Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/percpu-refcount.h>
20#include <linux/bit_spinlock.h>
21#include <linux/shrinker.h>
22#include <linux/resource.h>
23#include <linux/page_ext.h>
24#include <linux/err.h>
25#include <linux/page_ref.h>
26
27struct mempolicy;
28struct anon_vma;
29struct anon_vma_chain;
30struct file_ra_state;
31struct user_struct;
32struct writeback_control;
33struct bdi_writeback;
34
35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
36extern unsigned long max_mapnr;
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
44#endif
45
46extern unsigned long totalram_pages;
47extern void * high_memory;
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
70
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
75/*
76 * To prevent common memory management code establishing
77 * a zero page mapping on a read fault.
78 * This macro should be defined within <asm/pgtable.h>.
79 * s390 does this to prevent multiplexing of hardware bits
80 * related to the physical page in case of virtualization.
81 */
82#ifndef mm_forbids_zeropage
83#define mm_forbids_zeropage(X) (0)
84#endif
85
86/*
87 * Default maximum number of active map areas, this limits the number of vmas
88 * per mm struct. Users can overwrite this number by sysctl but there is a
89 * problem.
90 *
91 * When a program's coredump is generated as ELF format, a section is created
92 * per a vma. In ELF, the number of sections is represented in unsigned short.
93 * This means the number of sections should be smaller than 65535 at coredump.
94 * Because the kernel adds some informative sections to a image of program at
95 * generating coredump, we need some margin. The number of extra sections is
96 * 1-3 now and depends on arch. We use "5" as safe margin, here.
97 *
98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
99 * not a hard limit any more. Although some userspace tools can be surprised by
100 * that.
101 */
102#define MAPCOUNT_ELF_CORE_MARGIN (5)
103#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
104
105extern int sysctl_max_map_count;
106
107extern unsigned long sysctl_user_reserve_kbytes;
108extern unsigned long sysctl_admin_reserve_kbytes;
109
110extern int sysctl_overcommit_memory;
111extern int sysctl_overcommit_ratio;
112extern unsigned long sysctl_overcommit_kbytes;
113
114extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
115 size_t *, loff_t *);
116extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
117 size_t *, loff_t *);
118
119#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
120
121/* to align the pointer to the (next) page boundary */
122#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
123
124/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
125#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
126
127/*
128 * Linux kernel virtual memory manager primitives.
129 * The idea being to have a "virtual" mm in the same way
130 * we have a virtual fs - giving a cleaner interface to the
131 * mm details, and allowing different kinds of memory mappings
132 * (from shared memory to executable loading to arbitrary
133 * mmap() functions).
134 */
135
136extern struct kmem_cache *vm_area_cachep;
137
138#ifndef CONFIG_MMU
139extern struct rb_root nommu_region_tree;
140extern struct rw_semaphore nommu_region_sem;
141
142extern unsigned int kobjsize(const void *objp);
143#endif
144
145/*
146 * vm_flags in vm_area_struct, see mm_types.h.
147 * When changing, update also include/trace/events/mmflags.h
148 */
149#define VM_NONE 0x00000000
150
151#define VM_READ 0x00000001 /* currently active flags */
152#define VM_WRITE 0x00000002
153#define VM_EXEC 0x00000004
154#define VM_SHARED 0x00000008
155
156/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
157#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
158#define VM_MAYWRITE 0x00000020
159#define VM_MAYEXEC 0x00000040
160#define VM_MAYSHARE 0x00000080
161
162#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
163#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
164#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
165#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
166#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
167
168#define VM_LOCKED 0x00002000
169#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
170
171 /* Used by sys_madvise() */
172#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
173#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
174
175#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
176#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
177#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
178#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
179#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
180#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
181#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
182#define VM_ARCH_2 0x02000000
183#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
184
185#ifdef CONFIG_MEM_SOFT_DIRTY
186# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
187#else
188# define VM_SOFTDIRTY 0
189#endif
190
191#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
192#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
193#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
194#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
195
196#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
197#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
198#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
199#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
200#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
201#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
202#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
203#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
204#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
205#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
206
207#if defined(CONFIG_X86)
208# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
209#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
210# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
211# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
212# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
213# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
214# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
215#endif
216#elif defined(CONFIG_PPC)
217# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
218#elif defined(CONFIG_PARISC)
219# define VM_GROWSUP VM_ARCH_1
220#elif defined(CONFIG_METAG)
221# define VM_GROWSUP VM_ARCH_1
222#elif defined(CONFIG_IA64)
223# define VM_GROWSUP VM_ARCH_1
224#elif !defined(CONFIG_MMU)
225# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
226#endif
227
228#if defined(CONFIG_X86)
229/* MPX specific bounds table or bounds directory */
230# define VM_MPX VM_ARCH_2
231#endif
232
233#ifndef VM_GROWSUP
234# define VM_GROWSUP VM_NONE
235#endif
236
237/* Bits set in the VMA until the stack is in its final location */
238#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
239
240#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
241#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
242#endif
243
244#ifdef CONFIG_STACK_GROWSUP
245#define VM_STACK VM_GROWSUP
246#else
247#define VM_STACK VM_GROWSDOWN
248#endif
249
250#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
251
252/*
253 * Special vmas that are non-mergable, non-mlock()able.
254 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
255 */
256#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
257
258/* This mask defines which mm->def_flags a process can inherit its parent */
259#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
260
261/* This mask is used to clear all the VMA flags used by mlock */
262#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
263
264/*
265 * mapping from the currently active vm_flags protection bits (the
266 * low four bits) to a page protection mask..
267 */
268extern pgprot_t protection_map[16];
269
270#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
271#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
272#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
273#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
274#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
275#define FAULT_FLAG_TRIED 0x20 /* Second try */
276#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
277#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
278#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
279
280/*
281 * vm_fault is filled by the the pagefault handler and passed to the vma's
282 * ->fault function. The vma's ->fault is responsible for returning a bitmask
283 * of VM_FAULT_xxx flags that give details about how the fault was handled.
284 *
285 * MM layer fills up gfp_mask for page allocations but fault handler might
286 * alter it if its implementation requires a different allocation context.
287 *
288 * pgoff should be used in favour of virtual_address, if possible.
289 */
290struct vm_fault {
291 unsigned int flags; /* FAULT_FLAG_xxx flags */
292 gfp_t gfp_mask; /* gfp mask to be used for allocations */
293 pgoff_t pgoff; /* Logical page offset based on vma */
294 void __user *virtual_address; /* Faulting virtual address */
295
296 struct page *cow_page; /* Handler may choose to COW */
297 struct page *page; /* ->fault handlers should return a
298 * page here, unless VM_FAULT_NOPAGE
299 * is set (which is also implied by
300 * VM_FAULT_ERROR).
301 */
302 /* for ->map_pages() only */
303 pgoff_t max_pgoff; /* map pages for offset from pgoff till
304 * max_pgoff inclusive */
305 pte_t *pte; /* pte entry associated with ->pgoff */
306};
307
308/*
309 * These are the virtual MM functions - opening of an area, closing and
310 * unmapping it (needed to keep files on disk up-to-date etc), pointer
311 * to the functions called when a no-page or a wp-page exception occurs.
312 */
313struct vm_operations_struct {
314 void (*open)(struct vm_area_struct * area);
315 void (*close)(struct vm_area_struct * area);
316 int (*mremap)(struct vm_area_struct * area);
317 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
318 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
319 pmd_t *, unsigned int flags);
320 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
321
322 /* notification that a previously read-only page is about to become
323 * writable, if an error is returned it will cause a SIGBUS */
324 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
325
326 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
327 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
328
329 /* called by access_process_vm when get_user_pages() fails, typically
330 * for use by special VMAs that can switch between memory and hardware
331 */
332 int (*access)(struct vm_area_struct *vma, unsigned long addr,
333 void *buf, int len, int write);
334
335 /* Called by the /proc/PID/maps code to ask the vma whether it
336 * has a special name. Returning non-NULL will also cause this
337 * vma to be dumped unconditionally. */
338 const char *(*name)(struct vm_area_struct *vma);
339
340#ifdef CONFIG_NUMA
341 /*
342 * set_policy() op must add a reference to any non-NULL @new mempolicy
343 * to hold the policy upon return. Caller should pass NULL @new to
344 * remove a policy and fall back to surrounding context--i.e. do not
345 * install a MPOL_DEFAULT policy, nor the task or system default
346 * mempolicy.
347 */
348 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
349
350 /*
351 * get_policy() op must add reference [mpol_get()] to any policy at
352 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
353 * in mm/mempolicy.c will do this automatically.
354 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
355 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
356 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
357 * must return NULL--i.e., do not "fallback" to task or system default
358 * policy.
359 */
360 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
361 unsigned long addr);
362#endif
363 /*
364 * Called by vm_normal_page() for special PTEs to find the
365 * page for @addr. This is useful if the default behavior
366 * (using pte_page()) would not find the correct page.
367 */
368 struct page *(*find_special_page)(struct vm_area_struct *vma,
369 unsigned long addr);
370};
371
372struct mmu_gather;
373struct inode;
374
375#define page_private(page) ((page)->private)
376#define set_page_private(page, v) ((page)->private = (v))
377
378#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
379static inline int pmd_devmap(pmd_t pmd)
380{
381 return 0;
382}
383#endif
384
385/*
386 * FIXME: take this include out, include page-flags.h in
387 * files which need it (119 of them)
388 */
389#include <linux/page-flags.h>
390#include <linux/huge_mm.h>
391
392/*
393 * Methods to modify the page usage count.
394 *
395 * What counts for a page usage:
396 * - cache mapping (page->mapping)
397 * - private data (page->private)
398 * - page mapped in a task's page tables, each mapping
399 * is counted separately
400 *
401 * Also, many kernel routines increase the page count before a critical
402 * routine so they can be sure the page doesn't go away from under them.
403 */
404
405/*
406 * Drop a ref, return true if the refcount fell to zero (the page has no users)
407 */
408static inline int put_page_testzero(struct page *page)
409{
410 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
411 return page_ref_dec_and_test(page);
412}
413
414/*
415 * Try to grab a ref unless the page has a refcount of zero, return false if
416 * that is the case.
417 * This can be called when MMU is off so it must not access
418 * any of the virtual mappings.
419 */
420static inline int get_page_unless_zero(struct page *page)
421{
422 return page_ref_add_unless(page, 1, 0);
423}
424
425extern int page_is_ram(unsigned long pfn);
426
427enum {
428 REGION_INTERSECTS,
429 REGION_DISJOINT,
430 REGION_MIXED,
431};
432
433int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
434 unsigned long desc);
435
436/* Support for virtually mapped pages */
437struct page *vmalloc_to_page(const void *addr);
438unsigned long vmalloc_to_pfn(const void *addr);
439
440/*
441 * Determine if an address is within the vmalloc range
442 *
443 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
444 * is no special casing required.
445 */
446static inline int is_vmalloc_addr(const void *x)
447{
448#ifdef CONFIG_MMU
449 unsigned long addr = (unsigned long)x;
450
451 return addr >= VMALLOC_START && addr < VMALLOC_END;
452#else
453 return 0;
454#endif
455}
456#ifdef CONFIG_MMU
457extern int is_vmalloc_or_module_addr(const void *x);
458#else
459static inline int is_vmalloc_or_module_addr(const void *x)
460{
461 return 0;
462}
463#endif
464
465extern void kvfree(const void *addr);
466
467static inline atomic_t *compound_mapcount_ptr(struct page *page)
468{
469 return &page[1].compound_mapcount;
470}
471
472static inline int compound_mapcount(struct page *page)
473{
474 if (!PageCompound(page))
475 return 0;
476 page = compound_head(page);
477 return atomic_read(compound_mapcount_ptr(page)) + 1;
478}
479
480/*
481 * The atomic page->_mapcount, starts from -1: so that transitions
482 * both from it and to it can be tracked, using atomic_inc_and_test
483 * and atomic_add_negative(-1).
484 */
485static inline void page_mapcount_reset(struct page *page)
486{
487 atomic_set(&(page)->_mapcount, -1);
488}
489
490int __page_mapcount(struct page *page);
491
492static inline int page_mapcount(struct page *page)
493{
494 VM_BUG_ON_PAGE(PageSlab(page), page);
495
496 if (unlikely(PageCompound(page)))
497 return __page_mapcount(page);
498 return atomic_read(&page->_mapcount) + 1;
499}
500
501#ifdef CONFIG_TRANSPARENT_HUGEPAGE
502int total_mapcount(struct page *page);
503#else
504static inline int total_mapcount(struct page *page)
505{
506 return page_mapcount(page);
507}
508#endif
509
510static inline struct page *virt_to_head_page(const void *x)
511{
512 struct page *page = virt_to_page(x);
513
514 return compound_head(page);
515}
516
517void __put_page(struct page *page);
518
519void put_pages_list(struct list_head *pages);
520
521void split_page(struct page *page, unsigned int order);
522int split_free_page(struct page *page);
523
524/*
525 * Compound pages have a destructor function. Provide a
526 * prototype for that function and accessor functions.
527 * These are _only_ valid on the head of a compound page.
528 */
529typedef void compound_page_dtor(struct page *);
530
531/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
532enum compound_dtor_id {
533 NULL_COMPOUND_DTOR,
534 COMPOUND_PAGE_DTOR,
535#ifdef CONFIG_HUGETLB_PAGE
536 HUGETLB_PAGE_DTOR,
537#endif
538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 TRANSHUGE_PAGE_DTOR,
540#endif
541 NR_COMPOUND_DTORS,
542};
543extern compound_page_dtor * const compound_page_dtors[];
544
545static inline void set_compound_page_dtor(struct page *page,
546 enum compound_dtor_id compound_dtor)
547{
548 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
549 page[1].compound_dtor = compound_dtor;
550}
551
552static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
553{
554 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
555 return compound_page_dtors[page[1].compound_dtor];
556}
557
558static inline unsigned int compound_order(struct page *page)
559{
560 if (!PageHead(page))
561 return 0;
562 return page[1].compound_order;
563}
564
565static inline void set_compound_order(struct page *page, unsigned int order)
566{
567 page[1].compound_order = order;
568}
569
570void free_compound_page(struct page *page);
571
572#ifdef CONFIG_MMU
573/*
574 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
575 * servicing faults for write access. In the normal case, do always want
576 * pte_mkwrite. But get_user_pages can cause write faults for mappings
577 * that do not have writing enabled, when used by access_process_vm.
578 */
579static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
580{
581 if (likely(vma->vm_flags & VM_WRITE))
582 pte = pte_mkwrite(pte);
583 return pte;
584}
585
586void do_set_pte(struct vm_area_struct *vma, unsigned long address,
587 struct page *page, pte_t *pte, bool write, bool anon);
588#endif
589
590/*
591 * Multiple processes may "see" the same page. E.g. for untouched
592 * mappings of /dev/null, all processes see the same page full of
593 * zeroes, and text pages of executables and shared libraries have
594 * only one copy in memory, at most, normally.
595 *
596 * For the non-reserved pages, page_count(page) denotes a reference count.
597 * page_count() == 0 means the page is free. page->lru is then used for
598 * freelist management in the buddy allocator.
599 * page_count() > 0 means the page has been allocated.
600 *
601 * Pages are allocated by the slab allocator in order to provide memory
602 * to kmalloc and kmem_cache_alloc. In this case, the management of the
603 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
604 * unless a particular usage is carefully commented. (the responsibility of
605 * freeing the kmalloc memory is the caller's, of course).
606 *
607 * A page may be used by anyone else who does a __get_free_page().
608 * In this case, page_count still tracks the references, and should only
609 * be used through the normal accessor functions. The top bits of page->flags
610 * and page->virtual store page management information, but all other fields
611 * are unused and could be used privately, carefully. The management of this
612 * page is the responsibility of the one who allocated it, and those who have
613 * subsequently been given references to it.
614 *
615 * The other pages (we may call them "pagecache pages") are completely
616 * managed by the Linux memory manager: I/O, buffers, swapping etc.
617 * The following discussion applies only to them.
618 *
619 * A pagecache page contains an opaque `private' member, which belongs to the
620 * page's address_space. Usually, this is the address of a circular list of
621 * the page's disk buffers. PG_private must be set to tell the VM to call
622 * into the filesystem to release these pages.
623 *
624 * A page may belong to an inode's memory mapping. In this case, page->mapping
625 * is the pointer to the inode, and page->index is the file offset of the page,
626 * in units of PAGE_CACHE_SIZE.
627 *
628 * If pagecache pages are not associated with an inode, they are said to be
629 * anonymous pages. These may become associated with the swapcache, and in that
630 * case PG_swapcache is set, and page->private is an offset into the swapcache.
631 *
632 * In either case (swapcache or inode backed), the pagecache itself holds one
633 * reference to the page. Setting PG_private should also increment the
634 * refcount. The each user mapping also has a reference to the page.
635 *
636 * The pagecache pages are stored in a per-mapping radix tree, which is
637 * rooted at mapping->page_tree, and indexed by offset.
638 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
639 * lists, we instead now tag pages as dirty/writeback in the radix tree.
640 *
641 * All pagecache pages may be subject to I/O:
642 * - inode pages may need to be read from disk,
643 * - inode pages which have been modified and are MAP_SHARED may need
644 * to be written back to the inode on disk,
645 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
646 * modified may need to be swapped out to swap space and (later) to be read
647 * back into memory.
648 */
649
650/*
651 * The zone field is never updated after free_area_init_core()
652 * sets it, so none of the operations on it need to be atomic.
653 */
654
655/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
656#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
657#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
658#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
659#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
660
661/*
662 * Define the bit shifts to access each section. For non-existent
663 * sections we define the shift as 0; that plus a 0 mask ensures
664 * the compiler will optimise away reference to them.
665 */
666#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
667#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
668#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
669#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
670
671/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
672#ifdef NODE_NOT_IN_PAGE_FLAGS
673#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
674#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
675 SECTIONS_PGOFF : ZONES_PGOFF)
676#else
677#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
678#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
679 NODES_PGOFF : ZONES_PGOFF)
680#endif
681
682#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
683
684#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
685#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
686#endif
687
688#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
689#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
690#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
691#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
692#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
693
694static inline enum zone_type page_zonenum(const struct page *page)
695{
696 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
697}
698
699#ifdef CONFIG_ZONE_DEVICE
700void get_zone_device_page(struct page *page);
701void put_zone_device_page(struct page *page);
702static inline bool is_zone_device_page(const struct page *page)
703{
704 return page_zonenum(page) == ZONE_DEVICE;
705}
706#else
707static inline void get_zone_device_page(struct page *page)
708{
709}
710static inline void put_zone_device_page(struct page *page)
711{
712}
713static inline bool is_zone_device_page(const struct page *page)
714{
715 return false;
716}
717#endif
718
719static inline void get_page(struct page *page)
720{
721 page = compound_head(page);
722 /*
723 * Getting a normal page or the head of a compound page
724 * requires to already have an elevated page->_count.
725 */
726 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
727 page_ref_inc(page);
728
729 if (unlikely(is_zone_device_page(page)))
730 get_zone_device_page(page);
731}
732
733static inline void put_page(struct page *page)
734{
735 page = compound_head(page);
736
737 if (put_page_testzero(page))
738 __put_page(page);
739
740 if (unlikely(is_zone_device_page(page)))
741 put_zone_device_page(page);
742}
743
744#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
745#define SECTION_IN_PAGE_FLAGS
746#endif
747
748/*
749 * The identification function is mainly used by the buddy allocator for
750 * determining if two pages could be buddies. We are not really identifying
751 * the zone since we could be using the section number id if we do not have
752 * node id available in page flags.
753 * We only guarantee that it will return the same value for two combinable
754 * pages in a zone.
755 */
756static inline int page_zone_id(struct page *page)
757{
758 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
759}
760
761static inline int zone_to_nid(struct zone *zone)
762{
763#ifdef CONFIG_NUMA
764 return zone->node;
765#else
766 return 0;
767#endif
768}
769
770#ifdef NODE_NOT_IN_PAGE_FLAGS
771extern int page_to_nid(const struct page *page);
772#else
773static inline int page_to_nid(const struct page *page)
774{
775 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
776}
777#endif
778
779#ifdef CONFIG_NUMA_BALANCING
780static inline int cpu_pid_to_cpupid(int cpu, int pid)
781{
782 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
783}
784
785static inline int cpupid_to_pid(int cpupid)
786{
787 return cpupid & LAST__PID_MASK;
788}
789
790static inline int cpupid_to_cpu(int cpupid)
791{
792 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
793}
794
795static inline int cpupid_to_nid(int cpupid)
796{
797 return cpu_to_node(cpupid_to_cpu(cpupid));
798}
799
800static inline bool cpupid_pid_unset(int cpupid)
801{
802 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
803}
804
805static inline bool cpupid_cpu_unset(int cpupid)
806{
807 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
808}
809
810static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
811{
812 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
813}
814
815#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
816#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
817static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
818{
819 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
820}
821
822static inline int page_cpupid_last(struct page *page)
823{
824 return page->_last_cpupid;
825}
826static inline void page_cpupid_reset_last(struct page *page)
827{
828 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
829}
830#else
831static inline int page_cpupid_last(struct page *page)
832{
833 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
834}
835
836extern int page_cpupid_xchg_last(struct page *page, int cpupid);
837
838static inline void page_cpupid_reset_last(struct page *page)
839{
840 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
841
842 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
843 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
844}
845#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
846#else /* !CONFIG_NUMA_BALANCING */
847static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
848{
849 return page_to_nid(page); /* XXX */
850}
851
852static inline int page_cpupid_last(struct page *page)
853{
854 return page_to_nid(page); /* XXX */
855}
856
857static inline int cpupid_to_nid(int cpupid)
858{
859 return -1;
860}
861
862static inline int cpupid_to_pid(int cpupid)
863{
864 return -1;
865}
866
867static inline int cpupid_to_cpu(int cpupid)
868{
869 return -1;
870}
871
872static inline int cpu_pid_to_cpupid(int nid, int pid)
873{
874 return -1;
875}
876
877static inline bool cpupid_pid_unset(int cpupid)
878{
879 return 1;
880}
881
882static inline void page_cpupid_reset_last(struct page *page)
883{
884}
885
886static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
887{
888 return false;
889}
890#endif /* CONFIG_NUMA_BALANCING */
891
892static inline struct zone *page_zone(const struct page *page)
893{
894 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
895}
896
897#ifdef SECTION_IN_PAGE_FLAGS
898static inline void set_page_section(struct page *page, unsigned long section)
899{
900 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
901 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
902}
903
904static inline unsigned long page_to_section(const struct page *page)
905{
906 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
907}
908#endif
909
910static inline void set_page_zone(struct page *page, enum zone_type zone)
911{
912 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
913 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
914}
915
916static inline void set_page_node(struct page *page, unsigned long node)
917{
918 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
919 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
920}
921
922static inline void set_page_links(struct page *page, enum zone_type zone,
923 unsigned long node, unsigned long pfn)
924{
925 set_page_zone(page, zone);
926 set_page_node(page, node);
927#ifdef SECTION_IN_PAGE_FLAGS
928 set_page_section(page, pfn_to_section_nr(pfn));
929#endif
930}
931
932#ifdef CONFIG_MEMCG
933static inline struct mem_cgroup *page_memcg(struct page *page)
934{
935 return page->mem_cgroup;
936}
937#else
938static inline struct mem_cgroup *page_memcg(struct page *page)
939{
940 return NULL;
941}
942#endif
943
944/*
945 * Some inline functions in vmstat.h depend on page_zone()
946 */
947#include <linux/vmstat.h>
948
949static __always_inline void *lowmem_page_address(const struct page *page)
950{
951 return __va(PFN_PHYS(page_to_pfn(page)));
952}
953
954#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
955#define HASHED_PAGE_VIRTUAL
956#endif
957
958#if defined(WANT_PAGE_VIRTUAL)
959static inline void *page_address(const struct page *page)
960{
961 return page->virtual;
962}
963static inline void set_page_address(struct page *page, void *address)
964{
965 page->virtual = address;
966}
967#define page_address_init() do { } while(0)
968#endif
969
970#if defined(HASHED_PAGE_VIRTUAL)
971void *page_address(const struct page *page);
972void set_page_address(struct page *page, void *virtual);
973void page_address_init(void);
974#endif
975
976#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
977#define page_address(page) lowmem_page_address(page)
978#define set_page_address(page, address) do { } while(0)
979#define page_address_init() do { } while(0)
980#endif
981
982extern void *page_rmapping(struct page *page);
983extern struct anon_vma *page_anon_vma(struct page *page);
984extern struct address_space *page_mapping(struct page *page);
985
986extern struct address_space *__page_file_mapping(struct page *);
987
988static inline
989struct address_space *page_file_mapping(struct page *page)
990{
991 if (unlikely(PageSwapCache(page)))
992 return __page_file_mapping(page);
993
994 return page->mapping;
995}
996
997/*
998 * Return the pagecache index of the passed page. Regular pagecache pages
999 * use ->index whereas swapcache pages use ->private
1000 */
1001static inline pgoff_t page_index(struct page *page)
1002{
1003 if (unlikely(PageSwapCache(page)))
1004 return page_private(page);
1005 return page->index;
1006}
1007
1008extern pgoff_t __page_file_index(struct page *page);
1009
1010/*
1011 * Return the file index of the page. Regular pagecache pages use ->index
1012 * whereas swapcache pages use swp_offset(->private)
1013 */
1014static inline pgoff_t page_file_index(struct page *page)
1015{
1016 if (unlikely(PageSwapCache(page)))
1017 return __page_file_index(page);
1018
1019 return page->index;
1020}
1021
1022/*
1023 * Return true if this page is mapped into pagetables.
1024 * For compound page it returns true if any subpage of compound page is mapped.
1025 */
1026static inline bool page_mapped(struct page *page)
1027{
1028 int i;
1029 if (likely(!PageCompound(page)))
1030 return atomic_read(&page->_mapcount) >= 0;
1031 page = compound_head(page);
1032 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1033 return true;
1034 for (i = 0; i < hpage_nr_pages(page); i++) {
1035 if (atomic_read(&page[i]._mapcount) >= 0)
1036 return true;
1037 }
1038 return false;
1039}
1040
1041/*
1042 * Return true only if the page has been allocated with
1043 * ALLOC_NO_WATERMARKS and the low watermark was not
1044 * met implying that the system is under some pressure.
1045 */
1046static inline bool page_is_pfmemalloc(struct page *page)
1047{
1048 /*
1049 * Page index cannot be this large so this must be
1050 * a pfmemalloc page.
1051 */
1052 return page->index == -1UL;
1053}
1054
1055/*
1056 * Only to be called by the page allocator on a freshly allocated
1057 * page.
1058 */
1059static inline void set_page_pfmemalloc(struct page *page)
1060{
1061 page->index = -1UL;
1062}
1063
1064static inline void clear_page_pfmemalloc(struct page *page)
1065{
1066 page->index = 0;
1067}
1068
1069/*
1070 * Different kinds of faults, as returned by handle_mm_fault().
1071 * Used to decide whether a process gets delivered SIGBUS or
1072 * just gets major/minor fault counters bumped up.
1073 */
1074
1075#define VM_FAULT_OOM 0x0001
1076#define VM_FAULT_SIGBUS 0x0002
1077#define VM_FAULT_MAJOR 0x0004
1078#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1079#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1080#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1081#define VM_FAULT_SIGSEGV 0x0040
1082
1083#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1084#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1085#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1086#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1087
1088#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1089
1090#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1091 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1092 VM_FAULT_FALLBACK)
1093
1094/* Encode hstate index for a hwpoisoned large page */
1095#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1096#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1097
1098/*
1099 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1100 */
1101extern void pagefault_out_of_memory(void);
1102
1103#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1104
1105/*
1106 * Flags passed to show_mem() and show_free_areas() to suppress output in
1107 * various contexts.
1108 */
1109#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1110
1111extern void show_free_areas(unsigned int flags);
1112extern bool skip_free_areas_node(unsigned int flags, int nid);
1113
1114int shmem_zero_setup(struct vm_area_struct *);
1115#ifdef CONFIG_SHMEM
1116bool shmem_mapping(struct address_space *mapping);
1117#else
1118static inline bool shmem_mapping(struct address_space *mapping)
1119{
1120 return false;
1121}
1122#endif
1123
1124extern bool can_do_mlock(void);
1125extern int user_shm_lock(size_t, struct user_struct *);
1126extern void user_shm_unlock(size_t, struct user_struct *);
1127
1128/*
1129 * Parameter block passed down to zap_pte_range in exceptional cases.
1130 */
1131struct zap_details {
1132 struct address_space *check_mapping; /* Check page->mapping if set */
1133 pgoff_t first_index; /* Lowest page->index to unmap */
1134 pgoff_t last_index; /* Highest page->index to unmap */
1135 bool ignore_dirty; /* Ignore dirty pages */
1136 bool check_swap_entries; /* Check also swap entries */
1137};
1138
1139struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1140 pte_t pte);
1141
1142int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1143 unsigned long size);
1144void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1145 unsigned long size, struct zap_details *);
1146void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1147 unsigned long start, unsigned long end);
1148
1149/**
1150 * mm_walk - callbacks for walk_page_range
1151 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1152 * this handler is required to be able to handle
1153 * pmd_trans_huge() pmds. They may simply choose to
1154 * split_huge_page() instead of handling it explicitly.
1155 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1156 * @pte_hole: if set, called for each hole at all levels
1157 * @hugetlb_entry: if set, called for each hugetlb entry
1158 * @test_walk: caller specific callback function to determine whether
1159 * we walk over the current vma or not. A positive returned
1160 * value means "do page table walk over the current vma,"
1161 * and a negative one means "abort current page table walk
1162 * right now." 0 means "skip the current vma."
1163 * @mm: mm_struct representing the target process of page table walk
1164 * @vma: vma currently walked (NULL if walking outside vmas)
1165 * @private: private data for callbacks' usage
1166 *
1167 * (see the comment on walk_page_range() for more details)
1168 */
1169struct mm_walk {
1170 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1171 unsigned long next, struct mm_walk *walk);
1172 int (*pte_entry)(pte_t *pte, unsigned long addr,
1173 unsigned long next, struct mm_walk *walk);
1174 int (*pte_hole)(unsigned long addr, unsigned long next,
1175 struct mm_walk *walk);
1176 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1177 unsigned long addr, unsigned long next,
1178 struct mm_walk *walk);
1179 int (*test_walk)(unsigned long addr, unsigned long next,
1180 struct mm_walk *walk);
1181 struct mm_struct *mm;
1182 struct vm_area_struct *vma;
1183 void *private;
1184};
1185
1186int walk_page_range(unsigned long addr, unsigned long end,
1187 struct mm_walk *walk);
1188int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1189void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1190 unsigned long end, unsigned long floor, unsigned long ceiling);
1191int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1192 struct vm_area_struct *vma);
1193void unmap_mapping_range(struct address_space *mapping,
1194 loff_t const holebegin, loff_t const holelen, int even_cows);
1195int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1196 unsigned long *pfn);
1197int follow_phys(struct vm_area_struct *vma, unsigned long address,
1198 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1199int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1200 void *buf, int len, int write);
1201
1202static inline void unmap_shared_mapping_range(struct address_space *mapping,
1203 loff_t const holebegin, loff_t const holelen)
1204{
1205 unmap_mapping_range(mapping, holebegin, holelen, 0);
1206}
1207
1208extern void truncate_pagecache(struct inode *inode, loff_t new);
1209extern void truncate_setsize(struct inode *inode, loff_t newsize);
1210void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1211void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1212int truncate_inode_page(struct address_space *mapping, struct page *page);
1213int generic_error_remove_page(struct address_space *mapping, struct page *page);
1214int invalidate_inode_page(struct page *page);
1215
1216#ifdef CONFIG_MMU
1217extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1218 unsigned long address, unsigned int flags);
1219extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1220 unsigned long address, unsigned int fault_flags,
1221 bool *unlocked);
1222#else
1223static inline int handle_mm_fault(struct mm_struct *mm,
1224 struct vm_area_struct *vma, unsigned long address,
1225 unsigned int flags)
1226{
1227 /* should never happen if there's no MMU */
1228 BUG();
1229 return VM_FAULT_SIGBUS;
1230}
1231static inline int fixup_user_fault(struct task_struct *tsk,
1232 struct mm_struct *mm, unsigned long address,
1233 unsigned int fault_flags, bool *unlocked)
1234{
1235 /* should never happen if there's no MMU */
1236 BUG();
1237 return -EFAULT;
1238}
1239#endif
1240
1241extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1242extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1243 void *buf, int len, int write);
1244
1245long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1246 unsigned long start, unsigned long nr_pages,
1247 unsigned int foll_flags, struct page **pages,
1248 struct vm_area_struct **vmas, int *nonblocking);
1249long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1250 unsigned long start, unsigned long nr_pages,
1251 int write, int force, struct page **pages,
1252 struct vm_area_struct **vmas);
1253long get_user_pages6(unsigned long start, unsigned long nr_pages,
1254 int write, int force, struct page **pages,
1255 struct vm_area_struct **vmas);
1256long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
1257 int write, int force, struct page **pages, int *locked);
1258long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1259 unsigned long start, unsigned long nr_pages,
1260 int write, int force, struct page **pages,
1261 unsigned int gup_flags);
1262long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
1263 int write, int force, struct page **pages);
1264int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1265 struct page **pages);
1266
1267/* suppress warnings from use in EXPORT_SYMBOL() */
1268#ifndef __DISABLE_GUP_DEPRECATED
1269#define __gup_deprecated __deprecated
1270#else
1271#define __gup_deprecated
1272#endif
1273/*
1274 * These macros provide backward-compatibility with the old
1275 * get_user_pages() variants which took tsk/mm. These
1276 * functions/macros provide both compile-time __deprecated so we
1277 * can catch old-style use and not break the build. The actual
1278 * functions also have WARN_ON()s to let us know at runtime if
1279 * the get_user_pages() should have been the "remote" variant.
1280 *
1281 * These are hideous, but temporary.
1282 *
1283 * If you run into one of these __deprecated warnings, look
1284 * at how you are calling get_user_pages(). If you are calling
1285 * it with current/current->mm as the first two arguments,
1286 * simply remove those arguments. The behavior will be the same
1287 * as it is now. If you are calling it on another task, use
1288 * get_user_pages_remote() instead.
1289 *
1290 * Any questions? Ask Dave Hansen <dave@sr71.net>
1291 */
1292long
1293__gup_deprecated
1294get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1295 unsigned long start, unsigned long nr_pages,
1296 int write, int force, struct page **pages,
1297 struct vm_area_struct **vmas);
1298#define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \
1299 get_user_pages
1300#define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \
1301 get_user_pages8, x, \
1302 get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
1303
1304__gup_deprecated
1305long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1306 unsigned long start, unsigned long nr_pages,
1307 int write, int force, struct page **pages,
1308 int *locked);
1309#define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \
1310 get_user_pages_locked
1311#define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \
1312 get_user_pages_locked8, x, \
1313 get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
1314
1315__gup_deprecated
1316long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1317 unsigned long start, unsigned long nr_pages,
1318 int write, int force, struct page **pages);
1319#define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \
1320 get_user_pages_unlocked
1321#define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \
1322 get_user_pages_unlocked7, x, \
1323 get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
1324
1325/* Container for pinned pfns / pages */
1326struct frame_vector {
1327 unsigned int nr_allocated; /* Number of frames we have space for */
1328 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1329 bool got_ref; /* Did we pin pages by getting page ref? */
1330 bool is_pfns; /* Does array contain pages or pfns? */
1331 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1332 * pfns_vector_pages() or pfns_vector_pfns()
1333 * for access */
1334};
1335
1336struct frame_vector *frame_vector_create(unsigned int nr_frames);
1337void frame_vector_destroy(struct frame_vector *vec);
1338int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1339 bool write, bool force, struct frame_vector *vec);
1340void put_vaddr_frames(struct frame_vector *vec);
1341int frame_vector_to_pages(struct frame_vector *vec);
1342void frame_vector_to_pfns(struct frame_vector *vec);
1343
1344static inline unsigned int frame_vector_count(struct frame_vector *vec)
1345{
1346 return vec->nr_frames;
1347}
1348
1349static inline struct page **frame_vector_pages(struct frame_vector *vec)
1350{
1351 if (vec->is_pfns) {
1352 int err = frame_vector_to_pages(vec);
1353
1354 if (err)
1355 return ERR_PTR(err);
1356 }
1357 return (struct page **)(vec->ptrs);
1358}
1359
1360static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1361{
1362 if (!vec->is_pfns)
1363 frame_vector_to_pfns(vec);
1364 return (unsigned long *)(vec->ptrs);
1365}
1366
1367struct kvec;
1368int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1369 struct page **pages);
1370int get_kernel_page(unsigned long start, int write, struct page **pages);
1371struct page *get_dump_page(unsigned long addr);
1372
1373extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1374extern void do_invalidatepage(struct page *page, unsigned int offset,
1375 unsigned int length);
1376
1377int __set_page_dirty_nobuffers(struct page *page);
1378int __set_page_dirty_no_writeback(struct page *page);
1379int redirty_page_for_writepage(struct writeback_control *wbc,
1380 struct page *page);
1381void account_page_dirtied(struct page *page, struct address_space *mapping);
1382void account_page_cleaned(struct page *page, struct address_space *mapping,
1383 struct bdi_writeback *wb);
1384int set_page_dirty(struct page *page);
1385int set_page_dirty_lock(struct page *page);
1386void cancel_dirty_page(struct page *page);
1387int clear_page_dirty_for_io(struct page *page);
1388
1389int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1390
1391/* Is the vma a continuation of the stack vma above it? */
1392static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1393{
1394 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1395}
1396
1397static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1398{
1399 return !vma->vm_ops;
1400}
1401
1402static inline int stack_guard_page_start(struct vm_area_struct *vma,
1403 unsigned long addr)
1404{
1405 return (vma->vm_flags & VM_GROWSDOWN) &&
1406 (vma->vm_start == addr) &&
1407 !vma_growsdown(vma->vm_prev, addr);
1408}
1409
1410/* Is the vma a continuation of the stack vma below it? */
1411static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1412{
1413 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1414}
1415
1416static inline int stack_guard_page_end(struct vm_area_struct *vma,
1417 unsigned long addr)
1418{
1419 return (vma->vm_flags & VM_GROWSUP) &&
1420 (vma->vm_end == addr) &&
1421 !vma_growsup(vma->vm_next, addr);
1422}
1423
1424int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1425
1426extern unsigned long move_page_tables(struct vm_area_struct *vma,
1427 unsigned long old_addr, struct vm_area_struct *new_vma,
1428 unsigned long new_addr, unsigned long len,
1429 bool need_rmap_locks);
1430extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1431 unsigned long end, pgprot_t newprot,
1432 int dirty_accountable, int prot_numa);
1433extern int mprotect_fixup(struct vm_area_struct *vma,
1434 struct vm_area_struct **pprev, unsigned long start,
1435 unsigned long end, unsigned long newflags);
1436
1437/*
1438 * doesn't attempt to fault and will return short.
1439 */
1440int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1441 struct page **pages);
1442/*
1443 * per-process(per-mm_struct) statistics.
1444 */
1445static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1446{
1447 long val = atomic_long_read(&mm->rss_stat.count[member]);
1448
1449#ifdef SPLIT_RSS_COUNTING
1450 /*
1451 * counter is updated in asynchronous manner and may go to minus.
1452 * But it's never be expected number for users.
1453 */
1454 if (val < 0)
1455 val = 0;
1456#endif
1457 return (unsigned long)val;
1458}
1459
1460static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1461{
1462 atomic_long_add(value, &mm->rss_stat.count[member]);
1463}
1464
1465static inline void inc_mm_counter(struct mm_struct *mm, int member)
1466{
1467 atomic_long_inc(&mm->rss_stat.count[member]);
1468}
1469
1470static inline void dec_mm_counter(struct mm_struct *mm, int member)
1471{
1472 atomic_long_dec(&mm->rss_stat.count[member]);
1473}
1474
1475/* Optimized variant when page is already known not to be PageAnon */
1476static inline int mm_counter_file(struct page *page)
1477{
1478 if (PageSwapBacked(page))
1479 return MM_SHMEMPAGES;
1480 return MM_FILEPAGES;
1481}
1482
1483static inline int mm_counter(struct page *page)
1484{
1485 if (PageAnon(page))
1486 return MM_ANONPAGES;
1487 return mm_counter_file(page);
1488}
1489
1490static inline unsigned long get_mm_rss(struct mm_struct *mm)
1491{
1492 return get_mm_counter(mm, MM_FILEPAGES) +
1493 get_mm_counter(mm, MM_ANONPAGES) +
1494 get_mm_counter(mm, MM_SHMEMPAGES);
1495}
1496
1497static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1498{
1499 return max(mm->hiwater_rss, get_mm_rss(mm));
1500}
1501
1502static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1503{
1504 return max(mm->hiwater_vm, mm->total_vm);
1505}
1506
1507static inline void update_hiwater_rss(struct mm_struct *mm)
1508{
1509 unsigned long _rss = get_mm_rss(mm);
1510
1511 if ((mm)->hiwater_rss < _rss)
1512 (mm)->hiwater_rss = _rss;
1513}
1514
1515static inline void update_hiwater_vm(struct mm_struct *mm)
1516{
1517 if (mm->hiwater_vm < mm->total_vm)
1518 mm->hiwater_vm = mm->total_vm;
1519}
1520
1521static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1522{
1523 mm->hiwater_rss = get_mm_rss(mm);
1524}
1525
1526static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1527 struct mm_struct *mm)
1528{
1529 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1530
1531 if (*maxrss < hiwater_rss)
1532 *maxrss = hiwater_rss;
1533}
1534
1535#if defined(SPLIT_RSS_COUNTING)
1536void sync_mm_rss(struct mm_struct *mm);
1537#else
1538static inline void sync_mm_rss(struct mm_struct *mm)
1539{
1540}
1541#endif
1542
1543#ifndef __HAVE_ARCH_PTE_DEVMAP
1544static inline int pte_devmap(pte_t pte)
1545{
1546 return 0;
1547}
1548#endif
1549
1550int vma_wants_writenotify(struct vm_area_struct *vma);
1551
1552extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1553 spinlock_t **ptl);
1554static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1555 spinlock_t **ptl)
1556{
1557 pte_t *ptep;
1558 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1559 return ptep;
1560}
1561
1562#ifdef __PAGETABLE_PUD_FOLDED
1563static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1564 unsigned long address)
1565{
1566 return 0;
1567}
1568#else
1569int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1570#endif
1571
1572#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1573static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1574 unsigned long address)
1575{
1576 return 0;
1577}
1578
1579static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1580
1581static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1582{
1583 return 0;
1584}
1585
1586static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1587static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1588
1589#else
1590int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1591
1592static inline void mm_nr_pmds_init(struct mm_struct *mm)
1593{
1594 atomic_long_set(&mm->nr_pmds, 0);
1595}
1596
1597static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1598{
1599 return atomic_long_read(&mm->nr_pmds);
1600}
1601
1602static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1603{
1604 atomic_long_inc(&mm->nr_pmds);
1605}
1606
1607static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1608{
1609 atomic_long_dec(&mm->nr_pmds);
1610}
1611#endif
1612
1613int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1614int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1615
1616/*
1617 * The following ifdef needed to get the 4level-fixup.h header to work.
1618 * Remove it when 4level-fixup.h has been removed.
1619 */
1620#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1621static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1622{
1623 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1624 NULL: pud_offset(pgd, address);
1625}
1626
1627static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1628{
1629 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1630 NULL: pmd_offset(pud, address);
1631}
1632#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1633
1634#if USE_SPLIT_PTE_PTLOCKS
1635#if ALLOC_SPLIT_PTLOCKS
1636void __init ptlock_cache_init(void);
1637extern bool ptlock_alloc(struct page *page);
1638extern void ptlock_free(struct page *page);
1639
1640static inline spinlock_t *ptlock_ptr(struct page *page)
1641{
1642 return page->ptl;
1643}
1644#else /* ALLOC_SPLIT_PTLOCKS */
1645static inline void ptlock_cache_init(void)
1646{
1647}
1648
1649static inline bool ptlock_alloc(struct page *page)
1650{
1651 return true;
1652}
1653
1654static inline void ptlock_free(struct page *page)
1655{
1656}
1657
1658static inline spinlock_t *ptlock_ptr(struct page *page)
1659{
1660 return &page->ptl;
1661}
1662#endif /* ALLOC_SPLIT_PTLOCKS */
1663
1664static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1665{
1666 return ptlock_ptr(pmd_page(*pmd));
1667}
1668
1669static inline bool ptlock_init(struct page *page)
1670{
1671 /*
1672 * prep_new_page() initialize page->private (and therefore page->ptl)
1673 * with 0. Make sure nobody took it in use in between.
1674 *
1675 * It can happen if arch try to use slab for page table allocation:
1676 * slab code uses page->slab_cache, which share storage with page->ptl.
1677 */
1678 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1679 if (!ptlock_alloc(page))
1680 return false;
1681 spin_lock_init(ptlock_ptr(page));
1682 return true;
1683}
1684
1685/* Reset page->mapping so free_pages_check won't complain. */
1686static inline void pte_lock_deinit(struct page *page)
1687{
1688 page->mapping = NULL;
1689 ptlock_free(page);
1690}
1691
1692#else /* !USE_SPLIT_PTE_PTLOCKS */
1693/*
1694 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1695 */
1696static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1697{
1698 return &mm->page_table_lock;
1699}
1700static inline void ptlock_cache_init(void) {}
1701static inline bool ptlock_init(struct page *page) { return true; }
1702static inline void pte_lock_deinit(struct page *page) {}
1703#endif /* USE_SPLIT_PTE_PTLOCKS */
1704
1705static inline void pgtable_init(void)
1706{
1707 ptlock_cache_init();
1708 pgtable_cache_init();
1709}
1710
1711static inline bool pgtable_page_ctor(struct page *page)
1712{
1713 if (!ptlock_init(page))
1714 return false;
1715 inc_zone_page_state(page, NR_PAGETABLE);
1716 return true;
1717}
1718
1719static inline void pgtable_page_dtor(struct page *page)
1720{
1721 pte_lock_deinit(page);
1722 dec_zone_page_state(page, NR_PAGETABLE);
1723}
1724
1725#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1726({ \
1727 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1728 pte_t *__pte = pte_offset_map(pmd, address); \
1729 *(ptlp) = __ptl; \
1730 spin_lock(__ptl); \
1731 __pte; \
1732})
1733
1734#define pte_unmap_unlock(pte, ptl) do { \
1735 spin_unlock(ptl); \
1736 pte_unmap(pte); \
1737} while (0)
1738
1739#define pte_alloc(mm, pmd, address) \
1740 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1741
1742#define pte_alloc_map(mm, pmd, address) \
1743 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1744
1745#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1746 (pte_alloc(mm, pmd, address) ? \
1747 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1748
1749#define pte_alloc_kernel(pmd, address) \
1750 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1751 NULL: pte_offset_kernel(pmd, address))
1752
1753#if USE_SPLIT_PMD_PTLOCKS
1754
1755static struct page *pmd_to_page(pmd_t *pmd)
1756{
1757 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1758 return virt_to_page((void *)((unsigned long) pmd & mask));
1759}
1760
1761static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1762{
1763 return ptlock_ptr(pmd_to_page(pmd));
1764}
1765
1766static inline bool pgtable_pmd_page_ctor(struct page *page)
1767{
1768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1769 page->pmd_huge_pte = NULL;
1770#endif
1771 return ptlock_init(page);
1772}
1773
1774static inline void pgtable_pmd_page_dtor(struct page *page)
1775{
1776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1777 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1778#endif
1779 ptlock_free(page);
1780}
1781
1782#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1783
1784#else
1785
1786static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1787{
1788 return &mm->page_table_lock;
1789}
1790
1791static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1792static inline void pgtable_pmd_page_dtor(struct page *page) {}
1793
1794#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1795
1796#endif
1797
1798static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1799{
1800 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1801 spin_lock(ptl);
1802 return ptl;
1803}
1804
1805extern void free_area_init(unsigned long * zones_size);
1806extern void free_area_init_node(int nid, unsigned long * zones_size,
1807 unsigned long zone_start_pfn, unsigned long *zholes_size);
1808extern void free_initmem(void);
1809
1810/*
1811 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1812 * into the buddy system. The freed pages will be poisoned with pattern
1813 * "poison" if it's within range [0, UCHAR_MAX].
1814 * Return pages freed into the buddy system.
1815 */
1816extern unsigned long free_reserved_area(void *start, void *end,
1817 int poison, char *s);
1818
1819#ifdef CONFIG_HIGHMEM
1820/*
1821 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1822 * and totalram_pages.
1823 */
1824extern void free_highmem_page(struct page *page);
1825#endif
1826
1827extern void adjust_managed_page_count(struct page *page, long count);
1828extern void mem_init_print_info(const char *str);
1829
1830extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1831
1832/* Free the reserved page into the buddy system, so it gets managed. */
1833static inline void __free_reserved_page(struct page *page)
1834{
1835 ClearPageReserved(page);
1836 init_page_count(page);
1837 __free_page(page);
1838}
1839
1840static inline void free_reserved_page(struct page *page)
1841{
1842 __free_reserved_page(page);
1843 adjust_managed_page_count(page, 1);
1844}
1845
1846static inline void mark_page_reserved(struct page *page)
1847{
1848 SetPageReserved(page);
1849 adjust_managed_page_count(page, -1);
1850}
1851
1852/*
1853 * Default method to free all the __init memory into the buddy system.
1854 * The freed pages will be poisoned with pattern "poison" if it's within
1855 * range [0, UCHAR_MAX].
1856 * Return pages freed into the buddy system.
1857 */
1858static inline unsigned long free_initmem_default(int poison)
1859{
1860 extern char __init_begin[], __init_end[];
1861
1862 return free_reserved_area(&__init_begin, &__init_end,
1863 poison, "unused kernel");
1864}
1865
1866static inline unsigned long get_num_physpages(void)
1867{
1868 int nid;
1869 unsigned long phys_pages = 0;
1870
1871 for_each_online_node(nid)
1872 phys_pages += node_present_pages(nid);
1873
1874 return phys_pages;
1875}
1876
1877#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1878/*
1879 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1880 * zones, allocate the backing mem_map and account for memory holes in a more
1881 * architecture independent manner. This is a substitute for creating the
1882 * zone_sizes[] and zholes_size[] arrays and passing them to
1883 * free_area_init_node()
1884 *
1885 * An architecture is expected to register range of page frames backed by
1886 * physical memory with memblock_add[_node]() before calling
1887 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1888 * usage, an architecture is expected to do something like
1889 *
1890 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1891 * max_highmem_pfn};
1892 * for_each_valid_physical_page_range()
1893 * memblock_add_node(base, size, nid)
1894 * free_area_init_nodes(max_zone_pfns);
1895 *
1896 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1897 * registered physical page range. Similarly
1898 * sparse_memory_present_with_active_regions() calls memory_present() for
1899 * each range when SPARSEMEM is enabled.
1900 *
1901 * See mm/page_alloc.c for more information on each function exposed by
1902 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1903 */
1904extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1905unsigned long node_map_pfn_alignment(void);
1906unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1907 unsigned long end_pfn);
1908extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1909 unsigned long end_pfn);
1910extern void get_pfn_range_for_nid(unsigned int nid,
1911 unsigned long *start_pfn, unsigned long *end_pfn);
1912extern unsigned long find_min_pfn_with_active_regions(void);
1913extern void free_bootmem_with_active_regions(int nid,
1914 unsigned long max_low_pfn);
1915extern void sparse_memory_present_with_active_regions(int nid);
1916
1917#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1918
1919#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1920 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1921static inline int __early_pfn_to_nid(unsigned long pfn,
1922 struct mminit_pfnnid_cache *state)
1923{
1924 return 0;
1925}
1926#else
1927/* please see mm/page_alloc.c */
1928extern int __meminit early_pfn_to_nid(unsigned long pfn);
1929/* there is a per-arch backend function. */
1930extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1931 struct mminit_pfnnid_cache *state);
1932#endif
1933
1934extern void set_dma_reserve(unsigned long new_dma_reserve);
1935extern void memmap_init_zone(unsigned long, int, unsigned long,
1936 unsigned long, enum memmap_context);
1937extern void setup_per_zone_wmarks(void);
1938extern int __meminit init_per_zone_wmark_min(void);
1939extern void mem_init(void);
1940extern void __init mmap_init(void);
1941extern void show_mem(unsigned int flags);
1942extern long si_mem_available(void);
1943extern void si_meminfo(struct sysinfo * val);
1944extern void si_meminfo_node(struct sysinfo *val, int nid);
1945
1946extern __printf(3, 4)
1947void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1948 const char *fmt, ...);
1949
1950extern void setup_per_cpu_pageset(void);
1951
1952extern void zone_pcp_update(struct zone *zone);
1953extern void zone_pcp_reset(struct zone *zone);
1954
1955/* page_alloc.c */
1956extern int min_free_kbytes;
1957extern int watermark_scale_factor;
1958
1959/* nommu.c */
1960extern atomic_long_t mmap_pages_allocated;
1961extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1962
1963/* interval_tree.c */
1964void vma_interval_tree_insert(struct vm_area_struct *node,
1965 struct rb_root *root);
1966void vma_interval_tree_insert_after(struct vm_area_struct *node,
1967 struct vm_area_struct *prev,
1968 struct rb_root *root);
1969void vma_interval_tree_remove(struct vm_area_struct *node,
1970 struct rb_root *root);
1971struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1972 unsigned long start, unsigned long last);
1973struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1974 unsigned long start, unsigned long last);
1975
1976#define vma_interval_tree_foreach(vma, root, start, last) \
1977 for (vma = vma_interval_tree_iter_first(root, start, last); \
1978 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1979
1980void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1981 struct rb_root *root);
1982void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1983 struct rb_root *root);
1984struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1985 struct rb_root *root, unsigned long start, unsigned long last);
1986struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1987 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1988#ifdef CONFIG_DEBUG_VM_RB
1989void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1990#endif
1991
1992#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1993 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1994 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1995
1996/* mmap.c */
1997extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1998extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1999 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
2000extern struct vm_area_struct *vma_merge(struct mm_struct *,
2001 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2002 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2003 struct mempolicy *, struct vm_userfaultfd_ctx);
2004extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2005extern int split_vma(struct mm_struct *,
2006 struct vm_area_struct *, unsigned long addr, int new_below);
2007extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2008extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2009 struct rb_node **, struct rb_node *);
2010extern void unlink_file_vma(struct vm_area_struct *);
2011extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2012 unsigned long addr, unsigned long len, pgoff_t pgoff,
2013 bool *need_rmap_locks);
2014extern void exit_mmap(struct mm_struct *);
2015
2016static inline int check_data_rlimit(unsigned long rlim,
2017 unsigned long new,
2018 unsigned long start,
2019 unsigned long end_data,
2020 unsigned long start_data)
2021{
2022 if (rlim < RLIM_INFINITY) {
2023 if (((new - start) + (end_data - start_data)) > rlim)
2024 return -ENOSPC;
2025 }
2026
2027 return 0;
2028}
2029
2030extern int mm_take_all_locks(struct mm_struct *mm);
2031extern void mm_drop_all_locks(struct mm_struct *mm);
2032
2033extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2034extern struct file *get_mm_exe_file(struct mm_struct *mm);
2035
2036extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2037extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2038
2039extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2040 unsigned long addr, unsigned long len,
2041 unsigned long flags,
2042 const struct vm_special_mapping *spec);
2043/* This is an obsolete alternative to _install_special_mapping. */
2044extern int install_special_mapping(struct mm_struct *mm,
2045 unsigned long addr, unsigned long len,
2046 unsigned long flags, struct page **pages);
2047
2048extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2049
2050extern unsigned long mmap_region(struct file *file, unsigned long addr,
2051 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
2052extern unsigned long do_mmap(struct file *file, unsigned long addr,
2053 unsigned long len, unsigned long prot, unsigned long flags,
2054 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
2055extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2056
2057static inline unsigned long
2058do_mmap_pgoff(struct file *file, unsigned long addr,
2059 unsigned long len, unsigned long prot, unsigned long flags,
2060 unsigned long pgoff, unsigned long *populate)
2061{
2062 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2063}
2064
2065#ifdef CONFIG_MMU
2066extern int __mm_populate(unsigned long addr, unsigned long len,
2067 int ignore_errors);
2068static inline void mm_populate(unsigned long addr, unsigned long len)
2069{
2070 /* Ignore errors */
2071 (void) __mm_populate(addr, len, 1);
2072}
2073#else
2074static inline void mm_populate(unsigned long addr, unsigned long len) {}
2075#endif
2076
2077/* These take the mm semaphore themselves */
2078extern unsigned long vm_brk(unsigned long, unsigned long);
2079extern int vm_munmap(unsigned long, size_t);
2080extern unsigned long vm_mmap(struct file *, unsigned long,
2081 unsigned long, unsigned long,
2082 unsigned long, unsigned long);
2083
2084struct vm_unmapped_area_info {
2085#define VM_UNMAPPED_AREA_TOPDOWN 1
2086 unsigned long flags;
2087 unsigned long length;
2088 unsigned long low_limit;
2089 unsigned long high_limit;
2090 unsigned long align_mask;
2091 unsigned long align_offset;
2092};
2093
2094extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2095extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2096
2097/*
2098 * Search for an unmapped address range.
2099 *
2100 * We are looking for a range that:
2101 * - does not intersect with any VMA;
2102 * - is contained within the [low_limit, high_limit) interval;
2103 * - is at least the desired size.
2104 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2105 */
2106static inline unsigned long
2107vm_unmapped_area(struct vm_unmapped_area_info *info)
2108{
2109 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2110 return unmapped_area_topdown(info);
2111 else
2112 return unmapped_area(info);
2113}
2114
2115/* truncate.c */
2116extern void truncate_inode_pages(struct address_space *, loff_t);
2117extern void truncate_inode_pages_range(struct address_space *,
2118 loff_t lstart, loff_t lend);
2119extern void truncate_inode_pages_final(struct address_space *);
2120
2121/* generic vm_area_ops exported for stackable file systems */
2122extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2123extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2124extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2125
2126/* mm/page-writeback.c */
2127int write_one_page(struct page *page, int wait);
2128void task_dirty_inc(struct task_struct *tsk);
2129
2130/* readahead.c */
2131#define VM_MAX_READAHEAD 128 /* kbytes */
2132#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2133
2134int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2135 pgoff_t offset, unsigned long nr_to_read);
2136
2137void page_cache_sync_readahead(struct address_space *mapping,
2138 struct file_ra_state *ra,
2139 struct file *filp,
2140 pgoff_t offset,
2141 unsigned long size);
2142
2143void page_cache_async_readahead(struct address_space *mapping,
2144 struct file_ra_state *ra,
2145 struct file *filp,
2146 struct page *pg,
2147 pgoff_t offset,
2148 unsigned long size);
2149
2150/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2151extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2152
2153/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2154extern int expand_downwards(struct vm_area_struct *vma,
2155 unsigned long address);
2156#if VM_GROWSUP
2157extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2158#else
2159 #define expand_upwards(vma, address) (0)
2160#endif
2161
2162/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2163extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2164extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2165 struct vm_area_struct **pprev);
2166
2167/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2168 NULL if none. Assume start_addr < end_addr. */
2169static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2170{
2171 struct vm_area_struct * vma = find_vma(mm,start_addr);
2172
2173 if (vma && end_addr <= vma->vm_start)
2174 vma = NULL;
2175 return vma;
2176}
2177
2178static inline unsigned long vma_pages(struct vm_area_struct *vma)
2179{
2180 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2181}
2182
2183/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2184static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2185 unsigned long vm_start, unsigned long vm_end)
2186{
2187 struct vm_area_struct *vma = find_vma(mm, vm_start);
2188
2189 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2190 vma = NULL;
2191
2192 return vma;
2193}
2194
2195#ifdef CONFIG_MMU
2196pgprot_t vm_get_page_prot(unsigned long vm_flags);
2197void vma_set_page_prot(struct vm_area_struct *vma);
2198#else
2199static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2200{
2201 return __pgprot(0);
2202}
2203static inline void vma_set_page_prot(struct vm_area_struct *vma)
2204{
2205 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2206}
2207#endif
2208
2209#ifdef CONFIG_NUMA_BALANCING
2210unsigned long change_prot_numa(struct vm_area_struct *vma,
2211 unsigned long start, unsigned long end);
2212#endif
2213
2214struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2215int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2216 unsigned long pfn, unsigned long size, pgprot_t);
2217int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2218int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2219 unsigned long pfn);
2220int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2221 unsigned long pfn, pgprot_t pgprot);
2222int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2223 pfn_t pfn);
2224int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2225
2226
2227struct page *follow_page_mask(struct vm_area_struct *vma,
2228 unsigned long address, unsigned int foll_flags,
2229 unsigned int *page_mask);
2230
2231static inline struct page *follow_page(struct vm_area_struct *vma,
2232 unsigned long address, unsigned int foll_flags)
2233{
2234 unsigned int unused_page_mask;
2235 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2236}
2237
2238#define FOLL_WRITE 0x01 /* check pte is writable */
2239#define FOLL_TOUCH 0x02 /* mark page accessed */
2240#define FOLL_GET 0x04 /* do get_page on page */
2241#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2242#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2243#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2244 * and return without waiting upon it */
2245#define FOLL_POPULATE 0x40 /* fault in page */
2246#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2247#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2248#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2249#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2250#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2251#define FOLL_MLOCK 0x1000 /* lock present pages */
2252#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2253
2254typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2255 void *data);
2256extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2257 unsigned long size, pte_fn_t fn, void *data);
2258
2259
2260#ifdef CONFIG_PAGE_POISONING
2261extern bool page_poisoning_enabled(void);
2262extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2263extern bool page_is_poisoned(struct page *page);
2264#else
2265static inline bool page_poisoning_enabled(void) { return false; }
2266static inline void kernel_poison_pages(struct page *page, int numpages,
2267 int enable) { }
2268static inline bool page_is_poisoned(struct page *page) { return false; }
2269#endif
2270
2271#ifdef CONFIG_DEBUG_PAGEALLOC
2272extern bool _debug_pagealloc_enabled;
2273extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2274
2275static inline bool debug_pagealloc_enabled(void)
2276{
2277 return _debug_pagealloc_enabled;
2278}
2279
2280static inline void
2281kernel_map_pages(struct page *page, int numpages, int enable)
2282{
2283 if (!debug_pagealloc_enabled())
2284 return;
2285
2286 __kernel_map_pages(page, numpages, enable);
2287}
2288#ifdef CONFIG_HIBERNATION
2289extern bool kernel_page_present(struct page *page);
2290#endif /* CONFIG_HIBERNATION */
2291#else /* CONFIG_DEBUG_PAGEALLOC */
2292static inline void
2293kernel_map_pages(struct page *page, int numpages, int enable) {}
2294#ifdef CONFIG_HIBERNATION
2295static inline bool kernel_page_present(struct page *page) { return true; }
2296#endif /* CONFIG_HIBERNATION */
2297static inline bool debug_pagealloc_enabled(void)
2298{
2299 return false;
2300}
2301#endif /* CONFIG_DEBUG_PAGEALLOC */
2302
2303#ifdef __HAVE_ARCH_GATE_AREA
2304extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2305extern int in_gate_area_no_mm(unsigned long addr);
2306extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2307#else
2308static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2309{
2310 return NULL;
2311}
2312static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2313static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2314{
2315 return 0;
2316}
2317#endif /* __HAVE_ARCH_GATE_AREA */
2318
2319#ifdef CONFIG_SYSCTL
2320extern int sysctl_drop_caches;
2321int drop_caches_sysctl_handler(struct ctl_table *, int,
2322 void __user *, size_t *, loff_t *);
2323#endif
2324
2325void drop_slab(void);
2326void drop_slab_node(int nid);
2327
2328#ifndef CONFIG_MMU
2329#define randomize_va_space 0
2330#else
2331extern int randomize_va_space;
2332#endif
2333
2334const char * arch_vma_name(struct vm_area_struct *vma);
2335void print_vma_addr(char *prefix, unsigned long rip);
2336
2337void sparse_mem_maps_populate_node(struct page **map_map,
2338 unsigned long pnum_begin,
2339 unsigned long pnum_end,
2340 unsigned long map_count,
2341 int nodeid);
2342
2343struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2344pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2345pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2346pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2347pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2348void *vmemmap_alloc_block(unsigned long size, int node);
2349struct vmem_altmap;
2350void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2351 struct vmem_altmap *altmap);
2352static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2353{
2354 return __vmemmap_alloc_block_buf(size, node, NULL);
2355}
2356
2357void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2358int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2359 int node);
2360int vmemmap_populate(unsigned long start, unsigned long end, int node);
2361void vmemmap_populate_print_last(void);
2362#ifdef CONFIG_MEMORY_HOTPLUG
2363void vmemmap_free(unsigned long start, unsigned long end);
2364#endif
2365void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2366 unsigned long size);
2367
2368enum mf_flags {
2369 MF_COUNT_INCREASED = 1 << 0,
2370 MF_ACTION_REQUIRED = 1 << 1,
2371 MF_MUST_KILL = 1 << 2,
2372 MF_SOFT_OFFLINE = 1 << 3,
2373};
2374extern int memory_failure(unsigned long pfn, int trapno, int flags);
2375extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2376extern int unpoison_memory(unsigned long pfn);
2377extern int get_hwpoison_page(struct page *page);
2378#define put_hwpoison_page(page) put_page(page)
2379extern int sysctl_memory_failure_early_kill;
2380extern int sysctl_memory_failure_recovery;
2381extern void shake_page(struct page *p, int access);
2382extern atomic_long_t num_poisoned_pages;
2383extern int soft_offline_page(struct page *page, int flags);
2384
2385
2386/*
2387 * Error handlers for various types of pages.
2388 */
2389enum mf_result {
2390 MF_IGNORED, /* Error: cannot be handled */
2391 MF_FAILED, /* Error: handling failed */
2392 MF_DELAYED, /* Will be handled later */
2393 MF_RECOVERED, /* Successfully recovered */
2394};
2395
2396enum mf_action_page_type {
2397 MF_MSG_KERNEL,
2398 MF_MSG_KERNEL_HIGH_ORDER,
2399 MF_MSG_SLAB,
2400 MF_MSG_DIFFERENT_COMPOUND,
2401 MF_MSG_POISONED_HUGE,
2402 MF_MSG_HUGE,
2403 MF_MSG_FREE_HUGE,
2404 MF_MSG_UNMAP_FAILED,
2405 MF_MSG_DIRTY_SWAPCACHE,
2406 MF_MSG_CLEAN_SWAPCACHE,
2407 MF_MSG_DIRTY_MLOCKED_LRU,
2408 MF_MSG_CLEAN_MLOCKED_LRU,
2409 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2410 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2411 MF_MSG_DIRTY_LRU,
2412 MF_MSG_CLEAN_LRU,
2413 MF_MSG_TRUNCATED_LRU,
2414 MF_MSG_BUDDY,
2415 MF_MSG_BUDDY_2ND,
2416 MF_MSG_UNKNOWN,
2417};
2418
2419#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2420extern void clear_huge_page(struct page *page,
2421 unsigned long addr,
2422 unsigned int pages_per_huge_page);
2423extern void copy_user_huge_page(struct page *dst, struct page *src,
2424 unsigned long addr, struct vm_area_struct *vma,
2425 unsigned int pages_per_huge_page);
2426#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2427
2428extern struct page_ext_operations debug_guardpage_ops;
2429extern struct page_ext_operations page_poisoning_ops;
2430
2431#ifdef CONFIG_DEBUG_PAGEALLOC
2432extern unsigned int _debug_guardpage_minorder;
2433extern bool _debug_guardpage_enabled;
2434
2435static inline unsigned int debug_guardpage_minorder(void)
2436{
2437 return _debug_guardpage_minorder;
2438}
2439
2440static inline bool debug_guardpage_enabled(void)
2441{
2442 return _debug_guardpage_enabled;
2443}
2444
2445static inline bool page_is_guard(struct page *page)
2446{
2447 struct page_ext *page_ext;
2448
2449 if (!debug_guardpage_enabled())
2450 return false;
2451
2452 page_ext = lookup_page_ext(page);
2453 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2454}
2455#else
2456static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2457static inline bool debug_guardpage_enabled(void) { return false; }
2458static inline bool page_is_guard(struct page *page) { return false; }
2459#endif /* CONFIG_DEBUG_PAGEALLOC */
2460
2461#if MAX_NUMNODES > 1
2462void __init setup_nr_node_ids(void);
2463#else
2464static inline void setup_nr_node_ids(void) {}
2465#endif
2466
2467#endif /* __KERNEL__ */
2468#endif /* _LINUX_MM_H */