Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <linux/page-flags-layout.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60#ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62#endif
63 MIGRATE_TYPES
64};
65
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71#else
72# define is_migrate_cma(migratetype) false
73#endif
74
75#define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79extern int page_group_by_mobility_disabled;
80
81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84#define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
89{
90 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
91 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
92 MIGRATETYPE_MASK);
93}
94
95struct free_area {
96 struct list_head free_list[MIGRATE_TYPES];
97 unsigned long nr_free;
98};
99
100struct pglist_data;
101
102/*
103 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
107 */
108#if defined(CONFIG_SMP)
109struct zone_padding {
110 char x[0];
111} ____cacheline_internodealigned_in_smp;
112#define ZONE_PADDING(name) struct zone_padding name;
113#else
114#define ZONE_PADDING(name)
115#endif
116
117enum zone_stat_item {
118 /* First 128 byte cacheline (assuming 64 bit words) */
119 NR_FREE_PAGES,
120 NR_ALLOC_BATCH,
121 NR_LRU_BASE,
122 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
123 NR_ACTIVE_ANON, /* " " " " " */
124 NR_INACTIVE_FILE, /* " " " " " */
125 NR_ACTIVE_FILE, /* " " " " " */
126 NR_UNEVICTABLE, /* " " " " " */
127 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
128 NR_ANON_PAGES, /* Mapped anonymous pages */
129 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
130 only modified from process context */
131 NR_FILE_PAGES,
132 NR_FILE_DIRTY,
133 NR_WRITEBACK,
134 NR_SLAB_RECLAIMABLE,
135 NR_SLAB_UNRECLAIMABLE,
136 NR_PAGETABLE, /* used for pagetables */
137 NR_KERNEL_STACK,
138 /* Second 128 byte cacheline */
139 NR_UNSTABLE_NFS, /* NFS unstable pages */
140 NR_BOUNCE,
141 NR_VMSCAN_WRITE,
142 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
143 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
144 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
145 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
146 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
147 NR_DIRTIED, /* page dirtyings since bootup */
148 NR_WRITTEN, /* page writings since bootup */
149 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
150#ifdef CONFIG_NUMA
151 NUMA_HIT, /* allocated in intended node */
152 NUMA_MISS, /* allocated in non intended node */
153 NUMA_FOREIGN, /* was intended here, hit elsewhere */
154 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
155 NUMA_LOCAL, /* allocation from local node */
156 NUMA_OTHER, /* allocation from other node */
157#endif
158 WORKINGSET_REFAULT,
159 WORKINGSET_ACTIVATE,
160 WORKINGSET_NODERECLAIM,
161 NR_ANON_TRANSPARENT_HUGEPAGES,
162 NR_FREE_CMA_PAGES,
163 NR_VM_ZONE_STAT_ITEMS };
164
165/*
166 * We do arithmetic on the LRU lists in various places in the code,
167 * so it is important to keep the active lists LRU_ACTIVE higher in
168 * the array than the corresponding inactive lists, and to keep
169 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
170 *
171 * This has to be kept in sync with the statistics in zone_stat_item
172 * above and the descriptions in vmstat_text in mm/vmstat.c
173 */
174#define LRU_BASE 0
175#define LRU_ACTIVE 1
176#define LRU_FILE 2
177
178enum lru_list {
179 LRU_INACTIVE_ANON = LRU_BASE,
180 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
181 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
182 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
183 LRU_UNEVICTABLE,
184 NR_LRU_LISTS
185};
186
187#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
188
189#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
190
191static inline int is_file_lru(enum lru_list lru)
192{
193 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
194}
195
196static inline int is_active_lru(enum lru_list lru)
197{
198 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
199}
200
201struct zone_reclaim_stat {
202 /*
203 * The pageout code in vmscan.c keeps track of how many of the
204 * mem/swap backed and file backed pages are referenced.
205 * The higher the rotated/scanned ratio, the more valuable
206 * that cache is.
207 *
208 * The anon LRU stats live in [0], file LRU stats in [1]
209 */
210 unsigned long recent_rotated[2];
211 unsigned long recent_scanned[2];
212};
213
214struct lruvec {
215 struct list_head lists[NR_LRU_LISTS];
216 struct zone_reclaim_stat reclaim_stat;
217 /* Evictions & activations on the inactive file list */
218 atomic_long_t inactive_age;
219#ifdef CONFIG_MEMCG
220 struct zone *zone;
221#endif
222};
223
224/* Mask used at gathering information at once (see memcontrol.c) */
225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
228
229/* Isolate clean file */
230#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
231/* Isolate unmapped file */
232#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
233/* Isolate for asynchronous migration */
234#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
235/* Isolate unevictable pages */
236#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
237
238/* LRU Isolation modes. */
239typedef unsigned __bitwise__ isolate_mode_t;
240
241enum zone_watermarks {
242 WMARK_MIN,
243 WMARK_LOW,
244 WMARK_HIGH,
245 NR_WMARK
246};
247
248#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251
252struct per_cpu_pages {
253 int count; /* number of pages in the list */
254 int high; /* high watermark, emptying needed */
255 int batch; /* chunk size for buddy add/remove */
256
257 /* Lists of pages, one per migrate type stored on the pcp-lists */
258 struct list_head lists[MIGRATE_PCPTYPES];
259};
260
261struct per_cpu_pageset {
262 struct per_cpu_pages pcp;
263#ifdef CONFIG_NUMA
264 s8 expire;
265#endif
266#ifdef CONFIG_SMP
267 s8 stat_threshold;
268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269#endif
270};
271
272#endif /* !__GENERATING_BOUNDS.H */
273
274enum zone_type {
275#ifdef CONFIG_ZONE_DMA
276 /*
277 * ZONE_DMA is used when there are devices that are not able
278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 * carve out the portion of memory that is needed for these devices.
280 * The range is arch specific.
281 *
282 * Some examples
283 *
284 * Architecture Limit
285 * ---------------------------
286 * parisc, ia64, sparc <4G
287 * s390 <2G
288 * arm Various
289 * alpha Unlimited or 0-16MB.
290 *
291 * i386, x86_64 and multiple other arches
292 * <16M.
293 */
294 ZONE_DMA,
295#endif
296#ifdef CONFIG_ZONE_DMA32
297 /*
298 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 * only able to do DMA to the lower 16M but also 32 bit devices that
300 * can only do DMA areas below 4G.
301 */
302 ZONE_DMA32,
303#endif
304 /*
305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 * performed on pages in ZONE_NORMAL if the DMA devices support
307 * transfers to all addressable memory.
308 */
309 ZONE_NORMAL,
310#ifdef CONFIG_HIGHMEM
311 /*
312 * A memory area that is only addressable by the kernel through
313 * mapping portions into its own address space. This is for example
314 * used by i386 to allow the kernel to address the memory beyond
315 * 900MB. The kernel will set up special mappings (page
316 * table entries on i386) for each page that the kernel needs to
317 * access.
318 */
319 ZONE_HIGHMEM,
320#endif
321 ZONE_MOVABLE,
322#ifdef CONFIG_ZONE_DEVICE
323 ZONE_DEVICE,
324#endif
325 __MAX_NR_ZONES
326
327};
328
329#ifndef __GENERATING_BOUNDS_H
330
331struct zone {
332 /* Read-mostly fields */
333
334 /* zone watermarks, access with *_wmark_pages(zone) macros */
335 unsigned long watermark[NR_WMARK];
336
337 unsigned long nr_reserved_highatomic;
338
339 /*
340 * We don't know if the memory that we're going to allocate will be
341 * freeable or/and it will be released eventually, so to avoid totally
342 * wasting several GB of ram we must reserve some of the lower zone
343 * memory (otherwise we risk to run OOM on the lower zones despite
344 * there being tons of freeable ram on the higher zones). This array is
345 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
346 * changes.
347 */
348 long lowmem_reserve[MAX_NR_ZONES];
349
350#ifdef CONFIG_NUMA
351 int node;
352#endif
353
354 /*
355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
356 * this zone's LRU. Maintained by the pageout code.
357 */
358 unsigned int inactive_ratio;
359
360 struct pglist_data *zone_pgdat;
361 struct per_cpu_pageset __percpu *pageset;
362
363 /*
364 * This is a per-zone reserve of pages that are not available
365 * to userspace allocations.
366 */
367 unsigned long totalreserve_pages;
368
369#ifndef CONFIG_SPARSEMEM
370 /*
371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 * In SPARSEMEM, this map is stored in struct mem_section
373 */
374 unsigned long *pageblock_flags;
375#endif /* CONFIG_SPARSEMEM */
376
377#ifdef CONFIG_NUMA
378 /*
379 * zone reclaim becomes active if more unmapped pages exist.
380 */
381 unsigned long min_unmapped_pages;
382 unsigned long min_slab_pages;
383#endif /* CONFIG_NUMA */
384
385 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
386 unsigned long zone_start_pfn;
387
388 /*
389 * spanned_pages is the total pages spanned by the zone, including
390 * holes, which is calculated as:
391 * spanned_pages = zone_end_pfn - zone_start_pfn;
392 *
393 * present_pages is physical pages existing within the zone, which
394 * is calculated as:
395 * present_pages = spanned_pages - absent_pages(pages in holes);
396 *
397 * managed_pages is present pages managed by the buddy system, which
398 * is calculated as (reserved_pages includes pages allocated by the
399 * bootmem allocator):
400 * managed_pages = present_pages - reserved_pages;
401 *
402 * So present_pages may be used by memory hotplug or memory power
403 * management logic to figure out unmanaged pages by checking
404 * (present_pages - managed_pages). And managed_pages should be used
405 * by page allocator and vm scanner to calculate all kinds of watermarks
406 * and thresholds.
407 *
408 * Locking rules:
409 *
410 * zone_start_pfn and spanned_pages are protected by span_seqlock.
411 * It is a seqlock because it has to be read outside of zone->lock,
412 * and it is done in the main allocator path. But, it is written
413 * quite infrequently.
414 *
415 * The span_seq lock is declared along with zone->lock because it is
416 * frequently read in proximity to zone->lock. It's good to
417 * give them a chance of being in the same cacheline.
418 *
419 * Write access to present_pages at runtime should be protected by
420 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
421 * present_pages should get_online_mems() to get a stable value.
422 *
423 * Read access to managed_pages should be safe because it's unsigned
424 * long. Write access to zone->managed_pages and totalram_pages are
425 * protected by managed_page_count_lock at runtime. Idealy only
426 * adjust_managed_page_count() should be used instead of directly
427 * touching zone->managed_pages and totalram_pages.
428 */
429 unsigned long managed_pages;
430 unsigned long spanned_pages;
431 unsigned long present_pages;
432
433 const char *name;
434
435#ifdef CONFIG_MEMORY_ISOLATION
436 /*
437 * Number of isolated pageblock. It is used to solve incorrect
438 * freepage counting problem due to racy retrieving migratetype
439 * of pageblock. Protected by zone->lock.
440 */
441 unsigned long nr_isolate_pageblock;
442#endif
443
444#ifdef CONFIG_MEMORY_HOTPLUG
445 /* see spanned/present_pages for more description */
446 seqlock_t span_seqlock;
447#endif
448
449 /*
450 * wait_table -- the array holding the hash table
451 * wait_table_hash_nr_entries -- the size of the hash table array
452 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
453 *
454 * The purpose of all these is to keep track of the people
455 * waiting for a page to become available and make them
456 * runnable again when possible. The trouble is that this
457 * consumes a lot of space, especially when so few things
458 * wait on pages at a given time. So instead of using
459 * per-page waitqueues, we use a waitqueue hash table.
460 *
461 * The bucket discipline is to sleep on the same queue when
462 * colliding and wake all in that wait queue when removing.
463 * When something wakes, it must check to be sure its page is
464 * truly available, a la thundering herd. The cost of a
465 * collision is great, but given the expected load of the
466 * table, they should be so rare as to be outweighed by the
467 * benefits from the saved space.
468 *
469 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
470 * primary users of these fields, and in mm/page_alloc.c
471 * free_area_init_core() performs the initialization of them.
472 */
473 wait_queue_head_t *wait_table;
474 unsigned long wait_table_hash_nr_entries;
475 unsigned long wait_table_bits;
476
477 ZONE_PADDING(_pad1_)
478 /* free areas of different sizes */
479 struct free_area free_area[MAX_ORDER];
480
481 /* zone flags, see below */
482 unsigned long flags;
483
484 /* Write-intensive fields used from the page allocator */
485 spinlock_t lock;
486
487 ZONE_PADDING(_pad2_)
488
489 /* Write-intensive fields used by page reclaim */
490
491 /* Fields commonly accessed by the page reclaim scanner */
492 spinlock_t lru_lock;
493 struct lruvec lruvec;
494
495 /*
496 * When free pages are below this point, additional steps are taken
497 * when reading the number of free pages to avoid per-cpu counter
498 * drift allowing watermarks to be breached
499 */
500 unsigned long percpu_drift_mark;
501
502#if defined CONFIG_COMPACTION || defined CONFIG_CMA
503 /* pfn where compaction free scanner should start */
504 unsigned long compact_cached_free_pfn;
505 /* pfn where async and sync compaction migration scanner should start */
506 unsigned long compact_cached_migrate_pfn[2];
507#endif
508
509#ifdef CONFIG_COMPACTION
510 /*
511 * On compaction failure, 1<<compact_defer_shift compactions
512 * are skipped before trying again. The number attempted since
513 * last failure is tracked with compact_considered.
514 */
515 unsigned int compact_considered;
516 unsigned int compact_defer_shift;
517 int compact_order_failed;
518#endif
519
520#if defined CONFIG_COMPACTION || defined CONFIG_CMA
521 /* Set to true when the PG_migrate_skip bits should be cleared */
522 bool compact_blockskip_flush;
523#endif
524
525 bool contiguous;
526
527 ZONE_PADDING(_pad3_)
528 /* Zone statistics */
529 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
530} ____cacheline_internodealigned_in_smp;
531
532enum zone_flags {
533 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
534 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
535 ZONE_CONGESTED, /* zone has many dirty pages backed by
536 * a congested BDI
537 */
538 ZONE_DIRTY, /* reclaim scanning has recently found
539 * many dirty file pages at the tail
540 * of the LRU.
541 */
542 ZONE_WRITEBACK, /* reclaim scanning has recently found
543 * many pages under writeback
544 */
545 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
546};
547
548static inline unsigned long zone_end_pfn(const struct zone *zone)
549{
550 return zone->zone_start_pfn + zone->spanned_pages;
551}
552
553static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
554{
555 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
556}
557
558static inline bool zone_is_initialized(struct zone *zone)
559{
560 return !!zone->wait_table;
561}
562
563static inline bool zone_is_empty(struct zone *zone)
564{
565 return zone->spanned_pages == 0;
566}
567
568/*
569 * The "priority" of VM scanning is how much of the queues we will scan in one
570 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
571 * queues ("queue_length >> 12") during an aging round.
572 */
573#define DEF_PRIORITY 12
574
575/* Maximum number of zones on a zonelist */
576#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
577
578enum {
579 ZONELIST_FALLBACK, /* zonelist with fallback */
580#ifdef CONFIG_NUMA
581 /*
582 * The NUMA zonelists are doubled because we need zonelists that
583 * restrict the allocations to a single node for __GFP_THISNODE.
584 */
585 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
586#endif
587 MAX_ZONELISTS
588};
589
590/*
591 * This struct contains information about a zone in a zonelist. It is stored
592 * here to avoid dereferences into large structures and lookups of tables
593 */
594struct zoneref {
595 struct zone *zone; /* Pointer to actual zone */
596 int zone_idx; /* zone_idx(zoneref->zone) */
597};
598
599/*
600 * One allocation request operates on a zonelist. A zonelist
601 * is a list of zones, the first one is the 'goal' of the
602 * allocation, the other zones are fallback zones, in decreasing
603 * priority.
604 *
605 * To speed the reading of the zonelist, the zonerefs contain the zone index
606 * of the entry being read. Helper functions to access information given
607 * a struct zoneref are
608 *
609 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
610 * zonelist_zone_idx() - Return the index of the zone for an entry
611 * zonelist_node_idx() - Return the index of the node for an entry
612 */
613struct zonelist {
614 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
615};
616
617#ifndef CONFIG_DISCONTIGMEM
618/* The array of struct pages - for discontigmem use pgdat->lmem_map */
619extern struct page *mem_map;
620#endif
621
622/*
623 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
624 * (mostly NUMA machines?) to denote a higher-level memory zone than the
625 * zone denotes.
626 *
627 * On NUMA machines, each NUMA node would have a pg_data_t to describe
628 * it's memory layout.
629 *
630 * Memory statistics and page replacement data structures are maintained on a
631 * per-zone basis.
632 */
633struct bootmem_data;
634typedef struct pglist_data {
635 struct zone node_zones[MAX_NR_ZONES];
636 struct zonelist node_zonelists[MAX_ZONELISTS];
637 int nr_zones;
638#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
639 struct page *node_mem_map;
640#ifdef CONFIG_PAGE_EXTENSION
641 struct page_ext *node_page_ext;
642#endif
643#endif
644#ifndef CONFIG_NO_BOOTMEM
645 struct bootmem_data *bdata;
646#endif
647#ifdef CONFIG_MEMORY_HOTPLUG
648 /*
649 * Must be held any time you expect node_start_pfn, node_present_pages
650 * or node_spanned_pages stay constant. Holding this will also
651 * guarantee that any pfn_valid() stays that way.
652 *
653 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
654 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
655 *
656 * Nests above zone->lock and zone->span_seqlock
657 */
658 spinlock_t node_size_lock;
659#endif
660 unsigned long node_start_pfn;
661 unsigned long node_present_pages; /* total number of physical pages */
662 unsigned long node_spanned_pages; /* total size of physical page
663 range, including holes */
664 int node_id;
665 wait_queue_head_t kswapd_wait;
666 wait_queue_head_t pfmemalloc_wait;
667 struct task_struct *kswapd; /* Protected by
668 mem_hotplug_begin/end() */
669 int kswapd_max_order;
670 enum zone_type classzone_idx;
671#ifdef CONFIG_COMPACTION
672 int kcompactd_max_order;
673 enum zone_type kcompactd_classzone_idx;
674 wait_queue_head_t kcompactd_wait;
675 struct task_struct *kcompactd;
676#endif
677#ifdef CONFIG_NUMA_BALANCING
678 /* Lock serializing the migrate rate limiting window */
679 spinlock_t numabalancing_migrate_lock;
680
681 /* Rate limiting time interval */
682 unsigned long numabalancing_migrate_next_window;
683
684 /* Number of pages migrated during the rate limiting time interval */
685 unsigned long numabalancing_migrate_nr_pages;
686#endif
687
688#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 /*
690 * If memory initialisation on large machines is deferred then this
691 * is the first PFN that needs to be initialised.
692 */
693 unsigned long first_deferred_pfn;
694#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
695
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 spinlock_t split_queue_lock;
698 struct list_head split_queue;
699 unsigned long split_queue_len;
700#endif
701} pg_data_t;
702
703#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
704#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
705#ifdef CONFIG_FLAT_NODE_MEM_MAP
706#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
707#else
708#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
709#endif
710#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
711
712#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
713#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
714
715static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
716{
717 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
718}
719
720static inline bool pgdat_is_empty(pg_data_t *pgdat)
721{
722 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
723}
724
725static inline int zone_id(const struct zone *zone)
726{
727 struct pglist_data *pgdat = zone->zone_pgdat;
728
729 return zone - pgdat->node_zones;
730}
731
732#ifdef CONFIG_ZONE_DEVICE
733static inline bool is_dev_zone(const struct zone *zone)
734{
735 return zone_id(zone) == ZONE_DEVICE;
736}
737#else
738static inline bool is_dev_zone(const struct zone *zone)
739{
740 return false;
741}
742#endif
743
744#include <linux/memory_hotplug.h>
745
746extern struct mutex zonelists_mutex;
747void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
748void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
749bool zone_watermark_ok(struct zone *z, unsigned int order,
750 unsigned long mark, int classzone_idx, int alloc_flags);
751bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
752 unsigned long mark, int classzone_idx);
753enum memmap_context {
754 MEMMAP_EARLY,
755 MEMMAP_HOTPLUG,
756};
757extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
758 unsigned long size);
759
760extern void lruvec_init(struct lruvec *lruvec);
761
762static inline struct zone *lruvec_zone(struct lruvec *lruvec)
763{
764#ifdef CONFIG_MEMCG
765 return lruvec->zone;
766#else
767 return container_of(lruvec, struct zone, lruvec);
768#endif
769}
770
771extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
772
773#ifdef CONFIG_HAVE_MEMORY_PRESENT
774void memory_present(int nid, unsigned long start, unsigned long end);
775#else
776static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
777#endif
778
779#ifdef CONFIG_HAVE_MEMORYLESS_NODES
780int local_memory_node(int node_id);
781#else
782static inline int local_memory_node(int node_id) { return node_id; };
783#endif
784
785#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
786unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
787#endif
788
789/*
790 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
791 */
792#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
793
794static inline int populated_zone(struct zone *zone)
795{
796 return (!!zone->present_pages);
797}
798
799extern int movable_zone;
800
801#ifdef CONFIG_HIGHMEM
802static inline int zone_movable_is_highmem(void)
803{
804#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
805 return movable_zone == ZONE_HIGHMEM;
806#else
807 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
808#endif
809}
810#endif
811
812static inline int is_highmem_idx(enum zone_type idx)
813{
814#ifdef CONFIG_HIGHMEM
815 return (idx == ZONE_HIGHMEM ||
816 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
817#else
818 return 0;
819#endif
820}
821
822/**
823 * is_highmem - helper function to quickly check if a struct zone is a
824 * highmem zone or not. This is an attempt to keep references
825 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
826 * @zone - pointer to struct zone variable
827 */
828static inline int is_highmem(struct zone *zone)
829{
830#ifdef CONFIG_HIGHMEM
831 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
832 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
833 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
834 zone_movable_is_highmem());
835#else
836 return 0;
837#endif
838}
839
840/* These two functions are used to setup the per zone pages min values */
841struct ctl_table;
842int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
843 void __user *, size_t *, loff_t *);
844int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
845 void __user *, size_t *, loff_t *);
846extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
847int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
848 void __user *, size_t *, loff_t *);
849int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
850 void __user *, size_t *, loff_t *);
851int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
852 void __user *, size_t *, loff_t *);
853int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
854 void __user *, size_t *, loff_t *);
855
856extern int numa_zonelist_order_handler(struct ctl_table *, int,
857 void __user *, size_t *, loff_t *);
858extern char numa_zonelist_order[];
859#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
860
861#ifndef CONFIG_NEED_MULTIPLE_NODES
862
863extern struct pglist_data contig_page_data;
864#define NODE_DATA(nid) (&contig_page_data)
865#define NODE_MEM_MAP(nid) mem_map
866
867#else /* CONFIG_NEED_MULTIPLE_NODES */
868
869#include <asm/mmzone.h>
870
871#endif /* !CONFIG_NEED_MULTIPLE_NODES */
872
873extern struct pglist_data *first_online_pgdat(void);
874extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
875extern struct zone *next_zone(struct zone *zone);
876
877/**
878 * for_each_online_pgdat - helper macro to iterate over all online nodes
879 * @pgdat - pointer to a pg_data_t variable
880 */
881#define for_each_online_pgdat(pgdat) \
882 for (pgdat = first_online_pgdat(); \
883 pgdat; \
884 pgdat = next_online_pgdat(pgdat))
885/**
886 * for_each_zone - helper macro to iterate over all memory zones
887 * @zone - pointer to struct zone variable
888 *
889 * The user only needs to declare the zone variable, for_each_zone
890 * fills it in.
891 */
892#define for_each_zone(zone) \
893 for (zone = (first_online_pgdat())->node_zones; \
894 zone; \
895 zone = next_zone(zone))
896
897#define for_each_populated_zone(zone) \
898 for (zone = (first_online_pgdat())->node_zones; \
899 zone; \
900 zone = next_zone(zone)) \
901 if (!populated_zone(zone)) \
902 ; /* do nothing */ \
903 else
904
905static inline struct zone *zonelist_zone(struct zoneref *zoneref)
906{
907 return zoneref->zone;
908}
909
910static inline int zonelist_zone_idx(struct zoneref *zoneref)
911{
912 return zoneref->zone_idx;
913}
914
915static inline int zonelist_node_idx(struct zoneref *zoneref)
916{
917#ifdef CONFIG_NUMA
918 /* zone_to_nid not available in this context */
919 return zoneref->zone->node;
920#else
921 return 0;
922#endif /* CONFIG_NUMA */
923}
924
925/**
926 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
927 * @z - The cursor used as a starting point for the search
928 * @highest_zoneidx - The zone index of the highest zone to return
929 * @nodes - An optional nodemask to filter the zonelist with
930 *
931 * This function returns the next zone at or below a given zone index that is
932 * within the allowed nodemask using a cursor as the starting point for the
933 * search. The zoneref returned is a cursor that represents the current zone
934 * being examined. It should be advanced by one before calling
935 * next_zones_zonelist again.
936 */
937struct zoneref *next_zones_zonelist(struct zoneref *z,
938 enum zone_type highest_zoneidx,
939 nodemask_t *nodes);
940
941/**
942 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
943 * @zonelist - The zonelist to search for a suitable zone
944 * @highest_zoneidx - The zone index of the highest zone to return
945 * @nodes - An optional nodemask to filter the zonelist with
946 * @zone - The first suitable zone found is returned via this parameter
947 *
948 * This function returns the first zone at or below a given zone index that is
949 * within the allowed nodemask. The zoneref returned is a cursor that can be
950 * used to iterate the zonelist with next_zones_zonelist by advancing it by
951 * one before calling.
952 */
953static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
954 enum zone_type highest_zoneidx,
955 nodemask_t *nodes,
956 struct zone **zone)
957{
958 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
959 highest_zoneidx, nodes);
960 *zone = zonelist_zone(z);
961 return z;
962}
963
964/**
965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
966 * @zone - The current zone in the iterator
967 * @z - The current pointer within zonelist->zones being iterated
968 * @zlist - The zonelist being iterated
969 * @highidx - The zone index of the highest zone to return
970 * @nodemask - Nodemask allowed by the allocator
971 *
972 * This iterator iterates though all zones at or below a given zone index and
973 * within a given nodemask
974 */
975#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
976 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
977 zone; \
978 z = next_zones_zonelist(++z, highidx, nodemask), \
979 zone = zonelist_zone(z)) \
980
981/**
982 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
983 * @zone - The current zone in the iterator
984 * @z - The current pointer within zonelist->zones being iterated
985 * @zlist - The zonelist being iterated
986 * @highidx - The zone index of the highest zone to return
987 *
988 * This iterator iterates though all zones at or below a given zone index.
989 */
990#define for_each_zone_zonelist(zone, z, zlist, highidx) \
991 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
992
993#ifdef CONFIG_SPARSEMEM
994#include <asm/sparsemem.h>
995#endif
996
997#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
998 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
999static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1000{
1001 return 0;
1002}
1003#endif
1004
1005#ifdef CONFIG_FLATMEM
1006#define pfn_to_nid(pfn) (0)
1007#endif
1008
1009#ifdef CONFIG_SPARSEMEM
1010
1011/*
1012 * SECTION_SHIFT #bits space required to store a section #
1013 *
1014 * PA_SECTION_SHIFT physical address to/from section number
1015 * PFN_SECTION_SHIFT pfn to/from section number
1016 */
1017#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1018#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1019
1020#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1021
1022#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1023#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1024
1025#define SECTION_BLOCKFLAGS_BITS \
1026 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1027
1028#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1029#error Allocator MAX_ORDER exceeds SECTION_SIZE
1030#endif
1031
1032#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1033#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1034
1035#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1036#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1037
1038struct page;
1039struct page_ext;
1040struct mem_section {
1041 /*
1042 * This is, logically, a pointer to an array of struct
1043 * pages. However, it is stored with some other magic.
1044 * (see sparse.c::sparse_init_one_section())
1045 *
1046 * Additionally during early boot we encode node id of
1047 * the location of the section here to guide allocation.
1048 * (see sparse.c::memory_present())
1049 *
1050 * Making it a UL at least makes someone do a cast
1051 * before using it wrong.
1052 */
1053 unsigned long section_mem_map;
1054
1055 /* See declaration of similar field in struct zone */
1056 unsigned long *pageblock_flags;
1057#ifdef CONFIG_PAGE_EXTENSION
1058 /*
1059 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1060 * section. (see page_ext.h about this.)
1061 */
1062 struct page_ext *page_ext;
1063 unsigned long pad;
1064#endif
1065 /*
1066 * WARNING: mem_section must be a power-of-2 in size for the
1067 * calculation and use of SECTION_ROOT_MASK to make sense.
1068 */
1069};
1070
1071#ifdef CONFIG_SPARSEMEM_EXTREME
1072#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1073#else
1074#define SECTIONS_PER_ROOT 1
1075#endif
1076
1077#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1078#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1079#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1080
1081#ifdef CONFIG_SPARSEMEM_EXTREME
1082extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1083#else
1084extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1085#endif
1086
1087static inline struct mem_section *__nr_to_section(unsigned long nr)
1088{
1089 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1090 return NULL;
1091 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1092}
1093extern int __section_nr(struct mem_section* ms);
1094extern unsigned long usemap_size(void);
1095
1096/*
1097 * We use the lower bits of the mem_map pointer to store
1098 * a little bit of information. There should be at least
1099 * 3 bits here due to 32-bit alignment.
1100 */
1101#define SECTION_MARKED_PRESENT (1UL<<0)
1102#define SECTION_HAS_MEM_MAP (1UL<<1)
1103#define SECTION_MAP_LAST_BIT (1UL<<2)
1104#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1105#define SECTION_NID_SHIFT 2
1106
1107static inline struct page *__section_mem_map_addr(struct mem_section *section)
1108{
1109 unsigned long map = section->section_mem_map;
1110 map &= SECTION_MAP_MASK;
1111 return (struct page *)map;
1112}
1113
1114static inline int present_section(struct mem_section *section)
1115{
1116 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1117}
1118
1119static inline int present_section_nr(unsigned long nr)
1120{
1121 return present_section(__nr_to_section(nr));
1122}
1123
1124static inline int valid_section(struct mem_section *section)
1125{
1126 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1127}
1128
1129static inline int valid_section_nr(unsigned long nr)
1130{
1131 return valid_section(__nr_to_section(nr));
1132}
1133
1134static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1135{
1136 return __nr_to_section(pfn_to_section_nr(pfn));
1137}
1138
1139#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1140static inline int pfn_valid(unsigned long pfn)
1141{
1142 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1143 return 0;
1144 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1145}
1146#endif
1147
1148static inline int pfn_present(unsigned long pfn)
1149{
1150 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1151 return 0;
1152 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1153}
1154
1155/*
1156 * These are _only_ used during initialisation, therefore they
1157 * can use __initdata ... They could have names to indicate
1158 * this restriction.
1159 */
1160#ifdef CONFIG_NUMA
1161#define pfn_to_nid(pfn) \
1162({ \
1163 unsigned long __pfn_to_nid_pfn = (pfn); \
1164 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1165})
1166#else
1167#define pfn_to_nid(pfn) (0)
1168#endif
1169
1170#define early_pfn_valid(pfn) pfn_valid(pfn)
1171void sparse_init(void);
1172#else
1173#define sparse_init() do {} while (0)
1174#define sparse_index_init(_sec, _nid) do {} while (0)
1175#endif /* CONFIG_SPARSEMEM */
1176
1177/*
1178 * During memory init memblocks map pfns to nids. The search is expensive and
1179 * this caches recent lookups. The implementation of __early_pfn_to_nid
1180 * may treat start/end as pfns or sections.
1181 */
1182struct mminit_pfnnid_cache {
1183 unsigned long last_start;
1184 unsigned long last_end;
1185 int last_nid;
1186};
1187
1188#ifndef early_pfn_valid
1189#define early_pfn_valid(pfn) (1)
1190#endif
1191
1192void memory_present(int nid, unsigned long start, unsigned long end);
1193unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1194
1195/*
1196 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1197 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1198 * pfn_valid_within() should be used in this case; we optimise this away
1199 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1200 */
1201#ifdef CONFIG_HOLES_IN_ZONE
1202#define pfn_valid_within(pfn) pfn_valid(pfn)
1203#else
1204#define pfn_valid_within(pfn) (1)
1205#endif
1206
1207#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1208/*
1209 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1210 * associated with it or not. In FLATMEM, it is expected that holes always
1211 * have valid memmap as long as there is valid PFNs either side of the hole.
1212 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1213 * entire section.
1214 *
1215 * However, an ARM, and maybe other embedded architectures in the future
1216 * free memmap backing holes to save memory on the assumption the memmap is
1217 * never used. The page_zone linkages are then broken even though pfn_valid()
1218 * returns true. A walker of the full memmap must then do this additional
1219 * check to ensure the memmap they are looking at is sane by making sure
1220 * the zone and PFN linkages are still valid. This is expensive, but walkers
1221 * of the full memmap are extremely rare.
1222 */
1223bool memmap_valid_within(unsigned long pfn,
1224 struct page *page, struct zone *zone);
1225#else
1226static inline bool memmap_valid_within(unsigned long pfn,
1227 struct page *page, struct zone *zone)
1228{
1229 return true;
1230}
1231#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1232
1233#endif /* !__GENERATING_BOUNDS.H */
1234#endif /* !__ASSEMBLY__ */
1235#endif /* _LINUX_MMZONE_H */