at v4.6 77 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36extern unsigned long max_mapnr; 37 38static inline void set_max_mapnr(unsigned long limit) 39{ 40 max_mapnr = limit; 41} 42#else 43static inline void set_max_mapnr(unsigned long limit) { } 44#endif 45 46extern unsigned long totalram_pages; 47extern void * high_memory; 48extern int page_cluster; 49 50#ifdef CONFIG_SYSCTL 51extern int sysctl_legacy_va_layout; 52#else 53#define sysctl_legacy_va_layout 0 54#endif 55 56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57extern const int mmap_rnd_bits_min; 58extern const int mmap_rnd_bits_max; 59extern int mmap_rnd_bits __read_mostly; 60#endif 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62extern const int mmap_rnd_compat_bits_min; 63extern const int mmap_rnd_compat_bits_max; 64extern int mmap_rnd_compat_bits __read_mostly; 65#endif 66 67#include <asm/page.h> 68#include <asm/pgtable.h> 69#include <asm/processor.h> 70 71#ifndef __pa_symbol 72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73#endif 74 75/* 76 * To prevent common memory management code establishing 77 * a zero page mapping on a read fault. 78 * This macro should be defined within <asm/pgtable.h>. 79 * s390 does this to prevent multiplexing of hardware bits 80 * related to the physical page in case of virtualization. 81 */ 82#ifndef mm_forbids_zeropage 83#define mm_forbids_zeropage(X) (0) 84#endif 85 86/* 87 * Default maximum number of active map areas, this limits the number of vmas 88 * per mm struct. Users can overwrite this number by sysctl but there is a 89 * problem. 90 * 91 * When a program's coredump is generated as ELF format, a section is created 92 * per a vma. In ELF, the number of sections is represented in unsigned short. 93 * This means the number of sections should be smaller than 65535 at coredump. 94 * Because the kernel adds some informative sections to a image of program at 95 * generating coredump, we need some margin. The number of extra sections is 96 * 1-3 now and depends on arch. We use "5" as safe margin, here. 97 * 98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 99 * not a hard limit any more. Although some userspace tools can be surprised by 100 * that. 101 */ 102#define MAPCOUNT_ELF_CORE_MARGIN (5) 103#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 104 105extern int sysctl_max_map_count; 106 107extern unsigned long sysctl_user_reserve_kbytes; 108extern unsigned long sysctl_admin_reserve_kbytes; 109 110extern int sysctl_overcommit_memory; 111extern int sysctl_overcommit_ratio; 112extern unsigned long sysctl_overcommit_kbytes; 113 114extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 115 size_t *, loff_t *); 116extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 117 size_t *, loff_t *); 118 119#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 120 121/* to align the pointer to the (next) page boundary */ 122#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 123 124/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 125#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 126 127/* 128 * Linux kernel virtual memory manager primitives. 129 * The idea being to have a "virtual" mm in the same way 130 * we have a virtual fs - giving a cleaner interface to the 131 * mm details, and allowing different kinds of memory mappings 132 * (from shared memory to executable loading to arbitrary 133 * mmap() functions). 134 */ 135 136extern struct kmem_cache *vm_area_cachep; 137 138#ifndef CONFIG_MMU 139extern struct rb_root nommu_region_tree; 140extern struct rw_semaphore nommu_region_sem; 141 142extern unsigned int kobjsize(const void *objp); 143#endif 144 145/* 146 * vm_flags in vm_area_struct, see mm_types.h. 147 * When changing, update also include/trace/events/mmflags.h 148 */ 149#define VM_NONE 0x00000000 150 151#define VM_READ 0x00000001 /* currently active flags */ 152#define VM_WRITE 0x00000002 153#define VM_EXEC 0x00000004 154#define VM_SHARED 0x00000008 155 156/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 157#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 158#define VM_MAYWRITE 0x00000020 159#define VM_MAYEXEC 0x00000040 160#define VM_MAYSHARE 0x00000080 161 162#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 163#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 164#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 165#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 166#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 167 168#define VM_LOCKED 0x00002000 169#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 170 171 /* Used by sys_madvise() */ 172#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 173#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 174 175#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 176#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 177#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 178#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 179#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 180#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 181#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 182#define VM_ARCH_2 0x02000000 183#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 184 185#ifdef CONFIG_MEM_SOFT_DIRTY 186# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 187#else 188# define VM_SOFTDIRTY 0 189#endif 190 191#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 192#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 193#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 194#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 195 196#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 197#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 198#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 199#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 200#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 201#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 202#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 203#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 204#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 205#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 206 207#if defined(CONFIG_X86) 208# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 209#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 210# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 211# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 212# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 213# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 214# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 215#endif 216#elif defined(CONFIG_PPC) 217# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 218#elif defined(CONFIG_PARISC) 219# define VM_GROWSUP VM_ARCH_1 220#elif defined(CONFIG_METAG) 221# define VM_GROWSUP VM_ARCH_1 222#elif defined(CONFIG_IA64) 223# define VM_GROWSUP VM_ARCH_1 224#elif !defined(CONFIG_MMU) 225# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 226#endif 227 228#if defined(CONFIG_X86) 229/* MPX specific bounds table or bounds directory */ 230# define VM_MPX VM_ARCH_2 231#endif 232 233#ifndef VM_GROWSUP 234# define VM_GROWSUP VM_NONE 235#endif 236 237/* Bits set in the VMA until the stack is in its final location */ 238#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 239 240#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 241#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 242#endif 243 244#ifdef CONFIG_STACK_GROWSUP 245#define VM_STACK VM_GROWSUP 246#else 247#define VM_STACK VM_GROWSDOWN 248#endif 249 250#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 251 252/* 253 * Special vmas that are non-mergable, non-mlock()able. 254 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 255 */ 256#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 257 258/* This mask defines which mm->def_flags a process can inherit its parent */ 259#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 260 261/* This mask is used to clear all the VMA flags used by mlock */ 262#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 263 264/* 265 * mapping from the currently active vm_flags protection bits (the 266 * low four bits) to a page protection mask.. 267 */ 268extern pgprot_t protection_map[16]; 269 270#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 271#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 272#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 273#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 274#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 275#define FAULT_FLAG_TRIED 0x20 /* Second try */ 276#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 277#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 278#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 279 280/* 281 * vm_fault is filled by the the pagefault handler and passed to the vma's 282 * ->fault function. The vma's ->fault is responsible for returning a bitmask 283 * of VM_FAULT_xxx flags that give details about how the fault was handled. 284 * 285 * MM layer fills up gfp_mask for page allocations but fault handler might 286 * alter it if its implementation requires a different allocation context. 287 * 288 * pgoff should be used in favour of virtual_address, if possible. 289 */ 290struct vm_fault { 291 unsigned int flags; /* FAULT_FLAG_xxx flags */ 292 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 293 pgoff_t pgoff; /* Logical page offset based on vma */ 294 void __user *virtual_address; /* Faulting virtual address */ 295 296 struct page *cow_page; /* Handler may choose to COW */ 297 struct page *page; /* ->fault handlers should return a 298 * page here, unless VM_FAULT_NOPAGE 299 * is set (which is also implied by 300 * VM_FAULT_ERROR). 301 */ 302 /* for ->map_pages() only */ 303 pgoff_t max_pgoff; /* map pages for offset from pgoff till 304 * max_pgoff inclusive */ 305 pte_t *pte; /* pte entry associated with ->pgoff */ 306}; 307 308/* 309 * These are the virtual MM functions - opening of an area, closing and 310 * unmapping it (needed to keep files on disk up-to-date etc), pointer 311 * to the functions called when a no-page or a wp-page exception occurs. 312 */ 313struct vm_operations_struct { 314 void (*open)(struct vm_area_struct * area); 315 void (*close)(struct vm_area_struct * area); 316 int (*mremap)(struct vm_area_struct * area); 317 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 318 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 319 pmd_t *, unsigned int flags); 320 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 321 322 /* notification that a previously read-only page is about to become 323 * writable, if an error is returned it will cause a SIGBUS */ 324 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 325 326 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 327 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 328 329 /* called by access_process_vm when get_user_pages() fails, typically 330 * for use by special VMAs that can switch between memory and hardware 331 */ 332 int (*access)(struct vm_area_struct *vma, unsigned long addr, 333 void *buf, int len, int write); 334 335 /* Called by the /proc/PID/maps code to ask the vma whether it 336 * has a special name. Returning non-NULL will also cause this 337 * vma to be dumped unconditionally. */ 338 const char *(*name)(struct vm_area_struct *vma); 339 340#ifdef CONFIG_NUMA 341 /* 342 * set_policy() op must add a reference to any non-NULL @new mempolicy 343 * to hold the policy upon return. Caller should pass NULL @new to 344 * remove a policy and fall back to surrounding context--i.e. do not 345 * install a MPOL_DEFAULT policy, nor the task or system default 346 * mempolicy. 347 */ 348 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 349 350 /* 351 * get_policy() op must add reference [mpol_get()] to any policy at 352 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 353 * in mm/mempolicy.c will do this automatically. 354 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 355 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 356 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 357 * must return NULL--i.e., do not "fallback" to task or system default 358 * policy. 359 */ 360 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 361 unsigned long addr); 362#endif 363 /* 364 * Called by vm_normal_page() for special PTEs to find the 365 * page for @addr. This is useful if the default behavior 366 * (using pte_page()) would not find the correct page. 367 */ 368 struct page *(*find_special_page)(struct vm_area_struct *vma, 369 unsigned long addr); 370}; 371 372struct mmu_gather; 373struct inode; 374 375#define page_private(page) ((page)->private) 376#define set_page_private(page, v) ((page)->private = (v)) 377 378#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 379static inline int pmd_devmap(pmd_t pmd) 380{ 381 return 0; 382} 383#endif 384 385/* 386 * FIXME: take this include out, include page-flags.h in 387 * files which need it (119 of them) 388 */ 389#include <linux/page-flags.h> 390#include <linux/huge_mm.h> 391 392/* 393 * Methods to modify the page usage count. 394 * 395 * What counts for a page usage: 396 * - cache mapping (page->mapping) 397 * - private data (page->private) 398 * - page mapped in a task's page tables, each mapping 399 * is counted separately 400 * 401 * Also, many kernel routines increase the page count before a critical 402 * routine so they can be sure the page doesn't go away from under them. 403 */ 404 405/* 406 * Drop a ref, return true if the refcount fell to zero (the page has no users) 407 */ 408static inline int put_page_testzero(struct page *page) 409{ 410 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 411 return page_ref_dec_and_test(page); 412} 413 414/* 415 * Try to grab a ref unless the page has a refcount of zero, return false if 416 * that is the case. 417 * This can be called when MMU is off so it must not access 418 * any of the virtual mappings. 419 */ 420static inline int get_page_unless_zero(struct page *page) 421{ 422 return page_ref_add_unless(page, 1, 0); 423} 424 425extern int page_is_ram(unsigned long pfn); 426 427enum { 428 REGION_INTERSECTS, 429 REGION_DISJOINT, 430 REGION_MIXED, 431}; 432 433int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 434 unsigned long desc); 435 436/* Support for virtually mapped pages */ 437struct page *vmalloc_to_page(const void *addr); 438unsigned long vmalloc_to_pfn(const void *addr); 439 440/* 441 * Determine if an address is within the vmalloc range 442 * 443 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 444 * is no special casing required. 445 */ 446static inline int is_vmalloc_addr(const void *x) 447{ 448#ifdef CONFIG_MMU 449 unsigned long addr = (unsigned long)x; 450 451 return addr >= VMALLOC_START && addr < VMALLOC_END; 452#else 453 return 0; 454#endif 455} 456#ifdef CONFIG_MMU 457extern int is_vmalloc_or_module_addr(const void *x); 458#else 459static inline int is_vmalloc_or_module_addr(const void *x) 460{ 461 return 0; 462} 463#endif 464 465extern void kvfree(const void *addr); 466 467static inline atomic_t *compound_mapcount_ptr(struct page *page) 468{ 469 return &page[1].compound_mapcount; 470} 471 472static inline int compound_mapcount(struct page *page) 473{ 474 if (!PageCompound(page)) 475 return 0; 476 page = compound_head(page); 477 return atomic_read(compound_mapcount_ptr(page)) + 1; 478} 479 480/* 481 * The atomic page->_mapcount, starts from -1: so that transitions 482 * both from it and to it can be tracked, using atomic_inc_and_test 483 * and atomic_add_negative(-1). 484 */ 485static inline void page_mapcount_reset(struct page *page) 486{ 487 atomic_set(&(page)->_mapcount, -1); 488} 489 490int __page_mapcount(struct page *page); 491 492static inline int page_mapcount(struct page *page) 493{ 494 VM_BUG_ON_PAGE(PageSlab(page), page); 495 496 if (unlikely(PageCompound(page))) 497 return __page_mapcount(page); 498 return atomic_read(&page->_mapcount) + 1; 499} 500 501#ifdef CONFIG_TRANSPARENT_HUGEPAGE 502int total_mapcount(struct page *page); 503int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 504#else 505static inline int total_mapcount(struct page *page) 506{ 507 return page_mapcount(page); 508} 509static inline int page_trans_huge_mapcount(struct page *page, 510 int *total_mapcount) 511{ 512 int mapcount = page_mapcount(page); 513 if (total_mapcount) 514 *total_mapcount = mapcount; 515 return mapcount; 516} 517#endif 518 519static inline struct page *virt_to_head_page(const void *x) 520{ 521 struct page *page = virt_to_page(x); 522 523 return compound_head(page); 524} 525 526void __put_page(struct page *page); 527 528void put_pages_list(struct list_head *pages); 529 530void split_page(struct page *page, unsigned int order); 531int split_free_page(struct page *page); 532 533/* 534 * Compound pages have a destructor function. Provide a 535 * prototype for that function and accessor functions. 536 * These are _only_ valid on the head of a compound page. 537 */ 538typedef void compound_page_dtor(struct page *); 539 540/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 541enum compound_dtor_id { 542 NULL_COMPOUND_DTOR, 543 COMPOUND_PAGE_DTOR, 544#ifdef CONFIG_HUGETLB_PAGE 545 HUGETLB_PAGE_DTOR, 546#endif 547#ifdef CONFIG_TRANSPARENT_HUGEPAGE 548 TRANSHUGE_PAGE_DTOR, 549#endif 550 NR_COMPOUND_DTORS, 551}; 552extern compound_page_dtor * const compound_page_dtors[]; 553 554static inline void set_compound_page_dtor(struct page *page, 555 enum compound_dtor_id compound_dtor) 556{ 557 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 558 page[1].compound_dtor = compound_dtor; 559} 560 561static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 562{ 563 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 564 return compound_page_dtors[page[1].compound_dtor]; 565} 566 567static inline unsigned int compound_order(struct page *page) 568{ 569 if (!PageHead(page)) 570 return 0; 571 return page[1].compound_order; 572} 573 574static inline void set_compound_order(struct page *page, unsigned int order) 575{ 576 page[1].compound_order = order; 577} 578 579void free_compound_page(struct page *page); 580 581#ifdef CONFIG_MMU 582/* 583 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 584 * servicing faults for write access. In the normal case, do always want 585 * pte_mkwrite. But get_user_pages can cause write faults for mappings 586 * that do not have writing enabled, when used by access_process_vm. 587 */ 588static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 589{ 590 if (likely(vma->vm_flags & VM_WRITE)) 591 pte = pte_mkwrite(pte); 592 return pte; 593} 594 595void do_set_pte(struct vm_area_struct *vma, unsigned long address, 596 struct page *page, pte_t *pte, bool write, bool anon); 597#endif 598 599/* 600 * Multiple processes may "see" the same page. E.g. for untouched 601 * mappings of /dev/null, all processes see the same page full of 602 * zeroes, and text pages of executables and shared libraries have 603 * only one copy in memory, at most, normally. 604 * 605 * For the non-reserved pages, page_count(page) denotes a reference count. 606 * page_count() == 0 means the page is free. page->lru is then used for 607 * freelist management in the buddy allocator. 608 * page_count() > 0 means the page has been allocated. 609 * 610 * Pages are allocated by the slab allocator in order to provide memory 611 * to kmalloc and kmem_cache_alloc. In this case, the management of the 612 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 613 * unless a particular usage is carefully commented. (the responsibility of 614 * freeing the kmalloc memory is the caller's, of course). 615 * 616 * A page may be used by anyone else who does a __get_free_page(). 617 * In this case, page_count still tracks the references, and should only 618 * be used through the normal accessor functions. The top bits of page->flags 619 * and page->virtual store page management information, but all other fields 620 * are unused and could be used privately, carefully. The management of this 621 * page is the responsibility of the one who allocated it, and those who have 622 * subsequently been given references to it. 623 * 624 * The other pages (we may call them "pagecache pages") are completely 625 * managed by the Linux memory manager: I/O, buffers, swapping etc. 626 * The following discussion applies only to them. 627 * 628 * A pagecache page contains an opaque `private' member, which belongs to the 629 * page's address_space. Usually, this is the address of a circular list of 630 * the page's disk buffers. PG_private must be set to tell the VM to call 631 * into the filesystem to release these pages. 632 * 633 * A page may belong to an inode's memory mapping. In this case, page->mapping 634 * is the pointer to the inode, and page->index is the file offset of the page, 635 * in units of PAGE_SIZE. 636 * 637 * If pagecache pages are not associated with an inode, they are said to be 638 * anonymous pages. These may become associated with the swapcache, and in that 639 * case PG_swapcache is set, and page->private is an offset into the swapcache. 640 * 641 * In either case (swapcache or inode backed), the pagecache itself holds one 642 * reference to the page. Setting PG_private should also increment the 643 * refcount. The each user mapping also has a reference to the page. 644 * 645 * The pagecache pages are stored in a per-mapping radix tree, which is 646 * rooted at mapping->page_tree, and indexed by offset. 647 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 648 * lists, we instead now tag pages as dirty/writeback in the radix tree. 649 * 650 * All pagecache pages may be subject to I/O: 651 * - inode pages may need to be read from disk, 652 * - inode pages which have been modified and are MAP_SHARED may need 653 * to be written back to the inode on disk, 654 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 655 * modified may need to be swapped out to swap space and (later) to be read 656 * back into memory. 657 */ 658 659/* 660 * The zone field is never updated after free_area_init_core() 661 * sets it, so none of the operations on it need to be atomic. 662 */ 663 664/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 665#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 666#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 667#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 668#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 669 670/* 671 * Define the bit shifts to access each section. For non-existent 672 * sections we define the shift as 0; that plus a 0 mask ensures 673 * the compiler will optimise away reference to them. 674 */ 675#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 676#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 677#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 678#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 679 680/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 681#ifdef NODE_NOT_IN_PAGE_FLAGS 682#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 683#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 684 SECTIONS_PGOFF : ZONES_PGOFF) 685#else 686#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 687#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 688 NODES_PGOFF : ZONES_PGOFF) 689#endif 690 691#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 692 693#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 694#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 695#endif 696 697#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 698#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 699#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 700#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 701#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 702 703static inline enum zone_type page_zonenum(const struct page *page) 704{ 705 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 706} 707 708#ifdef CONFIG_ZONE_DEVICE 709void get_zone_device_page(struct page *page); 710void put_zone_device_page(struct page *page); 711static inline bool is_zone_device_page(const struct page *page) 712{ 713 return page_zonenum(page) == ZONE_DEVICE; 714} 715#else 716static inline void get_zone_device_page(struct page *page) 717{ 718} 719static inline void put_zone_device_page(struct page *page) 720{ 721} 722static inline bool is_zone_device_page(const struct page *page) 723{ 724 return false; 725} 726#endif 727 728static inline void get_page(struct page *page) 729{ 730 page = compound_head(page); 731 /* 732 * Getting a normal page or the head of a compound page 733 * requires to already have an elevated page->_count. 734 */ 735 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 736 page_ref_inc(page); 737 738 if (unlikely(is_zone_device_page(page))) 739 get_zone_device_page(page); 740} 741 742static inline void put_page(struct page *page) 743{ 744 page = compound_head(page); 745 746 if (put_page_testzero(page)) 747 __put_page(page); 748 749 if (unlikely(is_zone_device_page(page))) 750 put_zone_device_page(page); 751} 752 753#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 754#define SECTION_IN_PAGE_FLAGS 755#endif 756 757/* 758 * The identification function is mainly used by the buddy allocator for 759 * determining if two pages could be buddies. We are not really identifying 760 * the zone since we could be using the section number id if we do not have 761 * node id available in page flags. 762 * We only guarantee that it will return the same value for two combinable 763 * pages in a zone. 764 */ 765static inline int page_zone_id(struct page *page) 766{ 767 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 768} 769 770static inline int zone_to_nid(struct zone *zone) 771{ 772#ifdef CONFIG_NUMA 773 return zone->node; 774#else 775 return 0; 776#endif 777} 778 779#ifdef NODE_NOT_IN_PAGE_FLAGS 780extern int page_to_nid(const struct page *page); 781#else 782static inline int page_to_nid(const struct page *page) 783{ 784 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 785} 786#endif 787 788#ifdef CONFIG_NUMA_BALANCING 789static inline int cpu_pid_to_cpupid(int cpu, int pid) 790{ 791 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 792} 793 794static inline int cpupid_to_pid(int cpupid) 795{ 796 return cpupid & LAST__PID_MASK; 797} 798 799static inline int cpupid_to_cpu(int cpupid) 800{ 801 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 802} 803 804static inline int cpupid_to_nid(int cpupid) 805{ 806 return cpu_to_node(cpupid_to_cpu(cpupid)); 807} 808 809static inline bool cpupid_pid_unset(int cpupid) 810{ 811 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 812} 813 814static inline bool cpupid_cpu_unset(int cpupid) 815{ 816 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 817} 818 819static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 820{ 821 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 822} 823 824#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 825#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 826static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 827{ 828 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 829} 830 831static inline int page_cpupid_last(struct page *page) 832{ 833 return page->_last_cpupid; 834} 835static inline void page_cpupid_reset_last(struct page *page) 836{ 837 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 838} 839#else 840static inline int page_cpupid_last(struct page *page) 841{ 842 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 843} 844 845extern int page_cpupid_xchg_last(struct page *page, int cpupid); 846 847static inline void page_cpupid_reset_last(struct page *page) 848{ 849 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 850 851 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 852 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 853} 854#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 855#else /* !CONFIG_NUMA_BALANCING */ 856static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 857{ 858 return page_to_nid(page); /* XXX */ 859} 860 861static inline int page_cpupid_last(struct page *page) 862{ 863 return page_to_nid(page); /* XXX */ 864} 865 866static inline int cpupid_to_nid(int cpupid) 867{ 868 return -1; 869} 870 871static inline int cpupid_to_pid(int cpupid) 872{ 873 return -1; 874} 875 876static inline int cpupid_to_cpu(int cpupid) 877{ 878 return -1; 879} 880 881static inline int cpu_pid_to_cpupid(int nid, int pid) 882{ 883 return -1; 884} 885 886static inline bool cpupid_pid_unset(int cpupid) 887{ 888 return 1; 889} 890 891static inline void page_cpupid_reset_last(struct page *page) 892{ 893} 894 895static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 896{ 897 return false; 898} 899#endif /* CONFIG_NUMA_BALANCING */ 900 901static inline struct zone *page_zone(const struct page *page) 902{ 903 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 904} 905 906#ifdef SECTION_IN_PAGE_FLAGS 907static inline void set_page_section(struct page *page, unsigned long section) 908{ 909 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 910 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 911} 912 913static inline unsigned long page_to_section(const struct page *page) 914{ 915 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 916} 917#endif 918 919static inline void set_page_zone(struct page *page, enum zone_type zone) 920{ 921 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 922 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 923} 924 925static inline void set_page_node(struct page *page, unsigned long node) 926{ 927 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 928 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 929} 930 931static inline void set_page_links(struct page *page, enum zone_type zone, 932 unsigned long node, unsigned long pfn) 933{ 934 set_page_zone(page, zone); 935 set_page_node(page, node); 936#ifdef SECTION_IN_PAGE_FLAGS 937 set_page_section(page, pfn_to_section_nr(pfn)); 938#endif 939} 940 941#ifdef CONFIG_MEMCG 942static inline struct mem_cgroup *page_memcg(struct page *page) 943{ 944 return page->mem_cgroup; 945} 946#else 947static inline struct mem_cgroup *page_memcg(struct page *page) 948{ 949 return NULL; 950} 951#endif 952 953/* 954 * Some inline functions in vmstat.h depend on page_zone() 955 */ 956#include <linux/vmstat.h> 957 958static __always_inline void *lowmem_page_address(const struct page *page) 959{ 960 return __va(PFN_PHYS(page_to_pfn(page))); 961} 962 963#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 964#define HASHED_PAGE_VIRTUAL 965#endif 966 967#if defined(WANT_PAGE_VIRTUAL) 968static inline void *page_address(const struct page *page) 969{ 970 return page->virtual; 971} 972static inline void set_page_address(struct page *page, void *address) 973{ 974 page->virtual = address; 975} 976#define page_address_init() do { } while(0) 977#endif 978 979#if defined(HASHED_PAGE_VIRTUAL) 980void *page_address(const struct page *page); 981void set_page_address(struct page *page, void *virtual); 982void page_address_init(void); 983#endif 984 985#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 986#define page_address(page) lowmem_page_address(page) 987#define set_page_address(page, address) do { } while(0) 988#define page_address_init() do { } while(0) 989#endif 990 991extern void *page_rmapping(struct page *page); 992extern struct anon_vma *page_anon_vma(struct page *page); 993extern struct address_space *page_mapping(struct page *page); 994 995extern struct address_space *__page_file_mapping(struct page *); 996 997static inline 998struct address_space *page_file_mapping(struct page *page) 999{ 1000 if (unlikely(PageSwapCache(page))) 1001 return __page_file_mapping(page); 1002 1003 return page->mapping; 1004} 1005 1006/* 1007 * Return the pagecache index of the passed page. Regular pagecache pages 1008 * use ->index whereas swapcache pages use ->private 1009 */ 1010static inline pgoff_t page_index(struct page *page) 1011{ 1012 if (unlikely(PageSwapCache(page))) 1013 return page_private(page); 1014 return page->index; 1015} 1016 1017extern pgoff_t __page_file_index(struct page *page); 1018 1019/* 1020 * Return the file index of the page. Regular pagecache pages use ->index 1021 * whereas swapcache pages use swp_offset(->private) 1022 */ 1023static inline pgoff_t page_file_index(struct page *page) 1024{ 1025 if (unlikely(PageSwapCache(page))) 1026 return __page_file_index(page); 1027 1028 return page->index; 1029} 1030 1031/* 1032 * Return true if this page is mapped into pagetables. 1033 * For compound page it returns true if any subpage of compound page is mapped. 1034 */ 1035static inline bool page_mapped(struct page *page) 1036{ 1037 int i; 1038 if (likely(!PageCompound(page))) 1039 return atomic_read(&page->_mapcount) >= 0; 1040 page = compound_head(page); 1041 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1042 return true; 1043 if (PageHuge(page)) 1044 return false; 1045 for (i = 0; i < hpage_nr_pages(page); i++) { 1046 if (atomic_read(&page[i]._mapcount) >= 0) 1047 return true; 1048 } 1049 return false; 1050} 1051 1052/* 1053 * Return true only if the page has been allocated with 1054 * ALLOC_NO_WATERMARKS and the low watermark was not 1055 * met implying that the system is under some pressure. 1056 */ 1057static inline bool page_is_pfmemalloc(struct page *page) 1058{ 1059 /* 1060 * Page index cannot be this large so this must be 1061 * a pfmemalloc page. 1062 */ 1063 return page->index == -1UL; 1064} 1065 1066/* 1067 * Only to be called by the page allocator on a freshly allocated 1068 * page. 1069 */ 1070static inline void set_page_pfmemalloc(struct page *page) 1071{ 1072 page->index = -1UL; 1073} 1074 1075static inline void clear_page_pfmemalloc(struct page *page) 1076{ 1077 page->index = 0; 1078} 1079 1080/* 1081 * Different kinds of faults, as returned by handle_mm_fault(). 1082 * Used to decide whether a process gets delivered SIGBUS or 1083 * just gets major/minor fault counters bumped up. 1084 */ 1085 1086#define VM_FAULT_OOM 0x0001 1087#define VM_FAULT_SIGBUS 0x0002 1088#define VM_FAULT_MAJOR 0x0004 1089#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1090#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1091#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1092#define VM_FAULT_SIGSEGV 0x0040 1093 1094#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1095#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1096#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1097#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1098 1099#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1100 1101#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1102 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1103 VM_FAULT_FALLBACK) 1104 1105/* Encode hstate index for a hwpoisoned large page */ 1106#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1107#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1108 1109/* 1110 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1111 */ 1112extern void pagefault_out_of_memory(void); 1113 1114#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1115 1116/* 1117 * Flags passed to show_mem() and show_free_areas() to suppress output in 1118 * various contexts. 1119 */ 1120#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1121 1122extern void show_free_areas(unsigned int flags); 1123extern bool skip_free_areas_node(unsigned int flags, int nid); 1124 1125int shmem_zero_setup(struct vm_area_struct *); 1126#ifdef CONFIG_SHMEM 1127bool shmem_mapping(struct address_space *mapping); 1128#else 1129static inline bool shmem_mapping(struct address_space *mapping) 1130{ 1131 return false; 1132} 1133#endif 1134 1135extern bool can_do_mlock(void); 1136extern int user_shm_lock(size_t, struct user_struct *); 1137extern void user_shm_unlock(size_t, struct user_struct *); 1138 1139/* 1140 * Parameter block passed down to zap_pte_range in exceptional cases. 1141 */ 1142struct zap_details { 1143 struct address_space *check_mapping; /* Check page->mapping if set */ 1144 pgoff_t first_index; /* Lowest page->index to unmap */ 1145 pgoff_t last_index; /* Highest page->index to unmap */ 1146 bool ignore_dirty; /* Ignore dirty pages */ 1147 bool check_swap_entries; /* Check also swap entries */ 1148}; 1149 1150struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1151 pte_t pte); 1152struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1153 pmd_t pmd); 1154 1155int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1156 unsigned long size); 1157void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1158 unsigned long size, struct zap_details *); 1159void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1160 unsigned long start, unsigned long end); 1161 1162/** 1163 * mm_walk - callbacks for walk_page_range 1164 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1165 * this handler is required to be able to handle 1166 * pmd_trans_huge() pmds. They may simply choose to 1167 * split_huge_page() instead of handling it explicitly. 1168 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1169 * @pte_hole: if set, called for each hole at all levels 1170 * @hugetlb_entry: if set, called for each hugetlb entry 1171 * @test_walk: caller specific callback function to determine whether 1172 * we walk over the current vma or not. A positive returned 1173 * value means "do page table walk over the current vma," 1174 * and a negative one means "abort current page table walk 1175 * right now." 0 means "skip the current vma." 1176 * @mm: mm_struct representing the target process of page table walk 1177 * @vma: vma currently walked (NULL if walking outside vmas) 1178 * @private: private data for callbacks' usage 1179 * 1180 * (see the comment on walk_page_range() for more details) 1181 */ 1182struct mm_walk { 1183 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1184 unsigned long next, struct mm_walk *walk); 1185 int (*pte_entry)(pte_t *pte, unsigned long addr, 1186 unsigned long next, struct mm_walk *walk); 1187 int (*pte_hole)(unsigned long addr, unsigned long next, 1188 struct mm_walk *walk); 1189 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1190 unsigned long addr, unsigned long next, 1191 struct mm_walk *walk); 1192 int (*test_walk)(unsigned long addr, unsigned long next, 1193 struct mm_walk *walk); 1194 struct mm_struct *mm; 1195 struct vm_area_struct *vma; 1196 void *private; 1197}; 1198 1199int walk_page_range(unsigned long addr, unsigned long end, 1200 struct mm_walk *walk); 1201int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1202void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1203 unsigned long end, unsigned long floor, unsigned long ceiling); 1204int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1205 struct vm_area_struct *vma); 1206void unmap_mapping_range(struct address_space *mapping, 1207 loff_t const holebegin, loff_t const holelen, int even_cows); 1208int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1209 unsigned long *pfn); 1210int follow_phys(struct vm_area_struct *vma, unsigned long address, 1211 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1212int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1213 void *buf, int len, int write); 1214 1215static inline void unmap_shared_mapping_range(struct address_space *mapping, 1216 loff_t const holebegin, loff_t const holelen) 1217{ 1218 unmap_mapping_range(mapping, holebegin, holelen, 0); 1219} 1220 1221extern void truncate_pagecache(struct inode *inode, loff_t new); 1222extern void truncate_setsize(struct inode *inode, loff_t newsize); 1223void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1224void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1225int truncate_inode_page(struct address_space *mapping, struct page *page); 1226int generic_error_remove_page(struct address_space *mapping, struct page *page); 1227int invalidate_inode_page(struct page *page); 1228 1229#ifdef CONFIG_MMU 1230extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1231 unsigned long address, unsigned int flags); 1232extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1233 unsigned long address, unsigned int fault_flags, 1234 bool *unlocked); 1235#else 1236static inline int handle_mm_fault(struct mm_struct *mm, 1237 struct vm_area_struct *vma, unsigned long address, 1238 unsigned int flags) 1239{ 1240 /* should never happen if there's no MMU */ 1241 BUG(); 1242 return VM_FAULT_SIGBUS; 1243} 1244static inline int fixup_user_fault(struct task_struct *tsk, 1245 struct mm_struct *mm, unsigned long address, 1246 unsigned int fault_flags, bool *unlocked) 1247{ 1248 /* should never happen if there's no MMU */ 1249 BUG(); 1250 return -EFAULT; 1251} 1252#endif 1253 1254extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1255extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1256 void *buf, int len, int write); 1257 1258long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1259 unsigned long start, unsigned long nr_pages, 1260 unsigned int foll_flags, struct page **pages, 1261 struct vm_area_struct **vmas, int *nonblocking); 1262long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1263 unsigned long start, unsigned long nr_pages, 1264 int write, int force, struct page **pages, 1265 struct vm_area_struct **vmas); 1266long get_user_pages(unsigned long start, unsigned long nr_pages, 1267 int write, int force, struct page **pages, 1268 struct vm_area_struct **vmas); 1269long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1270 int write, int force, struct page **pages, int *locked); 1271long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1272 unsigned long start, unsigned long nr_pages, 1273 int write, int force, struct page **pages, 1274 unsigned int gup_flags); 1275long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1276 int write, int force, struct page **pages); 1277int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1278 struct page **pages); 1279 1280/* Container for pinned pfns / pages */ 1281struct frame_vector { 1282 unsigned int nr_allocated; /* Number of frames we have space for */ 1283 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1284 bool got_ref; /* Did we pin pages by getting page ref? */ 1285 bool is_pfns; /* Does array contain pages or pfns? */ 1286 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1287 * pfns_vector_pages() or pfns_vector_pfns() 1288 * for access */ 1289}; 1290 1291struct frame_vector *frame_vector_create(unsigned int nr_frames); 1292void frame_vector_destroy(struct frame_vector *vec); 1293int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1294 bool write, bool force, struct frame_vector *vec); 1295void put_vaddr_frames(struct frame_vector *vec); 1296int frame_vector_to_pages(struct frame_vector *vec); 1297void frame_vector_to_pfns(struct frame_vector *vec); 1298 1299static inline unsigned int frame_vector_count(struct frame_vector *vec) 1300{ 1301 return vec->nr_frames; 1302} 1303 1304static inline struct page **frame_vector_pages(struct frame_vector *vec) 1305{ 1306 if (vec->is_pfns) { 1307 int err = frame_vector_to_pages(vec); 1308 1309 if (err) 1310 return ERR_PTR(err); 1311 } 1312 return (struct page **)(vec->ptrs); 1313} 1314 1315static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1316{ 1317 if (!vec->is_pfns) 1318 frame_vector_to_pfns(vec); 1319 return (unsigned long *)(vec->ptrs); 1320} 1321 1322struct kvec; 1323int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1324 struct page **pages); 1325int get_kernel_page(unsigned long start, int write, struct page **pages); 1326struct page *get_dump_page(unsigned long addr); 1327 1328extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1329extern void do_invalidatepage(struct page *page, unsigned int offset, 1330 unsigned int length); 1331 1332int __set_page_dirty_nobuffers(struct page *page); 1333int __set_page_dirty_no_writeback(struct page *page); 1334int redirty_page_for_writepage(struct writeback_control *wbc, 1335 struct page *page); 1336void account_page_dirtied(struct page *page, struct address_space *mapping); 1337void account_page_cleaned(struct page *page, struct address_space *mapping, 1338 struct bdi_writeback *wb); 1339int set_page_dirty(struct page *page); 1340int set_page_dirty_lock(struct page *page); 1341void cancel_dirty_page(struct page *page); 1342int clear_page_dirty_for_io(struct page *page); 1343 1344int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1345 1346/* Is the vma a continuation of the stack vma above it? */ 1347static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1348{ 1349 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1350} 1351 1352static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1353{ 1354 return !vma->vm_ops; 1355} 1356 1357static inline int stack_guard_page_start(struct vm_area_struct *vma, 1358 unsigned long addr) 1359{ 1360 return (vma->vm_flags & VM_GROWSDOWN) && 1361 (vma->vm_start == addr) && 1362 !vma_growsdown(vma->vm_prev, addr); 1363} 1364 1365/* Is the vma a continuation of the stack vma below it? */ 1366static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1367{ 1368 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1369} 1370 1371static inline int stack_guard_page_end(struct vm_area_struct *vma, 1372 unsigned long addr) 1373{ 1374 return (vma->vm_flags & VM_GROWSUP) && 1375 (vma->vm_end == addr) && 1376 !vma_growsup(vma->vm_next, addr); 1377} 1378 1379int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1380 1381extern unsigned long move_page_tables(struct vm_area_struct *vma, 1382 unsigned long old_addr, struct vm_area_struct *new_vma, 1383 unsigned long new_addr, unsigned long len, 1384 bool need_rmap_locks); 1385extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1386 unsigned long end, pgprot_t newprot, 1387 int dirty_accountable, int prot_numa); 1388extern int mprotect_fixup(struct vm_area_struct *vma, 1389 struct vm_area_struct **pprev, unsigned long start, 1390 unsigned long end, unsigned long newflags); 1391 1392/* 1393 * doesn't attempt to fault and will return short. 1394 */ 1395int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1396 struct page **pages); 1397/* 1398 * per-process(per-mm_struct) statistics. 1399 */ 1400static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1401{ 1402 long val = atomic_long_read(&mm->rss_stat.count[member]); 1403 1404#ifdef SPLIT_RSS_COUNTING 1405 /* 1406 * counter is updated in asynchronous manner and may go to minus. 1407 * But it's never be expected number for users. 1408 */ 1409 if (val < 0) 1410 val = 0; 1411#endif 1412 return (unsigned long)val; 1413} 1414 1415static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1416{ 1417 atomic_long_add(value, &mm->rss_stat.count[member]); 1418} 1419 1420static inline void inc_mm_counter(struct mm_struct *mm, int member) 1421{ 1422 atomic_long_inc(&mm->rss_stat.count[member]); 1423} 1424 1425static inline void dec_mm_counter(struct mm_struct *mm, int member) 1426{ 1427 atomic_long_dec(&mm->rss_stat.count[member]); 1428} 1429 1430/* Optimized variant when page is already known not to be PageAnon */ 1431static inline int mm_counter_file(struct page *page) 1432{ 1433 if (PageSwapBacked(page)) 1434 return MM_SHMEMPAGES; 1435 return MM_FILEPAGES; 1436} 1437 1438static inline int mm_counter(struct page *page) 1439{ 1440 if (PageAnon(page)) 1441 return MM_ANONPAGES; 1442 return mm_counter_file(page); 1443} 1444 1445static inline unsigned long get_mm_rss(struct mm_struct *mm) 1446{ 1447 return get_mm_counter(mm, MM_FILEPAGES) + 1448 get_mm_counter(mm, MM_ANONPAGES) + 1449 get_mm_counter(mm, MM_SHMEMPAGES); 1450} 1451 1452static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1453{ 1454 return max(mm->hiwater_rss, get_mm_rss(mm)); 1455} 1456 1457static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1458{ 1459 return max(mm->hiwater_vm, mm->total_vm); 1460} 1461 1462static inline void update_hiwater_rss(struct mm_struct *mm) 1463{ 1464 unsigned long _rss = get_mm_rss(mm); 1465 1466 if ((mm)->hiwater_rss < _rss) 1467 (mm)->hiwater_rss = _rss; 1468} 1469 1470static inline void update_hiwater_vm(struct mm_struct *mm) 1471{ 1472 if (mm->hiwater_vm < mm->total_vm) 1473 mm->hiwater_vm = mm->total_vm; 1474} 1475 1476static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1477{ 1478 mm->hiwater_rss = get_mm_rss(mm); 1479} 1480 1481static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1482 struct mm_struct *mm) 1483{ 1484 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1485 1486 if (*maxrss < hiwater_rss) 1487 *maxrss = hiwater_rss; 1488} 1489 1490#if defined(SPLIT_RSS_COUNTING) 1491void sync_mm_rss(struct mm_struct *mm); 1492#else 1493static inline void sync_mm_rss(struct mm_struct *mm) 1494{ 1495} 1496#endif 1497 1498#ifndef __HAVE_ARCH_PTE_DEVMAP 1499static inline int pte_devmap(pte_t pte) 1500{ 1501 return 0; 1502} 1503#endif 1504 1505int vma_wants_writenotify(struct vm_area_struct *vma); 1506 1507extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1508 spinlock_t **ptl); 1509static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1510 spinlock_t **ptl) 1511{ 1512 pte_t *ptep; 1513 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1514 return ptep; 1515} 1516 1517#ifdef __PAGETABLE_PUD_FOLDED 1518static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1519 unsigned long address) 1520{ 1521 return 0; 1522} 1523#else 1524int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1525#endif 1526 1527#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1528static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1529 unsigned long address) 1530{ 1531 return 0; 1532} 1533 1534static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1535 1536static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1537{ 1538 return 0; 1539} 1540 1541static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1542static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1543 1544#else 1545int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1546 1547static inline void mm_nr_pmds_init(struct mm_struct *mm) 1548{ 1549 atomic_long_set(&mm->nr_pmds, 0); 1550} 1551 1552static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1553{ 1554 return atomic_long_read(&mm->nr_pmds); 1555} 1556 1557static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1558{ 1559 atomic_long_inc(&mm->nr_pmds); 1560} 1561 1562static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1563{ 1564 atomic_long_dec(&mm->nr_pmds); 1565} 1566#endif 1567 1568int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1569int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1570 1571/* 1572 * The following ifdef needed to get the 4level-fixup.h header to work. 1573 * Remove it when 4level-fixup.h has been removed. 1574 */ 1575#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1576static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1577{ 1578 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1579 NULL: pud_offset(pgd, address); 1580} 1581 1582static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1583{ 1584 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1585 NULL: pmd_offset(pud, address); 1586} 1587#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1588 1589#if USE_SPLIT_PTE_PTLOCKS 1590#if ALLOC_SPLIT_PTLOCKS 1591void __init ptlock_cache_init(void); 1592extern bool ptlock_alloc(struct page *page); 1593extern void ptlock_free(struct page *page); 1594 1595static inline spinlock_t *ptlock_ptr(struct page *page) 1596{ 1597 return page->ptl; 1598} 1599#else /* ALLOC_SPLIT_PTLOCKS */ 1600static inline void ptlock_cache_init(void) 1601{ 1602} 1603 1604static inline bool ptlock_alloc(struct page *page) 1605{ 1606 return true; 1607} 1608 1609static inline void ptlock_free(struct page *page) 1610{ 1611} 1612 1613static inline spinlock_t *ptlock_ptr(struct page *page) 1614{ 1615 return &page->ptl; 1616} 1617#endif /* ALLOC_SPLIT_PTLOCKS */ 1618 1619static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1620{ 1621 return ptlock_ptr(pmd_page(*pmd)); 1622} 1623 1624static inline bool ptlock_init(struct page *page) 1625{ 1626 /* 1627 * prep_new_page() initialize page->private (and therefore page->ptl) 1628 * with 0. Make sure nobody took it in use in between. 1629 * 1630 * It can happen if arch try to use slab for page table allocation: 1631 * slab code uses page->slab_cache, which share storage with page->ptl. 1632 */ 1633 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1634 if (!ptlock_alloc(page)) 1635 return false; 1636 spin_lock_init(ptlock_ptr(page)); 1637 return true; 1638} 1639 1640/* Reset page->mapping so free_pages_check won't complain. */ 1641static inline void pte_lock_deinit(struct page *page) 1642{ 1643 page->mapping = NULL; 1644 ptlock_free(page); 1645} 1646 1647#else /* !USE_SPLIT_PTE_PTLOCKS */ 1648/* 1649 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1650 */ 1651static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1652{ 1653 return &mm->page_table_lock; 1654} 1655static inline void ptlock_cache_init(void) {} 1656static inline bool ptlock_init(struct page *page) { return true; } 1657static inline void pte_lock_deinit(struct page *page) {} 1658#endif /* USE_SPLIT_PTE_PTLOCKS */ 1659 1660static inline void pgtable_init(void) 1661{ 1662 ptlock_cache_init(); 1663 pgtable_cache_init(); 1664} 1665 1666static inline bool pgtable_page_ctor(struct page *page) 1667{ 1668 if (!ptlock_init(page)) 1669 return false; 1670 inc_zone_page_state(page, NR_PAGETABLE); 1671 return true; 1672} 1673 1674static inline void pgtable_page_dtor(struct page *page) 1675{ 1676 pte_lock_deinit(page); 1677 dec_zone_page_state(page, NR_PAGETABLE); 1678} 1679 1680#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1681({ \ 1682 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1683 pte_t *__pte = pte_offset_map(pmd, address); \ 1684 *(ptlp) = __ptl; \ 1685 spin_lock(__ptl); \ 1686 __pte; \ 1687}) 1688 1689#define pte_unmap_unlock(pte, ptl) do { \ 1690 spin_unlock(ptl); \ 1691 pte_unmap(pte); \ 1692} while (0) 1693 1694#define pte_alloc(mm, pmd, address) \ 1695 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1696 1697#define pte_alloc_map(mm, pmd, address) \ 1698 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1699 1700#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1701 (pte_alloc(mm, pmd, address) ? \ 1702 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1703 1704#define pte_alloc_kernel(pmd, address) \ 1705 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1706 NULL: pte_offset_kernel(pmd, address)) 1707 1708#if USE_SPLIT_PMD_PTLOCKS 1709 1710static struct page *pmd_to_page(pmd_t *pmd) 1711{ 1712 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1713 return virt_to_page((void *)((unsigned long) pmd & mask)); 1714} 1715 1716static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1717{ 1718 return ptlock_ptr(pmd_to_page(pmd)); 1719} 1720 1721static inline bool pgtable_pmd_page_ctor(struct page *page) 1722{ 1723#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1724 page->pmd_huge_pte = NULL; 1725#endif 1726 return ptlock_init(page); 1727} 1728 1729static inline void pgtable_pmd_page_dtor(struct page *page) 1730{ 1731#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1732 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1733#endif 1734 ptlock_free(page); 1735} 1736 1737#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1738 1739#else 1740 1741static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1742{ 1743 return &mm->page_table_lock; 1744} 1745 1746static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1747static inline void pgtable_pmd_page_dtor(struct page *page) {} 1748 1749#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1750 1751#endif 1752 1753static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1754{ 1755 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1756 spin_lock(ptl); 1757 return ptl; 1758} 1759 1760extern void free_area_init(unsigned long * zones_size); 1761extern void free_area_init_node(int nid, unsigned long * zones_size, 1762 unsigned long zone_start_pfn, unsigned long *zholes_size); 1763extern void free_initmem(void); 1764 1765/* 1766 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1767 * into the buddy system. The freed pages will be poisoned with pattern 1768 * "poison" if it's within range [0, UCHAR_MAX]. 1769 * Return pages freed into the buddy system. 1770 */ 1771extern unsigned long free_reserved_area(void *start, void *end, 1772 int poison, char *s); 1773 1774#ifdef CONFIG_HIGHMEM 1775/* 1776 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1777 * and totalram_pages. 1778 */ 1779extern void free_highmem_page(struct page *page); 1780#endif 1781 1782extern void adjust_managed_page_count(struct page *page, long count); 1783extern void mem_init_print_info(const char *str); 1784 1785extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1786 1787/* Free the reserved page into the buddy system, so it gets managed. */ 1788static inline void __free_reserved_page(struct page *page) 1789{ 1790 ClearPageReserved(page); 1791 init_page_count(page); 1792 __free_page(page); 1793} 1794 1795static inline void free_reserved_page(struct page *page) 1796{ 1797 __free_reserved_page(page); 1798 adjust_managed_page_count(page, 1); 1799} 1800 1801static inline void mark_page_reserved(struct page *page) 1802{ 1803 SetPageReserved(page); 1804 adjust_managed_page_count(page, -1); 1805} 1806 1807/* 1808 * Default method to free all the __init memory into the buddy system. 1809 * The freed pages will be poisoned with pattern "poison" if it's within 1810 * range [0, UCHAR_MAX]. 1811 * Return pages freed into the buddy system. 1812 */ 1813static inline unsigned long free_initmem_default(int poison) 1814{ 1815 extern char __init_begin[], __init_end[]; 1816 1817 return free_reserved_area(&__init_begin, &__init_end, 1818 poison, "unused kernel"); 1819} 1820 1821static inline unsigned long get_num_physpages(void) 1822{ 1823 int nid; 1824 unsigned long phys_pages = 0; 1825 1826 for_each_online_node(nid) 1827 phys_pages += node_present_pages(nid); 1828 1829 return phys_pages; 1830} 1831 1832#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1833/* 1834 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1835 * zones, allocate the backing mem_map and account for memory holes in a more 1836 * architecture independent manner. This is a substitute for creating the 1837 * zone_sizes[] and zholes_size[] arrays and passing them to 1838 * free_area_init_node() 1839 * 1840 * An architecture is expected to register range of page frames backed by 1841 * physical memory with memblock_add[_node]() before calling 1842 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1843 * usage, an architecture is expected to do something like 1844 * 1845 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1846 * max_highmem_pfn}; 1847 * for_each_valid_physical_page_range() 1848 * memblock_add_node(base, size, nid) 1849 * free_area_init_nodes(max_zone_pfns); 1850 * 1851 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1852 * registered physical page range. Similarly 1853 * sparse_memory_present_with_active_regions() calls memory_present() for 1854 * each range when SPARSEMEM is enabled. 1855 * 1856 * See mm/page_alloc.c for more information on each function exposed by 1857 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1858 */ 1859extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1860unsigned long node_map_pfn_alignment(void); 1861unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1862 unsigned long end_pfn); 1863extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1864 unsigned long end_pfn); 1865extern void get_pfn_range_for_nid(unsigned int nid, 1866 unsigned long *start_pfn, unsigned long *end_pfn); 1867extern unsigned long find_min_pfn_with_active_regions(void); 1868extern void free_bootmem_with_active_regions(int nid, 1869 unsigned long max_low_pfn); 1870extern void sparse_memory_present_with_active_regions(int nid); 1871 1872#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1873 1874#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1875 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1876static inline int __early_pfn_to_nid(unsigned long pfn, 1877 struct mminit_pfnnid_cache *state) 1878{ 1879 return 0; 1880} 1881#else 1882/* please see mm/page_alloc.c */ 1883extern int __meminit early_pfn_to_nid(unsigned long pfn); 1884/* there is a per-arch backend function. */ 1885extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1886 struct mminit_pfnnid_cache *state); 1887#endif 1888 1889extern void set_dma_reserve(unsigned long new_dma_reserve); 1890extern void memmap_init_zone(unsigned long, int, unsigned long, 1891 unsigned long, enum memmap_context); 1892extern void setup_per_zone_wmarks(void); 1893extern int __meminit init_per_zone_wmark_min(void); 1894extern void mem_init(void); 1895extern void __init mmap_init(void); 1896extern void show_mem(unsigned int flags); 1897extern long si_mem_available(void); 1898extern void si_meminfo(struct sysinfo * val); 1899extern void si_meminfo_node(struct sysinfo *val, int nid); 1900 1901extern __printf(3, 4) 1902void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1903 const char *fmt, ...); 1904 1905extern void setup_per_cpu_pageset(void); 1906 1907extern void zone_pcp_update(struct zone *zone); 1908extern void zone_pcp_reset(struct zone *zone); 1909 1910/* page_alloc.c */ 1911extern int min_free_kbytes; 1912extern int watermark_scale_factor; 1913 1914/* nommu.c */ 1915extern atomic_long_t mmap_pages_allocated; 1916extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1917 1918/* interval_tree.c */ 1919void vma_interval_tree_insert(struct vm_area_struct *node, 1920 struct rb_root *root); 1921void vma_interval_tree_insert_after(struct vm_area_struct *node, 1922 struct vm_area_struct *prev, 1923 struct rb_root *root); 1924void vma_interval_tree_remove(struct vm_area_struct *node, 1925 struct rb_root *root); 1926struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1927 unsigned long start, unsigned long last); 1928struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1929 unsigned long start, unsigned long last); 1930 1931#define vma_interval_tree_foreach(vma, root, start, last) \ 1932 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1933 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1934 1935void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1936 struct rb_root *root); 1937void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1938 struct rb_root *root); 1939struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1940 struct rb_root *root, unsigned long start, unsigned long last); 1941struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1942 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1943#ifdef CONFIG_DEBUG_VM_RB 1944void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1945#endif 1946 1947#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1948 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1949 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1950 1951/* mmap.c */ 1952extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1953extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1954 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1955extern struct vm_area_struct *vma_merge(struct mm_struct *, 1956 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1957 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1958 struct mempolicy *, struct vm_userfaultfd_ctx); 1959extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1960extern int split_vma(struct mm_struct *, 1961 struct vm_area_struct *, unsigned long addr, int new_below); 1962extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1963extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1964 struct rb_node **, struct rb_node *); 1965extern void unlink_file_vma(struct vm_area_struct *); 1966extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1967 unsigned long addr, unsigned long len, pgoff_t pgoff, 1968 bool *need_rmap_locks); 1969extern void exit_mmap(struct mm_struct *); 1970 1971static inline int check_data_rlimit(unsigned long rlim, 1972 unsigned long new, 1973 unsigned long start, 1974 unsigned long end_data, 1975 unsigned long start_data) 1976{ 1977 if (rlim < RLIM_INFINITY) { 1978 if (((new - start) + (end_data - start_data)) > rlim) 1979 return -ENOSPC; 1980 } 1981 1982 return 0; 1983} 1984 1985extern int mm_take_all_locks(struct mm_struct *mm); 1986extern void mm_drop_all_locks(struct mm_struct *mm); 1987 1988extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1989extern struct file *get_mm_exe_file(struct mm_struct *mm); 1990 1991extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1992extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1993 1994extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1995 unsigned long addr, unsigned long len, 1996 unsigned long flags, 1997 const struct vm_special_mapping *spec); 1998/* This is an obsolete alternative to _install_special_mapping. */ 1999extern int install_special_mapping(struct mm_struct *mm, 2000 unsigned long addr, unsigned long len, 2001 unsigned long flags, struct page **pages); 2002 2003extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2004 2005extern unsigned long mmap_region(struct file *file, unsigned long addr, 2006 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2007extern unsigned long do_mmap(struct file *file, unsigned long addr, 2008 unsigned long len, unsigned long prot, unsigned long flags, 2009 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2010extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2011 2012static inline unsigned long 2013do_mmap_pgoff(struct file *file, unsigned long addr, 2014 unsigned long len, unsigned long prot, unsigned long flags, 2015 unsigned long pgoff, unsigned long *populate) 2016{ 2017 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2018} 2019 2020#ifdef CONFIG_MMU 2021extern int __mm_populate(unsigned long addr, unsigned long len, 2022 int ignore_errors); 2023static inline void mm_populate(unsigned long addr, unsigned long len) 2024{ 2025 /* Ignore errors */ 2026 (void) __mm_populate(addr, len, 1); 2027} 2028#else 2029static inline void mm_populate(unsigned long addr, unsigned long len) {} 2030#endif 2031 2032/* These take the mm semaphore themselves */ 2033extern unsigned long vm_brk(unsigned long, unsigned long); 2034extern int vm_munmap(unsigned long, size_t); 2035extern unsigned long vm_mmap(struct file *, unsigned long, 2036 unsigned long, unsigned long, 2037 unsigned long, unsigned long); 2038 2039struct vm_unmapped_area_info { 2040#define VM_UNMAPPED_AREA_TOPDOWN 1 2041 unsigned long flags; 2042 unsigned long length; 2043 unsigned long low_limit; 2044 unsigned long high_limit; 2045 unsigned long align_mask; 2046 unsigned long align_offset; 2047}; 2048 2049extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2050extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2051 2052/* 2053 * Search for an unmapped address range. 2054 * 2055 * We are looking for a range that: 2056 * - does not intersect with any VMA; 2057 * - is contained within the [low_limit, high_limit) interval; 2058 * - is at least the desired size. 2059 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2060 */ 2061static inline unsigned long 2062vm_unmapped_area(struct vm_unmapped_area_info *info) 2063{ 2064 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2065 return unmapped_area_topdown(info); 2066 else 2067 return unmapped_area(info); 2068} 2069 2070/* truncate.c */ 2071extern void truncate_inode_pages(struct address_space *, loff_t); 2072extern void truncate_inode_pages_range(struct address_space *, 2073 loff_t lstart, loff_t lend); 2074extern void truncate_inode_pages_final(struct address_space *); 2075 2076/* generic vm_area_ops exported for stackable file systems */ 2077extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2078extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2079extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2080 2081/* mm/page-writeback.c */ 2082int write_one_page(struct page *page, int wait); 2083void task_dirty_inc(struct task_struct *tsk); 2084 2085/* readahead.c */ 2086#define VM_MAX_READAHEAD 128 /* kbytes */ 2087#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2088 2089int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2090 pgoff_t offset, unsigned long nr_to_read); 2091 2092void page_cache_sync_readahead(struct address_space *mapping, 2093 struct file_ra_state *ra, 2094 struct file *filp, 2095 pgoff_t offset, 2096 unsigned long size); 2097 2098void page_cache_async_readahead(struct address_space *mapping, 2099 struct file_ra_state *ra, 2100 struct file *filp, 2101 struct page *pg, 2102 pgoff_t offset, 2103 unsigned long size); 2104 2105/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2106extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2107 2108/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2109extern int expand_downwards(struct vm_area_struct *vma, 2110 unsigned long address); 2111#if VM_GROWSUP 2112extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2113#else 2114 #define expand_upwards(vma, address) (0) 2115#endif 2116 2117/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2118extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2119extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2120 struct vm_area_struct **pprev); 2121 2122/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2123 NULL if none. Assume start_addr < end_addr. */ 2124static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2125{ 2126 struct vm_area_struct * vma = find_vma(mm,start_addr); 2127 2128 if (vma && end_addr <= vma->vm_start) 2129 vma = NULL; 2130 return vma; 2131} 2132 2133static inline unsigned long vma_pages(struct vm_area_struct *vma) 2134{ 2135 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2136} 2137 2138/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2139static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2140 unsigned long vm_start, unsigned long vm_end) 2141{ 2142 struct vm_area_struct *vma = find_vma(mm, vm_start); 2143 2144 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2145 vma = NULL; 2146 2147 return vma; 2148} 2149 2150#ifdef CONFIG_MMU 2151pgprot_t vm_get_page_prot(unsigned long vm_flags); 2152void vma_set_page_prot(struct vm_area_struct *vma); 2153#else 2154static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2155{ 2156 return __pgprot(0); 2157} 2158static inline void vma_set_page_prot(struct vm_area_struct *vma) 2159{ 2160 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2161} 2162#endif 2163 2164#ifdef CONFIG_NUMA_BALANCING 2165unsigned long change_prot_numa(struct vm_area_struct *vma, 2166 unsigned long start, unsigned long end); 2167#endif 2168 2169struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2170int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2171 unsigned long pfn, unsigned long size, pgprot_t); 2172int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2173int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2174 unsigned long pfn); 2175int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2176 unsigned long pfn, pgprot_t pgprot); 2177int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2178 pfn_t pfn); 2179int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2180 2181 2182struct page *follow_page_mask(struct vm_area_struct *vma, 2183 unsigned long address, unsigned int foll_flags, 2184 unsigned int *page_mask); 2185 2186static inline struct page *follow_page(struct vm_area_struct *vma, 2187 unsigned long address, unsigned int foll_flags) 2188{ 2189 unsigned int unused_page_mask; 2190 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2191} 2192 2193#define FOLL_WRITE 0x01 /* check pte is writable */ 2194#define FOLL_TOUCH 0x02 /* mark page accessed */ 2195#define FOLL_GET 0x04 /* do get_page on page */ 2196#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2197#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2198#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2199 * and return without waiting upon it */ 2200#define FOLL_POPULATE 0x40 /* fault in page */ 2201#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2202#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2203#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2204#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2205#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2206#define FOLL_MLOCK 0x1000 /* lock present pages */ 2207#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2208 2209typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2210 void *data); 2211extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2212 unsigned long size, pte_fn_t fn, void *data); 2213 2214 2215#ifdef CONFIG_PAGE_POISONING 2216extern bool page_poisoning_enabled(void); 2217extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2218extern bool page_is_poisoned(struct page *page); 2219#else 2220static inline bool page_poisoning_enabled(void) { return false; } 2221static inline void kernel_poison_pages(struct page *page, int numpages, 2222 int enable) { } 2223static inline bool page_is_poisoned(struct page *page) { return false; } 2224#endif 2225 2226#ifdef CONFIG_DEBUG_PAGEALLOC 2227extern bool _debug_pagealloc_enabled; 2228extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2229 2230static inline bool debug_pagealloc_enabled(void) 2231{ 2232 return _debug_pagealloc_enabled; 2233} 2234 2235static inline void 2236kernel_map_pages(struct page *page, int numpages, int enable) 2237{ 2238 if (!debug_pagealloc_enabled()) 2239 return; 2240 2241 __kernel_map_pages(page, numpages, enable); 2242} 2243#ifdef CONFIG_HIBERNATION 2244extern bool kernel_page_present(struct page *page); 2245#endif /* CONFIG_HIBERNATION */ 2246#else /* CONFIG_DEBUG_PAGEALLOC */ 2247static inline void 2248kernel_map_pages(struct page *page, int numpages, int enable) {} 2249#ifdef CONFIG_HIBERNATION 2250static inline bool kernel_page_present(struct page *page) { return true; } 2251#endif /* CONFIG_HIBERNATION */ 2252static inline bool debug_pagealloc_enabled(void) 2253{ 2254 return false; 2255} 2256#endif /* CONFIG_DEBUG_PAGEALLOC */ 2257 2258#ifdef __HAVE_ARCH_GATE_AREA 2259extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2260extern int in_gate_area_no_mm(unsigned long addr); 2261extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2262#else 2263static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2264{ 2265 return NULL; 2266} 2267static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2268static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2269{ 2270 return 0; 2271} 2272#endif /* __HAVE_ARCH_GATE_AREA */ 2273 2274#ifdef CONFIG_SYSCTL 2275extern int sysctl_drop_caches; 2276int drop_caches_sysctl_handler(struct ctl_table *, int, 2277 void __user *, size_t *, loff_t *); 2278#endif 2279 2280void drop_slab(void); 2281void drop_slab_node(int nid); 2282 2283#ifndef CONFIG_MMU 2284#define randomize_va_space 0 2285#else 2286extern int randomize_va_space; 2287#endif 2288 2289const char * arch_vma_name(struct vm_area_struct *vma); 2290void print_vma_addr(char *prefix, unsigned long rip); 2291 2292void sparse_mem_maps_populate_node(struct page **map_map, 2293 unsigned long pnum_begin, 2294 unsigned long pnum_end, 2295 unsigned long map_count, 2296 int nodeid); 2297 2298struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2299pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2300pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2301pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2302pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2303void *vmemmap_alloc_block(unsigned long size, int node); 2304struct vmem_altmap; 2305void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2306 struct vmem_altmap *altmap); 2307static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2308{ 2309 return __vmemmap_alloc_block_buf(size, node, NULL); 2310} 2311 2312void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2313int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2314 int node); 2315int vmemmap_populate(unsigned long start, unsigned long end, int node); 2316void vmemmap_populate_print_last(void); 2317#ifdef CONFIG_MEMORY_HOTPLUG 2318void vmemmap_free(unsigned long start, unsigned long end); 2319#endif 2320void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2321 unsigned long size); 2322 2323enum mf_flags { 2324 MF_COUNT_INCREASED = 1 << 0, 2325 MF_ACTION_REQUIRED = 1 << 1, 2326 MF_MUST_KILL = 1 << 2, 2327 MF_SOFT_OFFLINE = 1 << 3, 2328}; 2329extern int memory_failure(unsigned long pfn, int trapno, int flags); 2330extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2331extern int unpoison_memory(unsigned long pfn); 2332extern int get_hwpoison_page(struct page *page); 2333#define put_hwpoison_page(page) put_page(page) 2334extern int sysctl_memory_failure_early_kill; 2335extern int sysctl_memory_failure_recovery; 2336extern void shake_page(struct page *p, int access); 2337extern atomic_long_t num_poisoned_pages; 2338extern int soft_offline_page(struct page *page, int flags); 2339 2340 2341/* 2342 * Error handlers for various types of pages. 2343 */ 2344enum mf_result { 2345 MF_IGNORED, /* Error: cannot be handled */ 2346 MF_FAILED, /* Error: handling failed */ 2347 MF_DELAYED, /* Will be handled later */ 2348 MF_RECOVERED, /* Successfully recovered */ 2349}; 2350 2351enum mf_action_page_type { 2352 MF_MSG_KERNEL, 2353 MF_MSG_KERNEL_HIGH_ORDER, 2354 MF_MSG_SLAB, 2355 MF_MSG_DIFFERENT_COMPOUND, 2356 MF_MSG_POISONED_HUGE, 2357 MF_MSG_HUGE, 2358 MF_MSG_FREE_HUGE, 2359 MF_MSG_UNMAP_FAILED, 2360 MF_MSG_DIRTY_SWAPCACHE, 2361 MF_MSG_CLEAN_SWAPCACHE, 2362 MF_MSG_DIRTY_MLOCKED_LRU, 2363 MF_MSG_CLEAN_MLOCKED_LRU, 2364 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2365 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2366 MF_MSG_DIRTY_LRU, 2367 MF_MSG_CLEAN_LRU, 2368 MF_MSG_TRUNCATED_LRU, 2369 MF_MSG_BUDDY, 2370 MF_MSG_BUDDY_2ND, 2371 MF_MSG_UNKNOWN, 2372}; 2373 2374#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2375extern void clear_huge_page(struct page *page, 2376 unsigned long addr, 2377 unsigned int pages_per_huge_page); 2378extern void copy_user_huge_page(struct page *dst, struct page *src, 2379 unsigned long addr, struct vm_area_struct *vma, 2380 unsigned int pages_per_huge_page); 2381#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2382 2383extern struct page_ext_operations debug_guardpage_ops; 2384extern struct page_ext_operations page_poisoning_ops; 2385 2386#ifdef CONFIG_DEBUG_PAGEALLOC 2387extern unsigned int _debug_guardpage_minorder; 2388extern bool _debug_guardpage_enabled; 2389 2390static inline unsigned int debug_guardpage_minorder(void) 2391{ 2392 return _debug_guardpage_minorder; 2393} 2394 2395static inline bool debug_guardpage_enabled(void) 2396{ 2397 return _debug_guardpage_enabled; 2398} 2399 2400static inline bool page_is_guard(struct page *page) 2401{ 2402 struct page_ext *page_ext; 2403 2404 if (!debug_guardpage_enabled()) 2405 return false; 2406 2407 page_ext = lookup_page_ext(page); 2408 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2409} 2410#else 2411static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2412static inline bool debug_guardpage_enabled(void) { return false; } 2413static inline bool page_is_guard(struct page *page) { return false; } 2414#endif /* CONFIG_DEBUG_PAGEALLOC */ 2415 2416#if MAX_NUMNODES > 1 2417void __init setup_nr_node_ids(void); 2418#else 2419static inline void setup_nr_node_ids(void) {} 2420#endif 2421 2422#endif /* __KERNEL__ */ 2423#endif /* _LINUX_MM_H */