at v4.6 38 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 67extern char * const migratetype_names[MIGRATE_TYPES]; 68 69#ifdef CONFIG_CMA 70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 71#else 72# define is_migrate_cma(migratetype) false 73#endif 74 75#define for_each_migratetype_order(order, type) \ 76 for (order = 0; order < MAX_ORDER; order++) \ 77 for (type = 0; type < MIGRATE_TYPES; type++) 78 79extern int page_group_by_mobility_disabled; 80 81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 83 84#define get_pageblock_migratetype(page) \ 85 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 86 PB_migrate_end, MIGRATETYPE_MASK) 87 88static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 89{ 90 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 91 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 92 MIGRATETYPE_MASK); 93} 94 95struct free_area { 96 struct list_head free_list[MIGRATE_TYPES]; 97 unsigned long nr_free; 98}; 99 100struct pglist_data; 101 102/* 103 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 104 * So add a wild amount of padding here to ensure that they fall into separate 105 * cachelines. There are very few zone structures in the machine, so space 106 * consumption is not a concern here. 107 */ 108#if defined(CONFIG_SMP) 109struct zone_padding { 110 char x[0]; 111} ____cacheline_internodealigned_in_smp; 112#define ZONE_PADDING(name) struct zone_padding name; 113#else 114#define ZONE_PADDING(name) 115#endif 116 117enum zone_stat_item { 118 /* First 128 byte cacheline (assuming 64 bit words) */ 119 NR_FREE_PAGES, 120 NR_ALLOC_BATCH, 121 NR_LRU_BASE, 122 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 123 NR_ACTIVE_ANON, /* " " " " " */ 124 NR_INACTIVE_FILE, /* " " " " " */ 125 NR_ACTIVE_FILE, /* " " " " " */ 126 NR_UNEVICTABLE, /* " " " " " */ 127 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 128 NR_ANON_PAGES, /* Mapped anonymous pages */ 129 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 130 only modified from process context */ 131 NR_FILE_PAGES, 132 NR_FILE_DIRTY, 133 NR_WRITEBACK, 134 NR_SLAB_RECLAIMABLE, 135 NR_SLAB_UNRECLAIMABLE, 136 NR_PAGETABLE, /* used for pagetables */ 137 NR_KERNEL_STACK, 138 /* Second 128 byte cacheline */ 139 NR_UNSTABLE_NFS, /* NFS unstable pages */ 140 NR_BOUNCE, 141 NR_VMSCAN_WRITE, 142 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 143 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 144 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 145 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 146 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 147 NR_DIRTIED, /* page dirtyings since bootup */ 148 NR_WRITTEN, /* page writings since bootup */ 149 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 150#ifdef CONFIG_NUMA 151 NUMA_HIT, /* allocated in intended node */ 152 NUMA_MISS, /* allocated in non intended node */ 153 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 154 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 155 NUMA_LOCAL, /* allocation from local node */ 156 NUMA_OTHER, /* allocation from other node */ 157#endif 158 WORKINGSET_REFAULT, 159 WORKINGSET_ACTIVATE, 160 WORKINGSET_NODERECLAIM, 161 NR_ANON_TRANSPARENT_HUGEPAGES, 162 NR_FREE_CMA_PAGES, 163 NR_VM_ZONE_STAT_ITEMS }; 164 165/* 166 * We do arithmetic on the LRU lists in various places in the code, 167 * so it is important to keep the active lists LRU_ACTIVE higher in 168 * the array than the corresponding inactive lists, and to keep 169 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 170 * 171 * This has to be kept in sync with the statistics in zone_stat_item 172 * above and the descriptions in vmstat_text in mm/vmstat.c 173 */ 174#define LRU_BASE 0 175#define LRU_ACTIVE 1 176#define LRU_FILE 2 177 178enum lru_list { 179 LRU_INACTIVE_ANON = LRU_BASE, 180 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 181 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 182 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 183 LRU_UNEVICTABLE, 184 NR_LRU_LISTS 185}; 186 187#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 188 189#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 190 191static inline int is_file_lru(enum lru_list lru) 192{ 193 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 194} 195 196static inline int is_active_lru(enum lru_list lru) 197{ 198 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 199} 200 201struct zone_reclaim_stat { 202 /* 203 * The pageout code in vmscan.c keeps track of how many of the 204 * mem/swap backed and file backed pages are referenced. 205 * The higher the rotated/scanned ratio, the more valuable 206 * that cache is. 207 * 208 * The anon LRU stats live in [0], file LRU stats in [1] 209 */ 210 unsigned long recent_rotated[2]; 211 unsigned long recent_scanned[2]; 212}; 213 214struct lruvec { 215 struct list_head lists[NR_LRU_LISTS]; 216 struct zone_reclaim_stat reclaim_stat; 217 /* Evictions & activations on the inactive file list */ 218 atomic_long_t inactive_age; 219#ifdef CONFIG_MEMCG 220 struct zone *zone; 221#endif 222}; 223 224/* Mask used at gathering information at once (see memcontrol.c) */ 225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229/* Isolate clean file */ 230#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231/* Isolate unmapped file */ 232#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233/* Isolate for asynchronous migration */ 234#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235/* Isolate unevictable pages */ 236#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238/* LRU Isolation modes. */ 239typedef unsigned __bitwise__ isolate_mode_t; 240 241enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246}; 247 248#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259}; 260 261struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263#ifdef CONFIG_NUMA 264 s8 expire; 265#endif 266#ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269#endif 270}; 271 272#endif /* !__GENERATING_BOUNDS.H */ 273 274enum zone_type { 275#ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295#endif 296#ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303#endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310#ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320#endif 321 ZONE_MOVABLE, 322#ifdef CONFIG_ZONE_DEVICE 323 ZONE_DEVICE, 324#endif 325 __MAX_NR_ZONES 326 327}; 328 329#ifndef __GENERATING_BOUNDS_H 330 331struct zone { 332 /* Read-mostly fields */ 333 334 /* zone watermarks, access with *_wmark_pages(zone) macros */ 335 unsigned long watermark[NR_WMARK]; 336 337 unsigned long nr_reserved_highatomic; 338 339 /* 340 * We don't know if the memory that we're going to allocate will be 341 * freeable or/and it will be released eventually, so to avoid totally 342 * wasting several GB of ram we must reserve some of the lower zone 343 * memory (otherwise we risk to run OOM on the lower zones despite 344 * there being tons of freeable ram on the higher zones). This array is 345 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 346 * changes. 347 */ 348 long lowmem_reserve[MAX_NR_ZONES]; 349 350#ifdef CONFIG_NUMA 351 int node; 352#endif 353 354 /* 355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 356 * this zone's LRU. Maintained by the pageout code. 357 */ 358 unsigned int inactive_ratio; 359 360 struct pglist_data *zone_pgdat; 361 struct per_cpu_pageset __percpu *pageset; 362 363 /* 364 * This is a per-zone reserve of pages that are not available 365 * to userspace allocations. 366 */ 367 unsigned long totalreserve_pages; 368 369#ifndef CONFIG_SPARSEMEM 370 /* 371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 372 * In SPARSEMEM, this map is stored in struct mem_section 373 */ 374 unsigned long *pageblock_flags; 375#endif /* CONFIG_SPARSEMEM */ 376 377#ifdef CONFIG_NUMA 378 /* 379 * zone reclaim becomes active if more unmapped pages exist. 380 */ 381 unsigned long min_unmapped_pages; 382 unsigned long min_slab_pages; 383#endif /* CONFIG_NUMA */ 384 385 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 386 unsigned long zone_start_pfn; 387 388 /* 389 * spanned_pages is the total pages spanned by the zone, including 390 * holes, which is calculated as: 391 * spanned_pages = zone_end_pfn - zone_start_pfn; 392 * 393 * present_pages is physical pages existing within the zone, which 394 * is calculated as: 395 * present_pages = spanned_pages - absent_pages(pages in holes); 396 * 397 * managed_pages is present pages managed by the buddy system, which 398 * is calculated as (reserved_pages includes pages allocated by the 399 * bootmem allocator): 400 * managed_pages = present_pages - reserved_pages; 401 * 402 * So present_pages may be used by memory hotplug or memory power 403 * management logic to figure out unmanaged pages by checking 404 * (present_pages - managed_pages). And managed_pages should be used 405 * by page allocator and vm scanner to calculate all kinds of watermarks 406 * and thresholds. 407 * 408 * Locking rules: 409 * 410 * zone_start_pfn and spanned_pages are protected by span_seqlock. 411 * It is a seqlock because it has to be read outside of zone->lock, 412 * and it is done in the main allocator path. But, it is written 413 * quite infrequently. 414 * 415 * The span_seq lock is declared along with zone->lock because it is 416 * frequently read in proximity to zone->lock. It's good to 417 * give them a chance of being in the same cacheline. 418 * 419 * Write access to present_pages at runtime should be protected by 420 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 421 * present_pages should get_online_mems() to get a stable value. 422 * 423 * Read access to managed_pages should be safe because it's unsigned 424 * long. Write access to zone->managed_pages and totalram_pages are 425 * protected by managed_page_count_lock at runtime. Idealy only 426 * adjust_managed_page_count() should be used instead of directly 427 * touching zone->managed_pages and totalram_pages. 428 */ 429 unsigned long managed_pages; 430 unsigned long spanned_pages; 431 unsigned long present_pages; 432 433 const char *name; 434 435#ifdef CONFIG_MEMORY_ISOLATION 436 /* 437 * Number of isolated pageblock. It is used to solve incorrect 438 * freepage counting problem due to racy retrieving migratetype 439 * of pageblock. Protected by zone->lock. 440 */ 441 unsigned long nr_isolate_pageblock; 442#endif 443 444#ifdef CONFIG_MEMORY_HOTPLUG 445 /* see spanned/present_pages for more description */ 446 seqlock_t span_seqlock; 447#endif 448 449 /* 450 * wait_table -- the array holding the hash table 451 * wait_table_hash_nr_entries -- the size of the hash table array 452 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 453 * 454 * The purpose of all these is to keep track of the people 455 * waiting for a page to become available and make them 456 * runnable again when possible. The trouble is that this 457 * consumes a lot of space, especially when so few things 458 * wait on pages at a given time. So instead of using 459 * per-page waitqueues, we use a waitqueue hash table. 460 * 461 * The bucket discipline is to sleep on the same queue when 462 * colliding and wake all in that wait queue when removing. 463 * When something wakes, it must check to be sure its page is 464 * truly available, a la thundering herd. The cost of a 465 * collision is great, but given the expected load of the 466 * table, they should be so rare as to be outweighed by the 467 * benefits from the saved space. 468 * 469 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 470 * primary users of these fields, and in mm/page_alloc.c 471 * free_area_init_core() performs the initialization of them. 472 */ 473 wait_queue_head_t *wait_table; 474 unsigned long wait_table_hash_nr_entries; 475 unsigned long wait_table_bits; 476 477 ZONE_PADDING(_pad1_) 478 /* free areas of different sizes */ 479 struct free_area free_area[MAX_ORDER]; 480 481 /* zone flags, see below */ 482 unsigned long flags; 483 484 /* Write-intensive fields used from the page allocator */ 485 spinlock_t lock; 486 487 ZONE_PADDING(_pad2_) 488 489 /* Write-intensive fields used by page reclaim */ 490 491 /* Fields commonly accessed by the page reclaim scanner */ 492 spinlock_t lru_lock; 493 struct lruvec lruvec; 494 495 /* 496 * When free pages are below this point, additional steps are taken 497 * when reading the number of free pages to avoid per-cpu counter 498 * drift allowing watermarks to be breached 499 */ 500 unsigned long percpu_drift_mark; 501 502#if defined CONFIG_COMPACTION || defined CONFIG_CMA 503 /* pfn where compaction free scanner should start */ 504 unsigned long compact_cached_free_pfn; 505 /* pfn where async and sync compaction migration scanner should start */ 506 unsigned long compact_cached_migrate_pfn[2]; 507#endif 508 509#ifdef CONFIG_COMPACTION 510 /* 511 * On compaction failure, 1<<compact_defer_shift compactions 512 * are skipped before trying again. The number attempted since 513 * last failure is tracked with compact_considered. 514 */ 515 unsigned int compact_considered; 516 unsigned int compact_defer_shift; 517 int compact_order_failed; 518#endif 519 520#if defined CONFIG_COMPACTION || defined CONFIG_CMA 521 /* Set to true when the PG_migrate_skip bits should be cleared */ 522 bool compact_blockskip_flush; 523#endif 524 525 bool contiguous; 526 527 ZONE_PADDING(_pad3_) 528 /* Zone statistics */ 529 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 530} ____cacheline_internodealigned_in_smp; 531 532enum zone_flags { 533 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 534 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 535 ZONE_CONGESTED, /* zone has many dirty pages backed by 536 * a congested BDI 537 */ 538 ZONE_DIRTY, /* reclaim scanning has recently found 539 * many dirty file pages at the tail 540 * of the LRU. 541 */ 542 ZONE_WRITEBACK, /* reclaim scanning has recently found 543 * many pages under writeback 544 */ 545 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 546}; 547 548static inline unsigned long zone_end_pfn(const struct zone *zone) 549{ 550 return zone->zone_start_pfn + zone->spanned_pages; 551} 552 553static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 554{ 555 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 556} 557 558static inline bool zone_is_initialized(struct zone *zone) 559{ 560 return !!zone->wait_table; 561} 562 563static inline bool zone_is_empty(struct zone *zone) 564{ 565 return zone->spanned_pages == 0; 566} 567 568/* 569 * The "priority" of VM scanning is how much of the queues we will scan in one 570 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 571 * queues ("queue_length >> 12") during an aging round. 572 */ 573#define DEF_PRIORITY 12 574 575/* Maximum number of zones on a zonelist */ 576#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 577 578enum { 579 ZONELIST_FALLBACK, /* zonelist with fallback */ 580#ifdef CONFIG_NUMA 581 /* 582 * The NUMA zonelists are doubled because we need zonelists that 583 * restrict the allocations to a single node for __GFP_THISNODE. 584 */ 585 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 586#endif 587 MAX_ZONELISTS 588}; 589 590/* 591 * This struct contains information about a zone in a zonelist. It is stored 592 * here to avoid dereferences into large structures and lookups of tables 593 */ 594struct zoneref { 595 struct zone *zone; /* Pointer to actual zone */ 596 int zone_idx; /* zone_idx(zoneref->zone) */ 597}; 598 599/* 600 * One allocation request operates on a zonelist. A zonelist 601 * is a list of zones, the first one is the 'goal' of the 602 * allocation, the other zones are fallback zones, in decreasing 603 * priority. 604 * 605 * To speed the reading of the zonelist, the zonerefs contain the zone index 606 * of the entry being read. Helper functions to access information given 607 * a struct zoneref are 608 * 609 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 610 * zonelist_zone_idx() - Return the index of the zone for an entry 611 * zonelist_node_idx() - Return the index of the node for an entry 612 */ 613struct zonelist { 614 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 615}; 616 617#ifndef CONFIG_DISCONTIGMEM 618/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 619extern struct page *mem_map; 620#endif 621 622/* 623 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 624 * (mostly NUMA machines?) to denote a higher-level memory zone than the 625 * zone denotes. 626 * 627 * On NUMA machines, each NUMA node would have a pg_data_t to describe 628 * it's memory layout. 629 * 630 * Memory statistics and page replacement data structures are maintained on a 631 * per-zone basis. 632 */ 633struct bootmem_data; 634typedef struct pglist_data { 635 struct zone node_zones[MAX_NR_ZONES]; 636 struct zonelist node_zonelists[MAX_ZONELISTS]; 637 int nr_zones; 638#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 639 struct page *node_mem_map; 640#ifdef CONFIG_PAGE_EXTENSION 641 struct page_ext *node_page_ext; 642#endif 643#endif 644#ifndef CONFIG_NO_BOOTMEM 645 struct bootmem_data *bdata; 646#endif 647#ifdef CONFIG_MEMORY_HOTPLUG 648 /* 649 * Must be held any time you expect node_start_pfn, node_present_pages 650 * or node_spanned_pages stay constant. Holding this will also 651 * guarantee that any pfn_valid() stays that way. 652 * 653 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 654 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 655 * 656 * Nests above zone->lock and zone->span_seqlock 657 */ 658 spinlock_t node_size_lock; 659#endif 660 unsigned long node_start_pfn; 661 unsigned long node_present_pages; /* total number of physical pages */ 662 unsigned long node_spanned_pages; /* total size of physical page 663 range, including holes */ 664 int node_id; 665 wait_queue_head_t kswapd_wait; 666 wait_queue_head_t pfmemalloc_wait; 667 struct task_struct *kswapd; /* Protected by 668 mem_hotplug_begin/end() */ 669 int kswapd_max_order; 670 enum zone_type classzone_idx; 671#ifdef CONFIG_COMPACTION 672 int kcompactd_max_order; 673 enum zone_type kcompactd_classzone_idx; 674 wait_queue_head_t kcompactd_wait; 675 struct task_struct *kcompactd; 676#endif 677#ifdef CONFIG_NUMA_BALANCING 678 /* Lock serializing the migrate rate limiting window */ 679 spinlock_t numabalancing_migrate_lock; 680 681 /* Rate limiting time interval */ 682 unsigned long numabalancing_migrate_next_window; 683 684 /* Number of pages migrated during the rate limiting time interval */ 685 unsigned long numabalancing_migrate_nr_pages; 686#endif 687 688#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 689 /* 690 * If memory initialisation on large machines is deferred then this 691 * is the first PFN that needs to be initialised. 692 */ 693 unsigned long first_deferred_pfn; 694#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 695 696#ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 spinlock_t split_queue_lock; 698 struct list_head split_queue; 699 unsigned long split_queue_len; 700#endif 701} pg_data_t; 702 703#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 704#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 705#ifdef CONFIG_FLAT_NODE_MEM_MAP 706#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 707#else 708#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 709#endif 710#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 711 712#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 713#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 714 715static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 716{ 717 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 718} 719 720static inline bool pgdat_is_empty(pg_data_t *pgdat) 721{ 722 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 723} 724 725static inline int zone_id(const struct zone *zone) 726{ 727 struct pglist_data *pgdat = zone->zone_pgdat; 728 729 return zone - pgdat->node_zones; 730} 731 732#ifdef CONFIG_ZONE_DEVICE 733static inline bool is_dev_zone(const struct zone *zone) 734{ 735 return zone_id(zone) == ZONE_DEVICE; 736} 737#else 738static inline bool is_dev_zone(const struct zone *zone) 739{ 740 return false; 741} 742#endif 743 744#include <linux/memory_hotplug.h> 745 746extern struct mutex zonelists_mutex; 747void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 748void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 749bool zone_watermark_ok(struct zone *z, unsigned int order, 750 unsigned long mark, int classzone_idx, int alloc_flags); 751bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 752 unsigned long mark, int classzone_idx); 753enum memmap_context { 754 MEMMAP_EARLY, 755 MEMMAP_HOTPLUG, 756}; 757extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 758 unsigned long size); 759 760extern void lruvec_init(struct lruvec *lruvec); 761 762static inline struct zone *lruvec_zone(struct lruvec *lruvec) 763{ 764#ifdef CONFIG_MEMCG 765 return lruvec->zone; 766#else 767 return container_of(lruvec, struct zone, lruvec); 768#endif 769} 770 771extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru); 772 773#ifdef CONFIG_HAVE_MEMORY_PRESENT 774void memory_present(int nid, unsigned long start, unsigned long end); 775#else 776static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 777#endif 778 779#ifdef CONFIG_HAVE_MEMORYLESS_NODES 780int local_memory_node(int node_id); 781#else 782static inline int local_memory_node(int node_id) { return node_id; }; 783#endif 784 785#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 786unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 787#endif 788 789/* 790 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 791 */ 792#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 793 794static inline int populated_zone(struct zone *zone) 795{ 796 return (!!zone->present_pages); 797} 798 799extern int movable_zone; 800 801#ifdef CONFIG_HIGHMEM 802static inline int zone_movable_is_highmem(void) 803{ 804#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 805 return movable_zone == ZONE_HIGHMEM; 806#else 807 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 808#endif 809} 810#endif 811 812static inline int is_highmem_idx(enum zone_type idx) 813{ 814#ifdef CONFIG_HIGHMEM 815 return (idx == ZONE_HIGHMEM || 816 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 817#else 818 return 0; 819#endif 820} 821 822/** 823 * is_highmem - helper function to quickly check if a struct zone is a 824 * highmem zone or not. This is an attempt to keep references 825 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 826 * @zone - pointer to struct zone variable 827 */ 828static inline int is_highmem(struct zone *zone) 829{ 830#ifdef CONFIG_HIGHMEM 831 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 832 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 833 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 834 zone_movable_is_highmem()); 835#else 836 return 0; 837#endif 838} 839 840/* These two functions are used to setup the per zone pages min values */ 841struct ctl_table; 842int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 843 void __user *, size_t *, loff_t *); 844int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 845 void __user *, size_t *, loff_t *); 846extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 847int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 848 void __user *, size_t *, loff_t *); 849int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 850 void __user *, size_t *, loff_t *); 851int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 852 void __user *, size_t *, loff_t *); 853int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 854 void __user *, size_t *, loff_t *); 855 856extern int numa_zonelist_order_handler(struct ctl_table *, int, 857 void __user *, size_t *, loff_t *); 858extern char numa_zonelist_order[]; 859#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 860 861#ifndef CONFIG_NEED_MULTIPLE_NODES 862 863extern struct pglist_data contig_page_data; 864#define NODE_DATA(nid) (&contig_page_data) 865#define NODE_MEM_MAP(nid) mem_map 866 867#else /* CONFIG_NEED_MULTIPLE_NODES */ 868 869#include <asm/mmzone.h> 870 871#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 872 873extern struct pglist_data *first_online_pgdat(void); 874extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 875extern struct zone *next_zone(struct zone *zone); 876 877/** 878 * for_each_online_pgdat - helper macro to iterate over all online nodes 879 * @pgdat - pointer to a pg_data_t variable 880 */ 881#define for_each_online_pgdat(pgdat) \ 882 for (pgdat = first_online_pgdat(); \ 883 pgdat; \ 884 pgdat = next_online_pgdat(pgdat)) 885/** 886 * for_each_zone - helper macro to iterate over all memory zones 887 * @zone - pointer to struct zone variable 888 * 889 * The user only needs to declare the zone variable, for_each_zone 890 * fills it in. 891 */ 892#define for_each_zone(zone) \ 893 for (zone = (first_online_pgdat())->node_zones; \ 894 zone; \ 895 zone = next_zone(zone)) 896 897#define for_each_populated_zone(zone) \ 898 for (zone = (first_online_pgdat())->node_zones; \ 899 zone; \ 900 zone = next_zone(zone)) \ 901 if (!populated_zone(zone)) \ 902 ; /* do nothing */ \ 903 else 904 905static inline struct zone *zonelist_zone(struct zoneref *zoneref) 906{ 907 return zoneref->zone; 908} 909 910static inline int zonelist_zone_idx(struct zoneref *zoneref) 911{ 912 return zoneref->zone_idx; 913} 914 915static inline int zonelist_node_idx(struct zoneref *zoneref) 916{ 917#ifdef CONFIG_NUMA 918 /* zone_to_nid not available in this context */ 919 return zoneref->zone->node; 920#else 921 return 0; 922#endif /* CONFIG_NUMA */ 923} 924 925/** 926 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 927 * @z - The cursor used as a starting point for the search 928 * @highest_zoneidx - The zone index of the highest zone to return 929 * @nodes - An optional nodemask to filter the zonelist with 930 * 931 * This function returns the next zone at or below a given zone index that is 932 * within the allowed nodemask using a cursor as the starting point for the 933 * search. The zoneref returned is a cursor that represents the current zone 934 * being examined. It should be advanced by one before calling 935 * next_zones_zonelist again. 936 */ 937struct zoneref *next_zones_zonelist(struct zoneref *z, 938 enum zone_type highest_zoneidx, 939 nodemask_t *nodes); 940 941/** 942 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 943 * @zonelist - The zonelist to search for a suitable zone 944 * @highest_zoneidx - The zone index of the highest zone to return 945 * @nodes - An optional nodemask to filter the zonelist with 946 * @zone - The first suitable zone found is returned via this parameter 947 * 948 * This function returns the first zone at or below a given zone index that is 949 * within the allowed nodemask. The zoneref returned is a cursor that can be 950 * used to iterate the zonelist with next_zones_zonelist by advancing it by 951 * one before calling. 952 */ 953static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 954 enum zone_type highest_zoneidx, 955 nodemask_t *nodes, 956 struct zone **zone) 957{ 958 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs, 959 highest_zoneidx, nodes); 960 *zone = zonelist_zone(z); 961 return z; 962} 963 964/** 965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 966 * @zone - The current zone in the iterator 967 * @z - The current pointer within zonelist->zones being iterated 968 * @zlist - The zonelist being iterated 969 * @highidx - The zone index of the highest zone to return 970 * @nodemask - Nodemask allowed by the allocator 971 * 972 * This iterator iterates though all zones at or below a given zone index and 973 * within a given nodemask 974 */ 975#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 976 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 977 zone; \ 978 z = next_zones_zonelist(++z, highidx, nodemask), \ 979 zone = zonelist_zone(z)) \ 980 981/** 982 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 983 * @zone - The current zone in the iterator 984 * @z - The current pointer within zonelist->zones being iterated 985 * @zlist - The zonelist being iterated 986 * @highidx - The zone index of the highest zone to return 987 * 988 * This iterator iterates though all zones at or below a given zone index. 989 */ 990#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 991 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 992 993#ifdef CONFIG_SPARSEMEM 994#include <asm/sparsemem.h> 995#endif 996 997#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 998 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 999static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1000{ 1001 return 0; 1002} 1003#endif 1004 1005#ifdef CONFIG_FLATMEM 1006#define pfn_to_nid(pfn) (0) 1007#endif 1008 1009#ifdef CONFIG_SPARSEMEM 1010 1011/* 1012 * SECTION_SHIFT #bits space required to store a section # 1013 * 1014 * PA_SECTION_SHIFT physical address to/from section number 1015 * PFN_SECTION_SHIFT pfn to/from section number 1016 */ 1017#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1018#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1019 1020#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1021 1022#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1023#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1024 1025#define SECTION_BLOCKFLAGS_BITS \ 1026 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1027 1028#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1029#error Allocator MAX_ORDER exceeds SECTION_SIZE 1030#endif 1031 1032#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1033#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1034 1035#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1036#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1037 1038struct page; 1039struct page_ext; 1040struct mem_section { 1041 /* 1042 * This is, logically, a pointer to an array of struct 1043 * pages. However, it is stored with some other magic. 1044 * (see sparse.c::sparse_init_one_section()) 1045 * 1046 * Additionally during early boot we encode node id of 1047 * the location of the section here to guide allocation. 1048 * (see sparse.c::memory_present()) 1049 * 1050 * Making it a UL at least makes someone do a cast 1051 * before using it wrong. 1052 */ 1053 unsigned long section_mem_map; 1054 1055 /* See declaration of similar field in struct zone */ 1056 unsigned long *pageblock_flags; 1057#ifdef CONFIG_PAGE_EXTENSION 1058 /* 1059 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1060 * section. (see page_ext.h about this.) 1061 */ 1062 struct page_ext *page_ext; 1063 unsigned long pad; 1064#endif 1065 /* 1066 * WARNING: mem_section must be a power-of-2 in size for the 1067 * calculation and use of SECTION_ROOT_MASK to make sense. 1068 */ 1069}; 1070 1071#ifdef CONFIG_SPARSEMEM_EXTREME 1072#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1073#else 1074#define SECTIONS_PER_ROOT 1 1075#endif 1076 1077#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1078#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1079#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1080 1081#ifdef CONFIG_SPARSEMEM_EXTREME 1082extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1083#else 1084extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1085#endif 1086 1087static inline struct mem_section *__nr_to_section(unsigned long nr) 1088{ 1089 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1090 return NULL; 1091 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1092} 1093extern int __section_nr(struct mem_section* ms); 1094extern unsigned long usemap_size(void); 1095 1096/* 1097 * We use the lower bits of the mem_map pointer to store 1098 * a little bit of information. There should be at least 1099 * 3 bits here due to 32-bit alignment. 1100 */ 1101#define SECTION_MARKED_PRESENT (1UL<<0) 1102#define SECTION_HAS_MEM_MAP (1UL<<1) 1103#define SECTION_MAP_LAST_BIT (1UL<<2) 1104#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1105#define SECTION_NID_SHIFT 2 1106 1107static inline struct page *__section_mem_map_addr(struct mem_section *section) 1108{ 1109 unsigned long map = section->section_mem_map; 1110 map &= SECTION_MAP_MASK; 1111 return (struct page *)map; 1112} 1113 1114static inline int present_section(struct mem_section *section) 1115{ 1116 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1117} 1118 1119static inline int present_section_nr(unsigned long nr) 1120{ 1121 return present_section(__nr_to_section(nr)); 1122} 1123 1124static inline int valid_section(struct mem_section *section) 1125{ 1126 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1127} 1128 1129static inline int valid_section_nr(unsigned long nr) 1130{ 1131 return valid_section(__nr_to_section(nr)); 1132} 1133 1134static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1135{ 1136 return __nr_to_section(pfn_to_section_nr(pfn)); 1137} 1138 1139#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1140static inline int pfn_valid(unsigned long pfn) 1141{ 1142 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1143 return 0; 1144 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1145} 1146#endif 1147 1148static inline int pfn_present(unsigned long pfn) 1149{ 1150 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1151 return 0; 1152 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1153} 1154 1155/* 1156 * These are _only_ used during initialisation, therefore they 1157 * can use __initdata ... They could have names to indicate 1158 * this restriction. 1159 */ 1160#ifdef CONFIG_NUMA 1161#define pfn_to_nid(pfn) \ 1162({ \ 1163 unsigned long __pfn_to_nid_pfn = (pfn); \ 1164 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1165}) 1166#else 1167#define pfn_to_nid(pfn) (0) 1168#endif 1169 1170#define early_pfn_valid(pfn) pfn_valid(pfn) 1171void sparse_init(void); 1172#else 1173#define sparse_init() do {} while (0) 1174#define sparse_index_init(_sec, _nid) do {} while (0) 1175#endif /* CONFIG_SPARSEMEM */ 1176 1177/* 1178 * During memory init memblocks map pfns to nids. The search is expensive and 1179 * this caches recent lookups. The implementation of __early_pfn_to_nid 1180 * may treat start/end as pfns or sections. 1181 */ 1182struct mminit_pfnnid_cache { 1183 unsigned long last_start; 1184 unsigned long last_end; 1185 int last_nid; 1186}; 1187 1188#ifndef early_pfn_valid 1189#define early_pfn_valid(pfn) (1) 1190#endif 1191 1192void memory_present(int nid, unsigned long start, unsigned long end); 1193unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1194 1195/* 1196 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1197 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1198 * pfn_valid_within() should be used in this case; we optimise this away 1199 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1200 */ 1201#ifdef CONFIG_HOLES_IN_ZONE 1202#define pfn_valid_within(pfn) pfn_valid(pfn) 1203#else 1204#define pfn_valid_within(pfn) (1) 1205#endif 1206 1207#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1208/* 1209 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1210 * associated with it or not. In FLATMEM, it is expected that holes always 1211 * have valid memmap as long as there is valid PFNs either side of the hole. 1212 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1213 * entire section. 1214 * 1215 * However, an ARM, and maybe other embedded architectures in the future 1216 * free memmap backing holes to save memory on the assumption the memmap is 1217 * never used. The page_zone linkages are then broken even though pfn_valid() 1218 * returns true. A walker of the full memmap must then do this additional 1219 * check to ensure the memmap they are looking at is sane by making sure 1220 * the zone and PFN linkages are still valid. This is expensive, but walkers 1221 * of the full memmap are extremely rare. 1222 */ 1223bool memmap_valid_within(unsigned long pfn, 1224 struct page *page, struct zone *zone); 1225#else 1226static inline bool memmap_valid_within(unsigned long pfn, 1227 struct page *page, struct zone *zone) 1228{ 1229 return true; 1230} 1231#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1232 1233#endif /* !__GENERATING_BOUNDS.H */ 1234#endif /* !__ASSEMBLY__ */ 1235#endif /* _LINUX_MMZONE_H */