at v4.5 19 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69/* Flag to prevent checks on free */ 70#ifdef CONFIG_DEBUG_OBJECTS 71# define SLAB_DEBUG_OBJECTS 0x00400000UL 72#else 73# define SLAB_DEBUG_OBJECTS 0x00000000UL 74#endif 75 76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78/* Don't track use of uninitialized memory */ 79#ifdef CONFIG_KMEMCHECK 80# define SLAB_NOTRACK 0x01000000UL 81#else 82# define SLAB_NOTRACK 0x00000000UL 83#endif 84#ifdef CONFIG_FAILSLAB 85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86#else 87# define SLAB_FAILSLAB 0x00000000UL 88#endif 89#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 90# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */ 91#else 92# define SLAB_ACCOUNT 0x00000000UL 93#endif 94 95/* The following flags affect the page allocator grouping pages by mobility */ 96#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 97#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 98/* 99 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 100 * 101 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 102 * 103 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 104 * Both make kfree a no-op. 105 */ 106#define ZERO_SIZE_PTR ((void *)16) 107 108#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 109 (unsigned long)ZERO_SIZE_PTR) 110 111#include <linux/kmemleak.h> 112#include <linux/kasan.h> 113 114struct mem_cgroup; 115/* 116 * struct kmem_cache related prototypes 117 */ 118void __init kmem_cache_init(void); 119bool slab_is_available(void); 120 121struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 122 unsigned long, 123 void (*)(void *)); 124void kmem_cache_destroy(struct kmem_cache *); 125int kmem_cache_shrink(struct kmem_cache *); 126 127void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 128void memcg_deactivate_kmem_caches(struct mem_cgroup *); 129void memcg_destroy_kmem_caches(struct mem_cgroup *); 130 131/* 132 * Please use this macro to create slab caches. Simply specify the 133 * name of the structure and maybe some flags that are listed above. 134 * 135 * The alignment of the struct determines object alignment. If you 136 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 137 * then the objects will be properly aligned in SMP configurations. 138 */ 139#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 140 sizeof(struct __struct), __alignof__(struct __struct),\ 141 (__flags), NULL) 142 143/* 144 * Common kmalloc functions provided by all allocators 145 */ 146void * __must_check __krealloc(const void *, size_t, gfp_t); 147void * __must_check krealloc(const void *, size_t, gfp_t); 148void kfree(const void *); 149void kzfree(const void *); 150size_t ksize(const void *); 151 152/* 153 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 154 * alignment larger than the alignment of a 64-bit integer. 155 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 156 */ 157#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 158#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 159#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 160#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 161#else 162#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 163#endif 164 165/* 166 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 167 * Intended for arches that get misalignment faults even for 64 bit integer 168 * aligned buffers. 169 */ 170#ifndef ARCH_SLAB_MINALIGN 171#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 172#endif 173 174/* 175 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 176 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 177 * aligned pointers. 178 */ 179#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 180#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 181#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 182 183/* 184 * Kmalloc array related definitions 185 */ 186 187#ifdef CONFIG_SLAB 188/* 189 * The largest kmalloc size supported by the SLAB allocators is 190 * 32 megabyte (2^25) or the maximum allocatable page order if that is 191 * less than 32 MB. 192 * 193 * WARNING: Its not easy to increase this value since the allocators have 194 * to do various tricks to work around compiler limitations in order to 195 * ensure proper constant folding. 196 */ 197#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 198 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 199#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 200#ifndef KMALLOC_SHIFT_LOW 201#define KMALLOC_SHIFT_LOW 5 202#endif 203#endif 204 205#ifdef CONFIG_SLUB 206/* 207 * SLUB directly allocates requests fitting in to an order-1 page 208 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 209 */ 210#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 211#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 212#ifndef KMALLOC_SHIFT_LOW 213#define KMALLOC_SHIFT_LOW 3 214#endif 215#endif 216 217#ifdef CONFIG_SLOB 218/* 219 * SLOB passes all requests larger than one page to the page allocator. 220 * No kmalloc array is necessary since objects of different sizes can 221 * be allocated from the same page. 222 */ 223#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 224#define KMALLOC_SHIFT_MAX 30 225#ifndef KMALLOC_SHIFT_LOW 226#define KMALLOC_SHIFT_LOW 3 227#endif 228#endif 229 230/* Maximum allocatable size */ 231#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 232/* Maximum size for which we actually use a slab cache */ 233#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 234/* Maximum order allocatable via the slab allocagtor */ 235#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 236 237/* 238 * Kmalloc subsystem. 239 */ 240#ifndef KMALLOC_MIN_SIZE 241#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 242#endif 243 244/* 245 * This restriction comes from byte sized index implementation. 246 * Page size is normally 2^12 bytes and, in this case, if we want to use 247 * byte sized index which can represent 2^8 entries, the size of the object 248 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 249 * If minimum size of kmalloc is less than 16, we use it as minimum object 250 * size and give up to use byte sized index. 251 */ 252#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 253 (KMALLOC_MIN_SIZE) : 16) 254 255#ifndef CONFIG_SLOB 256extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 257#ifdef CONFIG_ZONE_DMA 258extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 259#endif 260 261/* 262 * Figure out which kmalloc slab an allocation of a certain size 263 * belongs to. 264 * 0 = zero alloc 265 * 1 = 65 .. 96 bytes 266 * 2 = 129 .. 192 bytes 267 * n = 2^(n-1)+1 .. 2^n 268 */ 269static __always_inline int kmalloc_index(size_t size) 270{ 271 if (!size) 272 return 0; 273 274 if (size <= KMALLOC_MIN_SIZE) 275 return KMALLOC_SHIFT_LOW; 276 277 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 278 return 1; 279 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 280 return 2; 281 if (size <= 8) return 3; 282 if (size <= 16) return 4; 283 if (size <= 32) return 5; 284 if (size <= 64) return 6; 285 if (size <= 128) return 7; 286 if (size <= 256) return 8; 287 if (size <= 512) return 9; 288 if (size <= 1024) return 10; 289 if (size <= 2 * 1024) return 11; 290 if (size <= 4 * 1024) return 12; 291 if (size <= 8 * 1024) return 13; 292 if (size <= 16 * 1024) return 14; 293 if (size <= 32 * 1024) return 15; 294 if (size <= 64 * 1024) return 16; 295 if (size <= 128 * 1024) return 17; 296 if (size <= 256 * 1024) return 18; 297 if (size <= 512 * 1024) return 19; 298 if (size <= 1024 * 1024) return 20; 299 if (size <= 2 * 1024 * 1024) return 21; 300 if (size <= 4 * 1024 * 1024) return 22; 301 if (size <= 8 * 1024 * 1024) return 23; 302 if (size <= 16 * 1024 * 1024) return 24; 303 if (size <= 32 * 1024 * 1024) return 25; 304 if (size <= 64 * 1024 * 1024) return 26; 305 BUG(); 306 307 /* Will never be reached. Needed because the compiler may complain */ 308 return -1; 309} 310#endif /* !CONFIG_SLOB */ 311 312void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment; 313void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment; 314void kmem_cache_free(struct kmem_cache *, void *); 315 316/* 317 * Bulk allocation and freeing operations. These are accellerated in an 318 * allocator specific way to avoid taking locks repeatedly or building 319 * metadata structures unnecessarily. 320 * 321 * Note that interrupts must be enabled when calling these functions. 322 */ 323void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 324int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 325 326#ifdef CONFIG_NUMA 327void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment; 328void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment; 329#else 330static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 331{ 332 return __kmalloc(size, flags); 333} 334 335static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 336{ 337 return kmem_cache_alloc(s, flags); 338} 339#endif 340 341#ifdef CONFIG_TRACING 342extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment; 343 344#ifdef CONFIG_NUMA 345extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 346 gfp_t gfpflags, 347 int node, size_t size) __assume_slab_alignment; 348#else 349static __always_inline void * 350kmem_cache_alloc_node_trace(struct kmem_cache *s, 351 gfp_t gfpflags, 352 int node, size_t size) 353{ 354 return kmem_cache_alloc_trace(s, gfpflags, size); 355} 356#endif /* CONFIG_NUMA */ 357 358#else /* CONFIG_TRACING */ 359static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 360 gfp_t flags, size_t size) 361{ 362 void *ret = kmem_cache_alloc(s, flags); 363 364 kasan_kmalloc(s, ret, size); 365 return ret; 366} 367 368static __always_inline void * 369kmem_cache_alloc_node_trace(struct kmem_cache *s, 370 gfp_t gfpflags, 371 int node, size_t size) 372{ 373 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 374 375 kasan_kmalloc(s, ret, size); 376 return ret; 377} 378#endif /* CONFIG_TRACING */ 379 380extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment; 381 382#ifdef CONFIG_TRACING 383extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment; 384#else 385static __always_inline void * 386kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 387{ 388 return kmalloc_order(size, flags, order); 389} 390#endif 391 392static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 393{ 394 unsigned int order = get_order(size); 395 return kmalloc_order_trace(size, flags, order); 396} 397 398/** 399 * kmalloc - allocate memory 400 * @size: how many bytes of memory are required. 401 * @flags: the type of memory to allocate. 402 * 403 * kmalloc is the normal method of allocating memory 404 * for objects smaller than page size in the kernel. 405 * 406 * The @flags argument may be one of: 407 * 408 * %GFP_USER - Allocate memory on behalf of user. May sleep. 409 * 410 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 411 * 412 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 413 * For example, use this inside interrupt handlers. 414 * 415 * %GFP_HIGHUSER - Allocate pages from high memory. 416 * 417 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 418 * 419 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 420 * 421 * %GFP_NOWAIT - Allocation will not sleep. 422 * 423 * %__GFP_THISNODE - Allocate node-local memory only. 424 * 425 * %GFP_DMA - Allocation suitable for DMA. 426 * Should only be used for kmalloc() caches. Otherwise, use a 427 * slab created with SLAB_DMA. 428 * 429 * Also it is possible to set different flags by OR'ing 430 * in one or more of the following additional @flags: 431 * 432 * %__GFP_COLD - Request cache-cold pages instead of 433 * trying to return cache-warm pages. 434 * 435 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 436 * 437 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 438 * (think twice before using). 439 * 440 * %__GFP_NORETRY - If memory is not immediately available, 441 * then give up at once. 442 * 443 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 444 * 445 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 446 * 447 * There are other flags available as well, but these are not intended 448 * for general use, and so are not documented here. For a full list of 449 * potential flags, always refer to linux/gfp.h. 450 */ 451static __always_inline void *kmalloc(size_t size, gfp_t flags) 452{ 453 if (__builtin_constant_p(size)) { 454 if (size > KMALLOC_MAX_CACHE_SIZE) 455 return kmalloc_large(size, flags); 456#ifndef CONFIG_SLOB 457 if (!(flags & GFP_DMA)) { 458 int index = kmalloc_index(size); 459 460 if (!index) 461 return ZERO_SIZE_PTR; 462 463 return kmem_cache_alloc_trace(kmalloc_caches[index], 464 flags, size); 465 } 466#endif 467 } 468 return __kmalloc(size, flags); 469} 470 471/* 472 * Determine size used for the nth kmalloc cache. 473 * return size or 0 if a kmalloc cache for that 474 * size does not exist 475 */ 476static __always_inline int kmalloc_size(int n) 477{ 478#ifndef CONFIG_SLOB 479 if (n > 2) 480 return 1 << n; 481 482 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 483 return 96; 484 485 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 486 return 192; 487#endif 488 return 0; 489} 490 491static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 492{ 493#ifndef CONFIG_SLOB 494 if (__builtin_constant_p(size) && 495 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 496 int i = kmalloc_index(size); 497 498 if (!i) 499 return ZERO_SIZE_PTR; 500 501 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 502 flags, node, size); 503 } 504#endif 505 return __kmalloc_node(size, flags, node); 506} 507 508struct memcg_cache_array { 509 struct rcu_head rcu; 510 struct kmem_cache *entries[0]; 511}; 512 513/* 514 * This is the main placeholder for memcg-related information in kmem caches. 515 * Both the root cache and the child caches will have it. For the root cache, 516 * this will hold a dynamically allocated array large enough to hold 517 * information about the currently limited memcgs in the system. To allow the 518 * array to be accessed without taking any locks, on relocation we free the old 519 * version only after a grace period. 520 * 521 * Child caches will hold extra metadata needed for its operation. Fields are: 522 * 523 * @memcg: pointer to the memcg this cache belongs to 524 * @root_cache: pointer to the global, root cache, this cache was derived from 525 * 526 * Both root and child caches of the same kind are linked into a list chained 527 * through @list. 528 */ 529struct memcg_cache_params { 530 bool is_root_cache; 531 struct list_head list; 532 union { 533 struct memcg_cache_array __rcu *memcg_caches; 534 struct { 535 struct mem_cgroup *memcg; 536 struct kmem_cache *root_cache; 537 }; 538 }; 539}; 540 541int memcg_update_all_caches(int num_memcgs); 542 543/** 544 * kmalloc_array - allocate memory for an array. 545 * @n: number of elements. 546 * @size: element size. 547 * @flags: the type of memory to allocate (see kmalloc). 548 */ 549static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 550{ 551 if (size != 0 && n > SIZE_MAX / size) 552 return NULL; 553 return __kmalloc(n * size, flags); 554} 555 556/** 557 * kcalloc - allocate memory for an array. The memory is set to zero. 558 * @n: number of elements. 559 * @size: element size. 560 * @flags: the type of memory to allocate (see kmalloc). 561 */ 562static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 563{ 564 return kmalloc_array(n, size, flags | __GFP_ZERO); 565} 566 567/* 568 * kmalloc_track_caller is a special version of kmalloc that records the 569 * calling function of the routine calling it for slab leak tracking instead 570 * of just the calling function (confusing, eh?). 571 * It's useful when the call to kmalloc comes from a widely-used standard 572 * allocator where we care about the real place the memory allocation 573 * request comes from. 574 */ 575extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 576#define kmalloc_track_caller(size, flags) \ 577 __kmalloc_track_caller(size, flags, _RET_IP_) 578 579#ifdef CONFIG_NUMA 580extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 581#define kmalloc_node_track_caller(size, flags, node) \ 582 __kmalloc_node_track_caller(size, flags, node, \ 583 _RET_IP_) 584 585#else /* CONFIG_NUMA */ 586 587#define kmalloc_node_track_caller(size, flags, node) \ 588 kmalloc_track_caller(size, flags) 589 590#endif /* CONFIG_NUMA */ 591 592/* 593 * Shortcuts 594 */ 595static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 596{ 597 return kmem_cache_alloc(k, flags | __GFP_ZERO); 598} 599 600/** 601 * kzalloc - allocate memory. The memory is set to zero. 602 * @size: how many bytes of memory are required. 603 * @flags: the type of memory to allocate (see kmalloc). 604 */ 605static inline void *kzalloc(size_t size, gfp_t flags) 606{ 607 return kmalloc(size, flags | __GFP_ZERO); 608} 609 610/** 611 * kzalloc_node - allocate zeroed memory from a particular memory node. 612 * @size: how many bytes of memory are required. 613 * @flags: the type of memory to allocate (see kmalloc). 614 * @node: memory node from which to allocate 615 */ 616static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 617{ 618 return kmalloc_node(size, flags | __GFP_ZERO, node); 619} 620 621unsigned int kmem_cache_size(struct kmem_cache *s); 622void __init kmem_cache_init_late(void); 623 624#endif /* _LINUX_SLAB_H */