at v4.6 24 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mmzone.h> 30#include <linux/writeback.h> 31#include <linux/page-flags.h> 32 33struct mem_cgroup; 34struct page; 35struct mm_struct; 36struct kmem_cache; 37 38/* 39 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 40 * These two lists should keep in accord with each other. 41 */ 42enum mem_cgroup_stat_index { 43 /* 44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 45 */ 46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 47 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 48 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 49 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 50 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */ 51 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 52 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 53 MEM_CGROUP_STAT_NSTATS, 54 /* default hierarchy stats */ 55 MEMCG_KERNEL_STACK = MEM_CGROUP_STAT_NSTATS, 56 MEMCG_SLAB_RECLAIMABLE, 57 MEMCG_SLAB_UNRECLAIMABLE, 58 MEMCG_SOCK, 59 MEMCG_NR_STAT, 60}; 61 62struct mem_cgroup_reclaim_cookie { 63 struct zone *zone; 64 int priority; 65 unsigned int generation; 66}; 67 68enum mem_cgroup_events_index { 69 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 70 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 71 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 72 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 73 MEM_CGROUP_EVENTS_NSTATS, 74 /* default hierarchy events */ 75 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS, 76 MEMCG_HIGH, 77 MEMCG_MAX, 78 MEMCG_OOM, 79 MEMCG_NR_EVENTS, 80}; 81 82/* 83 * Per memcg event counter is incremented at every pagein/pageout. With THP, 84 * it will be incremated by the number of pages. This counter is used for 85 * for trigger some periodic events. This is straightforward and better 86 * than using jiffies etc. to handle periodic memcg event. 87 */ 88enum mem_cgroup_events_target { 89 MEM_CGROUP_TARGET_THRESH, 90 MEM_CGROUP_TARGET_SOFTLIMIT, 91 MEM_CGROUP_TARGET_NUMAINFO, 92 MEM_CGROUP_NTARGETS, 93}; 94 95#ifdef CONFIG_MEMCG 96 97#define MEM_CGROUP_ID_SHIFT 16 98#define MEM_CGROUP_ID_MAX USHRT_MAX 99 100struct mem_cgroup_stat_cpu { 101 long count[MEMCG_NR_STAT]; 102 unsigned long events[MEMCG_NR_EVENTS]; 103 unsigned long nr_page_events; 104 unsigned long targets[MEM_CGROUP_NTARGETS]; 105}; 106 107struct mem_cgroup_reclaim_iter { 108 struct mem_cgroup *position; 109 /* scan generation, increased every round-trip */ 110 unsigned int generation; 111}; 112 113/* 114 * per-zone information in memory controller. 115 */ 116struct mem_cgroup_per_zone { 117 struct lruvec lruvec; 118 unsigned long lru_size[NR_LRU_LISTS]; 119 120 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 121 122 struct rb_node tree_node; /* RB tree node */ 123 unsigned long usage_in_excess;/* Set to the value by which */ 124 /* the soft limit is exceeded*/ 125 bool on_tree; 126 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 127 /* use container_of */ 128}; 129 130struct mem_cgroup_per_node { 131 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 132}; 133 134struct mem_cgroup_threshold { 135 struct eventfd_ctx *eventfd; 136 unsigned long threshold; 137}; 138 139/* For threshold */ 140struct mem_cgroup_threshold_ary { 141 /* An array index points to threshold just below or equal to usage. */ 142 int current_threshold; 143 /* Size of entries[] */ 144 unsigned int size; 145 /* Array of thresholds */ 146 struct mem_cgroup_threshold entries[0]; 147}; 148 149struct mem_cgroup_thresholds { 150 /* Primary thresholds array */ 151 struct mem_cgroup_threshold_ary *primary; 152 /* 153 * Spare threshold array. 154 * This is needed to make mem_cgroup_unregister_event() "never fail". 155 * It must be able to store at least primary->size - 1 entries. 156 */ 157 struct mem_cgroup_threshold_ary *spare; 158}; 159 160enum memcg_kmem_state { 161 KMEM_NONE, 162 KMEM_ALLOCATED, 163 KMEM_ONLINE, 164}; 165 166/* 167 * The memory controller data structure. The memory controller controls both 168 * page cache and RSS per cgroup. We would eventually like to provide 169 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 170 * to help the administrator determine what knobs to tune. 171 */ 172struct mem_cgroup { 173 struct cgroup_subsys_state css; 174 175 /* Accounted resources */ 176 struct page_counter memory; 177 struct page_counter swap; 178 179 /* Legacy consumer-oriented counters */ 180 struct page_counter memsw; 181 struct page_counter kmem; 182 struct page_counter tcpmem; 183 184 /* Normal memory consumption range */ 185 unsigned long low; 186 unsigned long high; 187 188 /* Range enforcement for interrupt charges */ 189 struct work_struct high_work; 190 191 unsigned long soft_limit; 192 193 /* vmpressure notifications */ 194 struct vmpressure vmpressure; 195 196 /* 197 * Should the accounting and control be hierarchical, per subtree? 198 */ 199 bool use_hierarchy; 200 201 /* protected by memcg_oom_lock */ 202 bool oom_lock; 203 int under_oom; 204 205 int swappiness; 206 /* OOM-Killer disable */ 207 int oom_kill_disable; 208 209 /* handle for "memory.events" */ 210 struct cgroup_file events_file; 211 212 /* protect arrays of thresholds */ 213 struct mutex thresholds_lock; 214 215 /* thresholds for memory usage. RCU-protected */ 216 struct mem_cgroup_thresholds thresholds; 217 218 /* thresholds for mem+swap usage. RCU-protected */ 219 struct mem_cgroup_thresholds memsw_thresholds; 220 221 /* For oom notifier event fd */ 222 struct list_head oom_notify; 223 224 /* 225 * Should we move charges of a task when a task is moved into this 226 * mem_cgroup ? And what type of charges should we move ? 227 */ 228 unsigned long move_charge_at_immigrate; 229 /* 230 * set > 0 if pages under this cgroup are moving to other cgroup. 231 */ 232 atomic_t moving_account; 233 /* taken only while moving_account > 0 */ 234 spinlock_t move_lock; 235 struct task_struct *move_lock_task; 236 unsigned long move_lock_flags; 237 /* 238 * percpu counter. 239 */ 240 struct mem_cgroup_stat_cpu __percpu *stat; 241 242 unsigned long socket_pressure; 243 244 /* Legacy tcp memory accounting */ 245 bool tcpmem_active; 246 int tcpmem_pressure; 247 248#ifndef CONFIG_SLOB 249 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 250 int kmemcg_id; 251 enum memcg_kmem_state kmem_state; 252#endif 253 254 int last_scanned_node; 255#if MAX_NUMNODES > 1 256 nodemask_t scan_nodes; 257 atomic_t numainfo_events; 258 atomic_t numainfo_updating; 259#endif 260 261#ifdef CONFIG_CGROUP_WRITEBACK 262 struct list_head cgwb_list; 263 struct wb_domain cgwb_domain; 264#endif 265 266 /* List of events which userspace want to receive */ 267 struct list_head event_list; 268 spinlock_t event_list_lock; 269 270 struct mem_cgroup_per_node *nodeinfo[0]; 271 /* WARNING: nodeinfo must be the last member here */ 272}; 273 274extern struct mem_cgroup *root_mem_cgroup; 275 276static inline bool mem_cgroup_disabled(void) 277{ 278 return !cgroup_subsys_enabled(memory_cgrp_subsys); 279} 280 281/** 282 * mem_cgroup_events - count memory events against a cgroup 283 * @memcg: the memory cgroup 284 * @idx: the event index 285 * @nr: the number of events to account for 286 */ 287static inline void mem_cgroup_events(struct mem_cgroup *memcg, 288 enum mem_cgroup_events_index idx, 289 unsigned int nr) 290{ 291 this_cpu_add(memcg->stat->events[idx], nr); 292 cgroup_file_notify(&memcg->events_file); 293} 294 295bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); 296 297int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 298 gfp_t gfp_mask, struct mem_cgroup **memcgp, 299 bool compound); 300void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 301 bool lrucare, bool compound); 302void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 303 bool compound); 304void mem_cgroup_uncharge(struct page *page); 305void mem_cgroup_uncharge_list(struct list_head *page_list); 306 307void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 308 309struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 310struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 311 312bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 313struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 314 315static inline 316struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 317 return css ? container_of(css, struct mem_cgroup, css) : NULL; 318} 319 320#define mem_cgroup_from_counter(counter, member) \ 321 container_of(counter, struct mem_cgroup, member) 322 323struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 324 struct mem_cgroup *, 325 struct mem_cgroup_reclaim_cookie *); 326void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 327 328static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 329{ 330 if (mem_cgroup_disabled()) 331 return 0; 332 333 return memcg->css.id; 334} 335 336/** 337 * mem_cgroup_from_id - look up a memcg from an id 338 * @id: the id to look up 339 * 340 * Caller must hold rcu_read_lock() and use css_tryget() as necessary. 341 */ 342static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 343{ 344 struct cgroup_subsys_state *css; 345 346 css = css_from_id(id, &memory_cgrp_subsys); 347 return mem_cgroup_from_css(css); 348} 349 350/** 351 * parent_mem_cgroup - find the accounting parent of a memcg 352 * @memcg: memcg whose parent to find 353 * 354 * Returns the parent memcg, or NULL if this is the root or the memory 355 * controller is in legacy no-hierarchy mode. 356 */ 357static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 358{ 359 if (!memcg->memory.parent) 360 return NULL; 361 return mem_cgroup_from_counter(memcg->memory.parent, memory); 362} 363 364static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 365 struct mem_cgroup *root) 366{ 367 if (root == memcg) 368 return true; 369 if (!root->use_hierarchy) 370 return false; 371 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 372} 373 374static inline bool mm_match_cgroup(struct mm_struct *mm, 375 struct mem_cgroup *memcg) 376{ 377 struct mem_cgroup *task_memcg; 378 bool match = false; 379 380 rcu_read_lock(); 381 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 382 if (task_memcg) 383 match = mem_cgroup_is_descendant(task_memcg, memcg); 384 rcu_read_unlock(); 385 return match; 386} 387 388struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 389ino_t page_cgroup_ino(struct page *page); 390 391static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 392{ 393 if (mem_cgroup_disabled()) 394 return true; 395 return !!(memcg->css.flags & CSS_ONLINE); 396} 397 398/* 399 * For memory reclaim. 400 */ 401int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 402 403void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 404 int nr_pages); 405 406unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 407 int nid, unsigned int lru_mask); 408 409static inline 410unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 411{ 412 struct mem_cgroup_per_zone *mz; 413 414 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 415 return mz->lru_size[lru]; 416} 417 418static inline bool mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 419{ 420 unsigned long inactive_ratio; 421 unsigned long inactive; 422 unsigned long active; 423 unsigned long gb; 424 425 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 426 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 427 428 gb = (inactive + active) >> (30 - PAGE_SHIFT); 429 if (gb) 430 inactive_ratio = int_sqrt(10 * gb); 431 else 432 inactive_ratio = 1; 433 434 return inactive * inactive_ratio < active; 435} 436 437void mem_cgroup_handle_over_high(void); 438 439void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 440 struct task_struct *p); 441 442static inline void mem_cgroup_oom_enable(void) 443{ 444 WARN_ON(current->memcg_may_oom); 445 current->memcg_may_oom = 1; 446} 447 448static inline void mem_cgroup_oom_disable(void) 449{ 450 WARN_ON(!current->memcg_may_oom); 451 current->memcg_may_oom = 0; 452} 453 454static inline bool task_in_memcg_oom(struct task_struct *p) 455{ 456 return p->memcg_in_oom; 457} 458 459bool mem_cgroup_oom_synchronize(bool wait); 460 461#ifdef CONFIG_MEMCG_SWAP 462extern int do_swap_account; 463#endif 464 465void lock_page_memcg(struct page *page); 466void unlock_page_memcg(struct page *page); 467 468/** 469 * mem_cgroup_update_page_stat - update page state statistics 470 * @page: the page 471 * @idx: page state item to account 472 * @val: number of pages (positive or negative) 473 * 474 * The @page must be locked or the caller must use lock_page_memcg() 475 * to prevent double accounting when the page is concurrently being 476 * moved to another memcg: 477 * 478 * lock_page(page) or lock_page_memcg(page) 479 * if (TestClearPageState(page)) 480 * mem_cgroup_update_page_stat(page, state, -1); 481 * unlock_page(page) or unlock_page_memcg(page) 482 */ 483static inline void mem_cgroup_update_page_stat(struct page *page, 484 enum mem_cgroup_stat_index idx, int val) 485{ 486 VM_BUG_ON(!(rcu_read_lock_held() || PageLocked(page))); 487 488 if (page->mem_cgroup) 489 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 490} 491 492static inline void mem_cgroup_inc_page_stat(struct page *page, 493 enum mem_cgroup_stat_index idx) 494{ 495 mem_cgroup_update_page_stat(page, idx, 1); 496} 497 498static inline void mem_cgroup_dec_page_stat(struct page *page, 499 enum mem_cgroup_stat_index idx) 500{ 501 mem_cgroup_update_page_stat(page, idx, -1); 502} 503 504unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 505 gfp_t gfp_mask, 506 unsigned long *total_scanned); 507 508static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 509 enum vm_event_item idx) 510{ 511 struct mem_cgroup *memcg; 512 513 if (mem_cgroup_disabled()) 514 return; 515 516 rcu_read_lock(); 517 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 518 if (unlikely(!memcg)) 519 goto out; 520 521 switch (idx) { 522 case PGFAULT: 523 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 524 break; 525 case PGMAJFAULT: 526 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 527 break; 528 default: 529 BUG(); 530 } 531out: 532 rcu_read_unlock(); 533} 534#ifdef CONFIG_TRANSPARENT_HUGEPAGE 535void mem_cgroup_split_huge_fixup(struct page *head); 536#endif 537 538#else /* CONFIG_MEMCG */ 539 540#define MEM_CGROUP_ID_SHIFT 0 541#define MEM_CGROUP_ID_MAX 0 542 543struct mem_cgroup; 544 545static inline bool mem_cgroup_disabled(void) 546{ 547 return true; 548} 549 550static inline void mem_cgroup_events(struct mem_cgroup *memcg, 551 enum mem_cgroup_events_index idx, 552 unsigned int nr) 553{ 554} 555 556static inline bool mem_cgroup_low(struct mem_cgroup *root, 557 struct mem_cgroup *memcg) 558{ 559 return false; 560} 561 562static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 563 gfp_t gfp_mask, 564 struct mem_cgroup **memcgp, 565 bool compound) 566{ 567 *memcgp = NULL; 568 return 0; 569} 570 571static inline void mem_cgroup_commit_charge(struct page *page, 572 struct mem_cgroup *memcg, 573 bool lrucare, bool compound) 574{ 575} 576 577static inline void mem_cgroup_cancel_charge(struct page *page, 578 struct mem_cgroup *memcg, 579 bool compound) 580{ 581} 582 583static inline void mem_cgroup_uncharge(struct page *page) 584{ 585} 586 587static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 588{ 589} 590 591static inline void mem_cgroup_migrate(struct page *old, struct page *new) 592{ 593} 594 595static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 596 struct mem_cgroup *memcg) 597{ 598 return &zone->lruvec; 599} 600 601static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 602 struct zone *zone) 603{ 604 return &zone->lruvec; 605} 606 607static inline bool mm_match_cgroup(struct mm_struct *mm, 608 struct mem_cgroup *memcg) 609{ 610 return true; 611} 612 613static inline bool task_in_mem_cgroup(struct task_struct *task, 614 const struct mem_cgroup *memcg) 615{ 616 return true; 617} 618 619static inline struct mem_cgroup * 620mem_cgroup_iter(struct mem_cgroup *root, 621 struct mem_cgroup *prev, 622 struct mem_cgroup_reclaim_cookie *reclaim) 623{ 624 return NULL; 625} 626 627static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 628 struct mem_cgroup *prev) 629{ 630} 631 632static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 633{ 634 return 0; 635} 636 637static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 638{ 639 WARN_ON_ONCE(id); 640 /* XXX: This should always return root_mem_cgroup */ 641 return NULL; 642} 643 644static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 645{ 646 return true; 647} 648 649static inline bool 650mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 651{ 652 return true; 653} 654 655static inline unsigned long 656mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 657{ 658 return 0; 659} 660 661static inline void 662mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 663 int increment) 664{ 665} 666 667static inline unsigned long 668mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 669 int nid, unsigned int lru_mask) 670{ 671 return 0; 672} 673 674static inline void 675mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 676{ 677} 678 679static inline void lock_page_memcg(struct page *page) 680{ 681} 682 683static inline void unlock_page_memcg(struct page *page) 684{ 685} 686 687static inline void mem_cgroup_handle_over_high(void) 688{ 689} 690 691static inline void mem_cgroup_oom_enable(void) 692{ 693} 694 695static inline void mem_cgroup_oom_disable(void) 696{ 697} 698 699static inline bool task_in_memcg_oom(struct task_struct *p) 700{ 701 return false; 702} 703 704static inline bool mem_cgroup_oom_synchronize(bool wait) 705{ 706 return false; 707} 708 709static inline void mem_cgroup_inc_page_stat(struct page *page, 710 enum mem_cgroup_stat_index idx) 711{ 712} 713 714static inline void mem_cgroup_dec_page_stat(struct page *page, 715 enum mem_cgroup_stat_index idx) 716{ 717} 718 719static inline 720unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 721 gfp_t gfp_mask, 722 unsigned long *total_scanned) 723{ 724 return 0; 725} 726 727static inline void mem_cgroup_split_huge_fixup(struct page *head) 728{ 729} 730 731static inline 732void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 733{ 734} 735#endif /* CONFIG_MEMCG */ 736 737#ifdef CONFIG_CGROUP_WRITEBACK 738 739struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg); 740struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 741void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 742 unsigned long *pheadroom, unsigned long *pdirty, 743 unsigned long *pwriteback); 744 745#else /* CONFIG_CGROUP_WRITEBACK */ 746 747static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 748{ 749 return NULL; 750} 751 752static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 753 unsigned long *pfilepages, 754 unsigned long *pheadroom, 755 unsigned long *pdirty, 756 unsigned long *pwriteback) 757{ 758} 759 760#endif /* CONFIG_CGROUP_WRITEBACK */ 761 762struct sock; 763void sock_update_memcg(struct sock *sk); 764void sock_release_memcg(struct sock *sk); 765bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 766void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 767#ifdef CONFIG_MEMCG 768extern struct static_key_false memcg_sockets_enabled_key; 769#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 770static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 771{ 772 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 773 return true; 774 do { 775 if (time_before(jiffies, memcg->socket_pressure)) 776 return true; 777 } while ((memcg = parent_mem_cgroup(memcg))); 778 return false; 779} 780#else 781#define mem_cgroup_sockets_enabled 0 782static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 783{ 784 return false; 785} 786#endif 787 788#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 789extern struct static_key_false memcg_kmem_enabled_key; 790 791extern int memcg_nr_cache_ids; 792void memcg_get_cache_ids(void); 793void memcg_put_cache_ids(void); 794 795/* 796 * Helper macro to loop through all memcg-specific caches. Callers must still 797 * check if the cache is valid (it is either valid or NULL). 798 * the slab_mutex must be held when looping through those caches 799 */ 800#define for_each_memcg_cache_index(_idx) \ 801 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 802 803static inline bool memcg_kmem_enabled(void) 804{ 805 return static_branch_unlikely(&memcg_kmem_enabled_key); 806} 807 808/* 809 * In general, we'll do everything in our power to not incur in any overhead 810 * for non-memcg users for the kmem functions. Not even a function call, if we 811 * can avoid it. 812 * 813 * Therefore, we'll inline all those functions so that in the best case, we'll 814 * see that kmemcg is off for everybody and proceed quickly. If it is on, 815 * we'll still do most of the flag checking inline. We check a lot of 816 * conditions, but because they are pretty simple, they are expected to be 817 * fast. 818 */ 819int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 820 struct mem_cgroup *memcg); 821int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 822void __memcg_kmem_uncharge(struct page *page, int order); 823 824/* 825 * helper for accessing a memcg's index. It will be used as an index in the 826 * child cache array in kmem_cache, and also to derive its name. This function 827 * will return -1 when this is not a kmem-limited memcg. 828 */ 829static inline int memcg_cache_id(struct mem_cgroup *memcg) 830{ 831 return memcg ? memcg->kmemcg_id : -1; 832} 833 834struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp); 835void __memcg_kmem_put_cache(struct kmem_cache *cachep); 836 837static inline bool __memcg_kmem_bypass(void) 838{ 839 if (!memcg_kmem_enabled()) 840 return true; 841 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 842 return true; 843 return false; 844} 845 846/** 847 * memcg_kmem_charge: charge a kmem page 848 * @page: page to charge 849 * @gfp: reclaim mode 850 * @order: allocation order 851 * 852 * Returns 0 on success, an error code on failure. 853 */ 854static __always_inline int memcg_kmem_charge(struct page *page, 855 gfp_t gfp, int order) 856{ 857 if (__memcg_kmem_bypass()) 858 return 0; 859 if (!(gfp & __GFP_ACCOUNT)) 860 return 0; 861 return __memcg_kmem_charge(page, gfp, order); 862} 863 864/** 865 * memcg_kmem_uncharge: uncharge a kmem page 866 * @page: page to uncharge 867 * @order: allocation order 868 */ 869static __always_inline void memcg_kmem_uncharge(struct page *page, int order) 870{ 871 if (memcg_kmem_enabled()) 872 __memcg_kmem_uncharge(page, order); 873} 874 875/** 876 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 877 * @cachep: the original global kmem cache 878 * 879 * All memory allocated from a per-memcg cache is charged to the owner memcg. 880 */ 881static __always_inline struct kmem_cache * 882memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 883{ 884 if (__memcg_kmem_bypass()) 885 return cachep; 886 return __memcg_kmem_get_cache(cachep, gfp); 887} 888 889static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 890{ 891 if (memcg_kmem_enabled()) 892 __memcg_kmem_put_cache(cachep); 893} 894 895/** 896 * memcg_kmem_update_page_stat - update kmem page state statistics 897 * @page: the page 898 * @idx: page state item to account 899 * @val: number of pages (positive or negative) 900 */ 901static inline void memcg_kmem_update_page_stat(struct page *page, 902 enum mem_cgroup_stat_index idx, int val) 903{ 904 if (memcg_kmem_enabled() && page->mem_cgroup) 905 this_cpu_add(page->mem_cgroup->stat->count[idx], val); 906} 907 908#else 909#define for_each_memcg_cache_index(_idx) \ 910 for (; NULL; ) 911 912static inline bool memcg_kmem_enabled(void) 913{ 914 return false; 915} 916 917static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 918{ 919 return 0; 920} 921 922static inline void memcg_kmem_uncharge(struct page *page, int order) 923{ 924} 925 926static inline int memcg_cache_id(struct mem_cgroup *memcg) 927{ 928 return -1; 929} 930 931static inline void memcg_get_cache_ids(void) 932{ 933} 934 935static inline void memcg_put_cache_ids(void) 936{ 937} 938 939static inline struct kmem_cache * 940memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 941{ 942 return cachep; 943} 944 945static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 946{ 947} 948 949static inline void memcg_kmem_update_page_stat(struct page *page, 950 enum mem_cgroup_stat_index idx, int val) 951{ 952} 953#endif /* CONFIG_MEMCG && !CONFIG_SLOB */ 954 955#endif /* _LINUX_MEMCONTROL_H */