at v4.5 19 kB view raw
1/* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2006 Nick Piggin 5 * Copyright (C) 2012 Konstantin Khlebnikov 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2, or (at 10 * your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21#ifndef _LINUX_RADIX_TREE_H 22#define _LINUX_RADIX_TREE_H 23 24#include <linux/preempt.h> 25#include <linux/types.h> 26#include <linux/bug.h> 27#include <linux/kernel.h> 28#include <linux/rcupdate.h> 29 30/* 31 * An indirect pointer (root->rnode pointing to a radix_tree_node, rather 32 * than a data item) is signalled by the low bit set in the root->rnode 33 * pointer. 34 * 35 * In this case root->height is > 0, but the indirect pointer tests are 36 * needed for RCU lookups (because root->height is unreliable). The only 37 * time callers need worry about this is when doing a lookup_slot under 38 * RCU. 39 * 40 * Indirect pointer in fact is also used to tag the last pointer of a node 41 * when it is shrunk, before we rcu free the node. See shrink code for 42 * details. 43 */ 44#define RADIX_TREE_INDIRECT_PTR 1 45/* 46 * A common use of the radix tree is to store pointers to struct pages; 47 * but shmem/tmpfs needs also to store swap entries in the same tree: 48 * those are marked as exceptional entries to distinguish them. 49 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it. 50 */ 51#define RADIX_TREE_EXCEPTIONAL_ENTRY 2 52#define RADIX_TREE_EXCEPTIONAL_SHIFT 2 53 54#define RADIX_DAX_MASK 0xf 55#define RADIX_DAX_SHIFT 4 56#define RADIX_DAX_PTE (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY) 57#define RADIX_DAX_PMD (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY) 58#define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK) 59#define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT)) 60#define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \ 61 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE))) 62 63static inline int radix_tree_is_indirect_ptr(void *ptr) 64{ 65 return (int)((unsigned long)ptr & RADIX_TREE_INDIRECT_PTR); 66} 67 68/*** radix-tree API starts here ***/ 69 70#define RADIX_TREE_MAX_TAGS 3 71 72#ifdef __KERNEL__ 73#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 74#else 75#define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */ 76#endif 77 78#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 79#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 80 81#define RADIX_TREE_TAG_LONGS \ 82 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 83 84#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 85#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 86 RADIX_TREE_MAP_SHIFT)) 87 88/* Height component in node->path */ 89#define RADIX_TREE_HEIGHT_SHIFT (RADIX_TREE_MAX_PATH + 1) 90#define RADIX_TREE_HEIGHT_MASK ((1UL << RADIX_TREE_HEIGHT_SHIFT) - 1) 91 92/* Internally used bits of node->count */ 93#define RADIX_TREE_COUNT_SHIFT (RADIX_TREE_MAP_SHIFT + 1) 94#define RADIX_TREE_COUNT_MASK ((1UL << RADIX_TREE_COUNT_SHIFT) - 1) 95 96struct radix_tree_node { 97 unsigned int path; /* Offset in parent & height from the bottom */ 98 unsigned int count; 99 union { 100 struct { 101 /* Used when ascending tree */ 102 struct radix_tree_node *parent; 103 /* For tree user */ 104 void *private_data; 105 }; 106 /* Used when freeing node */ 107 struct rcu_head rcu_head; 108 }; 109 /* For tree user */ 110 struct list_head private_list; 111 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 112 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 113}; 114 115/* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */ 116struct radix_tree_root { 117 unsigned int height; 118 gfp_t gfp_mask; 119 struct radix_tree_node __rcu *rnode; 120}; 121 122#define RADIX_TREE_INIT(mask) { \ 123 .height = 0, \ 124 .gfp_mask = (mask), \ 125 .rnode = NULL, \ 126} 127 128#define RADIX_TREE(name, mask) \ 129 struct radix_tree_root name = RADIX_TREE_INIT(mask) 130 131#define INIT_RADIX_TREE(root, mask) \ 132do { \ 133 (root)->height = 0; \ 134 (root)->gfp_mask = (mask); \ 135 (root)->rnode = NULL; \ 136} while (0) 137 138/** 139 * Radix-tree synchronization 140 * 141 * The radix-tree API requires that users provide all synchronisation (with 142 * specific exceptions, noted below). 143 * 144 * Synchronization of access to the data items being stored in the tree, and 145 * management of their lifetimes must be completely managed by API users. 146 * 147 * For API usage, in general, 148 * - any function _modifying_ the tree or tags (inserting or deleting 149 * items, setting or clearing tags) must exclude other modifications, and 150 * exclude any functions reading the tree. 151 * - any function _reading_ the tree or tags (looking up items or tags, 152 * gang lookups) must exclude modifications to the tree, but may occur 153 * concurrently with other readers. 154 * 155 * The notable exceptions to this rule are the following functions: 156 * __radix_tree_lookup 157 * radix_tree_lookup 158 * radix_tree_lookup_slot 159 * radix_tree_tag_get 160 * radix_tree_gang_lookup 161 * radix_tree_gang_lookup_slot 162 * radix_tree_gang_lookup_tag 163 * radix_tree_gang_lookup_tag_slot 164 * radix_tree_tagged 165 * 166 * The first 8 functions are able to be called locklessly, using RCU. The 167 * caller must ensure calls to these functions are made within rcu_read_lock() 168 * regions. Other readers (lock-free or otherwise) and modifications may be 169 * running concurrently. 170 * 171 * It is still required that the caller manage the synchronization and lifetimes 172 * of the items. So if RCU lock-free lookups are used, typically this would mean 173 * that the items have their own locks, or are amenable to lock-free access; and 174 * that the items are freed by RCU (or only freed after having been deleted from 175 * the radix tree *and* a synchronize_rcu() grace period). 176 * 177 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 178 * access to data items when inserting into or looking up from the radix tree) 179 * 180 * Note that the value returned by radix_tree_tag_get() may not be relied upon 181 * if only the RCU read lock is held. Functions to set/clear tags and to 182 * delete nodes running concurrently with it may affect its result such that 183 * two consecutive reads in the same locked section may return different 184 * values. If reliability is required, modification functions must also be 185 * excluded from concurrency. 186 * 187 * radix_tree_tagged is able to be called without locking or RCU. 188 */ 189 190/** 191 * radix_tree_deref_slot - dereference a slot 192 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 193 * Returns: item that was stored in that slot with any direct pointer flag 194 * removed. 195 * 196 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 197 * locked across slot lookup and dereference. Not required if write lock is 198 * held (ie. items cannot be concurrently inserted). 199 * 200 * radix_tree_deref_retry must be used to confirm validity of the pointer if 201 * only the read lock is held. 202 */ 203static inline void *radix_tree_deref_slot(void **pslot) 204{ 205 return rcu_dereference(*pslot); 206} 207 208/** 209 * radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held 210 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 211 * Returns: item that was stored in that slot with any direct pointer flag 212 * removed. 213 * 214 * Similar to radix_tree_deref_slot but only used during migration when a pages 215 * mapping is being moved. The caller does not hold the RCU read lock but it 216 * must hold the tree lock to prevent parallel updates. 217 */ 218static inline void *radix_tree_deref_slot_protected(void **pslot, 219 spinlock_t *treelock) 220{ 221 return rcu_dereference_protected(*pslot, lockdep_is_held(treelock)); 222} 223 224/** 225 * radix_tree_deref_retry - check radix_tree_deref_slot 226 * @arg: pointer returned by radix_tree_deref_slot 227 * Returns: 0 if retry is not required, otherwise retry is required 228 * 229 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 230 */ 231static inline int radix_tree_deref_retry(void *arg) 232{ 233 return unlikely((unsigned long)arg & RADIX_TREE_INDIRECT_PTR); 234} 235 236/** 237 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry? 238 * @arg: value returned by radix_tree_deref_slot 239 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry. 240 */ 241static inline int radix_tree_exceptional_entry(void *arg) 242{ 243 /* Not unlikely because radix_tree_exception often tested first */ 244 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY; 245} 246 247/** 248 * radix_tree_exception - radix_tree_deref_slot returned either exception? 249 * @arg: value returned by radix_tree_deref_slot 250 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 251 */ 252static inline int radix_tree_exception(void *arg) 253{ 254 return unlikely((unsigned long)arg & 255 (RADIX_TREE_INDIRECT_PTR | RADIX_TREE_EXCEPTIONAL_ENTRY)); 256} 257 258/** 259 * radix_tree_replace_slot - replace item in a slot 260 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 261 * @item: new item to store in the slot. 262 * 263 * For use with radix_tree_lookup_slot(). Caller must hold tree write locked 264 * across slot lookup and replacement. 265 */ 266static inline void radix_tree_replace_slot(void **pslot, void *item) 267{ 268 BUG_ON(radix_tree_is_indirect_ptr(item)); 269 rcu_assign_pointer(*pslot, item); 270} 271 272int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 273 struct radix_tree_node **nodep, void ***slotp); 274int radix_tree_insert(struct radix_tree_root *, unsigned long, void *); 275void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 276 struct radix_tree_node **nodep, void ***slotp); 277void *radix_tree_lookup(struct radix_tree_root *, unsigned long); 278void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long); 279bool __radix_tree_delete_node(struct radix_tree_root *root, 280 struct radix_tree_node *node); 281void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 282void *radix_tree_delete(struct radix_tree_root *, unsigned long); 283unsigned int 284radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 285 unsigned long first_index, unsigned int max_items); 286unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root, 287 void ***results, unsigned long *indices, 288 unsigned long first_index, unsigned int max_items); 289int radix_tree_preload(gfp_t gfp_mask); 290int radix_tree_maybe_preload(gfp_t gfp_mask); 291void radix_tree_init(void); 292void *radix_tree_tag_set(struct radix_tree_root *root, 293 unsigned long index, unsigned int tag); 294void *radix_tree_tag_clear(struct radix_tree_root *root, 295 unsigned long index, unsigned int tag); 296int radix_tree_tag_get(struct radix_tree_root *root, 297 unsigned long index, unsigned int tag); 298unsigned int 299radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 300 unsigned long first_index, unsigned int max_items, 301 unsigned int tag); 302unsigned int 303radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 304 unsigned long first_index, unsigned int max_items, 305 unsigned int tag); 306unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 307 unsigned long *first_indexp, unsigned long last_index, 308 unsigned long nr_to_tag, 309 unsigned int fromtag, unsigned int totag); 310int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag); 311unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item); 312 313static inline void radix_tree_preload_end(void) 314{ 315 preempt_enable(); 316} 317 318/** 319 * struct radix_tree_iter - radix tree iterator state 320 * 321 * @index: index of current slot 322 * @next_index: next-to-last index for this chunk 323 * @tags: bit-mask for tag-iterating 324 * 325 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 326 * subinterval of slots contained within one radix tree leaf node. It is 327 * described by a pointer to its first slot and a struct radix_tree_iter 328 * which holds the chunk's position in the tree and its size. For tagged 329 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 330 * radix tree tag. 331 */ 332struct radix_tree_iter { 333 unsigned long index; 334 unsigned long next_index; 335 unsigned long tags; 336}; 337 338#define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */ 339#define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */ 340#define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */ 341 342/** 343 * radix_tree_iter_init - initialize radix tree iterator 344 * 345 * @iter: pointer to iterator state 346 * @start: iteration starting index 347 * Returns: NULL 348 */ 349static __always_inline void ** 350radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 351{ 352 /* 353 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 354 * in the case of a successful tagged chunk lookup. If the lookup was 355 * unsuccessful or non-tagged then nobody cares about ->tags. 356 * 357 * Set index to zero to bypass next_index overflow protection. 358 * See the comment in radix_tree_next_chunk() for details. 359 */ 360 iter->index = 0; 361 iter->next_index = start; 362 return NULL; 363} 364 365/** 366 * radix_tree_next_chunk - find next chunk of slots for iteration 367 * 368 * @root: radix tree root 369 * @iter: iterator state 370 * @flags: RADIX_TREE_ITER_* flags and tag index 371 * Returns: pointer to chunk first slot, or NULL if there no more left 372 * 373 * This function looks up the next chunk in the radix tree starting from 374 * @iter->next_index. It returns a pointer to the chunk's first slot. 375 * Also it fills @iter with data about chunk: position in the tree (index), 376 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 377 */ 378void **radix_tree_next_chunk(struct radix_tree_root *root, 379 struct radix_tree_iter *iter, unsigned flags); 380 381/** 382 * radix_tree_iter_retry - retry this chunk of the iteration 383 * @iter: iterator state 384 * 385 * If we iterate over a tree protected only by the RCU lock, a race 386 * against deletion or creation may result in seeing a slot for which 387 * radix_tree_deref_retry() returns true. If so, call this function 388 * and continue the iteration. 389 */ 390static inline __must_check 391void **radix_tree_iter_retry(struct radix_tree_iter *iter) 392{ 393 iter->next_index = iter->index; 394 return NULL; 395} 396 397/** 398 * radix_tree_chunk_size - get current chunk size 399 * 400 * @iter: pointer to radix tree iterator 401 * Returns: current chunk size 402 */ 403static __always_inline long 404radix_tree_chunk_size(struct radix_tree_iter *iter) 405{ 406 return iter->next_index - iter->index; 407} 408 409/** 410 * radix_tree_next_slot - find next slot in chunk 411 * 412 * @slot: pointer to current slot 413 * @iter: pointer to interator state 414 * @flags: RADIX_TREE_ITER_*, should be constant 415 * Returns: pointer to next slot, or NULL if there no more left 416 * 417 * This function updates @iter->index in the case of a successful lookup. 418 * For tagged lookup it also eats @iter->tags. 419 */ 420static __always_inline void ** 421radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags) 422{ 423 if (flags & RADIX_TREE_ITER_TAGGED) { 424 iter->tags >>= 1; 425 if (likely(iter->tags & 1ul)) { 426 iter->index++; 427 return slot + 1; 428 } 429 if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) { 430 unsigned offset = __ffs(iter->tags); 431 432 iter->tags >>= offset; 433 iter->index += offset + 1; 434 return slot + offset + 1; 435 } 436 } else { 437 long size = radix_tree_chunk_size(iter); 438 439 while (--size > 0) { 440 slot++; 441 iter->index++; 442 if (likely(*slot)) 443 return slot; 444 if (flags & RADIX_TREE_ITER_CONTIG) { 445 /* forbid switching to the next chunk */ 446 iter->next_index = 0; 447 break; 448 } 449 } 450 } 451 return NULL; 452} 453 454/** 455 * radix_tree_for_each_chunk - iterate over chunks 456 * 457 * @slot: the void** variable for pointer to chunk first slot 458 * @root: the struct radix_tree_root pointer 459 * @iter: the struct radix_tree_iter pointer 460 * @start: iteration starting index 461 * @flags: RADIX_TREE_ITER_* and tag index 462 * 463 * Locks can be released and reacquired between iterations. 464 */ 465#define radix_tree_for_each_chunk(slot, root, iter, start, flags) \ 466 for (slot = radix_tree_iter_init(iter, start) ; \ 467 (slot = radix_tree_next_chunk(root, iter, flags)) ;) 468 469/** 470 * radix_tree_for_each_chunk_slot - iterate over slots in one chunk 471 * 472 * @slot: the void** variable, at the beginning points to chunk first slot 473 * @iter: the struct radix_tree_iter pointer 474 * @flags: RADIX_TREE_ITER_*, should be constant 475 * 476 * This macro is designed to be nested inside radix_tree_for_each_chunk(). 477 * @slot points to the radix tree slot, @iter->index contains its index. 478 */ 479#define radix_tree_for_each_chunk_slot(slot, iter, flags) \ 480 for (; slot ; slot = radix_tree_next_slot(slot, iter, flags)) 481 482/** 483 * radix_tree_for_each_slot - iterate over non-empty slots 484 * 485 * @slot: the void** variable for pointer to slot 486 * @root: the struct radix_tree_root pointer 487 * @iter: the struct radix_tree_iter pointer 488 * @start: iteration starting index 489 * 490 * @slot points to radix tree slot, @iter->index contains its index. 491 */ 492#define radix_tree_for_each_slot(slot, root, iter, start) \ 493 for (slot = radix_tree_iter_init(iter, start) ; \ 494 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 495 slot = radix_tree_next_slot(slot, iter, 0)) 496 497/** 498 * radix_tree_for_each_contig - iterate over contiguous slots 499 * 500 * @slot: the void** variable for pointer to slot 501 * @root: the struct radix_tree_root pointer 502 * @iter: the struct radix_tree_iter pointer 503 * @start: iteration starting index 504 * 505 * @slot points to radix tree slot, @iter->index contains its index. 506 */ 507#define radix_tree_for_each_contig(slot, root, iter, start) \ 508 for (slot = radix_tree_iter_init(iter, start) ; \ 509 slot || (slot = radix_tree_next_chunk(root, iter, \ 510 RADIX_TREE_ITER_CONTIG)) ; \ 511 slot = radix_tree_next_slot(slot, iter, \ 512 RADIX_TREE_ITER_CONTIG)) 513 514/** 515 * radix_tree_for_each_tagged - iterate over tagged slots 516 * 517 * @slot: the void** variable for pointer to slot 518 * @root: the struct radix_tree_root pointer 519 * @iter: the struct radix_tree_iter pointer 520 * @start: iteration starting index 521 * @tag: tag index 522 * 523 * @slot points to radix tree slot, @iter->index contains its index. 524 */ 525#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 526 for (slot = radix_tree_iter_init(iter, start) ; \ 527 slot || (slot = radix_tree_next_chunk(root, iter, \ 528 RADIX_TREE_ITER_TAGGED | tag)) ; \ 529 slot = radix_tree_next_slot(slot, iter, \ 530 RADIX_TREE_ITER_TAGGED)) 531 532#endif /* _LINUX_RADIX_TREE_H */