at v4.6-rc4 45 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in the 15 * file called COPYING. 16 */ 17#ifndef LINUX_DMAENGINE_H 18#define LINUX_DMAENGINE_H 19 20#include <linux/device.h> 21#include <linux/err.h> 22#include <linux/uio.h> 23#include <linux/bug.h> 24#include <linux/scatterlist.h> 25#include <linux/bitmap.h> 26#include <linux/types.h> 27#include <asm/page.h> 28 29/** 30 * typedef dma_cookie_t - an opaque DMA cookie 31 * 32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 33 */ 34typedef s32 dma_cookie_t; 35#define DMA_MIN_COOKIE 1 36 37static inline int dma_submit_error(dma_cookie_t cookie) 38{ 39 return cookie < 0 ? cookie : 0; 40} 41 42/** 43 * enum dma_status - DMA transaction status 44 * @DMA_COMPLETE: transaction completed 45 * @DMA_IN_PROGRESS: transaction not yet processed 46 * @DMA_PAUSED: transaction is paused 47 * @DMA_ERROR: transaction failed 48 */ 49enum dma_status { 50 DMA_COMPLETE, 51 DMA_IN_PROGRESS, 52 DMA_PAUSED, 53 DMA_ERROR, 54}; 55 56/** 57 * enum dma_transaction_type - DMA transaction types/indexes 58 * 59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 60 * automatically set as dma devices are registered. 61 */ 62enum dma_transaction_type { 63 DMA_MEMCPY, 64 DMA_XOR, 65 DMA_PQ, 66 DMA_XOR_VAL, 67 DMA_PQ_VAL, 68 DMA_MEMSET, 69 DMA_MEMSET_SG, 70 DMA_INTERRUPT, 71 DMA_SG, 72 DMA_PRIVATE, 73 DMA_ASYNC_TX, 74 DMA_SLAVE, 75 DMA_CYCLIC, 76 DMA_INTERLEAVE, 77/* last transaction type for creation of the capabilities mask */ 78 DMA_TX_TYPE_END, 79}; 80 81/** 82 * enum dma_transfer_direction - dma transfer mode and direction indicator 83 * @DMA_MEM_TO_MEM: Async/Memcpy mode 84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 87 */ 88enum dma_transfer_direction { 89 DMA_MEM_TO_MEM, 90 DMA_MEM_TO_DEV, 91 DMA_DEV_TO_MEM, 92 DMA_DEV_TO_DEV, 93 DMA_TRANS_NONE, 94}; 95 96/** 97 * Interleaved Transfer Request 98 * ---------------------------- 99 * A chunk is collection of contiguous bytes to be transfered. 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 101 * ICGs may or maynot change between chunks. 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 103 * that when repeated an integral number of times, specifies the transfer. 104 * A transfer template is specification of a Frame, the number of times 105 * it is to be repeated and other per-transfer attributes. 106 * 107 * Practically, a client driver would have ready a template for each 108 * type of transfer it is going to need during its lifetime and 109 * set only 'src_start' and 'dst_start' before submitting the requests. 110 * 111 * 112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 114 * 115 * == Chunk size 116 * ... ICG 117 */ 118 119/** 120 * struct data_chunk - Element of scatter-gather list that makes a frame. 121 * @size: Number of bytes to read from source. 122 * size_dst := fn(op, size_src), so doesn't mean much for destination. 123 * @icg: Number of bytes to jump after last src/dst address of this 124 * chunk and before first src/dst address for next chunk. 125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 127 * @dst_icg: Number of bytes to jump after last dst address of this 128 * chunk and before the first dst address for next chunk. 129 * Ignored if dst_inc is true and dst_sgl is false. 130 * @src_icg: Number of bytes to jump after last src address of this 131 * chunk and before the first src address for next chunk. 132 * Ignored if src_inc is true and src_sgl is false. 133 */ 134struct data_chunk { 135 size_t size; 136 size_t icg; 137 size_t dst_icg; 138 size_t src_icg; 139}; 140 141/** 142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 143 * and attributes. 144 * @src_start: Bus address of source for the first chunk. 145 * @dst_start: Bus address of destination for the first chunk. 146 * @dir: Specifies the type of Source and Destination. 147 * @src_inc: If the source address increments after reading from it. 148 * @dst_inc: If the destination address increments after writing to it. 149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 150 * Otherwise, source is read contiguously (icg ignored). 151 * Ignored if src_inc is false. 152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 153 * Otherwise, destination is filled contiguously (icg ignored). 154 * Ignored if dst_inc is false. 155 * @numf: Number of frames in this template. 156 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 157 * @sgl: Array of {chunk,icg} pairs that make up a frame. 158 */ 159struct dma_interleaved_template { 160 dma_addr_t src_start; 161 dma_addr_t dst_start; 162 enum dma_transfer_direction dir; 163 bool src_inc; 164 bool dst_inc; 165 bool src_sgl; 166 bool dst_sgl; 167 size_t numf; 168 size_t frame_size; 169 struct data_chunk sgl[0]; 170}; 171 172/** 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 174 * control completion, and communicate status. 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 176 * this transaction 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 178 * acknowledges receipt, i.e. has has a chance to establish any dependency 179 * chains 180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 183 * sources that were the result of a previous operation, in the case of a PQ 184 * operation it continues the calculation with new sources 185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 186 * on the result of this operation 187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 188 * cleared or freed 189 */ 190enum dma_ctrl_flags { 191 DMA_PREP_INTERRUPT = (1 << 0), 192 DMA_CTRL_ACK = (1 << 1), 193 DMA_PREP_PQ_DISABLE_P = (1 << 2), 194 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 195 DMA_PREP_CONTINUE = (1 << 4), 196 DMA_PREP_FENCE = (1 << 5), 197 DMA_CTRL_REUSE = (1 << 6), 198}; 199 200/** 201 * enum sum_check_bits - bit position of pq_check_flags 202 */ 203enum sum_check_bits { 204 SUM_CHECK_P = 0, 205 SUM_CHECK_Q = 1, 206}; 207 208/** 209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 212 */ 213enum sum_check_flags { 214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 216}; 217 218 219/** 220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 221 * See linux/cpumask.h 222 */ 223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 224 225/** 226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 227 * @memcpy_count: transaction counter 228 * @bytes_transferred: byte counter 229 */ 230 231struct dma_chan_percpu { 232 /* stats */ 233 unsigned long memcpy_count; 234 unsigned long bytes_transferred; 235}; 236 237/** 238 * struct dma_router - DMA router structure 239 * @dev: pointer to the DMA router device 240 * @route_free: function to be called when the route can be disconnected 241 */ 242struct dma_router { 243 struct device *dev; 244 void (*route_free)(struct device *dev, void *route_data); 245}; 246 247/** 248 * struct dma_chan - devices supply DMA channels, clients use them 249 * @device: ptr to the dma device who supplies this channel, always !%NULL 250 * @cookie: last cookie value returned to client 251 * @completed_cookie: last completed cookie for this channel 252 * @chan_id: channel ID for sysfs 253 * @dev: class device for sysfs 254 * @device_node: used to add this to the device chan list 255 * @local: per-cpu pointer to a struct dma_chan_percpu 256 * @client_count: how many clients are using this channel 257 * @table_count: number of appearances in the mem-to-mem allocation table 258 * @router: pointer to the DMA router structure 259 * @route_data: channel specific data for the router 260 * @private: private data for certain client-channel associations 261 */ 262struct dma_chan { 263 struct dma_device *device; 264 dma_cookie_t cookie; 265 dma_cookie_t completed_cookie; 266 267 /* sysfs */ 268 int chan_id; 269 struct dma_chan_dev *dev; 270 271 struct list_head device_node; 272 struct dma_chan_percpu __percpu *local; 273 int client_count; 274 int table_count; 275 276 /* DMA router */ 277 struct dma_router *router; 278 void *route_data; 279 280 void *private; 281}; 282 283/** 284 * struct dma_chan_dev - relate sysfs device node to backing channel device 285 * @chan: driver channel device 286 * @device: sysfs device 287 * @dev_id: parent dma_device dev_id 288 * @idr_ref: reference count to gate release of dma_device dev_id 289 */ 290struct dma_chan_dev { 291 struct dma_chan *chan; 292 struct device device; 293 int dev_id; 294 atomic_t *idr_ref; 295}; 296 297/** 298 * enum dma_slave_buswidth - defines bus width of the DMA slave 299 * device, source or target buses 300 */ 301enum dma_slave_buswidth { 302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 311}; 312 313/** 314 * struct dma_slave_config - dma slave channel runtime config 315 * @direction: whether the data shall go in or out on this slave 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 317 * legal values. DEPRECATED, drivers should use the direction argument 318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 319 * the dir field in the dma_interleaved_template structure. 320 * @src_addr: this is the physical address where DMA slave data 321 * should be read (RX), if the source is memory this argument is 322 * ignored. 323 * @dst_addr: this is the physical address where DMA slave data 324 * should be written (TX), if the source is memory this argument 325 * is ignored. 326 * @src_addr_width: this is the width in bytes of the source (RX) 327 * register where DMA data shall be read. If the source 328 * is memory this may be ignored depending on architecture. 329 * Legal values: 1, 2, 4, 8. 330 * @dst_addr_width: same as src_addr_width but for destination 331 * target (TX) mutatis mutandis. 332 * @src_maxburst: the maximum number of words (note: words, as in 333 * units of the src_addr_width member, not bytes) that can be sent 334 * in one burst to the device. Typically something like half the 335 * FIFO depth on I/O peripherals so you don't overflow it. This 336 * may or may not be applicable on memory sources. 337 * @dst_maxburst: same as src_maxburst but for destination target 338 * mutatis mutandis. 339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 340 * with 'true' if peripheral should be flow controller. Direction will be 341 * selected at Runtime. 342 * @slave_id: Slave requester id. Only valid for slave channels. The dma 343 * slave peripheral will have unique id as dma requester which need to be 344 * pass as slave config. 345 * 346 * This struct is passed in as configuration data to a DMA engine 347 * in order to set up a certain channel for DMA transport at runtime. 348 * The DMA device/engine has to provide support for an additional 349 * callback in the dma_device structure, device_config and this struct 350 * will then be passed in as an argument to the function. 351 * 352 * The rationale for adding configuration information to this struct is as 353 * follows: if it is likely that more than one DMA slave controllers in 354 * the world will support the configuration option, then make it generic. 355 * If not: if it is fixed so that it be sent in static from the platform 356 * data, then prefer to do that. 357 */ 358struct dma_slave_config { 359 enum dma_transfer_direction direction; 360 phys_addr_t src_addr; 361 phys_addr_t dst_addr; 362 enum dma_slave_buswidth src_addr_width; 363 enum dma_slave_buswidth dst_addr_width; 364 u32 src_maxburst; 365 u32 dst_maxburst; 366 bool device_fc; 367 unsigned int slave_id; 368}; 369 370/** 371 * enum dma_residue_granularity - Granularity of the reported transfer residue 372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 373 * DMA channel is only able to tell whether a descriptor has been completed or 374 * not, which means residue reporting is not supported by this channel. The 375 * residue field of the dma_tx_state field will always be 0. 376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 377 * completed segment of the transfer (For cyclic transfers this is after each 378 * period). This is typically implemented by having the hardware generate an 379 * interrupt after each transferred segment and then the drivers updates the 380 * outstanding residue by the size of the segment. Another possibility is if 381 * the hardware supports scatter-gather and the segment descriptor has a field 382 * which gets set after the segment has been completed. The driver then counts 383 * the number of segments without the flag set to compute the residue. 384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 385 * burst. This is typically only supported if the hardware has a progress 386 * register of some sort (E.g. a register with the current read/write address 387 * or a register with the amount of bursts/beats/bytes that have been 388 * transferred or still need to be transferred). 389 */ 390enum dma_residue_granularity { 391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 393 DMA_RESIDUE_GRANULARITY_BURST = 2, 394}; 395 396/* struct dma_slave_caps - expose capabilities of a slave channel only 397 * 398 * @src_addr_widths: bit mask of src addr widths the channel supports 399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports 400 * @directions: bit mask of slave direction the channel supported 401 * since the enum dma_transfer_direction is not defined as bits for each 402 * type of direction, the dma controller should fill (1 << <TYPE>) and same 403 * should be checked by controller as well 404 * @max_burst: max burst capability per-transfer 405 * @cmd_pause: true, if pause and thereby resume is supported 406 * @cmd_terminate: true, if terminate cmd is supported 407 * @residue_granularity: granularity of the reported transfer residue 408 * @descriptor_reuse: if a descriptor can be reused by client and 409 * resubmitted multiple times 410 */ 411struct dma_slave_caps { 412 u32 src_addr_widths; 413 u32 dst_addr_widths; 414 u32 directions; 415 u32 max_burst; 416 bool cmd_pause; 417 bool cmd_terminate; 418 enum dma_residue_granularity residue_granularity; 419 bool descriptor_reuse; 420}; 421 422static inline const char *dma_chan_name(struct dma_chan *chan) 423{ 424 return dev_name(&chan->dev->device); 425} 426 427void dma_chan_cleanup(struct kref *kref); 428 429/** 430 * typedef dma_filter_fn - callback filter for dma_request_channel 431 * @chan: channel to be reviewed 432 * @filter_param: opaque parameter passed through dma_request_channel 433 * 434 * When this optional parameter is specified in a call to dma_request_channel a 435 * suitable channel is passed to this routine for further dispositioning before 436 * being returned. Where 'suitable' indicates a non-busy channel that 437 * satisfies the given capability mask. It returns 'true' to indicate that the 438 * channel is suitable. 439 */ 440typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 441 442typedef void (*dma_async_tx_callback)(void *dma_async_param); 443 444struct dmaengine_unmap_data { 445 u8 map_cnt; 446 u8 to_cnt; 447 u8 from_cnt; 448 u8 bidi_cnt; 449 struct device *dev; 450 struct kref kref; 451 size_t len; 452 dma_addr_t addr[0]; 453}; 454 455/** 456 * struct dma_async_tx_descriptor - async transaction descriptor 457 * ---dma generic offload fields--- 458 * @cookie: tracking cookie for this transaction, set to -EBUSY if 459 * this tx is sitting on a dependency list 460 * @flags: flags to augment operation preparation, control completion, and 461 * communicate status 462 * @phys: physical address of the descriptor 463 * @chan: target channel for this operation 464 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 465 * descriptor pending. To be pushed on .issue_pending() call 466 * @callback: routine to call after this operation is complete 467 * @callback_param: general parameter to pass to the callback routine 468 * ---async_tx api specific fields--- 469 * @next: at completion submit this descriptor 470 * @parent: pointer to the next level up in the dependency chain 471 * @lock: protect the parent and next pointers 472 */ 473struct dma_async_tx_descriptor { 474 dma_cookie_t cookie; 475 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 476 dma_addr_t phys; 477 struct dma_chan *chan; 478 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 479 int (*desc_free)(struct dma_async_tx_descriptor *tx); 480 dma_async_tx_callback callback; 481 void *callback_param; 482 struct dmaengine_unmap_data *unmap; 483#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 484 struct dma_async_tx_descriptor *next; 485 struct dma_async_tx_descriptor *parent; 486 spinlock_t lock; 487#endif 488}; 489 490#ifdef CONFIG_DMA_ENGINE 491static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 492 struct dmaengine_unmap_data *unmap) 493{ 494 kref_get(&unmap->kref); 495 tx->unmap = unmap; 496} 497 498struct dmaengine_unmap_data * 499dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 500void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 501#else 502static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 503 struct dmaengine_unmap_data *unmap) 504{ 505} 506static inline struct dmaengine_unmap_data * 507dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 508{ 509 return NULL; 510} 511static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 512{ 513} 514#endif 515 516static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 517{ 518 if (tx->unmap) { 519 dmaengine_unmap_put(tx->unmap); 520 tx->unmap = NULL; 521 } 522} 523 524#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 525static inline void txd_lock(struct dma_async_tx_descriptor *txd) 526{ 527} 528static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 529{ 530} 531static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 532{ 533 BUG(); 534} 535static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 536{ 537} 538static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 539{ 540} 541static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 542{ 543 return NULL; 544} 545static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 546{ 547 return NULL; 548} 549 550#else 551static inline void txd_lock(struct dma_async_tx_descriptor *txd) 552{ 553 spin_lock_bh(&txd->lock); 554} 555static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 556{ 557 spin_unlock_bh(&txd->lock); 558} 559static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 560{ 561 txd->next = next; 562 next->parent = txd; 563} 564static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 565{ 566 txd->parent = NULL; 567} 568static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 569{ 570 txd->next = NULL; 571} 572static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 573{ 574 return txd->parent; 575} 576static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 577{ 578 return txd->next; 579} 580#endif 581 582/** 583 * struct dma_tx_state - filled in to report the status of 584 * a transfer. 585 * @last: last completed DMA cookie 586 * @used: last issued DMA cookie (i.e. the one in progress) 587 * @residue: the remaining number of bytes left to transmit 588 * on the selected transfer for states DMA_IN_PROGRESS and 589 * DMA_PAUSED if this is implemented in the driver, else 0 590 */ 591struct dma_tx_state { 592 dma_cookie_t last; 593 dma_cookie_t used; 594 u32 residue; 595}; 596 597/** 598 * enum dmaengine_alignment - defines alignment of the DMA async tx 599 * buffers 600 */ 601enum dmaengine_alignment { 602 DMAENGINE_ALIGN_1_BYTE = 0, 603 DMAENGINE_ALIGN_2_BYTES = 1, 604 DMAENGINE_ALIGN_4_BYTES = 2, 605 DMAENGINE_ALIGN_8_BYTES = 3, 606 DMAENGINE_ALIGN_16_BYTES = 4, 607 DMAENGINE_ALIGN_32_BYTES = 5, 608 DMAENGINE_ALIGN_64_BYTES = 6, 609}; 610 611/** 612 * struct dma_slave_map - associates slave device and it's slave channel with 613 * parameter to be used by a filter function 614 * @devname: name of the device 615 * @slave: slave channel name 616 * @param: opaque parameter to pass to struct dma_filter.fn 617 */ 618struct dma_slave_map { 619 const char *devname; 620 const char *slave; 621 void *param; 622}; 623 624/** 625 * struct dma_filter - information for slave device/channel to filter_fn/param 626 * mapping 627 * @fn: filter function callback 628 * @mapcnt: number of slave device/channel in the map 629 * @map: array of channel to filter mapping data 630 */ 631struct dma_filter { 632 dma_filter_fn fn; 633 int mapcnt; 634 const struct dma_slave_map *map; 635}; 636 637/** 638 * struct dma_device - info on the entity supplying DMA services 639 * @chancnt: how many DMA channels are supported 640 * @privatecnt: how many DMA channels are requested by dma_request_channel 641 * @channels: the list of struct dma_chan 642 * @global_node: list_head for global dma_device_list 643 * @filter: information for device/slave to filter function/param mapping 644 * @cap_mask: one or more dma_capability flags 645 * @max_xor: maximum number of xor sources, 0 if no capability 646 * @max_pq: maximum number of PQ sources and PQ-continue capability 647 * @copy_align: alignment shift for memcpy operations 648 * @xor_align: alignment shift for xor operations 649 * @pq_align: alignment shift for pq operations 650 * @fill_align: alignment shift for memset operations 651 * @dev_id: unique device ID 652 * @dev: struct device reference for dma mapping api 653 * @src_addr_widths: bit mask of src addr widths the device supports 654 * @dst_addr_widths: bit mask of dst addr widths the device supports 655 * @directions: bit mask of slave direction the device supports since 656 * the enum dma_transfer_direction is not defined as bits for 657 * each type of direction, the dma controller should fill (1 << 658 * <TYPE>) and same should be checked by controller as well 659 * @max_burst: max burst capability per-transfer 660 * @residue_granularity: granularity of the transfer residue reported 661 * by tx_status 662 * @device_alloc_chan_resources: allocate resources and return the 663 * number of allocated descriptors 664 * @device_free_chan_resources: release DMA channel's resources 665 * @device_prep_dma_memcpy: prepares a memcpy operation 666 * @device_prep_dma_xor: prepares a xor operation 667 * @device_prep_dma_xor_val: prepares a xor validation operation 668 * @device_prep_dma_pq: prepares a pq operation 669 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 670 * @device_prep_dma_memset: prepares a memset operation 671 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 672 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 673 * @device_prep_slave_sg: prepares a slave dma operation 674 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 675 * The function takes a buffer of size buf_len. The callback function will 676 * be called after period_len bytes have been transferred. 677 * @device_prep_interleaved_dma: Transfer expression in a generic way. 678 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 679 * @device_config: Pushes a new configuration to a channel, return 0 or an error 680 * code 681 * @device_pause: Pauses any transfer happening on a channel. Returns 682 * 0 or an error code 683 * @device_resume: Resumes any transfer on a channel previously 684 * paused. Returns 0 or an error code 685 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 686 * or an error code 687 * @device_synchronize: Synchronizes the termination of a transfers to the 688 * current context. 689 * @device_tx_status: poll for transaction completion, the optional 690 * txstate parameter can be supplied with a pointer to get a 691 * struct with auxiliary transfer status information, otherwise the call 692 * will just return a simple status code 693 * @device_issue_pending: push pending transactions to hardware 694 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 695 */ 696struct dma_device { 697 698 unsigned int chancnt; 699 unsigned int privatecnt; 700 struct list_head channels; 701 struct list_head global_node; 702 struct dma_filter filter; 703 dma_cap_mask_t cap_mask; 704 unsigned short max_xor; 705 unsigned short max_pq; 706 enum dmaengine_alignment copy_align; 707 enum dmaengine_alignment xor_align; 708 enum dmaengine_alignment pq_align; 709 enum dmaengine_alignment fill_align; 710 #define DMA_HAS_PQ_CONTINUE (1 << 15) 711 712 int dev_id; 713 struct device *dev; 714 715 u32 src_addr_widths; 716 u32 dst_addr_widths; 717 u32 directions; 718 u32 max_burst; 719 bool descriptor_reuse; 720 enum dma_residue_granularity residue_granularity; 721 722 int (*device_alloc_chan_resources)(struct dma_chan *chan); 723 void (*device_free_chan_resources)(struct dma_chan *chan); 724 725 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 726 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 727 size_t len, unsigned long flags); 728 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 729 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 730 unsigned int src_cnt, size_t len, unsigned long flags); 731 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 732 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 733 size_t len, enum sum_check_flags *result, unsigned long flags); 734 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 735 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 736 unsigned int src_cnt, const unsigned char *scf, 737 size_t len, unsigned long flags); 738 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 739 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 740 unsigned int src_cnt, const unsigned char *scf, size_t len, 741 enum sum_check_flags *pqres, unsigned long flags); 742 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 743 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 744 unsigned long flags); 745 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 746 struct dma_chan *chan, struct scatterlist *sg, 747 unsigned int nents, int value, unsigned long flags); 748 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 749 struct dma_chan *chan, unsigned long flags); 750 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 751 struct dma_chan *chan, 752 struct scatterlist *dst_sg, unsigned int dst_nents, 753 struct scatterlist *src_sg, unsigned int src_nents, 754 unsigned long flags); 755 756 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 757 struct dma_chan *chan, struct scatterlist *sgl, 758 unsigned int sg_len, enum dma_transfer_direction direction, 759 unsigned long flags, void *context); 760 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 761 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 762 size_t period_len, enum dma_transfer_direction direction, 763 unsigned long flags); 764 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 765 struct dma_chan *chan, struct dma_interleaved_template *xt, 766 unsigned long flags); 767 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 768 struct dma_chan *chan, dma_addr_t dst, u64 data, 769 unsigned long flags); 770 771 int (*device_config)(struct dma_chan *chan, 772 struct dma_slave_config *config); 773 int (*device_pause)(struct dma_chan *chan); 774 int (*device_resume)(struct dma_chan *chan); 775 int (*device_terminate_all)(struct dma_chan *chan); 776 void (*device_synchronize)(struct dma_chan *chan); 777 778 enum dma_status (*device_tx_status)(struct dma_chan *chan, 779 dma_cookie_t cookie, 780 struct dma_tx_state *txstate); 781 void (*device_issue_pending)(struct dma_chan *chan); 782}; 783 784static inline int dmaengine_slave_config(struct dma_chan *chan, 785 struct dma_slave_config *config) 786{ 787 if (chan->device->device_config) 788 return chan->device->device_config(chan, config); 789 790 return -ENOSYS; 791} 792 793static inline bool is_slave_direction(enum dma_transfer_direction direction) 794{ 795 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 796} 797 798static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 799 struct dma_chan *chan, dma_addr_t buf, size_t len, 800 enum dma_transfer_direction dir, unsigned long flags) 801{ 802 struct scatterlist sg; 803 sg_init_table(&sg, 1); 804 sg_dma_address(&sg) = buf; 805 sg_dma_len(&sg) = len; 806 807 return chan->device->device_prep_slave_sg(chan, &sg, 1, 808 dir, flags, NULL); 809} 810 811static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 812 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 813 enum dma_transfer_direction dir, unsigned long flags) 814{ 815 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 816 dir, flags, NULL); 817} 818 819#ifdef CONFIG_RAPIDIO_DMA_ENGINE 820struct rio_dma_ext; 821static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 822 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 823 enum dma_transfer_direction dir, unsigned long flags, 824 struct rio_dma_ext *rio_ext) 825{ 826 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 827 dir, flags, rio_ext); 828} 829#endif 830 831static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 832 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 833 size_t period_len, enum dma_transfer_direction dir, 834 unsigned long flags) 835{ 836 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 837 period_len, dir, flags); 838} 839 840static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 841 struct dma_chan *chan, struct dma_interleaved_template *xt, 842 unsigned long flags) 843{ 844 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 845} 846 847static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 848 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 849 unsigned long flags) 850{ 851 if (!chan || !chan->device) 852 return NULL; 853 854 return chan->device->device_prep_dma_memset(chan, dest, value, 855 len, flags); 856} 857 858static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg( 859 struct dma_chan *chan, 860 struct scatterlist *dst_sg, unsigned int dst_nents, 861 struct scatterlist *src_sg, unsigned int src_nents, 862 unsigned long flags) 863{ 864 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents, 865 src_sg, src_nents, flags); 866} 867 868/** 869 * dmaengine_terminate_all() - Terminate all active DMA transfers 870 * @chan: The channel for which to terminate the transfers 871 * 872 * This function is DEPRECATED use either dmaengine_terminate_sync() or 873 * dmaengine_terminate_async() instead. 874 */ 875static inline int dmaengine_terminate_all(struct dma_chan *chan) 876{ 877 if (chan->device->device_terminate_all) 878 return chan->device->device_terminate_all(chan); 879 880 return -ENOSYS; 881} 882 883/** 884 * dmaengine_terminate_async() - Terminate all active DMA transfers 885 * @chan: The channel for which to terminate the transfers 886 * 887 * Calling this function will terminate all active and pending descriptors 888 * that have previously been submitted to the channel. It is not guaranteed 889 * though that the transfer for the active descriptor has stopped when the 890 * function returns. Furthermore it is possible the complete callback of a 891 * submitted transfer is still running when this function returns. 892 * 893 * dmaengine_synchronize() needs to be called before it is safe to free 894 * any memory that is accessed by previously submitted descriptors or before 895 * freeing any resources accessed from within the completion callback of any 896 * perviously submitted descriptors. 897 * 898 * This function can be called from atomic context as well as from within a 899 * complete callback of a descriptor submitted on the same channel. 900 * 901 * If none of the two conditions above apply consider using 902 * dmaengine_terminate_sync() instead. 903 */ 904static inline int dmaengine_terminate_async(struct dma_chan *chan) 905{ 906 if (chan->device->device_terminate_all) 907 return chan->device->device_terminate_all(chan); 908 909 return -EINVAL; 910} 911 912/** 913 * dmaengine_synchronize() - Synchronize DMA channel termination 914 * @chan: The channel to synchronize 915 * 916 * Synchronizes to the DMA channel termination to the current context. When this 917 * function returns it is guaranteed that all transfers for previously issued 918 * descriptors have stopped and and it is safe to free the memory assoicated 919 * with them. Furthermore it is guaranteed that all complete callback functions 920 * for a previously submitted descriptor have finished running and it is safe to 921 * free resources accessed from within the complete callbacks. 922 * 923 * The behavior of this function is undefined if dma_async_issue_pending() has 924 * been called between dmaengine_terminate_async() and this function. 925 * 926 * This function must only be called from non-atomic context and must not be 927 * called from within a complete callback of a descriptor submitted on the same 928 * channel. 929 */ 930static inline void dmaengine_synchronize(struct dma_chan *chan) 931{ 932 might_sleep(); 933 934 if (chan->device->device_synchronize) 935 chan->device->device_synchronize(chan); 936} 937 938/** 939 * dmaengine_terminate_sync() - Terminate all active DMA transfers 940 * @chan: The channel for which to terminate the transfers 941 * 942 * Calling this function will terminate all active and pending transfers 943 * that have previously been submitted to the channel. It is similar to 944 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 945 * stopped and that all complete callbacks have finished running when the 946 * function returns. 947 * 948 * This function must only be called from non-atomic context and must not be 949 * called from within a complete callback of a descriptor submitted on the same 950 * channel. 951 */ 952static inline int dmaengine_terminate_sync(struct dma_chan *chan) 953{ 954 int ret; 955 956 ret = dmaengine_terminate_async(chan); 957 if (ret) 958 return ret; 959 960 dmaengine_synchronize(chan); 961 962 return 0; 963} 964 965static inline int dmaengine_pause(struct dma_chan *chan) 966{ 967 if (chan->device->device_pause) 968 return chan->device->device_pause(chan); 969 970 return -ENOSYS; 971} 972 973static inline int dmaengine_resume(struct dma_chan *chan) 974{ 975 if (chan->device->device_resume) 976 return chan->device->device_resume(chan); 977 978 return -ENOSYS; 979} 980 981static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 982 dma_cookie_t cookie, struct dma_tx_state *state) 983{ 984 return chan->device->device_tx_status(chan, cookie, state); 985} 986 987static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 988{ 989 return desc->tx_submit(desc); 990} 991 992static inline bool dmaengine_check_align(enum dmaengine_alignment align, 993 size_t off1, size_t off2, size_t len) 994{ 995 size_t mask; 996 997 if (!align) 998 return true; 999 mask = (1 << align) - 1; 1000 if (mask & (off1 | off2 | len)) 1001 return false; 1002 return true; 1003} 1004 1005static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1006 size_t off2, size_t len) 1007{ 1008 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1009} 1010 1011static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1012 size_t off2, size_t len) 1013{ 1014 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1015} 1016 1017static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1018 size_t off2, size_t len) 1019{ 1020 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1021} 1022 1023static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1024 size_t off2, size_t len) 1025{ 1026 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1027} 1028 1029static inline void 1030dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1031{ 1032 dma->max_pq = maxpq; 1033 if (has_pq_continue) 1034 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1035} 1036 1037static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1038{ 1039 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1040} 1041 1042static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1043{ 1044 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1045 1046 return (flags & mask) == mask; 1047} 1048 1049static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1050{ 1051 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1052} 1053 1054static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1055{ 1056 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1057} 1058 1059/* dma_maxpq - reduce maxpq in the face of continued operations 1060 * @dma - dma device with PQ capability 1061 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1062 * 1063 * When an engine does not support native continuation we need 3 extra 1064 * source slots to reuse P and Q with the following coefficients: 1065 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1066 * 2/ {01} * Q : use Q to continue Q' calculation 1067 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1068 * 1069 * In the case where P is disabled we only need 1 extra source: 1070 * 1/ {01} * Q : use Q to continue Q' calculation 1071 */ 1072static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1073{ 1074 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1075 return dma_dev_to_maxpq(dma); 1076 else if (dmaf_p_disabled_continue(flags)) 1077 return dma_dev_to_maxpq(dma) - 1; 1078 else if (dmaf_continue(flags)) 1079 return dma_dev_to_maxpq(dma) - 3; 1080 BUG(); 1081} 1082 1083static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1084 size_t dir_icg) 1085{ 1086 if (inc) { 1087 if (dir_icg) 1088 return dir_icg; 1089 else if (sgl) 1090 return icg; 1091 } 1092 1093 return 0; 1094} 1095 1096static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1097 struct data_chunk *chunk) 1098{ 1099 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1100 chunk->icg, chunk->dst_icg); 1101} 1102 1103static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1104 struct data_chunk *chunk) 1105{ 1106 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1107 chunk->icg, chunk->src_icg); 1108} 1109 1110/* --- public DMA engine API --- */ 1111 1112#ifdef CONFIG_DMA_ENGINE 1113void dmaengine_get(void); 1114void dmaengine_put(void); 1115#else 1116static inline void dmaengine_get(void) 1117{ 1118} 1119static inline void dmaengine_put(void) 1120{ 1121} 1122#endif 1123 1124#ifdef CONFIG_ASYNC_TX_DMA 1125#define async_dmaengine_get() dmaengine_get() 1126#define async_dmaengine_put() dmaengine_put() 1127#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1128#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1129#else 1130#define async_dma_find_channel(type) dma_find_channel(type) 1131#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1132#else 1133static inline void async_dmaengine_get(void) 1134{ 1135} 1136static inline void async_dmaengine_put(void) 1137{ 1138} 1139static inline struct dma_chan * 1140async_dma_find_channel(enum dma_transaction_type type) 1141{ 1142 return NULL; 1143} 1144#endif /* CONFIG_ASYNC_TX_DMA */ 1145void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1146 struct dma_chan *chan); 1147 1148static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1149{ 1150 tx->flags |= DMA_CTRL_ACK; 1151} 1152 1153static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1154{ 1155 tx->flags &= ~DMA_CTRL_ACK; 1156} 1157 1158static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1159{ 1160 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1161} 1162 1163#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1164static inline void 1165__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1166{ 1167 set_bit(tx_type, dstp->bits); 1168} 1169 1170#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1171static inline void 1172__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1173{ 1174 clear_bit(tx_type, dstp->bits); 1175} 1176 1177#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1178static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1179{ 1180 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1181} 1182 1183#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1184static inline int 1185__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1186{ 1187 return test_bit(tx_type, srcp->bits); 1188} 1189 1190#define for_each_dma_cap_mask(cap, mask) \ 1191 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1192 1193/** 1194 * dma_async_issue_pending - flush pending transactions to HW 1195 * @chan: target DMA channel 1196 * 1197 * This allows drivers to push copies to HW in batches, 1198 * reducing MMIO writes where possible. 1199 */ 1200static inline void dma_async_issue_pending(struct dma_chan *chan) 1201{ 1202 chan->device->device_issue_pending(chan); 1203} 1204 1205/** 1206 * dma_async_is_tx_complete - poll for transaction completion 1207 * @chan: DMA channel 1208 * @cookie: transaction identifier to check status of 1209 * @last: returns last completed cookie, can be NULL 1210 * @used: returns last issued cookie, can be NULL 1211 * 1212 * If @last and @used are passed in, upon return they reflect the driver 1213 * internal state and can be used with dma_async_is_complete() to check 1214 * the status of multiple cookies without re-checking hardware state. 1215 */ 1216static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1217 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1218{ 1219 struct dma_tx_state state; 1220 enum dma_status status; 1221 1222 status = chan->device->device_tx_status(chan, cookie, &state); 1223 if (last) 1224 *last = state.last; 1225 if (used) 1226 *used = state.used; 1227 return status; 1228} 1229 1230/** 1231 * dma_async_is_complete - test a cookie against chan state 1232 * @cookie: transaction identifier to test status of 1233 * @last_complete: last know completed transaction 1234 * @last_used: last cookie value handed out 1235 * 1236 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1237 * the test logic is separated for lightweight testing of multiple cookies 1238 */ 1239static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1240 dma_cookie_t last_complete, dma_cookie_t last_used) 1241{ 1242 if (last_complete <= last_used) { 1243 if ((cookie <= last_complete) || (cookie > last_used)) 1244 return DMA_COMPLETE; 1245 } else { 1246 if ((cookie <= last_complete) && (cookie > last_used)) 1247 return DMA_COMPLETE; 1248 } 1249 return DMA_IN_PROGRESS; 1250} 1251 1252static inline void 1253dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1254{ 1255 if (st) { 1256 st->last = last; 1257 st->used = used; 1258 st->residue = residue; 1259 } 1260} 1261 1262#ifdef CONFIG_DMA_ENGINE 1263struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1264enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1265enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1266void dma_issue_pending_all(void); 1267struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1268 dma_filter_fn fn, void *fn_param); 1269struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1270 1271struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1272struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1273 1274void dma_release_channel(struct dma_chan *chan); 1275int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1276#else 1277static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1278{ 1279 return NULL; 1280} 1281static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1282{ 1283 return DMA_COMPLETE; 1284} 1285static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1286{ 1287 return DMA_COMPLETE; 1288} 1289static inline void dma_issue_pending_all(void) 1290{ 1291} 1292static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1293 dma_filter_fn fn, void *fn_param) 1294{ 1295 return NULL; 1296} 1297static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1298 const char *name) 1299{ 1300 return NULL; 1301} 1302static inline struct dma_chan *dma_request_chan(struct device *dev, 1303 const char *name) 1304{ 1305 return ERR_PTR(-ENODEV); 1306} 1307static inline struct dma_chan *dma_request_chan_by_mask( 1308 const dma_cap_mask_t *mask) 1309{ 1310 return ERR_PTR(-ENODEV); 1311} 1312static inline void dma_release_channel(struct dma_chan *chan) 1313{ 1314} 1315static inline int dma_get_slave_caps(struct dma_chan *chan, 1316 struct dma_slave_caps *caps) 1317{ 1318 return -ENXIO; 1319} 1320#endif 1321 1322#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name) 1323 1324static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1325{ 1326 struct dma_slave_caps caps; 1327 1328 dma_get_slave_caps(tx->chan, &caps); 1329 1330 if (caps.descriptor_reuse) { 1331 tx->flags |= DMA_CTRL_REUSE; 1332 return 0; 1333 } else { 1334 return -EPERM; 1335 } 1336} 1337 1338static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1339{ 1340 tx->flags &= ~DMA_CTRL_REUSE; 1341} 1342 1343static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1344{ 1345 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1346} 1347 1348static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1349{ 1350 /* this is supported for reusable desc, so check that */ 1351 if (dmaengine_desc_test_reuse(desc)) 1352 return desc->desc_free(desc); 1353 else 1354 return -EPERM; 1355} 1356 1357/* --- DMA device --- */ 1358 1359int dma_async_device_register(struct dma_device *device); 1360void dma_async_device_unregister(struct dma_device *device); 1361void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1362struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1363struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1364#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1365#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1366 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1367 1368static inline struct dma_chan 1369*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1370 dma_filter_fn fn, void *fn_param, 1371 struct device *dev, const char *name) 1372{ 1373 struct dma_chan *chan; 1374 1375 chan = dma_request_slave_channel(dev, name); 1376 if (chan) 1377 return chan; 1378 1379 if (!fn || !fn_param) 1380 return NULL; 1381 1382 return __dma_request_channel(mask, fn, fn_param); 1383} 1384#endif /* DMAENGINE_H */