at v4.5 21 kB view raw
1#ifndef __LINUX_GFP_H 2#define __LINUX_GFP_H 3 4#include <linux/mmdebug.h> 5#include <linux/mmzone.h> 6#include <linux/stddef.h> 7#include <linux/linkage.h> 8#include <linux/topology.h> 9 10struct vm_area_struct; 11 12/* Plain integer GFP bitmasks. Do not use this directly. */ 13#define ___GFP_DMA 0x01u 14#define ___GFP_HIGHMEM 0x02u 15#define ___GFP_DMA32 0x04u 16#define ___GFP_MOVABLE 0x08u 17#define ___GFP_RECLAIMABLE 0x10u 18#define ___GFP_HIGH 0x20u 19#define ___GFP_IO 0x40u 20#define ___GFP_FS 0x80u 21#define ___GFP_COLD 0x100u 22#define ___GFP_NOWARN 0x200u 23#define ___GFP_REPEAT 0x400u 24#define ___GFP_NOFAIL 0x800u 25#define ___GFP_NORETRY 0x1000u 26#define ___GFP_MEMALLOC 0x2000u 27#define ___GFP_COMP 0x4000u 28#define ___GFP_ZERO 0x8000u 29#define ___GFP_NOMEMALLOC 0x10000u 30#define ___GFP_HARDWALL 0x20000u 31#define ___GFP_THISNODE 0x40000u 32#define ___GFP_ATOMIC 0x80000u 33#define ___GFP_ACCOUNT 0x100000u 34#define ___GFP_NOTRACK 0x200000u 35#define ___GFP_DIRECT_RECLAIM 0x400000u 36#define ___GFP_OTHER_NODE 0x800000u 37#define ___GFP_WRITE 0x1000000u 38#define ___GFP_KSWAPD_RECLAIM 0x2000000u 39/* If the above are modified, __GFP_BITS_SHIFT may need updating */ 40 41/* 42 * Physical address zone modifiers (see linux/mmzone.h - low four bits) 43 * 44 * Do not put any conditional on these. If necessary modify the definitions 45 * without the underscores and use them consistently. The definitions here may 46 * be used in bit comparisons. 47 */ 48#define __GFP_DMA ((__force gfp_t)___GFP_DMA) 49#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 50#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 51#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */ 52#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 53#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 54 55/* 56 * Page mobility and placement hints 57 * 58 * These flags provide hints about how mobile the page is. Pages with similar 59 * mobility are placed within the same pageblocks to minimise problems due 60 * to external fragmentation. 61 * 62 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be 63 * moved by page migration during memory compaction or can be reclaimed. 64 * 65 * __GFP_RECLAIMABLE is used for slab allocations that specify 66 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 67 * 68 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible, 69 * these pages will be spread between local zones to avoid all the dirty 70 * pages being in one zone (fair zone allocation policy). 71 * 72 * __GFP_HARDWALL enforces the cpuset memory allocation policy. 73 * 74 * __GFP_THISNODE forces the allocation to be satisified from the requested 75 * node with no fallbacks or placement policy enforcements. 76 * 77 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg (only relevant 78 * to kmem allocations). 79 */ 80#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 81#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 82#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 83#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 84#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 85 86/* 87 * Watermark modifiers -- controls access to emergency reserves 88 * 89 * __GFP_HIGH indicates that the caller is high-priority and that granting 90 * the request is necessary before the system can make forward progress. 91 * For example, creating an IO context to clean pages. 92 * 93 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 94 * high priority. Users are typically interrupt handlers. This may be 95 * used in conjunction with __GFP_HIGH 96 * 97 * __GFP_MEMALLOC allows access to all memory. This should only be used when 98 * the caller guarantees the allocation will allow more memory to be freed 99 * very shortly e.g. process exiting or swapping. Users either should 100 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 101 * 102 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 103 * This takes precedence over the __GFP_MEMALLOC flag if both are set. 104 * 105 * __GFP_NOACCOUNT ignores the accounting for kmemcg limit enforcement. 106 */ 107#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 108#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 109#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 110#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 111 112/* 113 * Reclaim modifiers 114 * 115 * __GFP_IO can start physical IO. 116 * 117 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the 118 * allocator recursing into the filesystem which might already be holding 119 * locks. 120 * 121 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 122 * This flag can be cleared to avoid unnecessary delays when a fallback 123 * option is available. 124 * 125 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 126 * the low watermark is reached and have it reclaim pages until the high 127 * watermark is reached. A caller may wish to clear this flag when fallback 128 * options are available and the reclaim is likely to disrupt the system. The 129 * canonical example is THP allocation where a fallback is cheap but 130 * reclaim/compaction may cause indirect stalls. 131 * 132 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 133 * 134 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt 135 * _might_ fail. This depends upon the particular VM implementation. 136 * 137 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 138 * cannot handle allocation failures. New users should be evaluated carefully 139 * (and the flag should be used only when there is no reasonable failure 140 * policy) but it is definitely preferable to use the flag rather than 141 * opencode endless loop around allocator. 142 * 143 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will 144 * return NULL when direct reclaim and memory compaction have failed to allow 145 * the allocation to succeed. The OOM killer is not called with the current 146 * implementation. 147 */ 148#define __GFP_IO ((__force gfp_t)___GFP_IO) 149#define __GFP_FS ((__force gfp_t)___GFP_FS) 150#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 151#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 152#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 153#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) 154#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 155#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 156 157/* 158 * Action modifiers 159 * 160 * __GFP_COLD indicates that the caller does not expect to be used in the near 161 * future. Where possible, a cache-cold page will be returned. 162 * 163 * __GFP_NOWARN suppresses allocation failure reports. 164 * 165 * __GFP_COMP address compound page metadata. 166 * 167 * __GFP_ZERO returns a zeroed page on success. 168 * 169 * __GFP_NOTRACK avoids tracking with kmemcheck. 170 * 171 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of 172 * distinguishing in the source between false positives and allocations that 173 * cannot be supported (e.g. page tables). 174 * 175 * __GFP_OTHER_NODE is for allocations that are on a remote node but that 176 * should not be accounted for as a remote allocation in vmstat. A 177 * typical user would be khugepaged collapsing a huge page on a remote 178 * node. 179 */ 180#define __GFP_COLD ((__force gfp_t)___GFP_COLD) 181#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 182#define __GFP_COMP ((__force gfp_t)___GFP_COMP) 183#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 184#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) 185#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK) 186#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE) 187 188/* Room for N __GFP_FOO bits */ 189#define __GFP_BITS_SHIFT 26 190#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 191 192/* 193 * Useful GFP flag combinations that are commonly used. It is recommended 194 * that subsystems start with one of these combinations and then set/clear 195 * __GFP_FOO flags as necessary. 196 * 197 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 198 * watermark is applied to allow access to "atomic reserves" 199 * 200 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires 201 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 202 * 203 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 204 * accounted to kmemcg. 205 * 206 * GFP_NOWAIT is for kernel allocations that should not stall for direct 207 * reclaim, start physical IO or use any filesystem callback. 208 * 209 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages 210 * that do not require the starting of any physical IO. 211 * 212 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 213 * 214 * GFP_USER is for userspace allocations that also need to be directly 215 * accessibly by the kernel or hardware. It is typically used by hardware 216 * for buffers that are mapped to userspace (e.g. graphics) that hardware 217 * still must DMA to. cpuset limits are enforced for these allocations. 218 * 219 * GFP_DMA exists for historical reasons and should be avoided where possible. 220 * The flags indicates that the caller requires that the lowest zone be 221 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 222 * it would require careful auditing as some users really require it and 223 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the 224 * lowest zone as a type of emergency reserve. 225 * 226 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit 227 * address. 228 * 229 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 230 * do not need to be directly accessible by the kernel but that cannot 231 * move once in use. An example may be a hardware allocation that maps 232 * data directly into userspace but has no addressing limitations. 233 * 234 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 235 * need direct access to but can use kmap() when access is required. They 236 * are expected to be movable via page reclaim or page migration. Typically, 237 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE. 238 * 239 * GFP_TRANSHUGE is used for THP allocations. They are compound allocations 240 * that will fail quickly if memory is not available and will not wake 241 * kswapd on failure. 242 */ 243#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 244#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 245#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 246#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 247#define GFP_NOIO (__GFP_RECLAIM) 248#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 249#define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \ 250 __GFP_RECLAIMABLE) 251#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 252#define GFP_DMA __GFP_DMA 253#define GFP_DMA32 __GFP_DMA32 254#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 255#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 256#define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 257 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \ 258 ~__GFP_KSWAPD_RECLAIM) 259 260/* Convert GFP flags to their corresponding migrate type */ 261#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 262#define GFP_MOVABLE_SHIFT 3 263 264static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) 265{ 266 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 267 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 268 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 269 270 if (unlikely(page_group_by_mobility_disabled)) 271 return MIGRATE_UNMOVABLE; 272 273 /* Group based on mobility */ 274 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 275} 276#undef GFP_MOVABLE_MASK 277#undef GFP_MOVABLE_SHIFT 278 279static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 280{ 281 return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 282} 283 284#ifdef CONFIG_HIGHMEM 285#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 286#else 287#define OPT_ZONE_HIGHMEM ZONE_NORMAL 288#endif 289 290#ifdef CONFIG_ZONE_DMA 291#define OPT_ZONE_DMA ZONE_DMA 292#else 293#define OPT_ZONE_DMA ZONE_NORMAL 294#endif 295 296#ifdef CONFIG_ZONE_DMA32 297#define OPT_ZONE_DMA32 ZONE_DMA32 298#else 299#define OPT_ZONE_DMA32 ZONE_NORMAL 300#endif 301 302/* 303 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 304 * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long 305 * and there are 16 of them to cover all possible combinations of 306 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 307 * 308 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 309 * But GFP_MOVABLE is not only a zone specifier but also an allocation 310 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 311 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 312 * 313 * bit result 314 * ================= 315 * 0x0 => NORMAL 316 * 0x1 => DMA or NORMAL 317 * 0x2 => HIGHMEM or NORMAL 318 * 0x3 => BAD (DMA+HIGHMEM) 319 * 0x4 => DMA32 or DMA or NORMAL 320 * 0x5 => BAD (DMA+DMA32) 321 * 0x6 => BAD (HIGHMEM+DMA32) 322 * 0x7 => BAD (HIGHMEM+DMA32+DMA) 323 * 0x8 => NORMAL (MOVABLE+0) 324 * 0x9 => DMA or NORMAL (MOVABLE+DMA) 325 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 326 * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 327 * 0xc => DMA32 (MOVABLE+DMA32) 328 * 0xd => BAD (MOVABLE+DMA32+DMA) 329 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 330 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 331 * 332 * ZONES_SHIFT must be <= 2 on 32 bit platforms. 333 */ 334 335#if 16 * ZONES_SHIFT > BITS_PER_LONG 336#error ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 337#endif 338 339#define GFP_ZONE_TABLE ( \ 340 (ZONE_NORMAL << 0 * ZONES_SHIFT) \ 341 | (OPT_ZONE_DMA << ___GFP_DMA * ZONES_SHIFT) \ 342 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * ZONES_SHIFT) \ 343 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * ZONES_SHIFT) \ 344 | (ZONE_NORMAL << ___GFP_MOVABLE * ZONES_SHIFT) \ 345 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * ZONES_SHIFT) \ 346 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * ZONES_SHIFT) \ 347 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * ZONES_SHIFT) \ 348) 349 350/* 351 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 352 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 353 * entry starting with bit 0. Bit is set if the combination is not 354 * allowed. 355 */ 356#define GFP_ZONE_BAD ( \ 357 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 358 | 1 << (___GFP_DMA | ___GFP_DMA32) \ 359 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 360 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 361 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 362 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 363 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 364 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 365) 366 367static inline enum zone_type gfp_zone(gfp_t flags) 368{ 369 enum zone_type z; 370 int bit = (__force int) (flags & GFP_ZONEMASK); 371 372 z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) & 373 ((1 << ZONES_SHIFT) - 1); 374 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 375 return z; 376} 377 378/* 379 * There is only one page-allocator function, and two main namespaces to 380 * it. The alloc_page*() variants return 'struct page *' and as such 381 * can allocate highmem pages, the *get*page*() variants return 382 * virtual kernel addresses to the allocated page(s). 383 */ 384 385static inline int gfp_zonelist(gfp_t flags) 386{ 387#ifdef CONFIG_NUMA 388 if (unlikely(flags & __GFP_THISNODE)) 389 return ZONELIST_NOFALLBACK; 390#endif 391 return ZONELIST_FALLBACK; 392} 393 394/* 395 * We get the zone list from the current node and the gfp_mask. 396 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 397 * There are two zonelists per node, one for all zones with memory and 398 * one containing just zones from the node the zonelist belongs to. 399 * 400 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 401 * optimized to &contig_page_data at compile-time. 402 */ 403static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 404{ 405 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 406} 407 408#ifndef HAVE_ARCH_FREE_PAGE 409static inline void arch_free_page(struct page *page, int order) { } 410#endif 411#ifndef HAVE_ARCH_ALLOC_PAGE 412static inline void arch_alloc_page(struct page *page, int order) { } 413#endif 414 415struct page * 416__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 417 struct zonelist *zonelist, nodemask_t *nodemask); 418 419static inline struct page * 420__alloc_pages(gfp_t gfp_mask, unsigned int order, 421 struct zonelist *zonelist) 422{ 423 return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL); 424} 425 426/* 427 * Allocate pages, preferring the node given as nid. The node must be valid and 428 * online. For more general interface, see alloc_pages_node(). 429 */ 430static inline struct page * 431__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 432{ 433 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 434 VM_WARN_ON(!node_online(nid)); 435 436 return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask)); 437} 438 439/* 440 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 441 * prefer the current CPU's closest node. Otherwise node must be valid and 442 * online. 443 */ 444static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 445 unsigned int order) 446{ 447 if (nid == NUMA_NO_NODE) 448 nid = numa_mem_id(); 449 450 return __alloc_pages_node(nid, gfp_mask, order); 451} 452 453#ifdef CONFIG_NUMA 454extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 455 456static inline struct page * 457alloc_pages(gfp_t gfp_mask, unsigned int order) 458{ 459 return alloc_pages_current(gfp_mask, order); 460} 461extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 462 struct vm_area_struct *vma, unsigned long addr, 463 int node, bool hugepage); 464#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 465 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 466#else 467#define alloc_pages(gfp_mask, order) \ 468 alloc_pages_node(numa_node_id(), gfp_mask, order) 469#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 470 alloc_pages(gfp_mask, order) 471#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 472 alloc_pages(gfp_mask, order) 473#endif 474#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 475#define alloc_page_vma(gfp_mask, vma, addr) \ 476 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 477#define alloc_page_vma_node(gfp_mask, vma, addr, node) \ 478 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) 479 480extern struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order); 481extern struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, 482 unsigned int order); 483 484extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 485extern unsigned long get_zeroed_page(gfp_t gfp_mask); 486 487void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 488void free_pages_exact(void *virt, size_t size); 489void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 490 491#define __get_free_page(gfp_mask) \ 492 __get_free_pages((gfp_mask), 0) 493 494#define __get_dma_pages(gfp_mask, order) \ 495 __get_free_pages((gfp_mask) | GFP_DMA, (order)) 496 497extern void __free_pages(struct page *page, unsigned int order); 498extern void free_pages(unsigned long addr, unsigned int order); 499extern void free_hot_cold_page(struct page *page, bool cold); 500extern void free_hot_cold_page_list(struct list_head *list, bool cold); 501 502struct page_frag_cache; 503extern void *__alloc_page_frag(struct page_frag_cache *nc, 504 unsigned int fragsz, gfp_t gfp_mask); 505extern void __free_page_frag(void *addr); 506 507extern void __free_kmem_pages(struct page *page, unsigned int order); 508extern void free_kmem_pages(unsigned long addr, unsigned int order); 509 510#define __free_page(page) __free_pages((page), 0) 511#define free_page(addr) free_pages((addr), 0) 512 513void page_alloc_init(void); 514void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 515void drain_all_pages(struct zone *zone); 516void drain_local_pages(struct zone *zone); 517 518#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 519void page_alloc_init_late(void); 520#else 521static inline void page_alloc_init_late(void) 522{ 523} 524#endif 525 526/* 527 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 528 * GFP flags are used before interrupts are enabled. Once interrupts are 529 * enabled, it is set to __GFP_BITS_MASK while the system is running. During 530 * hibernation, it is used by PM to avoid I/O during memory allocation while 531 * devices are suspended. 532 */ 533extern gfp_t gfp_allowed_mask; 534 535/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 536bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 537 538extern void pm_restrict_gfp_mask(void); 539extern void pm_restore_gfp_mask(void); 540 541#ifdef CONFIG_PM_SLEEP 542extern bool pm_suspended_storage(void); 543#else 544static inline bool pm_suspended_storage(void) 545{ 546 return false; 547} 548#endif /* CONFIG_PM_SLEEP */ 549 550#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 551/* The below functions must be run on a range from a single zone. */ 552extern int alloc_contig_range(unsigned long start, unsigned long end, 553 unsigned migratetype); 554extern void free_contig_range(unsigned long pfn, unsigned nr_pages); 555#endif 556 557#ifdef CONFIG_CMA 558/* CMA stuff */ 559extern void init_cma_reserved_pageblock(struct page *page); 560#endif 561 562#endif /* __LINUX_GFP_H */