozen bit. 3520 */ 3521 __netif_tx_lock(txq, cpu); 3522 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3523 __netif_tx_unlock(txq); 3524 } 3525} 3526 3527static inline void netif_tx_lock_bh(struct net_device *dev) 3528{ 3529 local_bh_disable(); 3530 netif_tx_lock(dev); 3531} 3532 3533static inline void netif_tx_unlock(struct net_device *dev) 3534{ 3535 unsigned int i; 3536 3537 for (i = 0; i < dev->num_tx_queues; i++) { 3538 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3539 3540 /* No need to grab the _xmit_lock here. If the 3541 * queue is not stopped for another reason, we 3542 * force a schedule. 3543 */ 3544 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3545 netif_schedule_queue(txq); 3546 } 3547 spin_unlock(&dev->tx_global_lock); 3548} 3549 3550static inline void netif_tx_unlock_bh(struct net_device *dev) 3551{ 3552 netif_tx_unlock(dev); 3553 local_bh_enable(); 3554} 3555 3556#define HARD_TX_LOCK(dev, txq, cpu) { \ 3557 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3558 __netif_tx_lock(txq, cpu); \ 3559 } \ 3560} 3561 3562#define HARD_TX_TRYLOCK(dev, txq) \ 3563 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3564 __netif_tx_trylock(txq) : \ 3565 true ) 3566 3567#define HARD_TX_UNLOCK(dev, txq) { \ 3568 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3569 __netif_tx_unlock(txq); \ 3570 } \ 3571} 3572 3573static inline void netif_tx_disable(struct net_device *dev) 3574{ 3575 unsigned int i; 3576 int cpu; 3577 3578 local_bh_disable(); 3579 cpu = smp_processor_id(); 3580 for (i = 0; i < dev->num_tx_queues; i++) { 3581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3582 3583 __netif_tx_lock(txq, cpu); 3584 netif_tx_stop_queue(txq); 3585 __netif_tx_unlock(txq); 3586 } 3587 local_bh_enable(); 3588} 3589 3590static inline void netif_addr_lock(struct net_device *dev) 3591{ 3592 spin_lock(&dev->addr_list_lock); 3593} 3594 3595static inline void netif_addr_lock_nested(struct net_device *dev) 3596{ 3597 int subclass = SINGLE_DEPTH_NESTING; 3598 3599 if (dev->netdev_ops->ndo_get_lock_subclass) 3600 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3601 3602 spin_lock_nested(&dev->addr_list_lock, subclass); 3603} 3604 3605static inline void netif_addr_lock_bh(struct net_device *dev) 3606{ 3607 spin_lock_bh(&dev->addr_list_lock); 3608} 3609 3610static inline void netif_addr_unlock(struct net_device *dev) 3611{ 3612 spin_unlock(&dev->addr_list_lock); 3613} 3614 3615static inline void netif_addr_unlock_bh(struct net_device *dev) 3616{ 3617 spin_unlock_bh(&dev->addr_list_lock); 3618} 3619 3620/* 3621 * dev_addrs walker. Should be used only for read access. Call with 3622 * rcu_read_lock held. 3623 */ 3624#define for_each_dev_addr(dev, ha) \ 3625 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3626 3627/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3628 3629void ether_setup(struct net_device *dev); 3630 3631/* Support for loadable net-drivers */ 3632struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3633 unsigned char name_assign_type, 3634 void (*setup)(struct net_device *), 3635 unsigned int txqs, unsigned int rxqs); 3636#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3637 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3638 3639#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3640 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3641 count) 3642 3643int register_netdev(struct net_device *dev); 3644void unregister_netdev(struct net_device *dev); 3645 3646/* General hardware address lists handling functions */ 3647int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3648 struct netdev_hw_addr_list *from_list, int addr_len); 3649void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3650 struct netdev_hw_addr_list *from_list, int addr_len); 3651int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3652 struct net_device *dev, 3653 int (*sync)(struct net_device *, const unsigned char *), 3654 int (*unsync)(struct net_device *, 3655 const unsigned char *)); 3656void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3657 struct net_device *dev, 3658 int (*unsync)(struct net_device *, 3659 const unsigned char *)); 3660void __hw_addr_init(struct netdev_hw_addr_list *list); 3661 3662/* Functions used for device addresses handling */ 3663int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3664 unsigned char addr_type); 3665int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3666 unsigned char addr_type); 3667void dev_addr_flush(struct net_device *dev); 3668int dev_addr_init(struct net_device *dev); 3669 3670/* Functions used for unicast addresses handling */ 3671int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3672int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3673int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3674int dev_uc_sync(struct net_device *to, struct net_device *from); 3675int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3676void dev_uc_unsync(struct net_device *to, struct net_device *from); 3677void dev_uc_flush(struct net_device *dev); 3678void dev_uc_init(struct net_device *dev); 3679 3680/** 3681 * __dev_uc_sync - Synchonize device's unicast list 3682 * @dev: device to sync 3683 * @sync: function to call if address should be added 3684 * @unsync: function to call if address should be removed 3685 * 3686 * Add newly added addresses to the interface, and release 3687 * addresses that have been deleted. 3688 */ 3689static inline int __dev_uc_sync(struct net_device *dev, 3690 int (*sync)(struct net_device *, 3691 const unsigned char *), 3692 int (*unsync)(struct net_device *, 3693 const unsigned char *)) 3694{ 3695 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3696} 3697 3698/** 3699 * __dev_uc_unsync - Remove synchronized addresses from device 3700 * @dev: device to sync 3701 * @unsync: function to call if address should be removed 3702 * 3703 * Remove all addresses that were added to the device by dev_uc_sync(). 3704 */ 3705static inline void __dev_uc_unsync(struct net_device *dev, 3706 int (*unsync)(struct net_device *, 3707 const unsigned char *)) 3708{ 3709 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3710} 3711 3712/* Functions used for multicast addresses handling */ 3713int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3714int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3715int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3716int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3717int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3718int dev_mc_sync(struct net_device *to, struct net_device *from); 3719int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3720void dev_mc_unsync(struct net_device *to, struct net_device *from); 3721void dev_mc_flush(struct net_device *dev); 3722void dev_mc_init(struct net_device *dev); 3723 3724/** 3725 * __dev_mc_sync - Synchonize device's multicast list 3726 * @dev: device to sync 3727 * @sync: function to call if address should be added 3728 * @unsync: function to call if address should be removed 3729 * 3730 * Add newly added addresses to the interface, and release 3731 * addresses that have been deleted. 3732 */ 3733static inline int __dev_mc_sync(struct net_device *dev, 3734 int (*sync)(struct net_device *, 3735 const unsigned char *), 3736 int (*unsync)(struct net_device *, 3737 const unsigned char *)) 3738{ 3739 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3740} 3741 3742/** 3743 * __dev_mc_unsync - Remove synchronized addresses from device 3744 * @dev: device to sync 3745 * @unsync: function to call if address should be removed 3746 * 3747 * Remove all addresses that were added to the device by dev_mc_sync(). 3748 */ 3749static inline void __dev_mc_unsync(struct net_device *dev, 3750 int (*unsync)(struct net_device *, 3751 const unsigned char *)) 3752{ 3753 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3754} 3755 3756/* Functions used for secondary unicast and multicast support */ 3757void dev_set_rx_mode(struct net_device *dev); 3758void __dev_set_rx_mode(struct net_device *dev); 3759int dev_set_promiscuity(struct net_device *dev, int inc); 3760int dev_set_allmulti(struct net_device *dev, int inc); 3761void netdev_state_change(struct net_device *dev); 3762void netdev_notify_peers(struct net_device *dev); 3763void netdev_features_change(struct net_device *dev); 3764/* Load a device via the kmod */ 3765void dev_load(struct net *net, const char *name); 3766struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3767 struct rtnl_link_stats64 *storage); 3768void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3769 const struct net_device_stats *netdev_stats); 3770 3771extern int netdev_max_backlog; 3772extern int netdev_tstamp_prequeue; 3773extern int weight_p; 3774extern int bpf_jit_enable; 3775 3776bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3777struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3778 struct list_head **iter); 3779struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3780 struct list_head **iter); 3781 3782/* iterate through upper list, must be called under RCU read lock */ 3783#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3784 for (iter = &(dev)->adj_list.upper, \ 3785 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3786 updev; \ 3787 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3788 3789/* iterate through upper list, must be called under RCU read lock */ 3790#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3791 for (iter = &(dev)->all_adj_list.upper, \ 3792 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3793 updev; \ 3794 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3795 3796void *netdev_lower_get_next_private(struct net_device *dev, 3797 struct list_head **iter); 3798void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3799 struct list_head **iter); 3800 3801#define netdev_for_each_lower_private(dev, priv, iter) \ 3802 for (iter = (dev)->adj_list.lower.next, \ 3803 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3804 priv; \ 3805 priv = netdev_lower_get_next_private(dev, &(iter))) 3806 3807#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3808 for (iter = &(dev)->adj_list.lower, \ 3809 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3810 priv; \ 3811 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3812 3813void *netdev_lower_get_next(struct net_device *dev, 3814 struct list_head **iter); 3815#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3816 for (iter = (dev)->adj_list.lower.next, \ 3817 ldev = netdev_lower_get_next(dev, &(iter)); \ 3818 ldev; \ 3819 ldev = netdev_lower_get_next(dev, &(iter))) 3820 3821void *netdev_adjacent_get_private(struct list_head *adj_list); 3822void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3823struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3824struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3825int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3826int netdev_master_upper_dev_link(struct net_device *dev, 3827 struct net_device *upper_dev, 3828 void *upper_priv, void *upper_info); 3829void netdev_upper_dev_unlink(struct net_device *dev, 3830 struct net_device *upper_dev); 3831void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3832void *netdev_lower_dev_get_private(struct net_device *dev, 3833 struct net_device *lower_dev); 3834void netdev_lower_state_changed(struct net_device *lower_dev, 3835 void *lower_state_info); 3836 3837/* RSS keys are 40 or 52 bytes long */ 3838#define NETDEV_RSS_KEY_LEN 52 3839extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3840void netdev_rss_key_fill(void *buffer, size_t len); 3841 3842int dev_get_nest_level(struct net_device *dev, 3843 bool (*type_check)(const struct net_device *dev)); 3844int skb_checksum_help(struct sk_buff *skb); 3845struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3846 netdev_features_t features, bool tx_path); 3847struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3848 netdev_features_t features); 3849 3850struct netdev_bonding_info { 3851 ifslave slave; 3852 ifbond master; 3853}; 3854 3855struct netdev_notifier_bonding_info { 3856 struct netdev_notifier_info info; /* must be first */ 3857 struct netdev_bonding_info bonding_info; 3858}; 3859 3860void netdev_bonding_info_change(struct net_device *dev, 3861 struct netdev_bonding_info *bonding_info); 3862 3863static inline 3864struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3865{ 3866 return __skb_gso_segment(skb, features, true); 3867} 3868__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3869 3870static inline bool can_checksum_protocol(netdev_features_t features, 3871 __be16 protocol) 3872{ 3873 if (protocol == htons(ETH_P_FCOE)) 3874 return !!(features & NETIF_F_FCOE_CRC); 3875 3876 /* Assume this is an IP checksum (not SCTP CRC) */ 3877 3878 if (features & NETIF_F_HW_CSUM) { 3879 /* Can checksum everything */ 3880 return true; 3881 } 3882 3883 switch (protocol) { 3884 case htons(ETH_P_IP): 3885 return !!(features & NETIF_F_IP_CSUM); 3886 case htons(ETH_P_IPV6): 3887 return !!(features & NETIF_F_IPV6_CSUM); 3888 default: 3889 return false; 3890 } 3891} 3892 3893/* Map an ethertype into IP protocol if possible */ 3894static inline int eproto_to_ipproto(int eproto) 3895{ 3896 switch (eproto) { 3897 case htons(ETH_P_IP): 3898 return IPPROTO_IP; 3899 case htons(ETH_P_IPV6): 3900 return IPPROTO_IPV6; 3901 default: 3902 return -1; 3903 } 3904} 3905 3906#ifdef CONFIG_BUG 3907void netdev_rx_csum_fault(struct net_device *dev); 3908#else 3909static inline void netdev_rx_csum_fault(struct net_device *dev) 3910{ 3911} 3912#endif 3913/* rx skb timestamps */ 3914void net_enable_timestamp(void); 3915void net_disable_timestamp(void); 3916 3917#ifdef CONFIG_PROC_FS 3918int __init dev_proc_init(void); 3919#else 3920#define dev_proc_init() 0 3921#endif 3922 3923static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3924 struct sk_buff *skb, struct net_device *dev, 3925 bool more) 3926{ 3927 skb->xmit_more = more ? 1 : 0; 3928 return ops->ndo_start_xmit(skb, dev); 3929} 3930 3931static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3932 struct netdev_queue *txq, bool more) 3933{ 3934 const struct net_device_ops *ops = dev->netdev_ops; 3935 int rc; 3936 3937 rc = __netdev_start_xmit(ops, skb, dev, more); 3938 if (rc == NETDEV_TX_OK) 3939 txq_trans_update(txq); 3940 3941 return rc; 3942} 3943 3944int netdev_class_create_file_ns(struct class_attribute *class_attr, 3945 const void *ns); 3946void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3947 const void *ns); 3948 3949static inline int netdev_class_create_file(struct class_attribute *class_attr) 3950{ 3951 return netdev_class_create_file_ns(class_attr, NULL); 3952} 3953 3954static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3955{ 3956 netdev_class_remove_file_ns(class_attr, NULL); 3957} 3958 3959extern struct kobj_ns_type_operations net_ns_type_operations; 3960 3961const char *netdev_drivername(const struct net_device *dev); 3962 3963void linkwatch_run_queue(void); 3964 3965static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3966 netdev_features_t f2) 3967{ 3968 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 3969 if (f1 & NETIF_F_HW_CSUM) 3970 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3971 else 3972 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3973 } 3974 3975 return f1 & f2; 3976} 3977 3978static inline netdev_features_t netdev_get_wanted_features( 3979 struct net_device *dev) 3980{ 3981 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3982} 3983netdev_features_t netdev_increment_features(netdev_features_t all, 3984 netdev_features_t one, netdev_features_t mask); 3985 3986/* Allow TSO being used on stacked device : 3987 * Performing the GSO segmentation before last device 3988 * is a performance improvement. 3989 */ 3990static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3991 netdev_features_t mask) 3992{ 3993 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3994} 3995 3996int __netdev_update_features(struct net_device *dev); 3997void netdev_update_features(struct net_device *dev); 3998void netdev_change_features(struct net_device *dev); 3999 4000void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4001 struct net_device *dev); 4002 4003netdev_features_t passthru_features_check(struct sk_buff *skb, 4004 struct net_device *dev, 4005 netdev_features_t features); 4006netdev_features_t netif_skb_features(struct sk_buff *skb); 4007 4008static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4009{ 4010 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4011 4012 /* check flags correspondence */ 4013 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4014 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4015 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4016 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4017 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4018 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4019 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4020 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4021 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 4022 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 4023 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4024 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4025 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4026 4027 return (features & feature) == feature; 4028} 4029 4030static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4031{ 4032 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4033 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4034} 4035 4036static inline bool netif_needs_gso(struct sk_buff *skb, 4037 netdev_features_t features) 4038{ 4039 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4040 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4041 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4042} 4043 4044static inline void netif_set_gso_max_size(struct net_device *dev, 4045 unsigned int size) 4046{ 4047 dev->gso_max_size = size; 4048} 4049 4050static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4051 int pulled_hlen, u16 mac_offset, 4052 int mac_len) 4053{ 4054 skb->protocol = protocol; 4055 skb->encapsulation = 1; 4056 skb_push(skb, pulled_hlen); 4057 skb_reset_transport_header(skb); 4058 skb->mac_header = mac_offset; 4059 skb->network_header = skb->mac_header + mac_len; 4060 skb->mac_len = mac_len; 4061} 4062 4063static inline bool netif_is_macsec(const struct net_device *dev) 4064{ 4065 return dev->priv_flags & IFF_MACSEC; 4066} 4067 4068static inline bool netif_is_macvlan(const struct net_device *dev) 4069{ 4070 return dev->priv_flags & IFF_MACVLAN; 4071} 4072 4073static inline bool netif_is_macvlan_port(const struct net_device *dev) 4074{ 4075 return dev->priv_flags & IFF_MACVLAN_PORT; 4076} 4077 4078static inline bool netif_is_ipvlan(const struct net_device *dev) 4079{ 4080 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4081} 4082 4083static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4084{ 4085 return dev->priv_flags & IFF_IPVLAN_MASTER; 4086} 4087 4088static inline bool netif_is_bond_master(const struct net_device *dev) 4089{ 4090 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4091} 4092 4093static inline bool netif_is_bond_slave(const struct net_device *dev) 4094{ 4095 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4096} 4097 4098static inline bool netif_supports_nofcs(struct net_device *dev) 4099{ 4100 return dev->priv_flags & IFF_SUPP_NOFCS; 4101} 4102 4103static inline bool netif_is_l3_master(const struct net_device *dev) 4104{ 4105 return dev->priv_flags & IFF_L3MDEV_MASTER; 4106} 4107 4108static inline bool netif_is_l3_slave(const struct net_device *dev) 4109{ 4110 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4111} 4112 4113static inline bool netif_is_bridge_master(const struct net_device *dev) 4114{ 4115 return dev->priv_flags & IFF_EBRIDGE; 4116} 4117 4118static inline bool netif_is_bridge_port(const struct net_device *dev) 4119{ 4120 return dev->priv_flags & IFF_BRIDGE_PORT; 4121} 4122 4123static inline bool netif_is_ovs_master(const struct net_device *dev) 4124{ 4125 return dev->priv_flags & IFF_OPENVSWITCH; 4126} 4127 4128static inline bool netif_is_team_master(const struct net_device *dev) 4129{ 4130 return dev->priv_flags & IFF_TEAM; 4131} 4132 4133static inline bool netif_is_team_port(const struct net_device *dev) 4134{ 4135 return dev->priv_flags & IFF_TEAM_PORT; 4136} 4137 4138static inline bool netif_is_lag_master(const struct net_device *dev) 4139{ 4140 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4141} 4142 4143static inline bool netif_is_lag_port(const struct net_device *dev) 4144{ 4145 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4146} 4147 4148static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4149{ 4150 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4151} 4152 4153/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4154static inline void netif_keep_dst(struct net_device *dev) 4155{ 4156 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4157} 4158 4159extern struct pernet_operations __net_initdata loopback_net_ops; 4160 4161/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4162 4163/* netdev_printk helpers, similar to dev_printk */ 4164 4165static inline const char *netdev_name(const struct net_device *dev) 4166{ 4167 if (!dev->name[0] || strchr(dev->name, '%')) 4168 return "(unnamed net_device)"; 4169 return dev->name; 4170} 4171 4172static inline const char *netdev_reg_state(const struct net_device *dev) 4173{ 4174 switch (dev->reg_state) { 4175 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4176 case NETREG_REGISTERED: return ""; 4177 case NETREG_UNREGISTERING: return " (unregistering)"; 4178 case NETREG_UNREGISTERED: return " (unregistered)"; 4179 case NETREG_RELEASED: return " (released)"; 4180 case NETREG_DUMMY: return " (dummy)"; 4181 } 4182 4183 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4184 return " (unknown)"; 4185} 4186 4187__printf(3, 4) 4188void netdev_printk(const char *level, const struct net_device *dev, 4189 const char *format, ...); 4190__printf(2, 3) 4191void netdev_emerg(const struct net_device *dev, const char *format, ...); 4192__printf(2, 3) 4193void netdev_alert(const struct net_device *dev, const char *format, ...); 4194__printf(2, 3) 4195void netdev_crit(const struct net_device *dev, const char *format, ...); 4196__printf(2, 3) 4197void netdev_err(const struct net_device *dev, const char *format, ...); 4198__printf(2, 3) 4199void netdev_warn(const struct net_device *dev, const char *format, ...); 4200__printf(2, 3) 4201void netdev_notice(const struct net_device *dev, const char *format, ...); 4202__printf(2, 3) 4203void netdev_info(const struct net_device *dev, const char *format, ...); 4204 4205#define MODULE_ALIAS_NETDEV(device) \ 4206 MODULE_ALIAS("netdev-" device) 4207 4208#if defined(CONFIG_DYNAMIC_DEBUG) 4209#define netdev_dbg(__dev, format, args...) \ 4210do { \ 4211 dynamic_netdev_dbg(__dev, format, ##args); \ 4212} while (0) 4213#elif defined(DEBUG) 4214#define netdev_dbg(__dev, format, args...) \ 4215 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4216#else 4217#define netdev_dbg(__dev, format, args...) \ 4218({ \ 4219 if (0) \ 4220 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4221}) 4222#endif 4223 4224#if defined(VERBOSE_DEBUG) 4225#define netdev_vdbg netdev_dbg 4226#else 4227 4228#define netdev_vdbg(dev, format, args...) \ 4229({ \ 4230 if (0) \ 4231 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4232 0; \ 4233}) 4234#endif 4235 4236/* 4237 * netdev_WARN() acts like dev_printk(), but with the key difference 4238 * of using a WARN/WARN_ON to get the message out, including the 4239 * file/line information and a backtrace. 4240 */ 4241#define netdev_WARN(dev, format, args...) \ 4242 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4243 netdev_reg_state(dev), ##args) 4244 4245/* netif printk helpers, similar to netdev_printk */ 4246 4247#define netif_printk(priv, type, level, dev, fmt, args...) \ 4248do { \ 4249 if (netif_msg_##type(priv)) \ 4250 netdev_printk(level, (dev), fmt, ##args); \ 4251} while (0) 4252 4253#define netif_level(level, priv, type, dev, fmt, args...) \ 4254do { \ 4255 if (netif_msg_##type(priv)) \ 4256 netdev_##level(dev, fmt, ##args); \ 4257} while (0) 4258 4259#define netif_emerg(priv, type, dev, fmt, args...) \ 4260 netif_level(emerg, priv, type, dev, fmt, ##args) 4261#define netif_alert(priv, type, dev, fmt, args...) \ 4262 netif_level(alert, priv, type, dev, fmt, ##args) 4263#define netif_crit(priv, type, dev, fmt, args...) \ 4264 netif_level(crit, priv, type, dev, fmt, ##args) 4265#define netif_err(priv, type, dev, fmt, args...) \ 4266 netif_level(err, priv, type, dev, fmt, ##args) 4267#define netif_warn(priv, type, dev, fmt, args...) \ 4268 netif_level(warn, priv, type, dev, fmt, ##args) 4269#define netif_notice(priv, type, dev, fmt, args...) \ 4270 netif_level(notice, priv, type, dev, fmt, ##args) 4271#define netif_info(priv, type, dev, fmt, args...) \ 4272 netif_level(info, priv, type, dev, fmt, ##args) 4273 4274#if defined(CONFIG_DYNAMIC_DEBUG) 4275#define netif_dbg(priv, type, netdev, format, args...) \ 4276do { \ 4277 if (netif_msg_##type(priv)) \ 4278 dynamic_netdev_dbg(netdev, format, ##args); \ 4279} while (0) 4280#elif defined(DEBUG) 4281#define netif_dbg(priv, type, dev, format, args...) \ 4282 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4283#else 4284#define netif_dbg(priv, type, dev, format, args...) \ 4285({ \ 4286 if (0) \ 4287 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4288 0; \ 4289}) 4290#endif 4291 4292#if defined(VERBOSE_DEBUG) 4293#define netif_vdbg netif_dbg 4294#else 4295#define netif_vdbg(priv, type, dev, format, args...) \ 4296({ \ 4297 if (0) \ 4298 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4299 0; \ 4300}) 4301#endif 4302 4303/* 4304 * The list of packet types we will receive (as opposed to discard) 4305 * and the routines to invoke. 4306 * 4307 * Why 16. Because with 16 the only overlap we get on a hash of the 4308 * low nibble of the protocol value is RARP/SNAP/X.25. 4309 * 4310 * NOTE: That is no longer true with the addition of VLAN tags. Not 4311 * sure which should go first, but I bet it won't make much 4312 * difference if we are running VLANs. The good news is that 4313 * this protocol won't be in the list unless compiled in, so 4314 * the average user (w/out VLANs) will not be adversely affected. 4315 * --BLG 4316 * 4317 * 0800 IP 4318 * 8100 802.1Q VLAN 4319 * 0001 802.3 4320 * 0002 AX.25 4321 * 0004 802.2 4322 * 8035 RARP 4323 * 0005 SNAP 4324 * 0805 X.25 4325 * 0806 ARP 4326 * 8137 IPX 4327 * 0009 Localtalk 4328 * 86DD IPv6 4329 */ 4330#define PTYPE_HASH_SIZE (16) 4331#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4332 4333#endif /* _LINUX_NETDEVICE_H */