at v4.6-rc7 29 kB view raw
1#ifndef _LINUX_KERNEL_H 2#define _LINUX_KERNEL_H 3 4 5#include <stdarg.h> 6#include <linux/linkage.h> 7#include <linux/stddef.h> 8#include <linux/types.h> 9#include <linux/compiler.h> 10#include <linux/bitops.h> 11#include <linux/log2.h> 12#include <linux/typecheck.h> 13#include <linux/printk.h> 14#include <linux/dynamic_debug.h> 15#include <asm/byteorder.h> 16#include <uapi/linux/kernel.h> 17 18#define USHRT_MAX ((u16)(~0U)) 19#define SHRT_MAX ((s16)(USHRT_MAX>>1)) 20#define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 21#define INT_MAX ((int)(~0U>>1)) 22#define INT_MIN (-INT_MAX - 1) 23#define UINT_MAX (~0U) 24#define LONG_MAX ((long)(~0UL>>1)) 25#define LONG_MIN (-LONG_MAX - 1) 26#define ULONG_MAX (~0UL) 27#define LLONG_MAX ((long long)(~0ULL>>1)) 28#define LLONG_MIN (-LLONG_MAX - 1) 29#define ULLONG_MAX (~0ULL) 30#define SIZE_MAX (~(size_t)0) 31 32#define U8_MAX ((u8)~0U) 33#define S8_MAX ((s8)(U8_MAX>>1)) 34#define S8_MIN ((s8)(-S8_MAX - 1)) 35#define U16_MAX ((u16)~0U) 36#define S16_MAX ((s16)(U16_MAX>>1)) 37#define S16_MIN ((s16)(-S16_MAX - 1)) 38#define U32_MAX ((u32)~0U) 39#define S32_MAX ((s32)(U32_MAX>>1)) 40#define S32_MIN ((s32)(-S32_MAX - 1)) 41#define U64_MAX ((u64)~0ULL) 42#define S64_MAX ((s64)(U64_MAX>>1)) 43#define S64_MIN ((s64)(-S64_MAX - 1)) 44 45#define STACK_MAGIC 0xdeadbeef 46 47#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 48 49#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 50#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 51#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 52#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 53 54#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 55 56/* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 64#define round_down(x, y) ((x) & ~__round_mask(x, y)) 65 66#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 67#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 68#define DIV_ROUND_UP_ULL(ll,d) \ 69 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) 70 71#if BITS_PER_LONG == 32 72# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 73#else 74# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 75#endif 76 77/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 78#define roundup(x, y) ( \ 79{ \ 80 const typeof(y) __y = y; \ 81 (((x) + (__y - 1)) / __y) * __y; \ 82} \ 83) 84#define rounddown(x, y) ( \ 85{ \ 86 typeof(x) __x = (x); \ 87 __x - (__x % (y)); \ 88} \ 89) 90 91/* 92 * Divide positive or negative dividend by positive divisor and round 93 * to closest integer. Result is undefined for negative divisors and 94 * for negative dividends if the divisor variable type is unsigned. 95 */ 96#define DIV_ROUND_CLOSEST(x, divisor)( \ 97{ \ 98 typeof(x) __x = x; \ 99 typeof(divisor) __d = divisor; \ 100 (((typeof(x))-1) > 0 || \ 101 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ 102 (((__x) + ((__d) / 2)) / (__d)) : \ 103 (((__x) - ((__d) / 2)) / (__d)); \ 104} \ 105) 106/* 107 * Same as above but for u64 dividends. divisor must be a 32-bit 108 * number. 109 */ 110#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 111{ \ 112 typeof(divisor) __d = divisor; \ 113 unsigned long long _tmp = (x) + (__d) / 2; \ 114 do_div(_tmp, __d); \ 115 _tmp; \ 116} \ 117) 118 119/* 120 * Multiplies an integer by a fraction, while avoiding unnecessary 121 * overflow or loss of precision. 122 */ 123#define mult_frac(x, numer, denom)( \ 124{ \ 125 typeof(x) quot = (x) / (denom); \ 126 typeof(x) rem = (x) % (denom); \ 127 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 128} \ 129) 130 131 132#define _RET_IP_ (unsigned long)__builtin_return_address(0) 133#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 134 135#ifdef CONFIG_LBDAF 136# include <asm/div64.h> 137# define sector_div(a, b) do_div(a, b) 138#else 139# define sector_div(n, b)( \ 140{ \ 141 int _res; \ 142 _res = (n) % (b); \ 143 (n) /= (b); \ 144 _res; \ 145} \ 146) 147#endif 148 149/** 150 * upper_32_bits - return bits 32-63 of a number 151 * @n: the number we're accessing 152 * 153 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 154 * the "right shift count >= width of type" warning when that quantity is 155 * 32-bits. 156 */ 157#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 158 159/** 160 * lower_32_bits - return bits 0-31 of a number 161 * @n: the number we're accessing 162 */ 163#define lower_32_bits(n) ((u32)(n)) 164 165struct completion; 166struct pt_regs; 167struct user; 168 169#ifdef CONFIG_PREEMPT_VOLUNTARY 170extern int _cond_resched(void); 171# define might_resched() _cond_resched() 172#else 173# define might_resched() do { } while (0) 174#endif 175 176#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 177 void ___might_sleep(const char *file, int line, int preempt_offset); 178 void __might_sleep(const char *file, int line, int preempt_offset); 179/** 180 * might_sleep - annotation for functions that can sleep 181 * 182 * this macro will print a stack trace if it is executed in an atomic 183 * context (spinlock, irq-handler, ...). 184 * 185 * This is a useful debugging help to be able to catch problems early and not 186 * be bitten later when the calling function happens to sleep when it is not 187 * supposed to. 188 */ 189# define might_sleep() \ 190 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 191# define sched_annotate_sleep() (current->task_state_change = 0) 192#else 193 static inline void ___might_sleep(const char *file, int line, 194 int preempt_offset) { } 195 static inline void __might_sleep(const char *file, int line, 196 int preempt_offset) { } 197# define might_sleep() do { might_resched(); } while (0) 198# define sched_annotate_sleep() do { } while (0) 199#endif 200 201#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 202 203/** 204 * abs - return absolute value of an argument 205 * @x: the value. If it is unsigned type, it is converted to signed type first. 206 * char is treated as if it was signed (regardless of whether it really is) 207 * but the macro's return type is preserved as char. 208 * 209 * Return: an absolute value of x. 210 */ 211#define abs(x) __abs_choose_expr(x, long long, \ 212 __abs_choose_expr(x, long, \ 213 __abs_choose_expr(x, int, \ 214 __abs_choose_expr(x, short, \ 215 __abs_choose_expr(x, char, \ 216 __builtin_choose_expr( \ 217 __builtin_types_compatible_p(typeof(x), char), \ 218 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 219 ((void)0))))))) 220 221#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 222 __builtin_types_compatible_p(typeof(x), signed type) || \ 223 __builtin_types_compatible_p(typeof(x), unsigned type), \ 224 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 225 226/** 227 * reciprocal_scale - "scale" a value into range [0, ep_ro) 228 * @val: value 229 * @ep_ro: right open interval endpoint 230 * 231 * Perform a "reciprocal multiplication" in order to "scale" a value into 232 * range [0, ep_ro), where the upper interval endpoint is right-open. 233 * This is useful, e.g. for accessing a index of an array containing 234 * ep_ro elements, for example. Think of it as sort of modulus, only that 235 * the result isn't that of modulo. ;) Note that if initial input is a 236 * small value, then result will return 0. 237 * 238 * Return: a result based on val in interval [0, ep_ro). 239 */ 240static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 241{ 242 return (u32)(((u64) val * ep_ro) >> 32); 243} 244 245#if defined(CONFIG_MMU) && \ 246 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 247#define might_fault() __might_fault(__FILE__, __LINE__) 248void __might_fault(const char *file, int line); 249#else 250static inline void might_fault(void) { } 251#endif 252 253extern struct atomic_notifier_head panic_notifier_list; 254extern long (*panic_blink)(int state); 255__printf(1, 2) 256void panic(const char *fmt, ...) 257 __noreturn __cold; 258void nmi_panic(struct pt_regs *regs, const char *msg); 259extern void oops_enter(void); 260extern void oops_exit(void); 261void print_oops_end_marker(void); 262extern int oops_may_print(void); 263void do_exit(long error_code) 264 __noreturn; 265void complete_and_exit(struct completion *, long) 266 __noreturn; 267 268/* Internal, do not use. */ 269int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 270int __must_check _kstrtol(const char *s, unsigned int base, long *res); 271 272int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 273int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 274 275/** 276 * kstrtoul - convert a string to an unsigned long 277 * @s: The start of the string. The string must be null-terminated, and may also 278 * include a single newline before its terminating null. The first character 279 * may also be a plus sign, but not a minus sign. 280 * @base: The number base to use. The maximum supported base is 16. If base is 281 * given as 0, then the base of the string is automatically detected with the 282 * conventional semantics - If it begins with 0x the number will be parsed as a 283 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 284 * parsed as an octal number. Otherwise it will be parsed as a decimal. 285 * @res: Where to write the result of the conversion on success. 286 * 287 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 288 * Used as a replacement for the obsolete simple_strtoull. Return code must 289 * be checked. 290*/ 291static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 292{ 293 /* 294 * We want to shortcut function call, but 295 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 296 */ 297 if (sizeof(unsigned long) == sizeof(unsigned long long) && 298 __alignof__(unsigned long) == __alignof__(unsigned long long)) 299 return kstrtoull(s, base, (unsigned long long *)res); 300 else 301 return _kstrtoul(s, base, res); 302} 303 304/** 305 * kstrtol - convert a string to a long 306 * @s: The start of the string. The string must be null-terminated, and may also 307 * include a single newline before its terminating null. The first character 308 * may also be a plus sign or a minus sign. 309 * @base: The number base to use. The maximum supported base is 16. If base is 310 * given as 0, then the base of the string is automatically detected with the 311 * conventional semantics - If it begins with 0x the number will be parsed as a 312 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 313 * parsed as an octal number. Otherwise it will be parsed as a decimal. 314 * @res: Where to write the result of the conversion on success. 315 * 316 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 317 * Used as a replacement for the obsolete simple_strtoull. Return code must 318 * be checked. 319 */ 320static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 321{ 322 /* 323 * We want to shortcut function call, but 324 * __builtin_types_compatible_p(long, long long) = 0. 325 */ 326 if (sizeof(long) == sizeof(long long) && 327 __alignof__(long) == __alignof__(long long)) 328 return kstrtoll(s, base, (long long *)res); 329 else 330 return _kstrtol(s, base, res); 331} 332 333int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 334int __must_check kstrtoint(const char *s, unsigned int base, int *res); 335 336static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 337{ 338 return kstrtoull(s, base, res); 339} 340 341static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 342{ 343 return kstrtoll(s, base, res); 344} 345 346static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 347{ 348 return kstrtouint(s, base, res); 349} 350 351static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 352{ 353 return kstrtoint(s, base, res); 354} 355 356int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 357int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 358int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 359int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 360int __must_check kstrtobool(const char *s, bool *res); 361 362int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 363int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 364int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 365int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 366int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 367int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 368int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 369int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 370int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 371int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 372int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 373 374static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 375{ 376 return kstrtoull_from_user(s, count, base, res); 377} 378 379static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 380{ 381 return kstrtoll_from_user(s, count, base, res); 382} 383 384static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 385{ 386 return kstrtouint_from_user(s, count, base, res); 387} 388 389static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 390{ 391 return kstrtoint_from_user(s, count, base, res); 392} 393 394/* Obsolete, do not use. Use kstrto<foo> instead */ 395 396extern unsigned long simple_strtoul(const char *,char **,unsigned int); 397extern long simple_strtol(const char *,char **,unsigned int); 398extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 399extern long long simple_strtoll(const char *,char **,unsigned int); 400 401extern int num_to_str(char *buf, int size, unsigned long long num); 402 403/* lib/printf utilities */ 404 405extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 406extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 407extern __printf(3, 4) 408int snprintf(char *buf, size_t size, const char *fmt, ...); 409extern __printf(3, 0) 410int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 411extern __printf(3, 4) 412int scnprintf(char *buf, size_t size, const char *fmt, ...); 413extern __printf(3, 0) 414int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 415extern __printf(2, 3) 416char *kasprintf(gfp_t gfp, const char *fmt, ...); 417extern __printf(2, 0) 418char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 419extern __printf(2, 0) 420const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 421 422extern __scanf(2, 3) 423int sscanf(const char *, const char *, ...); 424extern __scanf(2, 0) 425int vsscanf(const char *, const char *, va_list); 426 427extern int get_option(char **str, int *pint); 428extern char *get_options(const char *str, int nints, int *ints); 429extern unsigned long long memparse(const char *ptr, char **retptr); 430extern bool parse_option_str(const char *str, const char *option); 431 432extern int core_kernel_text(unsigned long addr); 433extern int core_kernel_data(unsigned long addr); 434extern int __kernel_text_address(unsigned long addr); 435extern int kernel_text_address(unsigned long addr); 436extern int func_ptr_is_kernel_text(void *ptr); 437 438unsigned long int_sqrt(unsigned long); 439 440extern void bust_spinlocks(int yes); 441extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 442extern int panic_timeout; 443extern int panic_on_oops; 444extern int panic_on_unrecovered_nmi; 445extern int panic_on_io_nmi; 446extern int panic_on_warn; 447extern int sysctl_panic_on_stackoverflow; 448 449extern bool crash_kexec_post_notifiers; 450 451/* 452 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 453 * holds a CPU number which is executing panic() currently. A value of 454 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 455 */ 456extern atomic_t panic_cpu; 457#define PANIC_CPU_INVALID -1 458 459/* 460 * Only to be used by arch init code. If the user over-wrote the default 461 * CONFIG_PANIC_TIMEOUT, honor it. 462 */ 463static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 464{ 465 if (panic_timeout == arch_default_timeout) 466 panic_timeout = timeout; 467} 468extern const char *print_tainted(void); 469enum lockdep_ok { 470 LOCKDEP_STILL_OK, 471 LOCKDEP_NOW_UNRELIABLE 472}; 473extern void add_taint(unsigned flag, enum lockdep_ok); 474extern int test_taint(unsigned flag); 475extern unsigned long get_taint(void); 476extern int root_mountflags; 477 478extern bool early_boot_irqs_disabled; 479 480/* Values used for system_state */ 481extern enum system_states { 482 SYSTEM_BOOTING, 483 SYSTEM_RUNNING, 484 SYSTEM_HALT, 485 SYSTEM_POWER_OFF, 486 SYSTEM_RESTART, 487} system_state; 488 489#define TAINT_PROPRIETARY_MODULE 0 490#define TAINT_FORCED_MODULE 1 491#define TAINT_CPU_OUT_OF_SPEC 2 492#define TAINT_FORCED_RMMOD 3 493#define TAINT_MACHINE_CHECK 4 494#define TAINT_BAD_PAGE 5 495#define TAINT_USER 6 496#define TAINT_DIE 7 497#define TAINT_OVERRIDDEN_ACPI_TABLE 8 498#define TAINT_WARN 9 499#define TAINT_CRAP 10 500#define TAINT_FIRMWARE_WORKAROUND 11 501#define TAINT_OOT_MODULE 12 502#define TAINT_UNSIGNED_MODULE 13 503#define TAINT_SOFTLOCKUP 14 504#define TAINT_LIVEPATCH 15 505 506extern const char hex_asc[]; 507#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 508#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 509 510static inline char *hex_byte_pack(char *buf, u8 byte) 511{ 512 *buf++ = hex_asc_hi(byte); 513 *buf++ = hex_asc_lo(byte); 514 return buf; 515} 516 517extern const char hex_asc_upper[]; 518#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 519#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 520 521static inline char *hex_byte_pack_upper(char *buf, u8 byte) 522{ 523 *buf++ = hex_asc_upper_hi(byte); 524 *buf++ = hex_asc_upper_lo(byte); 525 return buf; 526} 527 528extern int hex_to_bin(char ch); 529extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 530extern char *bin2hex(char *dst, const void *src, size_t count); 531 532bool mac_pton(const char *s, u8 *mac); 533 534/* 535 * General tracing related utility functions - trace_printk(), 536 * tracing_on/tracing_off and tracing_start()/tracing_stop 537 * 538 * Use tracing_on/tracing_off when you want to quickly turn on or off 539 * tracing. It simply enables or disables the recording of the trace events. 540 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 541 * file, which gives a means for the kernel and userspace to interact. 542 * Place a tracing_off() in the kernel where you want tracing to end. 543 * From user space, examine the trace, and then echo 1 > tracing_on 544 * to continue tracing. 545 * 546 * tracing_stop/tracing_start has slightly more overhead. It is used 547 * by things like suspend to ram where disabling the recording of the 548 * trace is not enough, but tracing must actually stop because things 549 * like calling smp_processor_id() may crash the system. 550 * 551 * Most likely, you want to use tracing_on/tracing_off. 552 */ 553 554enum ftrace_dump_mode { 555 DUMP_NONE, 556 DUMP_ALL, 557 DUMP_ORIG, 558}; 559 560#ifdef CONFIG_TRACING 561void tracing_on(void); 562void tracing_off(void); 563int tracing_is_on(void); 564void tracing_snapshot(void); 565void tracing_snapshot_alloc(void); 566 567extern void tracing_start(void); 568extern void tracing_stop(void); 569 570static inline __printf(1, 2) 571void ____trace_printk_check_format(const char *fmt, ...) 572{ 573} 574#define __trace_printk_check_format(fmt, args...) \ 575do { \ 576 if (0) \ 577 ____trace_printk_check_format(fmt, ##args); \ 578} while (0) 579 580/** 581 * trace_printk - printf formatting in the ftrace buffer 582 * @fmt: the printf format for printing 583 * 584 * Note: __trace_printk is an internal function for trace_printk and 585 * the @ip is passed in via the trace_printk macro. 586 * 587 * This function allows a kernel developer to debug fast path sections 588 * that printk is not appropriate for. By scattering in various 589 * printk like tracing in the code, a developer can quickly see 590 * where problems are occurring. 591 * 592 * This is intended as a debugging tool for the developer only. 593 * Please refrain from leaving trace_printks scattered around in 594 * your code. (Extra memory is used for special buffers that are 595 * allocated when trace_printk() is used) 596 * 597 * A little optization trick is done here. If there's only one 598 * argument, there's no need to scan the string for printf formats. 599 * The trace_puts() will suffice. But how can we take advantage of 600 * using trace_puts() when trace_printk() has only one argument? 601 * By stringifying the args and checking the size we can tell 602 * whether or not there are args. __stringify((__VA_ARGS__)) will 603 * turn into "()\0" with a size of 3 when there are no args, anything 604 * else will be bigger. All we need to do is define a string to this, 605 * and then take its size and compare to 3. If it's bigger, use 606 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 607 * let gcc optimize the rest. 608 */ 609 610#define trace_printk(fmt, ...) \ 611do { \ 612 char _______STR[] = __stringify((__VA_ARGS__)); \ 613 if (sizeof(_______STR) > 3) \ 614 do_trace_printk(fmt, ##__VA_ARGS__); \ 615 else \ 616 trace_puts(fmt); \ 617} while (0) 618 619#define do_trace_printk(fmt, args...) \ 620do { \ 621 static const char *trace_printk_fmt __used \ 622 __attribute__((section("__trace_printk_fmt"))) = \ 623 __builtin_constant_p(fmt) ? fmt : NULL; \ 624 \ 625 __trace_printk_check_format(fmt, ##args); \ 626 \ 627 if (__builtin_constant_p(fmt)) \ 628 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 629 else \ 630 __trace_printk(_THIS_IP_, fmt, ##args); \ 631} while (0) 632 633extern __printf(2, 3) 634int __trace_bprintk(unsigned long ip, const char *fmt, ...); 635 636extern __printf(2, 3) 637int __trace_printk(unsigned long ip, const char *fmt, ...); 638 639/** 640 * trace_puts - write a string into the ftrace buffer 641 * @str: the string to record 642 * 643 * Note: __trace_bputs is an internal function for trace_puts and 644 * the @ip is passed in via the trace_puts macro. 645 * 646 * This is similar to trace_printk() but is made for those really fast 647 * paths that a developer wants the least amount of "Heisenbug" affects, 648 * where the processing of the print format is still too much. 649 * 650 * This function allows a kernel developer to debug fast path sections 651 * that printk is not appropriate for. By scattering in various 652 * printk like tracing in the code, a developer can quickly see 653 * where problems are occurring. 654 * 655 * This is intended as a debugging tool for the developer only. 656 * Please refrain from leaving trace_puts scattered around in 657 * your code. (Extra memory is used for special buffers that are 658 * allocated when trace_puts() is used) 659 * 660 * Returns: 0 if nothing was written, positive # if string was. 661 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 662 */ 663 664#define trace_puts(str) ({ \ 665 static const char *trace_printk_fmt __used \ 666 __attribute__((section("__trace_printk_fmt"))) = \ 667 __builtin_constant_p(str) ? str : NULL; \ 668 \ 669 if (__builtin_constant_p(str)) \ 670 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 671 else \ 672 __trace_puts(_THIS_IP_, str, strlen(str)); \ 673}) 674extern int __trace_bputs(unsigned long ip, const char *str); 675extern int __trace_puts(unsigned long ip, const char *str, int size); 676 677extern void trace_dump_stack(int skip); 678 679/* 680 * The double __builtin_constant_p is because gcc will give us an error 681 * if we try to allocate the static variable to fmt if it is not a 682 * constant. Even with the outer if statement. 683 */ 684#define ftrace_vprintk(fmt, vargs) \ 685do { \ 686 if (__builtin_constant_p(fmt)) { \ 687 static const char *trace_printk_fmt __used \ 688 __attribute__((section("__trace_printk_fmt"))) = \ 689 __builtin_constant_p(fmt) ? fmt : NULL; \ 690 \ 691 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 692 } else \ 693 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 694} while (0) 695 696extern __printf(2, 0) int 697__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 698 699extern __printf(2, 0) int 700__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 701 702extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 703#else 704static inline void tracing_start(void) { } 705static inline void tracing_stop(void) { } 706static inline void trace_dump_stack(int skip) { } 707 708static inline void tracing_on(void) { } 709static inline void tracing_off(void) { } 710static inline int tracing_is_on(void) { return 0; } 711static inline void tracing_snapshot(void) { } 712static inline void tracing_snapshot_alloc(void) { } 713 714static inline __printf(1, 2) 715int trace_printk(const char *fmt, ...) 716{ 717 return 0; 718} 719static __printf(1, 0) inline int 720ftrace_vprintk(const char *fmt, va_list ap) 721{ 722 return 0; 723} 724static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 725#endif /* CONFIG_TRACING */ 726 727/* 728 * min()/max()/clamp() macros that also do 729 * strict type-checking.. See the 730 * "unnecessary" pointer comparison. 731 */ 732#define min(x, y) ({ \ 733 typeof(x) _min1 = (x); \ 734 typeof(y) _min2 = (y); \ 735 (void) (&_min1 == &_min2); \ 736 _min1 < _min2 ? _min1 : _min2; }) 737 738#define max(x, y) ({ \ 739 typeof(x) _max1 = (x); \ 740 typeof(y) _max2 = (y); \ 741 (void) (&_max1 == &_max2); \ 742 _max1 > _max2 ? _max1 : _max2; }) 743 744#define min3(x, y, z) min((typeof(x))min(x, y), z) 745#define max3(x, y, z) max((typeof(x))max(x, y), z) 746 747/** 748 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 749 * @x: value1 750 * @y: value2 751 */ 752#define min_not_zero(x, y) ({ \ 753 typeof(x) __x = (x); \ 754 typeof(y) __y = (y); \ 755 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 756 757/** 758 * clamp - return a value clamped to a given range with strict typechecking 759 * @val: current value 760 * @lo: lowest allowable value 761 * @hi: highest allowable value 762 * 763 * This macro does strict typechecking of lo/hi to make sure they are of the 764 * same type as val. See the unnecessary pointer comparisons. 765 */ 766#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 767 768/* 769 * ..and if you can't take the strict 770 * types, you can specify one yourself. 771 * 772 * Or not use min/max/clamp at all, of course. 773 */ 774#define min_t(type, x, y) ({ \ 775 type __min1 = (x); \ 776 type __min2 = (y); \ 777 __min1 < __min2 ? __min1: __min2; }) 778 779#define max_t(type, x, y) ({ \ 780 type __max1 = (x); \ 781 type __max2 = (y); \ 782 __max1 > __max2 ? __max1: __max2; }) 783 784/** 785 * clamp_t - return a value clamped to a given range using a given type 786 * @type: the type of variable to use 787 * @val: current value 788 * @lo: minimum allowable value 789 * @hi: maximum allowable value 790 * 791 * This macro does no typechecking and uses temporary variables of type 792 * 'type' to make all the comparisons. 793 */ 794#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 795 796/** 797 * clamp_val - return a value clamped to a given range using val's type 798 * @val: current value 799 * @lo: minimum allowable value 800 * @hi: maximum allowable value 801 * 802 * This macro does no typechecking and uses temporary variables of whatever 803 * type the input argument 'val' is. This is useful when val is an unsigned 804 * type and min and max are literals that will otherwise be assigned a signed 805 * integer type. 806 */ 807#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 808 809 810/* 811 * swap - swap value of @a and @b 812 */ 813#define swap(a, b) \ 814 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 815 816/** 817 * container_of - cast a member of a structure out to the containing structure 818 * @ptr: the pointer to the member. 819 * @type: the type of the container struct this is embedded in. 820 * @member: the name of the member within the struct. 821 * 822 */ 823#define container_of(ptr, type, member) ({ \ 824 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 825 (type *)( (char *)__mptr - offsetof(type,member) );}) 826 827/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 828#ifdef CONFIG_FTRACE_MCOUNT_RECORD 829# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 830#endif 831 832/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 833#define VERIFY_OCTAL_PERMISSIONS(perms) \ 834 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 835 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 836 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 837 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 838 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 839 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 840 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 841 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 842 BUILD_BUG_ON_ZERO((perms) & 2) + \ 843 (perms)) 844#endif