at v4.6 17 kB view raw
1#ifndef __LINUX_COMPILER_H 2#define __LINUX_COMPILER_H 3 4#ifndef __ASSEMBLY__ 5 6#ifdef __CHECKER__ 7# define __user __attribute__((noderef, address_space(1))) 8# define __kernel __attribute__((address_space(0))) 9# define __safe __attribute__((safe)) 10# define __force __attribute__((force)) 11# define __nocast __attribute__((nocast)) 12# define __iomem __attribute__((noderef, address_space(2))) 13# define __must_hold(x) __attribute__((context(x,1,1))) 14# define __acquires(x) __attribute__((context(x,0,1))) 15# define __releases(x) __attribute__((context(x,1,0))) 16# define __acquire(x) __context__(x,1) 17# define __release(x) __context__(x,-1) 18# define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0) 19# define __percpu __attribute__((noderef, address_space(3))) 20# define __pmem __attribute__((noderef, address_space(5))) 21#ifdef CONFIG_SPARSE_RCU_POINTER 22# define __rcu __attribute__((noderef, address_space(4))) 23#else /* CONFIG_SPARSE_RCU_POINTER */ 24# define __rcu 25#endif /* CONFIG_SPARSE_RCU_POINTER */ 26# define __private __attribute__((noderef)) 27extern void __chk_user_ptr(const volatile void __user *); 28extern void __chk_io_ptr(const volatile void __iomem *); 29# define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member)) 30#else /* __CHECKER__ */ 31# define __user 32# define __kernel 33# define __safe 34# define __force 35# define __nocast 36# define __iomem 37# define __chk_user_ptr(x) (void)0 38# define __chk_io_ptr(x) (void)0 39# define __builtin_warning(x, y...) (1) 40# define __must_hold(x) 41# define __acquires(x) 42# define __releases(x) 43# define __acquire(x) (void)0 44# define __release(x) (void)0 45# define __cond_lock(x,c) (c) 46# define __percpu 47# define __rcu 48# define __pmem 49# define __private 50# define ACCESS_PRIVATE(p, member) ((p)->member) 51#endif /* __CHECKER__ */ 52 53/* Indirect macros required for expanded argument pasting, eg. __LINE__. */ 54#define ___PASTE(a,b) a##b 55#define __PASTE(a,b) ___PASTE(a,b) 56 57#ifdef __KERNEL__ 58 59#ifdef __GNUC__ 60#include <linux/compiler-gcc.h> 61#endif 62 63#if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__) 64#define notrace __attribute__((hotpatch(0,0))) 65#else 66#define notrace __attribute__((no_instrument_function)) 67#endif 68 69/* Intel compiler defines __GNUC__. So we will overwrite implementations 70 * coming from above header files here 71 */ 72#ifdef __INTEL_COMPILER 73# include <linux/compiler-intel.h> 74#endif 75 76/* Clang compiler defines __GNUC__. So we will overwrite implementations 77 * coming from above header files here 78 */ 79#ifdef __clang__ 80#include <linux/compiler-clang.h> 81#endif 82 83/* 84 * Generic compiler-dependent macros required for kernel 85 * build go below this comment. Actual compiler/compiler version 86 * specific implementations come from the above header files 87 */ 88 89struct ftrace_branch_data { 90 const char *func; 91 const char *file; 92 unsigned line; 93 union { 94 struct { 95 unsigned long correct; 96 unsigned long incorrect; 97 }; 98 struct { 99 unsigned long miss; 100 unsigned long hit; 101 }; 102 unsigned long miss_hit[2]; 103 }; 104}; 105 106/* 107 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 108 * to disable branch tracing on a per file basis. 109 */ 110#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 111 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 112void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect); 113 114#define likely_notrace(x) __builtin_expect(!!(x), 1) 115#define unlikely_notrace(x) __builtin_expect(!!(x), 0) 116 117#define __branch_check__(x, expect) ({ \ 118 int ______r; \ 119 static struct ftrace_branch_data \ 120 __attribute__((__aligned__(4))) \ 121 __attribute__((section("_ftrace_annotated_branch"))) \ 122 ______f = { \ 123 .func = __func__, \ 124 .file = __FILE__, \ 125 .line = __LINE__, \ 126 }; \ 127 ______r = likely_notrace(x); \ 128 ftrace_likely_update(&______f, ______r, expect); \ 129 ______r; \ 130 }) 131 132/* 133 * Using __builtin_constant_p(x) to ignore cases where the return 134 * value is always the same. This idea is taken from a similar patch 135 * written by Daniel Walker. 136 */ 137# ifndef likely 138# define likely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1)) 139# endif 140# ifndef unlikely 141# define unlikely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0)) 142# endif 143 144#ifdef CONFIG_PROFILE_ALL_BRANCHES 145/* 146 * "Define 'is'", Bill Clinton 147 * "Define 'if'", Steven Rostedt 148 */ 149#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) 150#define __trace_if(cond) \ 151 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \ 152 ({ \ 153 int ______r; \ 154 static struct ftrace_branch_data \ 155 __attribute__((__aligned__(4))) \ 156 __attribute__((section("_ftrace_branch"))) \ 157 ______f = { \ 158 .func = __func__, \ 159 .file = __FILE__, \ 160 .line = __LINE__, \ 161 }; \ 162 ______r = !!(cond); \ 163 ______f.miss_hit[______r]++; \ 164 ______r; \ 165 })) 166#endif /* CONFIG_PROFILE_ALL_BRANCHES */ 167 168#else 169# define likely(x) __builtin_expect(!!(x), 1) 170# define unlikely(x) __builtin_expect(!!(x), 0) 171#endif 172 173/* Optimization barrier */ 174#ifndef barrier 175# define barrier() __memory_barrier() 176#endif 177 178#ifndef barrier_data 179# define barrier_data(ptr) barrier() 180#endif 181 182/* Unreachable code */ 183#ifndef unreachable 184# define unreachable() do { } while (1) 185#endif 186 187#ifndef RELOC_HIDE 188# define RELOC_HIDE(ptr, off) \ 189 ({ unsigned long __ptr; \ 190 __ptr = (unsigned long) (ptr); \ 191 (typeof(ptr)) (__ptr + (off)); }) 192#endif 193 194#ifndef OPTIMIZER_HIDE_VAR 195#define OPTIMIZER_HIDE_VAR(var) barrier() 196#endif 197 198/* Not-quite-unique ID. */ 199#ifndef __UNIQUE_ID 200# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) 201#endif 202 203#include <uapi/linux/types.h> 204 205#define __READ_ONCE_SIZE \ 206({ \ 207 switch (size) { \ 208 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ 209 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ 210 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ 211 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ 212 default: \ 213 barrier(); \ 214 __builtin_memcpy((void *)res, (const void *)p, size); \ 215 barrier(); \ 216 } \ 217}) 218 219static __always_inline 220void __read_once_size(const volatile void *p, void *res, int size) 221{ 222 __READ_ONCE_SIZE; 223} 224 225#ifdef CONFIG_KASAN 226/* 227 * This function is not 'inline' because __no_sanitize_address confilcts 228 * with inlining. Attempt to inline it may cause a build failure. 229 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 230 * '__maybe_unused' allows us to avoid defined-but-not-used warnings. 231 */ 232static __no_sanitize_address __maybe_unused 233void __read_once_size_nocheck(const volatile void *p, void *res, int size) 234{ 235 __READ_ONCE_SIZE; 236} 237#else 238static __always_inline 239void __read_once_size_nocheck(const volatile void *p, void *res, int size) 240{ 241 __READ_ONCE_SIZE; 242} 243#endif 244 245static __always_inline void __write_once_size(volatile void *p, void *res, int size) 246{ 247 switch (size) { 248 case 1: *(volatile __u8 *)p = *(__u8 *)res; break; 249 case 2: *(volatile __u16 *)p = *(__u16 *)res; break; 250 case 4: *(volatile __u32 *)p = *(__u32 *)res; break; 251 case 8: *(volatile __u64 *)p = *(__u64 *)res; break; 252 default: 253 barrier(); 254 __builtin_memcpy((void *)p, (const void *)res, size); 255 barrier(); 256 } 257} 258 259/* 260 * Prevent the compiler from merging or refetching reads or writes. The 261 * compiler is also forbidden from reordering successive instances of 262 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the 263 * compiler is aware of some particular ordering. One way to make the 264 * compiler aware of ordering is to put the two invocations of READ_ONCE, 265 * WRITE_ONCE or ACCESS_ONCE() in different C statements. 266 * 267 * In contrast to ACCESS_ONCE these two macros will also work on aggregate 268 * data types like structs or unions. If the size of the accessed data 269 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) 270 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at 271 * least two memcpy()s: one for the __builtin_memcpy() and then one for 272 * the macro doing the copy of variable - '__u' allocated on the stack. 273 * 274 * Their two major use cases are: (1) Mediating communication between 275 * process-level code and irq/NMI handlers, all running on the same CPU, 276 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 277 * mutilate accesses that either do not require ordering or that interact 278 * with an explicit memory barrier or atomic instruction that provides the 279 * required ordering. 280 */ 281 282#define __READ_ONCE(x, check) \ 283({ \ 284 union { typeof(x) __val; char __c[1]; } __u; \ 285 if (check) \ 286 __read_once_size(&(x), __u.__c, sizeof(x)); \ 287 else \ 288 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ 289 __u.__val; \ 290}) 291#define READ_ONCE(x) __READ_ONCE(x, 1) 292 293/* 294 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need 295 * to hide memory access from KASAN. 296 */ 297#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) 298 299#define WRITE_ONCE(x, val) \ 300({ \ 301 union { typeof(x) __val; char __c[1]; } __u = \ 302 { .__val = (__force typeof(x)) (val) }; \ 303 __write_once_size(&(x), __u.__c, sizeof(x)); \ 304 __u.__val; \ 305}) 306 307/** 308 * smp_cond_acquire() - Spin wait for cond with ACQUIRE ordering 309 * @cond: boolean expression to wait for 310 * 311 * Equivalent to using smp_load_acquire() on the condition variable but employs 312 * the control dependency of the wait to reduce the barrier on many platforms. 313 * 314 * The control dependency provides a LOAD->STORE order, the additional RMB 315 * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order, 316 * aka. ACQUIRE. 317 */ 318#define smp_cond_acquire(cond) do { \ 319 while (!(cond)) \ 320 cpu_relax(); \ 321 smp_rmb(); /* ctrl + rmb := acquire */ \ 322} while (0) 323 324#endif /* __KERNEL__ */ 325 326#endif /* __ASSEMBLY__ */ 327 328#ifdef __KERNEL__ 329/* 330 * Allow us to mark functions as 'deprecated' and have gcc emit a nice 331 * warning for each use, in hopes of speeding the functions removal. 332 * Usage is: 333 * int __deprecated foo(void) 334 */ 335#ifndef __deprecated 336# define __deprecated /* unimplemented */ 337#endif 338 339#ifdef MODULE 340#define __deprecated_for_modules __deprecated 341#else 342#define __deprecated_for_modules 343#endif 344 345#ifndef __must_check 346#define __must_check 347#endif 348 349#ifndef CONFIG_ENABLE_MUST_CHECK 350#undef __must_check 351#define __must_check 352#endif 353#ifndef CONFIG_ENABLE_WARN_DEPRECATED 354#undef __deprecated 355#undef __deprecated_for_modules 356#define __deprecated 357#define __deprecated_for_modules 358#endif 359 360/* 361 * Allow us to avoid 'defined but not used' warnings on functions and data, 362 * as well as force them to be emitted to the assembly file. 363 * 364 * As of gcc 3.4, static functions that are not marked with attribute((used)) 365 * may be elided from the assembly file. As of gcc 3.4, static data not so 366 * marked will not be elided, but this may change in a future gcc version. 367 * 368 * NOTE: Because distributions shipped with a backported unit-at-a-time 369 * compiler in gcc 3.3, we must define __used to be __attribute__((used)) 370 * for gcc >=3.3 instead of 3.4. 371 * 372 * In prior versions of gcc, such functions and data would be emitted, but 373 * would be warned about except with attribute((unused)). 374 * 375 * Mark functions that are referenced only in inline assembly as __used so 376 * the code is emitted even though it appears to be unreferenced. 377 */ 378#ifndef __used 379# define __used /* unimplemented */ 380#endif 381 382#ifndef __maybe_unused 383# define __maybe_unused /* unimplemented */ 384#endif 385 386#ifndef __always_unused 387# define __always_unused /* unimplemented */ 388#endif 389 390#ifndef noinline 391#define noinline 392#endif 393 394/* 395 * Rather then using noinline to prevent stack consumption, use 396 * noinline_for_stack instead. For documentation reasons. 397 */ 398#define noinline_for_stack noinline 399 400#ifndef __always_inline 401#define __always_inline inline 402#endif 403 404#endif /* __KERNEL__ */ 405 406/* 407 * From the GCC manual: 408 * 409 * Many functions do not examine any values except their arguments, 410 * and have no effects except the return value. Basically this is 411 * just slightly more strict class than the `pure' attribute above, 412 * since function is not allowed to read global memory. 413 * 414 * Note that a function that has pointer arguments and examines the 415 * data pointed to must _not_ be declared `const'. Likewise, a 416 * function that calls a non-`const' function usually must not be 417 * `const'. It does not make sense for a `const' function to return 418 * `void'. 419 */ 420#ifndef __attribute_const__ 421# define __attribute_const__ /* unimplemented */ 422#endif 423 424/* 425 * Tell gcc if a function is cold. The compiler will assume any path 426 * directly leading to the call is unlikely. 427 */ 428 429#ifndef __cold 430#define __cold 431#endif 432 433/* Simple shorthand for a section definition */ 434#ifndef __section 435# define __section(S) __attribute__ ((__section__(#S))) 436#endif 437 438#ifndef __visible 439#define __visible 440#endif 441 442/* 443 * Assume alignment of return value. 444 */ 445#ifndef __assume_aligned 446#define __assume_aligned(a, ...) 447#endif 448 449 450/* Are two types/vars the same type (ignoring qualifiers)? */ 451#ifndef __same_type 452# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) 453#endif 454 455/* Is this type a native word size -- useful for atomic operations */ 456#ifndef __native_word 457# define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long)) 458#endif 459 460/* Compile time object size, -1 for unknown */ 461#ifndef __compiletime_object_size 462# define __compiletime_object_size(obj) -1 463#endif 464#ifndef __compiletime_warning 465# define __compiletime_warning(message) 466#endif 467#ifndef __compiletime_error 468# define __compiletime_error(message) 469/* 470 * Sparse complains of variable sized arrays due to the temporary variable in 471 * __compiletime_assert. Unfortunately we can't just expand it out to make 472 * sparse see a constant array size without breaking compiletime_assert on old 473 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. 474 */ 475# ifndef __CHECKER__ 476# define __compiletime_error_fallback(condition) \ 477 do { ((void)sizeof(char[1 - 2 * condition])); } while (0) 478# endif 479#endif 480#ifndef __compiletime_error_fallback 481# define __compiletime_error_fallback(condition) do { } while (0) 482#endif 483 484#define __compiletime_assert(condition, msg, prefix, suffix) \ 485 do { \ 486 bool __cond = !(condition); \ 487 extern void prefix ## suffix(void) __compiletime_error(msg); \ 488 if (__cond) \ 489 prefix ## suffix(); \ 490 __compiletime_error_fallback(__cond); \ 491 } while (0) 492 493#define _compiletime_assert(condition, msg, prefix, suffix) \ 494 __compiletime_assert(condition, msg, prefix, suffix) 495 496/** 497 * compiletime_assert - break build and emit msg if condition is false 498 * @condition: a compile-time constant condition to check 499 * @msg: a message to emit if condition is false 500 * 501 * In tradition of POSIX assert, this macro will break the build if the 502 * supplied condition is *false*, emitting the supplied error message if the 503 * compiler has support to do so. 504 */ 505#define compiletime_assert(condition, msg) \ 506 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) 507 508#define compiletime_assert_atomic_type(t) \ 509 compiletime_assert(__native_word(t), \ 510 "Need native word sized stores/loads for atomicity.") 511 512/* 513 * Prevent the compiler from merging or refetching accesses. The compiler 514 * is also forbidden from reordering successive instances of ACCESS_ONCE(), 515 * but only when the compiler is aware of some particular ordering. One way 516 * to make the compiler aware of ordering is to put the two invocations of 517 * ACCESS_ONCE() in different C statements. 518 * 519 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE 520 * on a union member will work as long as the size of the member matches the 521 * size of the union and the size is smaller than word size. 522 * 523 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication 524 * between process-level code and irq/NMI handlers, all running on the same CPU, 525 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 526 * mutilate accesses that either do not require ordering or that interact 527 * with an explicit memory barrier or atomic instruction that provides the 528 * required ordering. 529 * 530 * If possible use READ_ONCE()/WRITE_ONCE() instead. 531 */ 532#define __ACCESS_ONCE(x) ({ \ 533 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ 534 (volatile typeof(x) *)&(x); }) 535#define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) 536 537/** 538 * lockless_dereference() - safely load a pointer for later dereference 539 * @p: The pointer to load 540 * 541 * Similar to rcu_dereference(), but for situations where the pointed-to 542 * object's lifetime is managed by something other than RCU. That 543 * "something other" might be reference counting or simple immortality. 544 */ 545#define lockless_dereference(p) \ 546({ \ 547 typeof(p) _________p1 = READ_ONCE(p); \ 548 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 549 (_________p1); \ 550}) 551 552/* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */ 553#ifdef CONFIG_KPROBES 554# define __kprobes __attribute__((__section__(".kprobes.text"))) 555# define nokprobe_inline __always_inline 556#else 557# define __kprobes 558# define nokprobe_inline inline 559#endif 560#endif /* __LINUX_COMPILER_H */