at v4.6-rc4 3144 lines 95 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/serial.h> 76#include <linux/string.h> 77#include <linux/fcntl.h> 78#include <linux/ptrace.h> 79#include <linux/mutex.h> 80#include <linux/ioport.h> 81#include <linux/delay.h> 82#include <linux/completion.h> 83#include <linux/wait.h> 84#include <linux/pci.h> 85#include <linux/uaccess.h> 86#include <linux/atomic.h> 87#include <asm/unaligned.h> 88#include <linux/bitops.h> 89#include <linux/spinlock.h> 90#include <linux/init.h> 91 92/****** RocketPort includes ******/ 93 94#include "rocket_int.h" 95#include "rocket.h" 96 97#define ROCKET_VERSION "2.09" 98#define ROCKET_DATE "12-June-2003" 99 100/****** RocketPort Local Variables ******/ 101 102static void rp_do_poll(unsigned long dummy); 103 104static struct tty_driver *rocket_driver; 105 106static struct rocket_version driver_version = { 107 ROCKET_VERSION, ROCKET_DATE 108}; 109 110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 112 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 113static atomic_t rp_num_ports_open; /* Number of serial ports open */ 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 115 116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 117static unsigned long board2; 118static unsigned long board3; 119static unsigned long board4; 120static unsigned long controller; 121static bool support_low_speed; 122static unsigned long modem1; 123static unsigned long modem2; 124static unsigned long modem3; 125static unsigned long modem4; 126static unsigned long pc104_1[8]; 127static unsigned long pc104_2[8]; 128static unsigned long pc104_3[8]; 129static unsigned long pc104_4[8]; 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 131 132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 133static unsigned long rcktpt_io_addr[NUM_BOARDS]; 134static int rcktpt_type[NUM_BOARDS]; 135static int is_PCI[NUM_BOARDS]; 136static rocketModel_t rocketModel[NUM_BOARDS]; 137static int max_board; 138static const struct tty_port_operations rocket_port_ops; 139 140/* 141 * The following arrays define the interrupt bits corresponding to each AIOP. 142 * These bits are different between the ISA and regular PCI boards and the 143 * Universal PCI boards. 144 */ 145 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 147 AIOP_INTR_BIT_0, 148 AIOP_INTR_BIT_1, 149 AIOP_INTR_BIT_2, 150 AIOP_INTR_BIT_3 151}; 152 153#ifdef CONFIG_PCI 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 155 UPCI_AIOP_INTR_BIT_0, 156 UPCI_AIOP_INTR_BIT_1, 157 UPCI_AIOP_INTR_BIT_2, 158 UPCI_AIOP_INTR_BIT_3 159}; 160#endif 161 162static Byte_t RData[RDATASIZE] = { 163 0x00, 0x09, 0xf6, 0x82, 164 0x02, 0x09, 0x86, 0xfb, 165 0x04, 0x09, 0x00, 0x0a, 166 0x06, 0x09, 0x01, 0x0a, 167 0x08, 0x09, 0x8a, 0x13, 168 0x0a, 0x09, 0xc5, 0x11, 169 0x0c, 0x09, 0x86, 0x85, 170 0x0e, 0x09, 0x20, 0x0a, 171 0x10, 0x09, 0x21, 0x0a, 172 0x12, 0x09, 0x41, 0xff, 173 0x14, 0x09, 0x82, 0x00, 174 0x16, 0x09, 0x82, 0x7b, 175 0x18, 0x09, 0x8a, 0x7d, 176 0x1a, 0x09, 0x88, 0x81, 177 0x1c, 0x09, 0x86, 0x7a, 178 0x1e, 0x09, 0x84, 0x81, 179 0x20, 0x09, 0x82, 0x7c, 180 0x22, 0x09, 0x0a, 0x0a 181}; 182 183static Byte_t RRegData[RREGDATASIZE] = { 184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 197}; 198 199static CONTROLLER_T sController[CTL_SIZE] = { 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 208}; 209 210static Byte_t sBitMapClrTbl[8] = { 211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 212}; 213 214static Byte_t sBitMapSetTbl[8] = { 215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 216}; 217 218static int sClockPrescale = 0x14; 219 220/* 221 * Line number is the ttySIx number (x), the Minor number. We 222 * assign them sequentially, starting at zero. The following 223 * array keeps track of the line number assigned to a given board/aiop/channel. 224 */ 225static unsigned char lineNumbers[MAX_RP_PORTS]; 226static unsigned long nextLineNumber; 227 228/***** RocketPort Static Prototypes *********/ 229static int __init init_ISA(int i); 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 231static void rp_flush_buffer(struct tty_struct *tty); 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 234static void rp_start(struct tty_struct *tty); 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 236 int ChanNum); 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 238static void sFlushRxFIFO(CHANNEL_T * ChP); 239static void sFlushTxFIFO(CHANNEL_T * ChP); 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 246 ByteIO_t * AiopIOList, int AiopIOListSize, 247 int IRQNum, Byte_t Frequency, int PeriodicOnly); 248static int sReadAiopID(ByteIO_t io); 249static int sReadAiopNumChan(WordIO_t io); 250 251MODULE_AUTHOR("Theodore Ts'o"); 252MODULE_DESCRIPTION("Comtrol RocketPort driver"); 253module_param(board1, ulong, 0); 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 255module_param(board2, ulong, 0); 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 257module_param(board3, ulong, 0); 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 259module_param(board4, ulong, 0); 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 261module_param(controller, ulong, 0); 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 263module_param(support_low_speed, bool, 0); 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 265module_param(modem1, ulong, 0); 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 267module_param(modem2, ulong, 0); 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 269module_param(modem3, ulong, 0); 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 271module_param(modem4, ulong, 0); 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 273module_param_array(pc104_1, ulong, NULL, 0); 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 275module_param_array(pc104_2, ulong, NULL, 0); 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 277module_param_array(pc104_3, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 279module_param_array(pc104_4, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 281 282static int rp_init(void); 283static void rp_cleanup_module(void); 284 285module_init(rp_init); 286module_exit(rp_cleanup_module); 287 288 289MODULE_LICENSE("Dual BSD/GPL"); 290 291/*************************************************************************/ 292/* Module code starts here */ 293 294static inline int rocket_paranoia_check(struct r_port *info, 295 const char *routine) 296{ 297#ifdef ROCKET_PARANOIA_CHECK 298 if (!info) 299 return 1; 300 if (info->magic != RPORT_MAGIC) { 301 printk(KERN_WARNING "Warning: bad magic number for rocketport " 302 "struct in %s\n", routine); 303 return 1; 304 } 305#endif 306 return 0; 307} 308 309 310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 312 * tty layer. 313 */ 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 315 unsigned int ChanStatus) 316{ 317 unsigned int CharNStat; 318 int ToRecv, wRecv, space; 319 unsigned char *cbuf; 320 321 ToRecv = sGetRxCnt(cp); 322#ifdef ROCKET_DEBUG_INTR 323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 324#endif 325 if (ToRecv == 0) 326 return; 327 328 /* 329 * if status indicates there are errored characters in the 330 * FIFO, then enter status mode (a word in FIFO holds 331 * character and status). 332 */ 333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 334 if (!(ChanStatus & STATMODE)) { 335#ifdef ROCKET_DEBUG_RECEIVE 336 printk(KERN_INFO "Entering STATMODE...\n"); 337#endif 338 ChanStatus |= STATMODE; 339 sEnRxStatusMode(cp); 340 } 341 } 342 343 /* 344 * if we previously entered status mode, then read down the 345 * FIFO one word at a time, pulling apart the character and 346 * the status. Update error counters depending on status 347 */ 348 if (ChanStatus & STATMODE) { 349#ifdef ROCKET_DEBUG_RECEIVE 350 printk(KERN_INFO "Ignore %x, read %x...\n", 351 info->ignore_status_mask, info->read_status_mask); 352#endif 353 while (ToRecv) { 354 char flag; 355 356 CharNStat = sInW(sGetTxRxDataIO(cp)); 357#ifdef ROCKET_DEBUG_RECEIVE 358 printk(KERN_INFO "%x...\n", CharNStat); 359#endif 360 if (CharNStat & STMBREAKH) 361 CharNStat &= ~(STMFRAMEH | STMPARITYH); 362 if (CharNStat & info->ignore_status_mask) { 363 ToRecv--; 364 continue; 365 } 366 CharNStat &= info->read_status_mask; 367 if (CharNStat & STMBREAKH) 368 flag = TTY_BREAK; 369 else if (CharNStat & STMPARITYH) 370 flag = TTY_PARITY; 371 else if (CharNStat & STMFRAMEH) 372 flag = TTY_FRAME; 373 else if (CharNStat & STMRCVROVRH) 374 flag = TTY_OVERRUN; 375 else 376 flag = TTY_NORMAL; 377 tty_insert_flip_char(&info->port, CharNStat & 0xff, 378 flag); 379 ToRecv--; 380 } 381 382 /* 383 * after we've emptied the FIFO in status mode, turn 384 * status mode back off 385 */ 386 if (sGetRxCnt(cp) == 0) { 387#ifdef ROCKET_DEBUG_RECEIVE 388 printk(KERN_INFO "Status mode off.\n"); 389#endif 390 sDisRxStatusMode(cp); 391 } 392 } else { 393 /* 394 * we aren't in status mode, so read down the FIFO two 395 * characters at time by doing repeated word IO 396 * transfer. 397 */ 398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 399 if (space < ToRecv) { 400#ifdef ROCKET_DEBUG_RECEIVE 401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 402#endif 403 if (space <= 0) 404 return; 405 ToRecv = space; 406 } 407 wRecv = ToRecv >> 1; 408 if (wRecv) 409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 410 if (ToRecv & 1) 411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 412 } 413 /* Push the data up to the tty layer */ 414 tty_flip_buffer_push(&info->port); 415} 416 417/* 418 * Serial port transmit data function. Called from the timer polling loop as a 419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 422 */ 423static void rp_do_transmit(struct r_port *info) 424{ 425 int c; 426 CHANNEL_t *cp = &info->channel; 427 struct tty_struct *tty; 428 unsigned long flags; 429 430#ifdef ROCKET_DEBUG_INTR 431 printk(KERN_DEBUG "%s\n", __func__); 432#endif 433 if (!info) 434 return; 435 tty = tty_port_tty_get(&info->port); 436 437 if (tty == NULL) { 438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 440 return; 441 } 442 443 spin_lock_irqsave(&info->slock, flags); 444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 445 446 /* Loop sending data to FIFO until done or FIFO full */ 447 while (1) { 448 if (tty->stopped) 449 break; 450 c = min(info->xmit_fifo_room, info->xmit_cnt); 451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 452 if (c <= 0 || info->xmit_fifo_room <= 0) 453 break; 454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 455 if (c & 1) 456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 457 info->xmit_tail += c; 458 info->xmit_tail &= XMIT_BUF_SIZE - 1; 459 info->xmit_cnt -= c; 460 info->xmit_fifo_room -= c; 461#ifdef ROCKET_DEBUG_INTR 462 printk(KERN_INFO "tx %d chars...\n", c); 463#endif 464 } 465 466 if (info->xmit_cnt == 0) 467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 468 469 if (info->xmit_cnt < WAKEUP_CHARS) { 470 tty_wakeup(tty); 471#ifdef ROCKETPORT_HAVE_POLL_WAIT 472 wake_up_interruptible(&tty->poll_wait); 473#endif 474 } 475 476 spin_unlock_irqrestore(&info->slock, flags); 477 tty_kref_put(tty); 478 479#ifdef ROCKET_DEBUG_INTR 480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 481 info->xmit_tail, info->xmit_fifo_room); 482#endif 483} 484 485/* 486 * Called when a serial port signals it has read data in it's RX FIFO. 487 * It checks what interrupts are pending and services them, including 488 * receiving serial data. 489 */ 490static void rp_handle_port(struct r_port *info) 491{ 492 CHANNEL_t *cp; 493 unsigned int IntMask, ChanStatus; 494 495 if (!info) 496 return; 497 498 if ((info->port.flags & ASYNC_INITIALIZED) == 0) { 499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 500 "info->flags & NOT_INIT\n"); 501 return; 502 } 503 504 cp = &info->channel; 505 506 IntMask = sGetChanIntID(cp) & info->intmask; 507#ifdef ROCKET_DEBUG_INTR 508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 509#endif 510 ChanStatus = sGetChanStatus(cp); 511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 512 rp_do_receive(info, cp, ChanStatus); 513 } 514 if (IntMask & DELTA_CD) { /* CD change */ 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 517 (ChanStatus & CD_ACT) ? "on" : "off"); 518#endif 519 if (!(ChanStatus & CD_ACT) && info->cd_status) { 520#ifdef ROCKET_DEBUG_HANGUP 521 printk(KERN_INFO "CD drop, calling hangup.\n"); 522#endif 523 tty_port_tty_hangup(&info->port, false); 524 } 525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 526 wake_up_interruptible(&info->port.open_wait); 527 } 528#ifdef ROCKET_DEBUG_INTR 529 if (IntMask & DELTA_CTS) { /* CTS change */ 530 printk(KERN_INFO "CTS change...\n"); 531 } 532 if (IntMask & DELTA_DSR) { /* DSR change */ 533 printk(KERN_INFO "DSR change...\n"); 534 } 535#endif 536} 537 538/* 539 * The top level polling routine. Repeats every 1/100 HZ (10ms). 540 */ 541static void rp_do_poll(unsigned long dummy) 542{ 543 CONTROLLER_t *ctlp; 544 int ctrl, aiop, ch, line; 545 unsigned int xmitmask, i; 546 unsigned int CtlMask; 547 unsigned char AiopMask; 548 Word_t bit; 549 550 /* Walk through all the boards (ctrl's) */ 551 for (ctrl = 0; ctrl < max_board; ctrl++) { 552 if (rcktpt_io_addr[ctrl] <= 0) 553 continue; 554 555 /* Get a ptr to the board's control struct */ 556 ctlp = sCtlNumToCtlPtr(ctrl); 557 558 /* Get the interrupt status from the board */ 559#ifdef CONFIG_PCI 560 if (ctlp->BusType == isPCI) 561 CtlMask = sPCIGetControllerIntStatus(ctlp); 562 else 563#endif 564 CtlMask = sGetControllerIntStatus(ctlp); 565 566 /* Check if any AIOP read bits are set */ 567 for (aiop = 0; CtlMask; aiop++) { 568 bit = ctlp->AiopIntrBits[aiop]; 569 if (CtlMask & bit) { 570 CtlMask &= ~bit; 571 AiopMask = sGetAiopIntStatus(ctlp, aiop); 572 573 /* Check if any port read bits are set */ 574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 575 if (AiopMask & 1) { 576 577 /* Get the line number (/dev/ttyRx number). */ 578 /* Read the data from the port. */ 579 line = GetLineNumber(ctrl, aiop, ch); 580 rp_handle_port(rp_table[line]); 581 } 582 } 583 } 584 } 585 586 xmitmask = xmit_flags[ctrl]; 587 588 /* 589 * xmit_flags contains bit-significant flags, indicating there is data 590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 591 * 1, ... (32 total possible). The variable i has the aiop and ch 592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 593 */ 594 if (xmitmask) { 595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 596 if (xmitmask & (1 << i)) { 597 aiop = (i & 0x18) >> 3; 598 ch = i & 0x07; 599 line = GetLineNumber(ctrl, aiop, ch); 600 rp_do_transmit(rp_table[line]); 601 } 602 } 603 } 604 } 605 606 /* 607 * Reset the timer so we get called at the next clock tick (10ms). 608 */ 609 if (atomic_read(&rp_num_ports_open)) 610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 611} 612 613/* 614 * Initializes the r_port structure for a port, as well as enabling the port on 615 * the board. 616 * Inputs: board, aiop, chan numbers 617 */ 618static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 619{ 620 unsigned rocketMode; 621 struct r_port *info; 622 int line; 623 CONTROLLER_T *ctlp; 624 625 /* Get the next available line number */ 626 line = SetLineNumber(board, aiop, chan); 627 628 ctlp = sCtlNumToCtlPtr(board); 629 630 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 631 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 632 if (!info) { 633 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 634 line); 635 return; 636 } 637 638 info->magic = RPORT_MAGIC; 639 info->line = line; 640 info->ctlp = ctlp; 641 info->board = board; 642 info->aiop = aiop; 643 info->chan = chan; 644 tty_port_init(&info->port); 645 info->port.ops = &rocket_port_ops; 646 info->flags &= ~ROCKET_MODE_MASK; 647 switch (pc104[board][line]) { 648 case 422: 649 info->flags |= ROCKET_MODE_RS422; 650 break; 651 case 485: 652 info->flags |= ROCKET_MODE_RS485; 653 break; 654 case 232: 655 default: 656 info->flags |= ROCKET_MODE_RS232; 657 break; 658 } 659 660 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 661 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 662 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 663 board, aiop, chan); 664 tty_port_destroy(&info->port); 665 kfree(info); 666 return; 667 } 668 669 rocketMode = info->flags & ROCKET_MODE_MASK; 670 671 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 672 sEnRTSToggle(&info->channel); 673 else 674 sDisRTSToggle(&info->channel); 675 676 if (ctlp->boardType == ROCKET_TYPE_PC104) { 677 switch (rocketMode) { 678 case ROCKET_MODE_RS485: 679 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 680 break; 681 case ROCKET_MODE_RS422: 682 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 683 break; 684 case ROCKET_MODE_RS232: 685 default: 686 if (info->flags & ROCKET_RTS_TOGGLE) 687 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 688 else 689 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 690 break; 691 } 692 } 693 spin_lock_init(&info->slock); 694 mutex_init(&info->write_mtx); 695 rp_table[line] = info; 696 tty_port_register_device(&info->port, rocket_driver, line, 697 pci_dev ? &pci_dev->dev : NULL); 698} 699 700/* 701 * Configures a rocketport port according to its termio settings. Called from 702 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 703 */ 704static void configure_r_port(struct tty_struct *tty, struct r_port *info, 705 struct ktermios *old_termios) 706{ 707 unsigned cflag; 708 unsigned long flags; 709 unsigned rocketMode; 710 int bits, baud, divisor; 711 CHANNEL_t *cp; 712 struct ktermios *t = &tty->termios; 713 714 cp = &info->channel; 715 cflag = t->c_cflag; 716 717 /* Byte size and parity */ 718 if ((cflag & CSIZE) == CS8) { 719 sSetData8(cp); 720 bits = 10; 721 } else { 722 sSetData7(cp); 723 bits = 9; 724 } 725 if (cflag & CSTOPB) { 726 sSetStop2(cp); 727 bits++; 728 } else { 729 sSetStop1(cp); 730 } 731 732 if (cflag & PARENB) { 733 sEnParity(cp); 734 bits++; 735 if (cflag & PARODD) { 736 sSetOddParity(cp); 737 } else { 738 sSetEvenParity(cp); 739 } 740 } else { 741 sDisParity(cp); 742 } 743 744 /* baud rate */ 745 baud = tty_get_baud_rate(tty); 746 if (!baud) 747 baud = 9600; 748 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 749 if ((divisor >= 8192 || divisor < 0) && old_termios) { 750 baud = tty_termios_baud_rate(old_termios); 751 if (!baud) 752 baud = 9600; 753 divisor = (rp_baud_base[info->board] / baud) - 1; 754 } 755 if (divisor >= 8192 || divisor < 0) { 756 baud = 9600; 757 divisor = (rp_baud_base[info->board] / baud) - 1; 758 } 759 info->cps = baud / bits; 760 sSetBaud(cp, divisor); 761 762 /* FIXME: Should really back compute a baud rate from the divisor */ 763 tty_encode_baud_rate(tty, baud, baud); 764 765 if (cflag & CRTSCTS) { 766 info->intmask |= DELTA_CTS; 767 sEnCTSFlowCtl(cp); 768 } else { 769 info->intmask &= ~DELTA_CTS; 770 sDisCTSFlowCtl(cp); 771 } 772 if (cflag & CLOCAL) { 773 info->intmask &= ~DELTA_CD; 774 } else { 775 spin_lock_irqsave(&info->slock, flags); 776 if (sGetChanStatus(cp) & CD_ACT) 777 info->cd_status = 1; 778 else 779 info->cd_status = 0; 780 info->intmask |= DELTA_CD; 781 spin_unlock_irqrestore(&info->slock, flags); 782 } 783 784 /* 785 * Handle software flow control in the board 786 */ 787#ifdef ROCKET_SOFT_FLOW 788 if (I_IXON(tty)) { 789 sEnTxSoftFlowCtl(cp); 790 if (I_IXANY(tty)) { 791 sEnIXANY(cp); 792 } else { 793 sDisIXANY(cp); 794 } 795 sSetTxXONChar(cp, START_CHAR(tty)); 796 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 797 } else { 798 sDisTxSoftFlowCtl(cp); 799 sDisIXANY(cp); 800 sClrTxXOFF(cp); 801 } 802#endif 803 804 /* 805 * Set up ignore/read mask words 806 */ 807 info->read_status_mask = STMRCVROVRH | 0xFF; 808 if (I_INPCK(tty)) 809 info->read_status_mask |= STMFRAMEH | STMPARITYH; 810 if (I_BRKINT(tty) || I_PARMRK(tty)) 811 info->read_status_mask |= STMBREAKH; 812 813 /* 814 * Characters to ignore 815 */ 816 info->ignore_status_mask = 0; 817 if (I_IGNPAR(tty)) 818 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 819 if (I_IGNBRK(tty)) { 820 info->ignore_status_mask |= STMBREAKH; 821 /* 822 * If we're ignoring parity and break indicators, 823 * ignore overruns too. (For real raw support). 824 */ 825 if (I_IGNPAR(tty)) 826 info->ignore_status_mask |= STMRCVROVRH; 827 } 828 829 rocketMode = info->flags & ROCKET_MODE_MASK; 830 831 if ((info->flags & ROCKET_RTS_TOGGLE) 832 || (rocketMode == ROCKET_MODE_RS485)) 833 sEnRTSToggle(cp); 834 else 835 sDisRTSToggle(cp); 836 837 sSetRTS(&info->channel); 838 839 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 840 switch (rocketMode) { 841 case ROCKET_MODE_RS485: 842 sSetInterfaceMode(cp, InterfaceModeRS485); 843 break; 844 case ROCKET_MODE_RS422: 845 sSetInterfaceMode(cp, InterfaceModeRS422); 846 break; 847 case ROCKET_MODE_RS232: 848 default: 849 if (info->flags & ROCKET_RTS_TOGGLE) 850 sSetInterfaceMode(cp, InterfaceModeRS232T); 851 else 852 sSetInterfaceMode(cp, InterfaceModeRS232); 853 break; 854 } 855 } 856} 857 858static int carrier_raised(struct tty_port *port) 859{ 860 struct r_port *info = container_of(port, struct r_port, port); 861 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 862} 863 864static void dtr_rts(struct tty_port *port, int on) 865{ 866 struct r_port *info = container_of(port, struct r_port, port); 867 if (on) { 868 sSetDTR(&info->channel); 869 sSetRTS(&info->channel); 870 } else { 871 sClrDTR(&info->channel); 872 sClrRTS(&info->channel); 873 } 874} 875 876/* 877 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 878 * port's r_port struct. Initializes the port hardware. 879 */ 880static int rp_open(struct tty_struct *tty, struct file *filp) 881{ 882 struct r_port *info; 883 struct tty_port *port; 884 int retval; 885 CHANNEL_t *cp; 886 unsigned long page; 887 888 info = rp_table[tty->index]; 889 if (info == NULL) 890 return -ENXIO; 891 port = &info->port; 892 893 page = __get_free_page(GFP_KERNEL); 894 if (!page) 895 return -ENOMEM; 896 897 /* 898 * We must not sleep from here until the port is marked fully in use. 899 */ 900 if (info->xmit_buf) 901 free_page(page); 902 else 903 info->xmit_buf = (unsigned char *) page; 904 905 tty->driver_data = info; 906 tty_port_tty_set(port, tty); 907 908 if (port->count++ == 0) { 909 atomic_inc(&rp_num_ports_open); 910 911#ifdef ROCKET_DEBUG_OPEN 912 printk(KERN_INFO "rocket mod++ = %d...\n", 913 atomic_read(&rp_num_ports_open)); 914#endif 915 } 916#ifdef ROCKET_DEBUG_OPEN 917 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 918#endif 919 920 /* 921 * Info->count is now 1; so it's safe to sleep now. 922 */ 923 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) { 924 cp = &info->channel; 925 sSetRxTrigger(cp, TRIG_1); 926 if (sGetChanStatus(cp) & CD_ACT) 927 info->cd_status = 1; 928 else 929 info->cd_status = 0; 930 sDisRxStatusMode(cp); 931 sFlushRxFIFO(cp); 932 sFlushTxFIFO(cp); 933 934 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 935 sSetRxTrigger(cp, TRIG_1); 936 937 sGetChanStatus(cp); 938 sDisRxStatusMode(cp); 939 sClrTxXOFF(cp); 940 941 sDisCTSFlowCtl(cp); 942 sDisTxSoftFlowCtl(cp); 943 944 sEnRxFIFO(cp); 945 sEnTransmit(cp); 946 947 set_bit(ASYNCB_INITIALIZED, &info->port.flags); 948 949 /* 950 * Set up the tty->alt_speed kludge 951 */ 952 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 953 tty->alt_speed = 57600; 954 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 955 tty->alt_speed = 115200; 956 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 957 tty->alt_speed = 230400; 958 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 959 tty->alt_speed = 460800; 960 961 configure_r_port(tty, info, NULL); 962 if (C_BAUD(tty)) { 963 sSetDTR(cp); 964 sSetRTS(cp); 965 } 966 } 967 /* Starts (or resets) the maint polling loop */ 968 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 969 970 retval = tty_port_block_til_ready(port, tty, filp); 971 if (retval) { 972#ifdef ROCKET_DEBUG_OPEN 973 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 974#endif 975 return retval; 976 } 977 return 0; 978} 979 980/* 981 * Exception handler that closes a serial port. info->port.count is considered critical. 982 */ 983static void rp_close(struct tty_struct *tty, struct file *filp) 984{ 985 struct r_port *info = tty->driver_data; 986 struct tty_port *port = &info->port; 987 int timeout; 988 CHANNEL_t *cp; 989 990 if (rocket_paranoia_check(info, "rp_close")) 991 return; 992 993#ifdef ROCKET_DEBUG_OPEN 994 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 995#endif 996 997 if (tty_port_close_start(port, tty, filp) == 0) 998 return; 999 1000 mutex_lock(&port->mutex); 1001 cp = &info->channel; 1002 /* 1003 * Before we drop DTR, make sure the UART transmitter 1004 * has completely drained; this is especially 1005 * important if there is a transmit FIFO! 1006 */ 1007 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 1008 if (timeout == 0) 1009 timeout = 1; 1010 rp_wait_until_sent(tty, timeout); 1011 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1012 1013 sDisTransmit(cp); 1014 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1015 sDisCTSFlowCtl(cp); 1016 sDisTxSoftFlowCtl(cp); 1017 sClrTxXOFF(cp); 1018 sFlushRxFIFO(cp); 1019 sFlushTxFIFO(cp); 1020 sClrRTS(cp); 1021 if (C_HUPCL(tty)) 1022 sClrDTR(cp); 1023 1024 rp_flush_buffer(tty); 1025 1026 tty_ldisc_flush(tty); 1027 1028 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1029 1030 /* We can't yet use tty_port_close_end as the buffer handling in this 1031 driver is a bit different to the usual */ 1032 1033 if (port->blocked_open) { 1034 if (port->close_delay) { 1035 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1036 } 1037 wake_up_interruptible(&port->open_wait); 1038 } else { 1039 if (info->xmit_buf) { 1040 free_page((unsigned long) info->xmit_buf); 1041 info->xmit_buf = NULL; 1042 } 1043 } 1044 spin_lock_irq(&port->lock); 1045 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_NORMAL_ACTIVE); 1046 tty->closing = 0; 1047 spin_unlock_irq(&port->lock); 1048 mutex_unlock(&port->mutex); 1049 tty_port_tty_set(port, NULL); 1050 1051 atomic_dec(&rp_num_ports_open); 1052 1053#ifdef ROCKET_DEBUG_OPEN 1054 printk(KERN_INFO "rocket mod-- = %d...\n", 1055 atomic_read(&rp_num_ports_open)); 1056 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1057#endif 1058 1059} 1060 1061static void rp_set_termios(struct tty_struct *tty, 1062 struct ktermios *old_termios) 1063{ 1064 struct r_port *info = tty->driver_data; 1065 CHANNEL_t *cp; 1066 unsigned cflag; 1067 1068 if (rocket_paranoia_check(info, "rp_set_termios")) 1069 return; 1070 1071 cflag = tty->termios.c_cflag; 1072 1073 /* 1074 * This driver doesn't support CS5 or CS6 1075 */ 1076 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1077 tty->termios.c_cflag = 1078 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1079 /* Or CMSPAR */ 1080 tty->termios.c_cflag &= ~CMSPAR; 1081 1082 configure_r_port(tty, info, old_termios); 1083 1084 cp = &info->channel; 1085 1086 /* Handle transition to B0 status */ 1087 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) { 1088 sClrDTR(cp); 1089 sClrRTS(cp); 1090 } 1091 1092 /* Handle transition away from B0 status */ 1093 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) { 1094 sSetRTS(cp); 1095 sSetDTR(cp); 1096 } 1097 1098 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) 1099 rp_start(tty); 1100} 1101 1102static int rp_break(struct tty_struct *tty, int break_state) 1103{ 1104 struct r_port *info = tty->driver_data; 1105 unsigned long flags; 1106 1107 if (rocket_paranoia_check(info, "rp_break")) 1108 return -EINVAL; 1109 1110 spin_lock_irqsave(&info->slock, flags); 1111 if (break_state == -1) 1112 sSendBreak(&info->channel); 1113 else 1114 sClrBreak(&info->channel); 1115 spin_unlock_irqrestore(&info->slock, flags); 1116 return 0; 1117} 1118 1119/* 1120 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1121 * the UPCI boards was added, it was decided to make this a function because 1122 * the macro was getting too complicated. All cases except the first one 1123 * (UPCIRingInd) are taken directly from the original macro. 1124 */ 1125static int sGetChanRI(CHANNEL_T * ChP) 1126{ 1127 CONTROLLER_t *CtlP = ChP->CtlP; 1128 int ChanNum = ChP->ChanNum; 1129 int RingInd = 0; 1130 1131 if (CtlP->UPCIRingInd) 1132 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1133 else if (CtlP->AltChanRingIndicator) 1134 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1135 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1136 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1137 1138 return RingInd; 1139} 1140 1141/********************************************************************************************/ 1142/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1143 1144/* 1145 * Returns the state of the serial modem control lines. These next 2 functions 1146 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1147 */ 1148static int rp_tiocmget(struct tty_struct *tty) 1149{ 1150 struct r_port *info = tty->driver_data; 1151 unsigned int control, result, ChanStatus; 1152 1153 ChanStatus = sGetChanStatusLo(&info->channel); 1154 control = info->channel.TxControl[3]; 1155 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1156 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1157 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1158 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1159 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1160 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1161 1162 return result; 1163} 1164 1165/* 1166 * Sets the modem control lines 1167 */ 1168static int rp_tiocmset(struct tty_struct *tty, 1169 unsigned int set, unsigned int clear) 1170{ 1171 struct r_port *info = tty->driver_data; 1172 1173 if (set & TIOCM_RTS) 1174 info->channel.TxControl[3] |= SET_RTS; 1175 if (set & TIOCM_DTR) 1176 info->channel.TxControl[3] |= SET_DTR; 1177 if (clear & TIOCM_RTS) 1178 info->channel.TxControl[3] &= ~SET_RTS; 1179 if (clear & TIOCM_DTR) 1180 info->channel.TxControl[3] &= ~SET_DTR; 1181 1182 out32(info->channel.IndexAddr, info->channel.TxControl); 1183 return 0; 1184} 1185 1186static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1187{ 1188 struct rocket_config tmp; 1189 1190 if (!retinfo) 1191 return -EFAULT; 1192 memset(&tmp, 0, sizeof (tmp)); 1193 mutex_lock(&info->port.mutex); 1194 tmp.line = info->line; 1195 tmp.flags = info->flags; 1196 tmp.close_delay = info->port.close_delay; 1197 tmp.closing_wait = info->port.closing_wait; 1198 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1199 mutex_unlock(&info->port.mutex); 1200 1201 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1202 return -EFAULT; 1203 return 0; 1204} 1205 1206static int set_config(struct tty_struct *tty, struct r_port *info, 1207 struct rocket_config __user *new_info) 1208{ 1209 struct rocket_config new_serial; 1210 1211 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1212 return -EFAULT; 1213 1214 mutex_lock(&info->port.mutex); 1215 if (!capable(CAP_SYS_ADMIN)) 1216 { 1217 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1218 mutex_unlock(&info->port.mutex); 1219 return -EPERM; 1220 } 1221 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1222 configure_r_port(tty, info, NULL); 1223 mutex_unlock(&info->port.mutex); 1224 return 0; 1225 } 1226 1227 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1228 info->port.close_delay = new_serial.close_delay; 1229 info->port.closing_wait = new_serial.closing_wait; 1230 1231 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1232 tty->alt_speed = 57600; 1233 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1234 tty->alt_speed = 115200; 1235 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1236 tty->alt_speed = 230400; 1237 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1238 tty->alt_speed = 460800; 1239 mutex_unlock(&info->port.mutex); 1240 1241 configure_r_port(tty, info, NULL); 1242 return 0; 1243} 1244 1245/* 1246 * This function fills in a rocket_ports struct with information 1247 * about what boards/ports are in the system. This info is passed 1248 * to user space. See setrocket.c where the info is used to create 1249 * the /dev/ttyRx ports. 1250 */ 1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1252{ 1253 struct rocket_ports tmp; 1254 int board; 1255 1256 if (!retports) 1257 return -EFAULT; 1258 memset(&tmp, 0, sizeof (tmp)); 1259 tmp.tty_major = rocket_driver->major; 1260 1261 for (board = 0; board < 4; board++) { 1262 tmp.rocketModel[board].model = rocketModel[board].model; 1263 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1264 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1265 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1266 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1267 } 1268 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1269 return -EFAULT; 1270 return 0; 1271} 1272 1273static int reset_rm2(struct r_port *info, void __user *arg) 1274{ 1275 int reset; 1276 1277 if (!capable(CAP_SYS_ADMIN)) 1278 return -EPERM; 1279 1280 if (copy_from_user(&reset, arg, sizeof (int))) 1281 return -EFAULT; 1282 if (reset) 1283 reset = 1; 1284 1285 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1286 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1287 return -EINVAL; 1288 1289 if (info->ctlp->BusType == isISA) 1290 sModemReset(info->ctlp, info->chan, reset); 1291 else 1292 sPCIModemReset(info->ctlp, info->chan, reset); 1293 1294 return 0; 1295} 1296 1297static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1298{ 1299 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1300 return -EFAULT; 1301 return 0; 1302} 1303 1304/* IOCTL call handler into the driver */ 1305static int rp_ioctl(struct tty_struct *tty, 1306 unsigned int cmd, unsigned long arg) 1307{ 1308 struct r_port *info = tty->driver_data; 1309 void __user *argp = (void __user *)arg; 1310 int ret = 0; 1311 1312 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1313 return -ENXIO; 1314 1315 switch (cmd) { 1316 case RCKP_GET_STRUCT: 1317 if (copy_to_user(argp, info, sizeof (struct r_port))) 1318 ret = -EFAULT; 1319 break; 1320 case RCKP_GET_CONFIG: 1321 ret = get_config(info, argp); 1322 break; 1323 case RCKP_SET_CONFIG: 1324 ret = set_config(tty, info, argp); 1325 break; 1326 case RCKP_GET_PORTS: 1327 ret = get_ports(info, argp); 1328 break; 1329 case RCKP_RESET_RM2: 1330 ret = reset_rm2(info, argp); 1331 break; 1332 case RCKP_GET_VERSION: 1333 ret = get_version(info, argp); 1334 break; 1335 default: 1336 ret = -ENOIOCTLCMD; 1337 } 1338 return ret; 1339} 1340 1341static void rp_send_xchar(struct tty_struct *tty, char ch) 1342{ 1343 struct r_port *info = tty->driver_data; 1344 CHANNEL_t *cp; 1345 1346 if (rocket_paranoia_check(info, "rp_send_xchar")) 1347 return; 1348 1349 cp = &info->channel; 1350 if (sGetTxCnt(cp)) 1351 sWriteTxPrioByte(cp, ch); 1352 else 1353 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1354} 1355 1356static void rp_throttle(struct tty_struct *tty) 1357{ 1358 struct r_port *info = tty->driver_data; 1359 1360#ifdef ROCKET_DEBUG_THROTTLE 1361 printk(KERN_INFO "throttle %s ....\n", tty->name); 1362#endif 1363 1364 if (rocket_paranoia_check(info, "rp_throttle")) 1365 return; 1366 1367 if (I_IXOFF(tty)) 1368 rp_send_xchar(tty, STOP_CHAR(tty)); 1369 1370 sClrRTS(&info->channel); 1371} 1372 1373static void rp_unthrottle(struct tty_struct *tty) 1374{ 1375 struct r_port *info = tty->driver_data; 1376#ifdef ROCKET_DEBUG_THROTTLE 1377 printk(KERN_INFO "unthrottle %s ....\n", tty->name); 1378#endif 1379 1380 if (rocket_paranoia_check(info, "rp_unthrottle")) 1381 return; 1382 1383 if (I_IXOFF(tty)) 1384 rp_send_xchar(tty, START_CHAR(tty)); 1385 1386 sSetRTS(&info->channel); 1387} 1388 1389/* 1390 * ------------------------------------------------------------ 1391 * rp_stop() and rp_start() 1392 * 1393 * This routines are called before setting or resetting tty->stopped. 1394 * They enable or disable transmitter interrupts, as necessary. 1395 * ------------------------------------------------------------ 1396 */ 1397static void rp_stop(struct tty_struct *tty) 1398{ 1399 struct r_port *info = tty->driver_data; 1400 1401#ifdef ROCKET_DEBUG_FLOW 1402 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1403 info->xmit_cnt, info->xmit_fifo_room); 1404#endif 1405 1406 if (rocket_paranoia_check(info, "rp_stop")) 1407 return; 1408 1409 if (sGetTxCnt(&info->channel)) 1410 sDisTransmit(&info->channel); 1411} 1412 1413static void rp_start(struct tty_struct *tty) 1414{ 1415 struct r_port *info = tty->driver_data; 1416 1417#ifdef ROCKET_DEBUG_FLOW 1418 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1419 info->xmit_cnt, info->xmit_fifo_room); 1420#endif 1421 1422 if (rocket_paranoia_check(info, "rp_stop")) 1423 return; 1424 1425 sEnTransmit(&info->channel); 1426 set_bit((info->aiop * 8) + info->chan, 1427 (void *) &xmit_flags[info->board]); 1428} 1429 1430/* 1431 * rp_wait_until_sent() --- wait until the transmitter is empty 1432 */ 1433static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1434{ 1435 struct r_port *info = tty->driver_data; 1436 CHANNEL_t *cp; 1437 unsigned long orig_jiffies; 1438 int check_time, exit_time; 1439 int txcnt; 1440 1441 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1442 return; 1443 1444 cp = &info->channel; 1445 1446 orig_jiffies = jiffies; 1447#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1448 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout, 1449 jiffies); 1450 printk(KERN_INFO "cps=%d...\n", info->cps); 1451#endif 1452 while (1) { 1453 txcnt = sGetTxCnt(cp); 1454 if (!txcnt) { 1455 if (sGetChanStatusLo(cp) & TXSHRMT) 1456 break; 1457 check_time = (HZ / info->cps) / 5; 1458 } else { 1459 check_time = HZ * txcnt / info->cps; 1460 } 1461 if (timeout) { 1462 exit_time = orig_jiffies + timeout - jiffies; 1463 if (exit_time <= 0) 1464 break; 1465 if (exit_time < check_time) 1466 check_time = exit_time; 1467 } 1468 if (check_time == 0) 1469 check_time = 1; 1470#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1471 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1472 jiffies, check_time); 1473#endif 1474 msleep_interruptible(jiffies_to_msecs(check_time)); 1475 if (signal_pending(current)) 1476 break; 1477 } 1478 __set_current_state(TASK_RUNNING); 1479#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1480 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1481#endif 1482} 1483 1484/* 1485 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1486 */ 1487static void rp_hangup(struct tty_struct *tty) 1488{ 1489 CHANNEL_t *cp; 1490 struct r_port *info = tty->driver_data; 1491 unsigned long flags; 1492 1493 if (rocket_paranoia_check(info, "rp_hangup")) 1494 return; 1495 1496#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1497 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1498#endif 1499 rp_flush_buffer(tty); 1500 spin_lock_irqsave(&info->port.lock, flags); 1501 if (info->port.count) 1502 atomic_dec(&rp_num_ports_open); 1503 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1504 spin_unlock_irqrestore(&info->port.lock, flags); 1505 1506 tty_port_hangup(&info->port); 1507 1508 cp = &info->channel; 1509 sDisRxFIFO(cp); 1510 sDisTransmit(cp); 1511 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1512 sDisCTSFlowCtl(cp); 1513 sDisTxSoftFlowCtl(cp); 1514 sClrTxXOFF(cp); 1515 clear_bit(ASYNCB_INITIALIZED, &info->port.flags); 1516 1517 wake_up_interruptible(&info->port.open_wait); 1518} 1519 1520/* 1521 * Exception handler - write char routine. The RocketPort driver uses a 1522 * double-buffering strategy, with the twist that if the in-memory CPU 1523 * buffer is empty, and there's space in the transmit FIFO, the 1524 * writing routines will write directly to transmit FIFO. 1525 * Write buffer and counters protected by spinlocks 1526 */ 1527static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1528{ 1529 struct r_port *info = tty->driver_data; 1530 CHANNEL_t *cp; 1531 unsigned long flags; 1532 1533 if (rocket_paranoia_check(info, "rp_put_char")) 1534 return 0; 1535 1536 /* 1537 * Grab the port write mutex, locking out other processes that try to 1538 * write to this port 1539 */ 1540 mutex_lock(&info->write_mtx); 1541 1542#ifdef ROCKET_DEBUG_WRITE 1543 printk(KERN_INFO "rp_put_char %c...\n", ch); 1544#endif 1545 1546 spin_lock_irqsave(&info->slock, flags); 1547 cp = &info->channel; 1548 1549 if (!tty->stopped && info->xmit_fifo_room == 0) 1550 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1551 1552 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1553 info->xmit_buf[info->xmit_head++] = ch; 1554 info->xmit_head &= XMIT_BUF_SIZE - 1; 1555 info->xmit_cnt++; 1556 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1557 } else { 1558 sOutB(sGetTxRxDataIO(cp), ch); 1559 info->xmit_fifo_room--; 1560 } 1561 spin_unlock_irqrestore(&info->slock, flags); 1562 mutex_unlock(&info->write_mtx); 1563 return 1; 1564} 1565 1566/* 1567 * Exception handler - write routine, called when user app writes to the device. 1568 * A per port write mutex is used to protect from another process writing to 1569 * this port at the same time. This other process could be running on the other CPU 1570 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1571 * Spinlocks protect the info xmit members. 1572 */ 1573static int rp_write(struct tty_struct *tty, 1574 const unsigned char *buf, int count) 1575{ 1576 struct r_port *info = tty->driver_data; 1577 CHANNEL_t *cp; 1578 const unsigned char *b; 1579 int c, retval = 0; 1580 unsigned long flags; 1581 1582 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1583 return 0; 1584 1585 if (mutex_lock_interruptible(&info->write_mtx)) 1586 return -ERESTARTSYS; 1587 1588#ifdef ROCKET_DEBUG_WRITE 1589 printk(KERN_INFO "rp_write %d chars...\n", count); 1590#endif 1591 cp = &info->channel; 1592 1593 if (!tty->stopped && info->xmit_fifo_room < count) 1594 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1595 1596 /* 1597 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1598 * into FIFO. Use the write queue for temp storage. 1599 */ 1600 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1601 c = min(count, info->xmit_fifo_room); 1602 b = buf; 1603 1604 /* Push data into FIFO, 2 bytes at a time */ 1605 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1606 1607 /* If there is a byte remaining, write it */ 1608 if (c & 1) 1609 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1610 1611 retval += c; 1612 buf += c; 1613 count -= c; 1614 1615 spin_lock_irqsave(&info->slock, flags); 1616 info->xmit_fifo_room -= c; 1617 spin_unlock_irqrestore(&info->slock, flags); 1618 } 1619 1620 /* If count is zero, we wrote it all and are done */ 1621 if (!count) 1622 goto end; 1623 1624 /* Write remaining data into the port's xmit_buf */ 1625 while (1) { 1626 /* Hung up ? */ 1627 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags)) 1628 goto end; 1629 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1630 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1631 if (c <= 0) 1632 break; 1633 1634 b = buf; 1635 memcpy(info->xmit_buf + info->xmit_head, b, c); 1636 1637 spin_lock_irqsave(&info->slock, flags); 1638 info->xmit_head = 1639 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1640 info->xmit_cnt += c; 1641 spin_unlock_irqrestore(&info->slock, flags); 1642 1643 buf += c; 1644 count -= c; 1645 retval += c; 1646 } 1647 1648 if ((retval > 0) && !tty->stopped) 1649 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1650 1651end: 1652 if (info->xmit_cnt < WAKEUP_CHARS) { 1653 tty_wakeup(tty); 1654#ifdef ROCKETPORT_HAVE_POLL_WAIT 1655 wake_up_interruptible(&tty->poll_wait); 1656#endif 1657 } 1658 mutex_unlock(&info->write_mtx); 1659 return retval; 1660} 1661 1662/* 1663 * Return the number of characters that can be sent. We estimate 1664 * only using the in-memory transmit buffer only, and ignore the 1665 * potential space in the transmit FIFO. 1666 */ 1667static int rp_write_room(struct tty_struct *tty) 1668{ 1669 struct r_port *info = tty->driver_data; 1670 int ret; 1671 1672 if (rocket_paranoia_check(info, "rp_write_room")) 1673 return 0; 1674 1675 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1676 if (ret < 0) 1677 ret = 0; 1678#ifdef ROCKET_DEBUG_WRITE 1679 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1680#endif 1681 return ret; 1682} 1683 1684/* 1685 * Return the number of characters in the buffer. Again, this only 1686 * counts those characters in the in-memory transmit buffer. 1687 */ 1688static int rp_chars_in_buffer(struct tty_struct *tty) 1689{ 1690 struct r_port *info = tty->driver_data; 1691 1692 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1693 return 0; 1694 1695#ifdef ROCKET_DEBUG_WRITE 1696 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1697#endif 1698 return info->xmit_cnt; 1699} 1700 1701/* 1702 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1703 * r_port struct for the port. Note that spinlock are used to protect info members, 1704 * do not call this function if the spinlock is already held. 1705 */ 1706static void rp_flush_buffer(struct tty_struct *tty) 1707{ 1708 struct r_port *info = tty->driver_data; 1709 CHANNEL_t *cp; 1710 unsigned long flags; 1711 1712 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1713 return; 1714 1715 spin_lock_irqsave(&info->slock, flags); 1716 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1717 spin_unlock_irqrestore(&info->slock, flags); 1718 1719#ifdef ROCKETPORT_HAVE_POLL_WAIT 1720 wake_up_interruptible(&tty->poll_wait); 1721#endif 1722 tty_wakeup(tty); 1723 1724 cp = &info->channel; 1725 sFlushTxFIFO(cp); 1726} 1727 1728#ifdef CONFIG_PCI 1729 1730static const struct pci_device_id rocket_pci_ids[] = { 1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1739 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1740 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1741 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1742 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1743 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1744 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1745 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1746 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1747 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1751 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1752 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1753 { } 1754}; 1755MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1756 1757/* Resets the speaker controller on RocketModem II and III devices */ 1758static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 1759{ 1760 ByteIO_t addr; 1761 1762 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 1763 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 1764 addr = CtlP->AiopIO[0] + 0x4F; 1765 sOutB(addr, 0); 1766 } 1767 1768 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 1769 if ((model == MODEL_UPCI_RM3_8PORT) 1770 || (model == MODEL_UPCI_RM3_4PORT)) { 1771 addr = CtlP->AiopIO[0] + 0x88; 1772 sOutB(addr, 0); 1773 } 1774} 1775 1776/*************************************************************************** 1777Function: sPCIInitController 1778Purpose: Initialization of controller global registers and controller 1779 structure. 1780Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 1781 IRQNum,Frequency,PeriodicOnly) 1782 CONTROLLER_T *CtlP; Ptr to controller structure 1783 int CtlNum; Controller number 1784 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 1785 This list must be in the order the AIOPs will be found on the 1786 controller. Once an AIOP in the list is not found, it is 1787 assumed that there are no more AIOPs on the controller. 1788 int AiopIOListSize; Number of addresses in AiopIOList 1789 int IRQNum; Interrupt Request number. Can be any of the following: 1790 0: Disable global interrupts 1791 3: IRQ 3 1792 4: IRQ 4 1793 5: IRQ 5 1794 9: IRQ 9 1795 10: IRQ 10 1796 11: IRQ 11 1797 12: IRQ 12 1798 15: IRQ 15 1799 Byte_t Frequency: A flag identifying the frequency 1800 of the periodic interrupt, can be any one of the following: 1801 FREQ_DIS - periodic interrupt disabled 1802 FREQ_137HZ - 137 Hertz 1803 FREQ_69HZ - 69 Hertz 1804 FREQ_34HZ - 34 Hertz 1805 FREQ_17HZ - 17 Hertz 1806 FREQ_9HZ - 9 Hertz 1807 FREQ_4HZ - 4 Hertz 1808 If IRQNum is set to 0 the Frequency parameter is 1809 overidden, it is forced to a value of FREQ_DIS. 1810 int PeriodicOnly: 1 if all interrupts except the periodic 1811 interrupt are to be blocked. 1812 0 is both the periodic interrupt and 1813 other channel interrupts are allowed. 1814 If IRQNum is set to 0 the PeriodicOnly parameter is 1815 overidden, it is forced to a value of 0. 1816Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 1817 initialization failed. 1818 1819Comments: 1820 If periodic interrupts are to be disabled but AIOP interrupts 1821 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 1822 1823 If interrupts are to be completely disabled set IRQNum to 0. 1824 1825 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 1826 invalid combination. 1827 1828 This function performs initialization of global interrupt modes, 1829 but it does not actually enable global interrupts. To enable 1830 and disable global interrupts use functions sEnGlobalInt() and 1831 sDisGlobalInt(). Enabling of global interrupts is normally not 1832 done until all other initializations are complete. 1833 1834 Even if interrupts are globally enabled, they must also be 1835 individually enabled for each channel that is to generate 1836 interrupts. 1837 1838Warnings: No range checking on any of the parameters is done. 1839 1840 No context switches are allowed while executing this function. 1841 1842 After this function all AIOPs on the controller are disabled, 1843 they can be enabled with sEnAiop(). 1844*/ 1845static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 1846 ByteIO_t * AiopIOList, int AiopIOListSize, 1847 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 1848 int PeriodicOnly, int altChanRingIndicator, 1849 int UPCIRingInd) 1850{ 1851 int i; 1852 ByteIO_t io; 1853 1854 CtlP->AltChanRingIndicator = altChanRingIndicator; 1855 CtlP->UPCIRingInd = UPCIRingInd; 1856 CtlP->CtlNum = CtlNum; 1857 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 1858 CtlP->BusType = isPCI; /* controller release 1 */ 1859 1860 if (ConfigIO) { 1861 CtlP->isUPCI = 1; 1862 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 1863 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 1864 CtlP->AiopIntrBits = upci_aiop_intr_bits; 1865 } else { 1866 CtlP->isUPCI = 0; 1867 CtlP->PCIIO = 1868 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 1869 CtlP->AiopIntrBits = aiop_intr_bits; 1870 } 1871 1872 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 1873 /* Init AIOPs */ 1874 CtlP->NumAiop = 0; 1875 for (i = 0; i < AiopIOListSize; i++) { 1876 io = AiopIOList[i]; 1877 CtlP->AiopIO[i] = (WordIO_t) io; 1878 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 1879 1880 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 1881 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 1882 break; /* done looking for AIOPs */ 1883 1884 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 1885 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 1886 sOutB(io + _INDX_DATA, sClockPrescale); 1887 CtlP->NumAiop++; /* bump count of AIOPs */ 1888 } 1889 1890 if (CtlP->NumAiop == 0) 1891 return (-1); 1892 else 1893 return (CtlP->NumAiop); 1894} 1895 1896/* 1897 * Called when a PCI card is found. Retrieves and stores model information, 1898 * init's aiopic and serial port hardware. 1899 * Inputs: i is the board number (0-n) 1900 */ 1901static __init int register_PCI(int i, struct pci_dev *dev) 1902{ 1903 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1904 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1905 CONTROLLER_t *ctlp; 1906 1907 int fast_clock = 0; 1908 int altChanRingIndicator = 0; 1909 int ports_per_aiop = 8; 1910 WordIO_t ConfigIO = 0; 1911 ByteIO_t UPCIRingInd = 0; 1912 1913 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1914 pci_enable_device(dev)) 1915 return 0; 1916 1917 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1918 1919 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1920 rocketModel[i].loadrm2 = 0; 1921 rocketModel[i].startingPortNumber = nextLineNumber; 1922 1923 /* Depending on the model, set up some config variables */ 1924 switch (dev->device) { 1925 case PCI_DEVICE_ID_RP4QUAD: 1926 max_num_aiops = 1; 1927 ports_per_aiop = 4; 1928 rocketModel[i].model = MODEL_RP4QUAD; 1929 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1930 rocketModel[i].numPorts = 4; 1931 break; 1932 case PCI_DEVICE_ID_RP8OCTA: 1933 max_num_aiops = 1; 1934 rocketModel[i].model = MODEL_RP8OCTA; 1935 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1936 rocketModel[i].numPorts = 8; 1937 break; 1938 case PCI_DEVICE_ID_URP8OCTA: 1939 max_num_aiops = 1; 1940 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1941 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1942 rocketModel[i].numPorts = 8; 1943 break; 1944 case PCI_DEVICE_ID_RP8INTF: 1945 max_num_aiops = 1; 1946 rocketModel[i].model = MODEL_RP8INTF; 1947 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1948 rocketModel[i].numPorts = 8; 1949 break; 1950 case PCI_DEVICE_ID_URP8INTF: 1951 max_num_aiops = 1; 1952 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1953 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1954 rocketModel[i].numPorts = 8; 1955 break; 1956 case PCI_DEVICE_ID_RP8J: 1957 max_num_aiops = 1; 1958 rocketModel[i].model = MODEL_RP8J; 1959 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1960 rocketModel[i].numPorts = 8; 1961 break; 1962 case PCI_DEVICE_ID_RP4J: 1963 max_num_aiops = 1; 1964 ports_per_aiop = 4; 1965 rocketModel[i].model = MODEL_RP4J; 1966 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1967 rocketModel[i].numPorts = 4; 1968 break; 1969 case PCI_DEVICE_ID_RP8SNI: 1970 max_num_aiops = 1; 1971 rocketModel[i].model = MODEL_RP8SNI; 1972 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1973 rocketModel[i].numPorts = 8; 1974 break; 1975 case PCI_DEVICE_ID_RP16SNI: 1976 max_num_aiops = 2; 1977 rocketModel[i].model = MODEL_RP16SNI; 1978 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1979 rocketModel[i].numPorts = 16; 1980 break; 1981 case PCI_DEVICE_ID_RP16INTF: 1982 max_num_aiops = 2; 1983 rocketModel[i].model = MODEL_RP16INTF; 1984 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1985 rocketModel[i].numPorts = 16; 1986 break; 1987 case PCI_DEVICE_ID_URP16INTF: 1988 max_num_aiops = 2; 1989 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1990 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1991 rocketModel[i].numPorts = 16; 1992 break; 1993 case PCI_DEVICE_ID_CRP16INTF: 1994 max_num_aiops = 2; 1995 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1996 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1997 rocketModel[i].numPorts = 16; 1998 break; 1999 case PCI_DEVICE_ID_RP32INTF: 2000 max_num_aiops = 4; 2001 rocketModel[i].model = MODEL_RP32INTF; 2002 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 2003 rocketModel[i].numPorts = 32; 2004 break; 2005 case PCI_DEVICE_ID_URP32INTF: 2006 max_num_aiops = 4; 2007 rocketModel[i].model = MODEL_UPCI_RP32INTF; 2008 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 2009 rocketModel[i].numPorts = 32; 2010 break; 2011 case PCI_DEVICE_ID_RPP4: 2012 max_num_aiops = 1; 2013 ports_per_aiop = 4; 2014 altChanRingIndicator++; 2015 fast_clock++; 2016 rocketModel[i].model = MODEL_RPP4; 2017 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 2018 rocketModel[i].numPorts = 4; 2019 break; 2020 case PCI_DEVICE_ID_RPP8: 2021 max_num_aiops = 2; 2022 ports_per_aiop = 4; 2023 altChanRingIndicator++; 2024 fast_clock++; 2025 rocketModel[i].model = MODEL_RPP8; 2026 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 2027 rocketModel[i].numPorts = 8; 2028 break; 2029 case PCI_DEVICE_ID_RP2_232: 2030 max_num_aiops = 1; 2031 ports_per_aiop = 2; 2032 altChanRingIndicator++; 2033 fast_clock++; 2034 rocketModel[i].model = MODEL_RP2_232; 2035 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 2036 rocketModel[i].numPorts = 2; 2037 break; 2038 case PCI_DEVICE_ID_RP2_422: 2039 max_num_aiops = 1; 2040 ports_per_aiop = 2; 2041 altChanRingIndicator++; 2042 fast_clock++; 2043 rocketModel[i].model = MODEL_RP2_422; 2044 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 2045 rocketModel[i].numPorts = 2; 2046 break; 2047 case PCI_DEVICE_ID_RP6M: 2048 2049 max_num_aiops = 1; 2050 ports_per_aiop = 6; 2051 2052 /* If revision is 1, the rocketmodem flash must be loaded. 2053 * If it is 2 it is a "socketed" version. */ 2054 if (dev->revision == 1) { 2055 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2056 rocketModel[i].loadrm2 = 1; 2057 } else { 2058 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2059 } 2060 2061 rocketModel[i].model = MODEL_RP6M; 2062 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 2063 rocketModel[i].numPorts = 6; 2064 break; 2065 case PCI_DEVICE_ID_RP4M: 2066 max_num_aiops = 1; 2067 ports_per_aiop = 4; 2068 if (dev->revision == 1) { 2069 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 2070 rocketModel[i].loadrm2 = 1; 2071 } else { 2072 rcktpt_type[i] = ROCKET_TYPE_MODEM; 2073 } 2074 2075 rocketModel[i].model = MODEL_RP4M; 2076 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 2077 rocketModel[i].numPorts = 4; 2078 break; 2079 default: 2080 max_num_aiops = 0; 2081 break; 2082 } 2083 2084 /* 2085 * Check for UPCI boards. 2086 */ 2087 2088 switch (dev->device) { 2089 case PCI_DEVICE_ID_URP32INTF: 2090 case PCI_DEVICE_ID_URP8INTF: 2091 case PCI_DEVICE_ID_URP16INTF: 2092 case PCI_DEVICE_ID_CRP16INTF: 2093 case PCI_DEVICE_ID_URP8OCTA: 2094 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2095 ConfigIO = pci_resource_start(dev, 1); 2096 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 2097 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2098 2099 /* 2100 * Check for octa or quad cable. 2101 */ 2102 if (! 2103 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 2104 PCI_GPIO_CTRL_8PORT)) { 2105 ports_per_aiop = 4; 2106 rocketModel[i].numPorts = 4; 2107 } 2108 } 2109 break; 2110 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2111 max_num_aiops = 1; 2112 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2113 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2114 rocketModel[i].numPorts = 8; 2115 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2116 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2117 ConfigIO = pci_resource_start(dev, 1); 2118 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2119 break; 2120 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2121 max_num_aiops = 1; 2122 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2123 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2124 rocketModel[i].numPorts = 4; 2125 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2126 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2127 ConfigIO = pci_resource_start(dev, 1); 2128 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2129 break; 2130 default: 2131 break; 2132 } 2133 2134 if (fast_clock) { 2135 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2136 rp_baud_base[i] = 921600; 2137 } else { 2138 /* 2139 * If support_low_speed is set, use the slow clock 2140 * prescale, which supports 50 bps 2141 */ 2142 if (support_low_speed) { 2143 /* mod 9 (divide by 10) prescale */ 2144 sClockPrescale = 0x19; 2145 rp_baud_base[i] = 230400; 2146 } else { 2147 /* mod 4 (divide by 5) prescale */ 2148 sClockPrescale = 0x14; 2149 rp_baud_base[i] = 460800; 2150 } 2151 } 2152 2153 for (aiop = 0; aiop < max_num_aiops; aiop++) 2154 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2155 ctlp = sCtlNumToCtlPtr(i); 2156 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2157 for (aiop = 0; aiop < max_num_aiops; aiop++) 2158 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2159 2160 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2161 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2162 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2163 rocketModel[i].startingPortNumber, 2164 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2165 2166 if (num_aiops <= 0) { 2167 rcktpt_io_addr[i] = 0; 2168 return (0); 2169 } 2170 is_PCI[i] = 1; 2171 2172 /* Reset the AIOPIC, init the serial ports */ 2173 for (aiop = 0; aiop < num_aiops; aiop++) { 2174 sResetAiopByNum(ctlp, aiop); 2175 num_chan = ports_per_aiop; 2176 for (chan = 0; chan < num_chan; chan++) 2177 init_r_port(i, aiop, chan, dev); 2178 } 2179 2180 /* Rocket modems must be reset */ 2181 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2182 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2183 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2184 num_chan = ports_per_aiop; 2185 for (chan = 0; chan < num_chan; chan++) 2186 sPCIModemReset(ctlp, chan, 1); 2187 msleep(500); 2188 for (chan = 0; chan < num_chan; chan++) 2189 sPCIModemReset(ctlp, chan, 0); 2190 msleep(500); 2191 rmSpeakerReset(ctlp, rocketModel[i].model); 2192 } 2193 return (1); 2194} 2195 2196/* 2197 * Probes for PCI cards, inits them if found 2198 * Input: board_found = number of ISA boards already found, or the 2199 * starting board number 2200 * Returns: Number of PCI boards found 2201 */ 2202static int __init init_PCI(int boards_found) 2203{ 2204 struct pci_dev *dev = NULL; 2205 int count = 0; 2206 2207 /* Work through the PCI device list, pulling out ours */ 2208 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2209 if (register_PCI(count + boards_found, dev)) 2210 count++; 2211 } 2212 return (count); 2213} 2214 2215#endif /* CONFIG_PCI */ 2216 2217/* 2218 * Probes for ISA cards 2219 * Input: i = the board number to look for 2220 * Returns: 1 if board found, 0 else 2221 */ 2222static int __init init_ISA(int i) 2223{ 2224 int num_aiops, num_chan = 0, total_num_chan = 0; 2225 int aiop, chan; 2226 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2227 CONTROLLER_t *ctlp; 2228 char *type_string; 2229 2230 /* If io_addr is zero, no board configured */ 2231 if (rcktpt_io_addr[i] == 0) 2232 return (0); 2233 2234 /* Reserve the IO region */ 2235 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2236 printk(KERN_ERR "Unable to reserve IO region for configured " 2237 "ISA RocketPort at address 0x%lx, board not " 2238 "installed...\n", rcktpt_io_addr[i]); 2239 rcktpt_io_addr[i] = 0; 2240 return (0); 2241 } 2242 2243 ctlp = sCtlNumToCtlPtr(i); 2244 2245 ctlp->boardType = rcktpt_type[i]; 2246 2247 switch (rcktpt_type[i]) { 2248 case ROCKET_TYPE_PC104: 2249 type_string = "(PC104)"; 2250 break; 2251 case ROCKET_TYPE_MODEM: 2252 type_string = "(RocketModem)"; 2253 break; 2254 case ROCKET_TYPE_MODEMII: 2255 type_string = "(RocketModem II)"; 2256 break; 2257 default: 2258 type_string = ""; 2259 break; 2260 } 2261 2262 /* 2263 * If support_low_speed is set, use the slow clock prescale, 2264 * which supports 50 bps 2265 */ 2266 if (support_low_speed) { 2267 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2268 rp_baud_base[i] = 230400; 2269 } else { 2270 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2271 rp_baud_base[i] = 460800; 2272 } 2273 2274 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2275 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2276 2277 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2278 2279 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2280 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2281 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2282 } 2283 2284 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2285 if (num_aiops <= 0) { 2286 release_region(rcktpt_io_addr[i], 64); 2287 rcktpt_io_addr[i] = 0; 2288 return (0); 2289 } 2290 2291 rocketModel[i].startingPortNumber = nextLineNumber; 2292 2293 for (aiop = 0; aiop < num_aiops; aiop++) { 2294 sResetAiopByNum(ctlp, aiop); 2295 sEnAiop(ctlp, aiop); 2296 num_chan = sGetAiopNumChan(ctlp, aiop); 2297 total_num_chan += num_chan; 2298 for (chan = 0; chan < num_chan; chan++) 2299 init_r_port(i, aiop, chan, NULL); 2300 } 2301 is_PCI[i] = 0; 2302 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2303 num_chan = sGetAiopNumChan(ctlp, 0); 2304 total_num_chan = num_chan; 2305 for (chan = 0; chan < num_chan; chan++) 2306 sModemReset(ctlp, chan, 1); 2307 msleep(500); 2308 for (chan = 0; chan < num_chan; chan++) 2309 sModemReset(ctlp, chan, 0); 2310 msleep(500); 2311 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2312 } else { 2313 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2314 } 2315 rocketModel[i].numPorts = total_num_chan; 2316 rocketModel[i].model = MODEL_ISA; 2317 2318 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2319 i, rcktpt_io_addr[i], num_aiops, type_string); 2320 2321 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2322 rocketModel[i].modelString, 2323 rocketModel[i].startingPortNumber, 2324 rocketModel[i].startingPortNumber + 2325 rocketModel[i].numPorts - 1); 2326 2327 return (1); 2328} 2329 2330static const struct tty_operations rocket_ops = { 2331 .open = rp_open, 2332 .close = rp_close, 2333 .write = rp_write, 2334 .put_char = rp_put_char, 2335 .write_room = rp_write_room, 2336 .chars_in_buffer = rp_chars_in_buffer, 2337 .flush_buffer = rp_flush_buffer, 2338 .ioctl = rp_ioctl, 2339 .throttle = rp_throttle, 2340 .unthrottle = rp_unthrottle, 2341 .set_termios = rp_set_termios, 2342 .stop = rp_stop, 2343 .start = rp_start, 2344 .hangup = rp_hangup, 2345 .break_ctl = rp_break, 2346 .send_xchar = rp_send_xchar, 2347 .wait_until_sent = rp_wait_until_sent, 2348 .tiocmget = rp_tiocmget, 2349 .tiocmset = rp_tiocmset, 2350}; 2351 2352static const struct tty_port_operations rocket_port_ops = { 2353 .carrier_raised = carrier_raised, 2354 .dtr_rts = dtr_rts, 2355}; 2356 2357/* 2358 * The module "startup" routine; it's run when the module is loaded. 2359 */ 2360static int __init rp_init(void) 2361{ 2362 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2363 2364 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2365 ROCKET_VERSION, ROCKET_DATE); 2366 2367 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2368 if (!rocket_driver) 2369 goto err; 2370 2371 /* 2372 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2373 * zero, use the default controller IO address of board1 + 0x40. 2374 */ 2375 if (board1) { 2376 if (controller == 0) 2377 controller = board1 + 0x40; 2378 } else { 2379 controller = 0; /* Used as a flag, meaning no ISA boards */ 2380 } 2381 2382 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2383 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2384 printk(KERN_ERR "Unable to reserve IO region for first " 2385 "configured ISA RocketPort controller 0x%lx. " 2386 "Driver exiting\n", controller); 2387 ret = -EBUSY; 2388 goto err_tty; 2389 } 2390 2391 /* Store ISA variable retrieved from command line or .conf file. */ 2392 rcktpt_io_addr[0] = board1; 2393 rcktpt_io_addr[1] = board2; 2394 rcktpt_io_addr[2] = board3; 2395 rcktpt_io_addr[3] = board4; 2396 2397 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2398 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2399 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2400 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2401 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2402 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2403 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2404 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2405 2406 /* 2407 * Set up the tty driver structure and then register this 2408 * driver with the tty layer. 2409 */ 2410 2411 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2412 rocket_driver->name = "ttyR"; 2413 rocket_driver->driver_name = "Comtrol RocketPort"; 2414 rocket_driver->major = TTY_ROCKET_MAJOR; 2415 rocket_driver->minor_start = 0; 2416 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2417 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2418 rocket_driver->init_termios = tty_std_termios; 2419 rocket_driver->init_termios.c_cflag = 2420 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2421 rocket_driver->init_termios.c_ispeed = 9600; 2422 rocket_driver->init_termios.c_ospeed = 9600; 2423#ifdef ROCKET_SOFT_FLOW 2424 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2425#endif 2426 tty_set_operations(rocket_driver, &rocket_ops); 2427 2428 ret = tty_register_driver(rocket_driver); 2429 if (ret < 0) { 2430 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2431 goto err_controller; 2432 } 2433 2434#ifdef ROCKET_DEBUG_OPEN 2435 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2436#endif 2437 2438 /* 2439 * OK, let's probe each of the controllers looking for boards. Any boards found 2440 * will be initialized here. 2441 */ 2442 isa_boards_found = 0; 2443 pci_boards_found = 0; 2444 2445 for (i = 0; i < NUM_BOARDS; i++) { 2446 if (init_ISA(i)) 2447 isa_boards_found++; 2448 } 2449 2450#ifdef CONFIG_PCI 2451 if (isa_boards_found < NUM_BOARDS) 2452 pci_boards_found = init_PCI(isa_boards_found); 2453#endif 2454 2455 max_board = pci_boards_found + isa_boards_found; 2456 2457 if (max_board == 0) { 2458 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2459 ret = -ENXIO; 2460 goto err_ttyu; 2461 } 2462 2463 return 0; 2464err_ttyu: 2465 tty_unregister_driver(rocket_driver); 2466err_controller: 2467 if (controller) 2468 release_region(controller, 4); 2469err_tty: 2470 put_tty_driver(rocket_driver); 2471err: 2472 return ret; 2473} 2474 2475 2476static void rp_cleanup_module(void) 2477{ 2478 int retval; 2479 int i; 2480 2481 del_timer_sync(&rocket_timer); 2482 2483 retval = tty_unregister_driver(rocket_driver); 2484 if (retval) 2485 printk(KERN_ERR "Error %d while trying to unregister " 2486 "rocketport driver\n", -retval); 2487 2488 for (i = 0; i < MAX_RP_PORTS; i++) 2489 if (rp_table[i]) { 2490 tty_unregister_device(rocket_driver, i); 2491 tty_port_destroy(&rp_table[i]->port); 2492 kfree(rp_table[i]); 2493 } 2494 2495 put_tty_driver(rocket_driver); 2496 2497 for (i = 0; i < NUM_BOARDS; i++) { 2498 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2499 continue; 2500 release_region(rcktpt_io_addr[i], 64); 2501 } 2502 if (controller) 2503 release_region(controller, 4); 2504} 2505 2506/*************************************************************************** 2507Function: sInitController 2508Purpose: Initialization of controller global registers and controller 2509 structure. 2510Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2511 IRQNum,Frequency,PeriodicOnly) 2512 CONTROLLER_T *CtlP; Ptr to controller structure 2513 int CtlNum; Controller number 2514 ByteIO_t MudbacIO; Mudbac base I/O address. 2515 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2516 This list must be in the order the AIOPs will be found on the 2517 controller. Once an AIOP in the list is not found, it is 2518 assumed that there are no more AIOPs on the controller. 2519 int AiopIOListSize; Number of addresses in AiopIOList 2520 int IRQNum; Interrupt Request number. Can be any of the following: 2521 0: Disable global interrupts 2522 3: IRQ 3 2523 4: IRQ 4 2524 5: IRQ 5 2525 9: IRQ 9 2526 10: IRQ 10 2527 11: IRQ 11 2528 12: IRQ 12 2529 15: IRQ 15 2530 Byte_t Frequency: A flag identifying the frequency 2531 of the periodic interrupt, can be any one of the following: 2532 FREQ_DIS - periodic interrupt disabled 2533 FREQ_137HZ - 137 Hertz 2534 FREQ_69HZ - 69 Hertz 2535 FREQ_34HZ - 34 Hertz 2536 FREQ_17HZ - 17 Hertz 2537 FREQ_9HZ - 9 Hertz 2538 FREQ_4HZ - 4 Hertz 2539 If IRQNum is set to 0 the Frequency parameter is 2540 overidden, it is forced to a value of FREQ_DIS. 2541 int PeriodicOnly: 1 if all interrupts except the periodic 2542 interrupt are to be blocked. 2543 0 is both the periodic interrupt and 2544 other channel interrupts are allowed. 2545 If IRQNum is set to 0 the PeriodicOnly parameter is 2546 overidden, it is forced to a value of 0. 2547Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2548 initialization failed. 2549 2550Comments: 2551 If periodic interrupts are to be disabled but AIOP interrupts 2552 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2553 2554 If interrupts are to be completely disabled set IRQNum to 0. 2555 2556 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2557 invalid combination. 2558 2559 This function performs initialization of global interrupt modes, 2560 but it does not actually enable global interrupts. To enable 2561 and disable global interrupts use functions sEnGlobalInt() and 2562 sDisGlobalInt(). Enabling of global interrupts is normally not 2563 done until all other initializations are complete. 2564 2565 Even if interrupts are globally enabled, they must also be 2566 individually enabled for each channel that is to generate 2567 interrupts. 2568 2569Warnings: No range checking on any of the parameters is done. 2570 2571 No context switches are allowed while executing this function. 2572 2573 After this function all AIOPs on the controller are disabled, 2574 they can be enabled with sEnAiop(). 2575*/ 2576static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2577 ByteIO_t * AiopIOList, int AiopIOListSize, 2578 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2579{ 2580 int i; 2581 ByteIO_t io; 2582 int done; 2583 2584 CtlP->AiopIntrBits = aiop_intr_bits; 2585 CtlP->AltChanRingIndicator = 0; 2586 CtlP->CtlNum = CtlNum; 2587 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2588 CtlP->BusType = isISA; 2589 CtlP->MBaseIO = MudbacIO; 2590 CtlP->MReg1IO = MudbacIO + 1; 2591 CtlP->MReg2IO = MudbacIO + 2; 2592 CtlP->MReg3IO = MudbacIO + 3; 2593#if 1 2594 CtlP->MReg2 = 0; /* interrupt disable */ 2595 CtlP->MReg3 = 0; /* no periodic interrupts */ 2596#else 2597 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2598 CtlP->MReg2 = 0; /* interrupt disable */ 2599 CtlP->MReg3 = 0; /* no periodic interrupts */ 2600 } else { 2601 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2602 CtlP->MReg3 = Frequency; /* set frequency */ 2603 if (PeriodicOnly) { /* periodic interrupt only */ 2604 CtlP->MReg3 |= PERIODIC_ONLY; 2605 } 2606 } 2607#endif 2608 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2609 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2610 sControllerEOI(CtlP); /* clear EOI if warm init */ 2611 /* Init AIOPs */ 2612 CtlP->NumAiop = 0; 2613 for (i = done = 0; i < AiopIOListSize; i++) { 2614 io = AiopIOList[i]; 2615 CtlP->AiopIO[i] = (WordIO_t) io; 2616 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2617 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2618 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2619 if (done) 2620 continue; 2621 sEnAiop(CtlP, i); /* enable the AIOP */ 2622 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2623 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2624 done = 1; /* done looking for AIOPs */ 2625 else { 2626 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2627 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2628 sOutB(io + _INDX_DATA, sClockPrescale); 2629 CtlP->NumAiop++; /* bump count of AIOPs */ 2630 } 2631 sDisAiop(CtlP, i); /* disable AIOP */ 2632 } 2633 2634 if (CtlP->NumAiop == 0) 2635 return (-1); 2636 else 2637 return (CtlP->NumAiop); 2638} 2639 2640/*************************************************************************** 2641Function: sReadAiopID 2642Purpose: Read the AIOP idenfication number directly from an AIOP. 2643Call: sReadAiopID(io) 2644 ByteIO_t io: AIOP base I/O address 2645Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2646 is replace by an identifying number. 2647 Flag AIOPID_NULL if no valid AIOP is found 2648Warnings: No context switches are allowed while executing this function. 2649 2650*/ 2651static int sReadAiopID(ByteIO_t io) 2652{ 2653 Byte_t AiopID; /* ID byte from AIOP */ 2654 2655 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2656 sOutB(io + _CMD_REG, 0x0); 2657 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2658 if (AiopID == 0x06) 2659 return (1); 2660 else /* AIOP does not exist */ 2661 return (-1); 2662} 2663 2664/*************************************************************************** 2665Function: sReadAiopNumChan 2666Purpose: Read the number of channels available in an AIOP directly from 2667 an AIOP. 2668Call: sReadAiopNumChan(io) 2669 WordIO_t io: AIOP base I/O address 2670Return: int: The number of channels available 2671Comments: The number of channels is determined by write/reads from identical 2672 offsets within the SRAM address spaces for channels 0 and 4. 2673 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2674 AIOP, otherwise it is an 8 channel. 2675Warnings: No context switches are allowed while executing this function. 2676*/ 2677static int sReadAiopNumChan(WordIO_t io) 2678{ 2679 Word_t x; 2680 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2681 2682 /* write to chan 0 SRAM */ 2683 out32((DWordIO_t) io + _INDX_ADDR, R); 2684 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2685 x = sInW(io + _INDX_DATA); 2686 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2687 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2688 return (8); 2689 else 2690 return (4); 2691} 2692 2693/*************************************************************************** 2694Function: sInitChan 2695Purpose: Initialization of a channel and channel structure 2696Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2697 CONTROLLER_T *CtlP; Ptr to controller structure 2698 CHANNEL_T *ChP; Ptr to channel structure 2699 int AiopNum; AIOP number within controller 2700 int ChanNum; Channel number within AIOP 2701Return: int: 1 if initialization succeeded, 0 if it fails because channel 2702 number exceeds number of channels available in AIOP. 2703Comments: This function must be called before a channel can be used. 2704Warnings: No range checking on any of the parameters is done. 2705 2706 No context switches are allowed while executing this function. 2707*/ 2708static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2709 int ChanNum) 2710{ 2711 int i; 2712 WordIO_t AiopIO; 2713 WordIO_t ChIOOff; 2714 Byte_t *ChR; 2715 Word_t ChOff; 2716 static Byte_t R[4]; 2717 int brd9600; 2718 2719 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2720 return 0; /* exceeds num chans in AIOP */ 2721 2722 /* Channel, AIOP, and controller identifiers */ 2723 ChP->CtlP = CtlP; 2724 ChP->ChanID = CtlP->AiopID[AiopNum]; 2725 ChP->AiopNum = AiopNum; 2726 ChP->ChanNum = ChanNum; 2727 2728 /* Global direct addresses */ 2729 AiopIO = CtlP->AiopIO[AiopNum]; 2730 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2731 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2732 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2733 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2734 ChP->IndexData = AiopIO + _INDX_DATA; 2735 2736 /* Channel direct addresses */ 2737 ChIOOff = AiopIO + ChP->ChanNum * 2; 2738 ChP->TxRxData = ChIOOff + _TD0; 2739 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2740 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2741 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2742 2743 /* Initialize the channel from the RData array */ 2744 for (i = 0; i < RDATASIZE; i += 4) { 2745 R[0] = RData[i]; 2746 R[1] = RData[i + 1] + 0x10 * ChanNum; 2747 R[2] = RData[i + 2]; 2748 R[3] = RData[i + 3]; 2749 out32(ChP->IndexAddr, R); 2750 } 2751 2752 ChR = ChP->R; 2753 for (i = 0; i < RREGDATASIZE; i += 4) { 2754 ChR[i] = RRegData[i]; 2755 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2756 ChR[i + 2] = RRegData[i + 2]; 2757 ChR[i + 3] = RRegData[i + 3]; 2758 } 2759 2760 /* Indexed registers */ 2761 ChOff = (Word_t) ChanNum *0x1000; 2762 2763 if (sClockPrescale == 0x14) 2764 brd9600 = 47; 2765 else 2766 brd9600 = 23; 2767 2768 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2769 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2770 ChP->BaudDiv[2] = (Byte_t) brd9600; 2771 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2772 out32(ChP->IndexAddr, ChP->BaudDiv); 2773 2774 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2775 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2776 ChP->TxControl[2] = 0; 2777 ChP->TxControl[3] = 0; 2778 out32(ChP->IndexAddr, ChP->TxControl); 2779 2780 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2781 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2782 ChP->RxControl[2] = 0; 2783 ChP->RxControl[3] = 0; 2784 out32(ChP->IndexAddr, ChP->RxControl); 2785 2786 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2787 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2788 ChP->TxEnables[2] = 0; 2789 ChP->TxEnables[3] = 0; 2790 out32(ChP->IndexAddr, ChP->TxEnables); 2791 2792 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2793 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2794 ChP->TxCompare[2] = 0; 2795 ChP->TxCompare[3] = 0; 2796 out32(ChP->IndexAddr, ChP->TxCompare); 2797 2798 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2799 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2800 ChP->TxReplace1[2] = 0; 2801 ChP->TxReplace1[3] = 0; 2802 out32(ChP->IndexAddr, ChP->TxReplace1); 2803 2804 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2805 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2806 ChP->TxReplace2[2] = 0; 2807 ChP->TxReplace2[3] = 0; 2808 out32(ChP->IndexAddr, ChP->TxReplace2); 2809 2810 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2811 ChP->TxFIFO = ChOff + _TX_FIFO; 2812 2813 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2814 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2815 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2816 sOutW(ChP->IndexData, 0); 2817 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2818 ChP->RxFIFO = ChOff + _RX_FIFO; 2819 2820 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2821 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2822 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2823 sOutW(ChP->IndexData, 0); 2824 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2825 sOutW(ChP->IndexData, 0); 2826 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2827 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2828 sOutB(ChP->IndexData, 0); 2829 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2830 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2831 sOutB(ChP->IndexData, 0); 2832 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2833 sEnRxProcessor(ChP); /* start the Rx processor */ 2834 2835 return 1; 2836} 2837 2838/*************************************************************************** 2839Function: sStopRxProcessor 2840Purpose: Stop the receive processor from processing a channel. 2841Call: sStopRxProcessor(ChP) 2842 CHANNEL_T *ChP; Ptr to channel structure 2843 2844Comments: The receive processor can be started again with sStartRxProcessor(). 2845 This function causes the receive processor to skip over the 2846 stopped channel. It does not stop it from processing other channels. 2847 2848Warnings: No context switches are allowed while executing this function. 2849 2850 Do not leave the receive processor stopped for more than one 2851 character time. 2852 2853 After calling this function a delay of 4 uS is required to ensure 2854 that the receive processor is no longer processing this channel. 2855*/ 2856static void sStopRxProcessor(CHANNEL_T * ChP) 2857{ 2858 Byte_t R[4]; 2859 2860 R[0] = ChP->R[0]; 2861 R[1] = ChP->R[1]; 2862 R[2] = 0x0a; 2863 R[3] = ChP->R[3]; 2864 out32(ChP->IndexAddr, R); 2865} 2866 2867/*************************************************************************** 2868Function: sFlushRxFIFO 2869Purpose: Flush the Rx FIFO 2870Call: sFlushRxFIFO(ChP) 2871 CHANNEL_T *ChP; Ptr to channel structure 2872Return: void 2873Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2874 while it is being flushed the receive processor is stopped 2875 and the transmitter is disabled. After these operations a 2876 4 uS delay is done before clearing the pointers to allow 2877 the receive processor to stop. These items are handled inside 2878 this function. 2879Warnings: No context switches are allowed while executing this function. 2880*/ 2881static void sFlushRxFIFO(CHANNEL_T * ChP) 2882{ 2883 int i; 2884 Byte_t Ch; /* channel number within AIOP */ 2885 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2886 2887 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2888 return; /* don't need to flush */ 2889 2890 RxFIFOEnabled = 0; 2891 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2892 RxFIFOEnabled = 1; 2893 sDisRxFIFO(ChP); /* disable it */ 2894 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2895 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2896 } 2897 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2898 Ch = (Byte_t) sGetChanNum(ChP); 2899 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2900 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2901 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2902 sOutW(ChP->IndexData, 0); 2903 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2904 sOutW(ChP->IndexData, 0); 2905 if (RxFIFOEnabled) 2906 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2907} 2908 2909/*************************************************************************** 2910Function: sFlushTxFIFO 2911Purpose: Flush the Tx FIFO 2912Call: sFlushTxFIFO(ChP) 2913 CHANNEL_T *ChP; Ptr to channel structure 2914Return: void 2915Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2916 while it is being flushed the receive processor is stopped 2917 and the transmitter is disabled. After these operations a 2918 4 uS delay is done before clearing the pointers to allow 2919 the receive processor to stop. These items are handled inside 2920 this function. 2921Warnings: No context switches are allowed while executing this function. 2922*/ 2923static void sFlushTxFIFO(CHANNEL_T * ChP) 2924{ 2925 int i; 2926 Byte_t Ch; /* channel number within AIOP */ 2927 int TxEnabled; /* 1 if transmitter enabled */ 2928 2929 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2930 return; /* don't need to flush */ 2931 2932 TxEnabled = 0; 2933 if (ChP->TxControl[3] & TX_ENABLE) { 2934 TxEnabled = 1; 2935 sDisTransmit(ChP); /* disable transmitter */ 2936 } 2937 sStopRxProcessor(ChP); /* stop Rx processor */ 2938 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2939 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2940 Ch = (Byte_t) sGetChanNum(ChP); 2941 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2942 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2943 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2944 sOutW(ChP->IndexData, 0); 2945 if (TxEnabled) 2946 sEnTransmit(ChP); /* enable transmitter */ 2947 sStartRxProcessor(ChP); /* restart Rx processor */ 2948} 2949 2950/*************************************************************************** 2951Function: sWriteTxPrioByte 2952Purpose: Write a byte of priority transmit data to a channel 2953Call: sWriteTxPrioByte(ChP,Data) 2954 CHANNEL_T *ChP; Ptr to channel structure 2955 Byte_t Data; The transmit data byte 2956 2957Return: int: 1 if the bytes is successfully written, otherwise 0. 2958 2959Comments: The priority byte is transmitted before any data in the Tx FIFO. 2960 2961Warnings: No context switches are allowed while executing this function. 2962*/ 2963static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2964{ 2965 Byte_t DWBuf[4]; /* buffer for double word writes */ 2966 Word_t *WordPtr; /* must be far because Win SS != DS */ 2967 register DWordIO_t IndexAddr; 2968 2969 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2970 IndexAddr = ChP->IndexAddr; 2971 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2972 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2973 return (0); /* nothing sent */ 2974 2975 WordPtr = (Word_t *) (&DWBuf[0]); 2976 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2977 2978 DWBuf[2] = Data; /* data byte value */ 2979 out32(IndexAddr, DWBuf); /* write it out */ 2980 2981 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2982 2983 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2984 DWBuf[3] = 0; /* priority buffer pointer */ 2985 out32(IndexAddr, DWBuf); /* write it out */ 2986 } else { /* write it to Tx FIFO */ 2987 2988 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2989 } 2990 return (1); /* 1 byte sent */ 2991} 2992 2993/*************************************************************************** 2994Function: sEnInterrupts 2995Purpose: Enable one or more interrupts for a channel 2996Call: sEnInterrupts(ChP,Flags) 2997 CHANNEL_T *ChP; Ptr to channel structure 2998 Word_t Flags: Interrupt enable flags, can be any combination 2999 of the following flags: 3000 TXINT_EN: Interrupt on Tx FIFO empty 3001 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3002 sSetRxTrigger()) 3003 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3004 MCINT_EN: Interrupt on modem input change 3005 CHANINT_EN: Allow channel interrupt signal to the AIOP's 3006 Interrupt Channel Register. 3007Return: void 3008Comments: If an interrupt enable flag is set in Flags, that interrupt will be 3009 enabled. If an interrupt enable flag is not set in Flags, that 3010 interrupt will not be changed. Interrupts can be disabled with 3011 function sDisInterrupts(). 3012 3013 This function sets the appropriate bit for the channel in the AIOP's 3014 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3015 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3016 3017 Interrupts must also be globally enabled before channel interrupts 3018 will be passed on to the host. This is done with function 3019 sEnGlobalInt(). 3020 3021 In some cases it may be desirable to disable interrupts globally but 3022 enable channel interrupts. This would allow the global interrupt 3023 status register to be used to determine which AIOPs need service. 3024*/ 3025static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3026{ 3027 Byte_t Mask; /* Interrupt Mask Register */ 3028 3029 ChP->RxControl[2] |= 3030 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3031 3032 out32(ChP->IndexAddr, ChP->RxControl); 3033 3034 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3035 3036 out32(ChP->IndexAddr, ChP->TxControl); 3037 3038 if (Flags & CHANINT_EN) { 3039 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3040 sOutB(ChP->IntMask, Mask); 3041 } 3042} 3043 3044/*************************************************************************** 3045Function: sDisInterrupts 3046Purpose: Disable one or more interrupts for a channel 3047Call: sDisInterrupts(ChP,Flags) 3048 CHANNEL_T *ChP; Ptr to channel structure 3049 Word_t Flags: Interrupt flags, can be any combination 3050 of the following flags: 3051 TXINT_EN: Interrupt on Tx FIFO empty 3052 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3053 sSetRxTrigger()) 3054 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3055 MCINT_EN: Interrupt on modem input change 3056 CHANINT_EN: Disable channel interrupt signal to the 3057 AIOP's Interrupt Channel Register. 3058Return: void 3059Comments: If an interrupt flag is set in Flags, that interrupt will be 3060 disabled. If an interrupt flag is not set in Flags, that 3061 interrupt will not be changed. Interrupts can be enabled with 3062 function sEnInterrupts(). 3063 3064 This function clears the appropriate bit for the channel in the AIOP's 3065 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3066 this channel's bit from being set in the AIOP's Interrupt Channel 3067 Register. 3068*/ 3069static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3070{ 3071 Byte_t Mask; /* Interrupt Mask Register */ 3072 3073 ChP->RxControl[2] &= 3074 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3075 out32(ChP->IndexAddr, ChP->RxControl); 3076 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3077 out32(ChP->IndexAddr, ChP->TxControl); 3078 3079 if (Flags & CHANINT_EN) { 3080 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3081 sOutB(ChP->IntMask, Mask); 3082 } 3083} 3084 3085static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3086{ 3087 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3088} 3089 3090/* 3091 * Not an official SSCI function, but how to reset RocketModems. 3092 * ISA bus version 3093 */ 3094static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3095{ 3096 ByteIO_t addr; 3097 Byte_t val; 3098 3099 addr = CtlP->AiopIO[0] + 0x400; 3100 val = sInB(CtlP->MReg3IO); 3101 /* if AIOP[1] is not enabled, enable it */ 3102 if ((val & 2) == 0) { 3103 val = sInB(CtlP->MReg2IO); 3104 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3105 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3106 } 3107 3108 sEnAiop(CtlP, 1); 3109 if (!on) 3110 addr += 8; 3111 sOutB(addr + chan, 0); /* apply or remove reset */ 3112 sDisAiop(CtlP, 1); 3113} 3114 3115/* 3116 * Not an official SSCI function, but how to reset RocketModems. 3117 * PCI bus version 3118 */ 3119static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3120{ 3121 ByteIO_t addr; 3122 3123 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3124 if (!on) 3125 addr += 8; 3126 sOutB(addr + chan, 0); /* apply or remove reset */ 3127} 3128 3129/* Returns the line number given the controller (board), aiop and channel number */ 3130static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3131{ 3132 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3133} 3134 3135/* 3136 * Stores the line number associated with a given controller (board), aiop 3137 * and channel number. 3138 * Returns: The line number assigned 3139 */ 3140static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3141{ 3142 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3143 return (nextLineNumber - 1); 3144}