at v4.6 18 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/rbtree.h> 10#include <linux/rwsem.h> 11#include <linux/completion.h> 12#include <linux/cpumask.h> 13#include <linux/uprobes.h> 14#include <linux/page-flags-layout.h> 15#include <asm/page.h> 16#include <asm/mmu.h> 17 18#ifndef AT_VECTOR_SIZE_ARCH 19#define AT_VECTOR_SIZE_ARCH 0 20#endif 21#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 22 23struct address_space; 24struct mem_cgroup; 25 26#define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27#define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \ 28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) 29#define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) 30 31/* 32 * Each physical page in the system has a struct page associated with 33 * it to keep track of whatever it is we are using the page for at the 34 * moment. Note that we have no way to track which tasks are using 35 * a page, though if it is a pagecache page, rmap structures can tell us 36 * who is mapping it. 37 * 38 * The objects in struct page are organized in double word blocks in 39 * order to allows us to use atomic double word operations on portions 40 * of struct page. That is currently only used by slub but the arrangement 41 * allows the use of atomic double word operations on the flags/mapping 42 * and lru list pointers also. 43 */ 44struct page { 45 /* First double word block */ 46 unsigned long flags; /* Atomic flags, some possibly 47 * updated asynchronously */ 48 union { 49 struct address_space *mapping; /* If low bit clear, points to 50 * inode address_space, or NULL. 51 * If page mapped as anonymous 52 * memory, low bit is set, and 53 * it points to anon_vma object: 54 * see PAGE_MAPPING_ANON below. 55 */ 56 void *s_mem; /* slab first object */ 57 atomic_t compound_mapcount; /* first tail page */ 58 /* page_deferred_list().next -- second tail page */ 59 }; 60 61 /* Second double word */ 62 struct { 63 union { 64 pgoff_t index; /* Our offset within mapping. */ 65 void *freelist; /* sl[aou]b first free object */ 66 /* page_deferred_list().prev -- second tail page */ 67 }; 68 69 union { 70#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 71 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 72 /* Used for cmpxchg_double in slub */ 73 unsigned long counters; 74#else 75 /* 76 * Keep _count separate from slub cmpxchg_double data. 77 * As the rest of the double word is protected by 78 * slab_lock but _count is not. 79 */ 80 unsigned counters; 81#endif 82 83 struct { 84 85 union { 86 /* 87 * Count of ptes mapped in mms, to show 88 * when page is mapped & limit reverse 89 * map searches. 90 */ 91 atomic_t _mapcount; 92 93 struct { /* SLUB */ 94 unsigned inuse:16; 95 unsigned objects:15; 96 unsigned frozen:1; 97 }; 98 int units; /* SLOB */ 99 }; 100 atomic_t _count; /* Usage count, see below. */ 101 }; 102 unsigned int active; /* SLAB */ 103 }; 104 }; 105 106 /* 107 * Third double word block 108 * 109 * WARNING: bit 0 of the first word encode PageTail(). That means 110 * the rest users of the storage space MUST NOT use the bit to 111 * avoid collision and false-positive PageTail(). 112 */ 113 union { 114 struct list_head lru; /* Pageout list, eg. active_list 115 * protected by zone->lru_lock ! 116 * Can be used as a generic list 117 * by the page owner. 118 */ 119 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an 120 * lru or handled by a slab 121 * allocator, this points to the 122 * hosting device page map. 123 */ 124 struct { /* slub per cpu partial pages */ 125 struct page *next; /* Next partial slab */ 126#ifdef CONFIG_64BIT 127 int pages; /* Nr of partial slabs left */ 128 int pobjects; /* Approximate # of objects */ 129#else 130 short int pages; 131 short int pobjects; 132#endif 133 }; 134 135 struct rcu_head rcu_head; /* Used by SLAB 136 * when destroying via RCU 137 */ 138 /* Tail pages of compound page */ 139 struct { 140 unsigned long compound_head; /* If bit zero is set */ 141 142 /* First tail page only */ 143#ifdef CONFIG_64BIT 144 /* 145 * On 64 bit system we have enough space in struct page 146 * to encode compound_dtor and compound_order with 147 * unsigned int. It can help compiler generate better or 148 * smaller code on some archtectures. 149 */ 150 unsigned int compound_dtor; 151 unsigned int compound_order; 152#else 153 unsigned short int compound_dtor; 154 unsigned short int compound_order; 155#endif 156 }; 157 158#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 159 struct { 160 unsigned long __pad; /* do not overlay pmd_huge_pte 161 * with compound_head to avoid 162 * possible bit 0 collision. 163 */ 164 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 165 }; 166#endif 167 }; 168 169 /* Remainder is not double word aligned */ 170 union { 171 unsigned long private; /* Mapping-private opaque data: 172 * usually used for buffer_heads 173 * if PagePrivate set; used for 174 * swp_entry_t if PageSwapCache; 175 * indicates order in the buddy 176 * system if PG_buddy is set. 177 */ 178#if USE_SPLIT_PTE_PTLOCKS 179#if ALLOC_SPLIT_PTLOCKS 180 spinlock_t *ptl; 181#else 182 spinlock_t ptl; 183#endif 184#endif 185 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 186 }; 187 188#ifdef CONFIG_MEMCG 189 struct mem_cgroup *mem_cgroup; 190#endif 191 192 /* 193 * On machines where all RAM is mapped into kernel address space, 194 * we can simply calculate the virtual address. On machines with 195 * highmem some memory is mapped into kernel virtual memory 196 * dynamically, so we need a place to store that address. 197 * Note that this field could be 16 bits on x86 ... ;) 198 * 199 * Architectures with slow multiplication can define 200 * WANT_PAGE_VIRTUAL in asm/page.h 201 */ 202#if defined(WANT_PAGE_VIRTUAL) 203 void *virtual; /* Kernel virtual address (NULL if 204 not kmapped, ie. highmem) */ 205#endif /* WANT_PAGE_VIRTUAL */ 206 207#ifdef CONFIG_KMEMCHECK 208 /* 209 * kmemcheck wants to track the status of each byte in a page; this 210 * is a pointer to such a status block. NULL if not tracked. 211 */ 212 void *shadow; 213#endif 214 215#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 216 int _last_cpupid; 217#endif 218} 219/* 220 * The struct page can be forced to be double word aligned so that atomic ops 221 * on double words work. The SLUB allocator can make use of such a feature. 222 */ 223#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 224 __aligned(2 * sizeof(unsigned long)) 225#endif 226; 227 228struct page_frag { 229 struct page *page; 230#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 231 __u32 offset; 232 __u32 size; 233#else 234 __u16 offset; 235 __u16 size; 236#endif 237}; 238 239#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 240#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 241 242struct page_frag_cache { 243 void * va; 244#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 245 __u16 offset; 246 __u16 size; 247#else 248 __u32 offset; 249#endif 250 /* we maintain a pagecount bias, so that we dont dirty cache line 251 * containing page->_count every time we allocate a fragment. 252 */ 253 unsigned int pagecnt_bias; 254 bool pfmemalloc; 255}; 256 257typedef unsigned long vm_flags_t; 258 259/* 260 * A region containing a mapping of a non-memory backed file under NOMMU 261 * conditions. These are held in a global tree and are pinned by the VMAs that 262 * map parts of them. 263 */ 264struct vm_region { 265 struct rb_node vm_rb; /* link in global region tree */ 266 vm_flags_t vm_flags; /* VMA vm_flags */ 267 unsigned long vm_start; /* start address of region */ 268 unsigned long vm_end; /* region initialised to here */ 269 unsigned long vm_top; /* region allocated to here */ 270 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 271 struct file *vm_file; /* the backing file or NULL */ 272 273 int vm_usage; /* region usage count (access under nommu_region_sem) */ 274 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 275 * this region */ 276}; 277 278#ifdef CONFIG_USERFAULTFD 279#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 280struct vm_userfaultfd_ctx { 281 struct userfaultfd_ctx *ctx; 282}; 283#else /* CONFIG_USERFAULTFD */ 284#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 285struct vm_userfaultfd_ctx {}; 286#endif /* CONFIG_USERFAULTFD */ 287 288/* 289 * This struct defines a memory VMM memory area. There is one of these 290 * per VM-area/task. A VM area is any part of the process virtual memory 291 * space that has a special rule for the page-fault handlers (ie a shared 292 * library, the executable area etc). 293 */ 294struct vm_area_struct { 295 /* The first cache line has the info for VMA tree walking. */ 296 297 unsigned long vm_start; /* Our start address within vm_mm. */ 298 unsigned long vm_end; /* The first byte after our end address 299 within vm_mm. */ 300 301 /* linked list of VM areas per task, sorted by address */ 302 struct vm_area_struct *vm_next, *vm_prev; 303 304 struct rb_node vm_rb; 305 306 /* 307 * Largest free memory gap in bytes to the left of this VMA. 308 * Either between this VMA and vma->vm_prev, or between one of the 309 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 310 * get_unmapped_area find a free area of the right size. 311 */ 312 unsigned long rb_subtree_gap; 313 314 /* Second cache line starts here. */ 315 316 struct mm_struct *vm_mm; /* The address space we belong to. */ 317 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 318 unsigned long vm_flags; /* Flags, see mm.h. */ 319 320 /* 321 * For areas with an address space and backing store, 322 * linkage into the address_space->i_mmap interval tree. 323 */ 324 struct { 325 struct rb_node rb; 326 unsigned long rb_subtree_last; 327 } shared; 328 329 /* 330 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 331 * list, after a COW of one of the file pages. A MAP_SHARED vma 332 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 333 * or brk vma (with NULL file) can only be in an anon_vma list. 334 */ 335 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 336 * page_table_lock */ 337 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 338 339 /* Function pointers to deal with this struct. */ 340 const struct vm_operations_struct *vm_ops; 341 342 /* Information about our backing store: */ 343 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 344 units */ 345 struct file * vm_file; /* File we map to (can be NULL). */ 346 void * vm_private_data; /* was vm_pte (shared mem) */ 347 348#ifndef CONFIG_MMU 349 struct vm_region *vm_region; /* NOMMU mapping region */ 350#endif 351#ifdef CONFIG_NUMA 352 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 353#endif 354 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 355}; 356 357struct core_thread { 358 struct task_struct *task; 359 struct core_thread *next; 360}; 361 362struct core_state { 363 atomic_t nr_threads; 364 struct core_thread dumper; 365 struct completion startup; 366}; 367 368enum { 369 MM_FILEPAGES, /* Resident file mapping pages */ 370 MM_ANONPAGES, /* Resident anonymous pages */ 371 MM_SWAPENTS, /* Anonymous swap entries */ 372 MM_SHMEMPAGES, /* Resident shared memory pages */ 373 NR_MM_COUNTERS 374}; 375 376#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU) 377#define SPLIT_RSS_COUNTING 378/* per-thread cached information, */ 379struct task_rss_stat { 380 int events; /* for synchronization threshold */ 381 int count[NR_MM_COUNTERS]; 382}; 383#endif /* USE_SPLIT_PTE_PTLOCKS */ 384 385struct mm_rss_stat { 386 atomic_long_t count[NR_MM_COUNTERS]; 387}; 388 389struct kioctx_table; 390struct mm_struct { 391 struct vm_area_struct *mmap; /* list of VMAs */ 392 struct rb_root mm_rb; 393 u32 vmacache_seqnum; /* per-thread vmacache */ 394#ifdef CONFIG_MMU 395 unsigned long (*get_unmapped_area) (struct file *filp, 396 unsigned long addr, unsigned long len, 397 unsigned long pgoff, unsigned long flags); 398#endif 399 unsigned long mmap_base; /* base of mmap area */ 400 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 401 unsigned long task_size; /* size of task vm space */ 402 unsigned long highest_vm_end; /* highest vma end address */ 403 pgd_t * pgd; 404 atomic_t mm_users; /* How many users with user space? */ 405 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 406 atomic_long_t nr_ptes; /* PTE page table pages */ 407#if CONFIG_PGTABLE_LEVELS > 2 408 atomic_long_t nr_pmds; /* PMD page table pages */ 409#endif 410 int map_count; /* number of VMAs */ 411 412 spinlock_t page_table_lock; /* Protects page tables and some counters */ 413 struct rw_semaphore mmap_sem; 414 415 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 416 * together off init_mm.mmlist, and are protected 417 * by mmlist_lock 418 */ 419 420 421 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 422 unsigned long hiwater_vm; /* High-water virtual memory usage */ 423 424 unsigned long total_vm; /* Total pages mapped */ 425 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 426 unsigned long pinned_vm; /* Refcount permanently increased */ 427 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 428 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 429 unsigned long stack_vm; /* VM_STACK */ 430 unsigned long def_flags; 431 unsigned long start_code, end_code, start_data, end_data; 432 unsigned long start_brk, brk, start_stack; 433 unsigned long arg_start, arg_end, env_start, env_end; 434 435 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 436 437 /* 438 * Special counters, in some configurations protected by the 439 * page_table_lock, in other configurations by being atomic. 440 */ 441 struct mm_rss_stat rss_stat; 442 443 struct linux_binfmt *binfmt; 444 445 cpumask_var_t cpu_vm_mask_var; 446 447 /* Architecture-specific MM context */ 448 mm_context_t context; 449 450 unsigned long flags; /* Must use atomic bitops to access the bits */ 451 452 struct core_state *core_state; /* coredumping support */ 453#ifdef CONFIG_AIO 454 spinlock_t ioctx_lock; 455 struct kioctx_table __rcu *ioctx_table; 456#endif 457#ifdef CONFIG_MEMCG 458 /* 459 * "owner" points to a task that is regarded as the canonical 460 * user/owner of this mm. All of the following must be true in 461 * order for it to be changed: 462 * 463 * current == mm->owner 464 * current->mm != mm 465 * new_owner->mm == mm 466 * new_owner->alloc_lock is held 467 */ 468 struct task_struct __rcu *owner; 469#endif 470 471 /* store ref to file /proc/<pid>/exe symlink points to */ 472 struct file __rcu *exe_file; 473#ifdef CONFIG_MMU_NOTIFIER 474 struct mmu_notifier_mm *mmu_notifier_mm; 475#endif 476#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 477 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 478#endif 479#ifdef CONFIG_CPUMASK_OFFSTACK 480 struct cpumask cpumask_allocation; 481#endif 482#ifdef CONFIG_NUMA_BALANCING 483 /* 484 * numa_next_scan is the next time that the PTEs will be marked 485 * pte_numa. NUMA hinting faults will gather statistics and migrate 486 * pages to new nodes if necessary. 487 */ 488 unsigned long numa_next_scan; 489 490 /* Restart point for scanning and setting pte_numa */ 491 unsigned long numa_scan_offset; 492 493 /* numa_scan_seq prevents two threads setting pte_numa */ 494 int numa_scan_seq; 495#endif 496#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 497 /* 498 * An operation with batched TLB flushing is going on. Anything that 499 * can move process memory needs to flush the TLB when moving a 500 * PROT_NONE or PROT_NUMA mapped page. 501 */ 502 bool tlb_flush_pending; 503#endif 504 struct uprobes_state uprobes_state; 505#ifdef CONFIG_X86_INTEL_MPX 506 /* address of the bounds directory */ 507 void __user *bd_addr; 508#endif 509#ifdef CONFIG_HUGETLB_PAGE 510 atomic_long_t hugetlb_usage; 511#endif 512}; 513 514static inline void mm_init_cpumask(struct mm_struct *mm) 515{ 516#ifdef CONFIG_CPUMASK_OFFSTACK 517 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 518#endif 519 cpumask_clear(mm->cpu_vm_mask_var); 520} 521 522/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 523static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 524{ 525 return mm->cpu_vm_mask_var; 526} 527 528#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 529/* 530 * Memory barriers to keep this state in sync are graciously provided by 531 * the page table locks, outside of which no page table modifications happen. 532 * The barriers below prevent the compiler from re-ordering the instructions 533 * around the memory barriers that are already present in the code. 534 */ 535static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 536{ 537 barrier(); 538 return mm->tlb_flush_pending; 539} 540static inline void set_tlb_flush_pending(struct mm_struct *mm) 541{ 542 mm->tlb_flush_pending = true; 543 544 /* 545 * Guarantee that the tlb_flush_pending store does not leak into the 546 * critical section updating the page tables 547 */ 548 smp_mb__before_spinlock(); 549} 550/* Clearing is done after a TLB flush, which also provides a barrier. */ 551static inline void clear_tlb_flush_pending(struct mm_struct *mm) 552{ 553 barrier(); 554 mm->tlb_flush_pending = false; 555} 556#else 557static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 558{ 559 return false; 560} 561static inline void set_tlb_flush_pending(struct mm_struct *mm) 562{ 563} 564static inline void clear_tlb_flush_pending(struct mm_struct *mm) 565{ 566} 567#endif 568 569struct vm_fault; 570 571struct vm_special_mapping { 572 const char *name; /* The name, e.g. "[vdso]". */ 573 574 /* 575 * If .fault is not provided, this points to a 576 * NULL-terminated array of pages that back the special mapping. 577 * 578 * This must not be NULL unless .fault is provided. 579 */ 580 struct page **pages; 581 582 /* 583 * If non-NULL, then this is called to resolve page faults 584 * on the special mapping. If used, .pages is not checked. 585 */ 586 int (*fault)(const struct vm_special_mapping *sm, 587 struct vm_area_struct *vma, 588 struct vm_fault *vmf); 589}; 590 591enum tlb_flush_reason { 592 TLB_FLUSH_ON_TASK_SWITCH, 593 TLB_REMOTE_SHOOTDOWN, 594 TLB_LOCAL_SHOOTDOWN, 595 TLB_LOCAL_MM_SHOOTDOWN, 596 TLB_REMOTE_SEND_IPI, 597 NR_TLB_FLUSH_REASONS, 598}; 599 600 /* 601 * A swap entry has to fit into a "unsigned long", as the entry is hidden 602 * in the "index" field of the swapper address space. 603 */ 604typedef struct { 605 unsigned long val; 606} swp_entry_t; 607 608#endif /* _LINUX_MM_TYPES_H */