at v4.5 50 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <asm/uaccess.h> 33#include "internal.h" 34 35struct bdev_inode { 36 struct block_device bdev; 37 struct inode vfs_inode; 38}; 39 40static const struct address_space_operations def_blk_aops; 41 42static inline struct bdev_inode *BDEV_I(struct inode *inode) 43{ 44 return container_of(inode, struct bdev_inode, vfs_inode); 45} 46 47struct block_device *I_BDEV(struct inode *inode) 48{ 49 return &BDEV_I(inode)->bdev; 50} 51EXPORT_SYMBOL(I_BDEV); 52 53static void bdev_write_inode(struct block_device *bdev) 54{ 55 struct inode *inode = bdev->bd_inode; 56 int ret; 57 58 spin_lock(&inode->i_lock); 59 while (inode->i_state & I_DIRTY) { 60 spin_unlock(&inode->i_lock); 61 ret = write_inode_now(inode, true); 62 if (ret) { 63 char name[BDEVNAME_SIZE]; 64 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 65 "for block device %s (err=%d).\n", 66 bdevname(bdev, name), ret); 67 } 68 spin_lock(&inode->i_lock); 69 } 70 spin_unlock(&inode->i_lock); 71} 72 73/* Kill _all_ buffers and pagecache , dirty or not.. */ 74void kill_bdev(struct block_device *bdev) 75{ 76 struct address_space *mapping = bdev->bd_inode->i_mapping; 77 78 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 79 return; 80 81 invalidate_bh_lrus(); 82 truncate_inode_pages(mapping, 0); 83} 84EXPORT_SYMBOL(kill_bdev); 85 86/* Invalidate clean unused buffers and pagecache. */ 87void invalidate_bdev(struct block_device *bdev) 88{ 89 struct address_space *mapping = bdev->bd_inode->i_mapping; 90 91 if (mapping->nrpages == 0) 92 return; 93 94 invalidate_bh_lrus(); 95 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 96 invalidate_mapping_pages(mapping, 0, -1); 97 /* 99% of the time, we don't need to flush the cleancache on the bdev. 98 * But, for the strange corners, lets be cautious 99 */ 100 cleancache_invalidate_inode(mapping); 101} 102EXPORT_SYMBOL(invalidate_bdev); 103 104int set_blocksize(struct block_device *bdev, int size) 105{ 106 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 108 return -EINVAL; 109 110 /* Size cannot be smaller than the size supported by the device */ 111 if (size < bdev_logical_block_size(bdev)) 112 return -EINVAL; 113 114 /* Don't change the size if it is same as current */ 115 if (bdev->bd_block_size != size) { 116 sync_blockdev(bdev); 117 bdev->bd_block_size = size; 118 bdev->bd_inode->i_blkbits = blksize_bits(size); 119 kill_bdev(bdev); 120 } 121 return 0; 122} 123 124EXPORT_SYMBOL(set_blocksize); 125 126int sb_set_blocksize(struct super_block *sb, int size) 127{ 128 if (set_blocksize(sb->s_bdev, size)) 129 return 0; 130 /* If we get here, we know size is power of two 131 * and it's value is between 512 and PAGE_SIZE */ 132 sb->s_blocksize = size; 133 sb->s_blocksize_bits = blksize_bits(size); 134 return sb->s_blocksize; 135} 136 137EXPORT_SYMBOL(sb_set_blocksize); 138 139int sb_min_blocksize(struct super_block *sb, int size) 140{ 141 int minsize = bdev_logical_block_size(sb->s_bdev); 142 if (size < minsize) 143 size = minsize; 144 return sb_set_blocksize(sb, size); 145} 146 147EXPORT_SYMBOL(sb_min_blocksize); 148 149static int 150blkdev_get_block(struct inode *inode, sector_t iblock, 151 struct buffer_head *bh, int create) 152{ 153 bh->b_bdev = I_BDEV(inode); 154 bh->b_blocknr = iblock; 155 set_buffer_mapped(bh); 156 return 0; 157} 158 159static struct inode *bdev_file_inode(struct file *file) 160{ 161 return file->f_mapping->host; 162} 163 164static ssize_t 165blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset) 166{ 167 struct file *file = iocb->ki_filp; 168 struct inode *inode = bdev_file_inode(file); 169 170 if (IS_DAX(inode)) 171 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block, 172 NULL, DIO_SKIP_DIO_COUNT); 173 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset, 174 blkdev_get_block, NULL, NULL, 175 DIO_SKIP_DIO_COUNT); 176} 177 178int __sync_blockdev(struct block_device *bdev, int wait) 179{ 180 if (!bdev) 181 return 0; 182 if (!wait) 183 return filemap_flush(bdev->bd_inode->i_mapping); 184 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 185} 186 187/* 188 * Write out and wait upon all the dirty data associated with a block 189 * device via its mapping. Does not take the superblock lock. 190 */ 191int sync_blockdev(struct block_device *bdev) 192{ 193 return __sync_blockdev(bdev, 1); 194} 195EXPORT_SYMBOL(sync_blockdev); 196 197/* 198 * Write out and wait upon all dirty data associated with this 199 * device. Filesystem data as well as the underlying block 200 * device. Takes the superblock lock. 201 */ 202int fsync_bdev(struct block_device *bdev) 203{ 204 struct super_block *sb = get_super(bdev); 205 if (sb) { 206 int res = sync_filesystem(sb); 207 drop_super(sb); 208 return res; 209 } 210 return sync_blockdev(bdev); 211} 212EXPORT_SYMBOL(fsync_bdev); 213 214/** 215 * freeze_bdev -- lock a filesystem and force it into a consistent state 216 * @bdev: blockdevice to lock 217 * 218 * If a superblock is found on this device, we take the s_umount semaphore 219 * on it to make sure nobody unmounts until the snapshot creation is done. 220 * The reference counter (bd_fsfreeze_count) guarantees that only the last 221 * unfreeze process can unfreeze the frozen filesystem actually when multiple 222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 224 * actually. 225 */ 226struct super_block *freeze_bdev(struct block_device *bdev) 227{ 228 struct super_block *sb; 229 int error = 0; 230 231 mutex_lock(&bdev->bd_fsfreeze_mutex); 232 if (++bdev->bd_fsfreeze_count > 1) { 233 /* 234 * We don't even need to grab a reference - the first call 235 * to freeze_bdev grab an active reference and only the last 236 * thaw_bdev drops it. 237 */ 238 sb = get_super(bdev); 239 drop_super(sb); 240 mutex_unlock(&bdev->bd_fsfreeze_mutex); 241 return sb; 242 } 243 244 sb = get_active_super(bdev); 245 if (!sb) 246 goto out; 247 if (sb->s_op->freeze_super) 248 error = sb->s_op->freeze_super(sb); 249 else 250 error = freeze_super(sb); 251 if (error) { 252 deactivate_super(sb); 253 bdev->bd_fsfreeze_count--; 254 mutex_unlock(&bdev->bd_fsfreeze_mutex); 255 return ERR_PTR(error); 256 } 257 deactivate_super(sb); 258 out: 259 sync_blockdev(bdev); 260 mutex_unlock(&bdev->bd_fsfreeze_mutex); 261 return sb; /* thaw_bdev releases s->s_umount */ 262} 263EXPORT_SYMBOL(freeze_bdev); 264 265/** 266 * thaw_bdev -- unlock filesystem 267 * @bdev: blockdevice to unlock 268 * @sb: associated superblock 269 * 270 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 271 */ 272int thaw_bdev(struct block_device *bdev, struct super_block *sb) 273{ 274 int error = -EINVAL; 275 276 mutex_lock(&bdev->bd_fsfreeze_mutex); 277 if (!bdev->bd_fsfreeze_count) 278 goto out; 279 280 error = 0; 281 if (--bdev->bd_fsfreeze_count > 0) 282 goto out; 283 284 if (!sb) 285 goto out; 286 287 if (sb->s_op->thaw_super) 288 error = sb->s_op->thaw_super(sb); 289 else 290 error = thaw_super(sb); 291 if (error) { 292 bdev->bd_fsfreeze_count++; 293 mutex_unlock(&bdev->bd_fsfreeze_mutex); 294 return error; 295 } 296out: 297 mutex_unlock(&bdev->bd_fsfreeze_mutex); 298 return 0; 299} 300EXPORT_SYMBOL(thaw_bdev); 301 302static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 303{ 304 return block_write_full_page(page, blkdev_get_block, wbc); 305} 306 307static int blkdev_readpage(struct file * file, struct page * page) 308{ 309 return block_read_full_page(page, blkdev_get_block); 310} 311 312static int blkdev_readpages(struct file *file, struct address_space *mapping, 313 struct list_head *pages, unsigned nr_pages) 314{ 315 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 316} 317 318static int blkdev_write_begin(struct file *file, struct address_space *mapping, 319 loff_t pos, unsigned len, unsigned flags, 320 struct page **pagep, void **fsdata) 321{ 322 return block_write_begin(mapping, pos, len, flags, pagep, 323 blkdev_get_block); 324} 325 326static int blkdev_write_end(struct file *file, struct address_space *mapping, 327 loff_t pos, unsigned len, unsigned copied, 328 struct page *page, void *fsdata) 329{ 330 int ret; 331 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 332 333 unlock_page(page); 334 page_cache_release(page); 335 336 return ret; 337} 338 339/* 340 * private llseek: 341 * for a block special file file_inode(file)->i_size is zero 342 * so we compute the size by hand (just as in block_read/write above) 343 */ 344static loff_t block_llseek(struct file *file, loff_t offset, int whence) 345{ 346 struct inode *bd_inode = bdev_file_inode(file); 347 loff_t retval; 348 349 inode_lock(bd_inode); 350 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 351 inode_unlock(bd_inode); 352 return retval; 353} 354 355int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 356{ 357 struct inode *bd_inode = bdev_file_inode(filp); 358 struct block_device *bdev = I_BDEV(bd_inode); 359 int error; 360 361 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 362 if (error) 363 return error; 364 365 /* 366 * There is no need to serialise calls to blkdev_issue_flush with 367 * i_mutex and doing so causes performance issues with concurrent 368 * O_SYNC writers to a block device. 369 */ 370 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 371 if (error == -EOPNOTSUPP) 372 error = 0; 373 374 return error; 375} 376EXPORT_SYMBOL(blkdev_fsync); 377 378/** 379 * bdev_read_page() - Start reading a page from a block device 380 * @bdev: The device to read the page from 381 * @sector: The offset on the device to read the page to (need not be aligned) 382 * @page: The page to read 383 * 384 * On entry, the page should be locked. It will be unlocked when the page 385 * has been read. If the block driver implements rw_page synchronously, 386 * that will be true on exit from this function, but it need not be. 387 * 388 * Errors returned by this function are usually "soft", eg out of memory, or 389 * queue full; callers should try a different route to read this page rather 390 * than propagate an error back up the stack. 391 * 392 * Return: negative errno if an error occurs, 0 if submission was successful. 393 */ 394int bdev_read_page(struct block_device *bdev, sector_t sector, 395 struct page *page) 396{ 397 const struct block_device_operations *ops = bdev->bd_disk->fops; 398 int result = -EOPNOTSUPP; 399 400 if (!ops->rw_page || bdev_get_integrity(bdev)) 401 return result; 402 403 result = blk_queue_enter(bdev->bd_queue, false); 404 if (result) 405 return result; 406 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 407 blk_queue_exit(bdev->bd_queue); 408 return result; 409} 410EXPORT_SYMBOL_GPL(bdev_read_page); 411 412/** 413 * bdev_write_page() - Start writing a page to a block device 414 * @bdev: The device to write the page to 415 * @sector: The offset on the device to write the page to (need not be aligned) 416 * @page: The page to write 417 * @wbc: The writeback_control for the write 418 * 419 * On entry, the page should be locked and not currently under writeback. 420 * On exit, if the write started successfully, the page will be unlocked and 421 * under writeback. If the write failed already (eg the driver failed to 422 * queue the page to the device), the page will still be locked. If the 423 * caller is a ->writepage implementation, it will need to unlock the page. 424 * 425 * Errors returned by this function are usually "soft", eg out of memory, or 426 * queue full; callers should try a different route to write this page rather 427 * than propagate an error back up the stack. 428 * 429 * Return: negative errno if an error occurs, 0 if submission was successful. 430 */ 431int bdev_write_page(struct block_device *bdev, sector_t sector, 432 struct page *page, struct writeback_control *wbc) 433{ 434 int result; 435 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 436 const struct block_device_operations *ops = bdev->bd_disk->fops; 437 438 if (!ops->rw_page || bdev_get_integrity(bdev)) 439 return -EOPNOTSUPP; 440 result = blk_queue_enter(bdev->bd_queue, false); 441 if (result) 442 return result; 443 444 set_page_writeback(page); 445 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 446 if (result) 447 end_page_writeback(page); 448 else 449 unlock_page(page); 450 blk_queue_exit(bdev->bd_queue); 451 return result; 452} 453EXPORT_SYMBOL_GPL(bdev_write_page); 454 455/** 456 * bdev_direct_access() - Get the address for directly-accessibly memory 457 * @bdev: The device containing the memory 458 * @dax: control and output parameters for ->direct_access 459 * 460 * If a block device is made up of directly addressable memory, this function 461 * will tell the caller the PFN and the address of the memory. The address 462 * may be directly dereferenced within the kernel without the need to call 463 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 464 * page tables. 465 * 466 * Return: negative errno if an error occurs, otherwise the number of bytes 467 * accessible at this address. 468 */ 469long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 470{ 471 sector_t sector = dax->sector; 472 long avail, size = dax->size; 473 const struct block_device_operations *ops = bdev->bd_disk->fops; 474 475 /* 476 * The device driver is allowed to sleep, in order to make the 477 * memory directly accessible. 478 */ 479 might_sleep(); 480 481 if (size < 0) 482 return size; 483 if (!ops->direct_access) 484 return -EOPNOTSUPP; 485 if ((sector + DIV_ROUND_UP(size, 512)) > 486 part_nr_sects_read(bdev->bd_part)) 487 return -ERANGE; 488 sector += get_start_sect(bdev); 489 if (sector % (PAGE_SIZE / 512)) 490 return -EINVAL; 491 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn); 492 if (!avail) 493 return -ERANGE; 494 if (avail > 0 && avail & ~PAGE_MASK) 495 return -ENXIO; 496 return min(avail, size); 497} 498EXPORT_SYMBOL_GPL(bdev_direct_access); 499 500/* 501 * pseudo-fs 502 */ 503 504static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 505static struct kmem_cache * bdev_cachep __read_mostly; 506 507static struct inode *bdev_alloc_inode(struct super_block *sb) 508{ 509 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 510 if (!ei) 511 return NULL; 512 return &ei->vfs_inode; 513} 514 515static void bdev_i_callback(struct rcu_head *head) 516{ 517 struct inode *inode = container_of(head, struct inode, i_rcu); 518 struct bdev_inode *bdi = BDEV_I(inode); 519 520 kmem_cache_free(bdev_cachep, bdi); 521} 522 523static void bdev_destroy_inode(struct inode *inode) 524{ 525 call_rcu(&inode->i_rcu, bdev_i_callback); 526} 527 528static void init_once(void *foo) 529{ 530 struct bdev_inode *ei = (struct bdev_inode *) foo; 531 struct block_device *bdev = &ei->bdev; 532 533 memset(bdev, 0, sizeof(*bdev)); 534 mutex_init(&bdev->bd_mutex); 535 INIT_LIST_HEAD(&bdev->bd_inodes); 536 INIT_LIST_HEAD(&bdev->bd_list); 537#ifdef CONFIG_SYSFS 538 INIT_LIST_HEAD(&bdev->bd_holder_disks); 539#endif 540 inode_init_once(&ei->vfs_inode); 541 /* Initialize mutex for freeze. */ 542 mutex_init(&bdev->bd_fsfreeze_mutex); 543} 544 545static inline void __bd_forget(struct inode *inode) 546{ 547 list_del_init(&inode->i_devices); 548 inode->i_bdev = NULL; 549 inode->i_mapping = &inode->i_data; 550} 551 552static void bdev_evict_inode(struct inode *inode) 553{ 554 struct block_device *bdev = &BDEV_I(inode)->bdev; 555 struct list_head *p; 556 truncate_inode_pages_final(&inode->i_data); 557 invalidate_inode_buffers(inode); /* is it needed here? */ 558 clear_inode(inode); 559 spin_lock(&bdev_lock); 560 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 561 __bd_forget(list_entry(p, struct inode, i_devices)); 562 } 563 list_del_init(&bdev->bd_list); 564 spin_unlock(&bdev_lock); 565} 566 567static const struct super_operations bdev_sops = { 568 .statfs = simple_statfs, 569 .alloc_inode = bdev_alloc_inode, 570 .destroy_inode = bdev_destroy_inode, 571 .drop_inode = generic_delete_inode, 572 .evict_inode = bdev_evict_inode, 573}; 574 575static struct dentry *bd_mount(struct file_system_type *fs_type, 576 int flags, const char *dev_name, void *data) 577{ 578 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 579} 580 581static struct file_system_type bd_type = { 582 .name = "bdev", 583 .mount = bd_mount, 584 .kill_sb = kill_anon_super, 585}; 586 587struct super_block *blockdev_superblock __read_mostly; 588EXPORT_SYMBOL_GPL(blockdev_superblock); 589 590void __init bdev_cache_init(void) 591{ 592 int err; 593 static struct vfsmount *bd_mnt; 594 595 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 596 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 597 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 598 init_once); 599 err = register_filesystem(&bd_type); 600 if (err) 601 panic("Cannot register bdev pseudo-fs"); 602 bd_mnt = kern_mount(&bd_type); 603 if (IS_ERR(bd_mnt)) 604 panic("Cannot create bdev pseudo-fs"); 605 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 606} 607 608/* 609 * Most likely _very_ bad one - but then it's hardly critical for small 610 * /dev and can be fixed when somebody will need really large one. 611 * Keep in mind that it will be fed through icache hash function too. 612 */ 613static inline unsigned long hash(dev_t dev) 614{ 615 return MAJOR(dev)+MINOR(dev); 616} 617 618static int bdev_test(struct inode *inode, void *data) 619{ 620 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 621} 622 623static int bdev_set(struct inode *inode, void *data) 624{ 625 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 626 return 0; 627} 628 629static LIST_HEAD(all_bdevs); 630 631struct block_device *bdget(dev_t dev) 632{ 633 struct block_device *bdev; 634 struct inode *inode; 635 636 inode = iget5_locked(blockdev_superblock, hash(dev), 637 bdev_test, bdev_set, &dev); 638 639 if (!inode) 640 return NULL; 641 642 bdev = &BDEV_I(inode)->bdev; 643 644 if (inode->i_state & I_NEW) { 645 bdev->bd_contains = NULL; 646 bdev->bd_super = NULL; 647 bdev->bd_inode = inode; 648 bdev->bd_block_size = (1 << inode->i_blkbits); 649 bdev->bd_part_count = 0; 650 bdev->bd_invalidated = 0; 651 inode->i_mode = S_IFBLK; 652 inode->i_rdev = dev; 653 inode->i_bdev = bdev; 654 inode->i_data.a_ops = &def_blk_aops; 655 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 656 spin_lock(&bdev_lock); 657 list_add(&bdev->bd_list, &all_bdevs); 658 spin_unlock(&bdev_lock); 659 unlock_new_inode(inode); 660 } 661 return bdev; 662} 663 664EXPORT_SYMBOL(bdget); 665 666/** 667 * bdgrab -- Grab a reference to an already referenced block device 668 * @bdev: Block device to grab a reference to. 669 */ 670struct block_device *bdgrab(struct block_device *bdev) 671{ 672 ihold(bdev->bd_inode); 673 return bdev; 674} 675EXPORT_SYMBOL(bdgrab); 676 677long nr_blockdev_pages(void) 678{ 679 struct block_device *bdev; 680 long ret = 0; 681 spin_lock(&bdev_lock); 682 list_for_each_entry(bdev, &all_bdevs, bd_list) { 683 ret += bdev->bd_inode->i_mapping->nrpages; 684 } 685 spin_unlock(&bdev_lock); 686 return ret; 687} 688 689void bdput(struct block_device *bdev) 690{ 691 iput(bdev->bd_inode); 692} 693 694EXPORT_SYMBOL(bdput); 695 696static struct block_device *bd_acquire(struct inode *inode) 697{ 698 struct block_device *bdev; 699 700 spin_lock(&bdev_lock); 701 bdev = inode->i_bdev; 702 if (bdev) { 703 bdgrab(bdev); 704 spin_unlock(&bdev_lock); 705 return bdev; 706 } 707 spin_unlock(&bdev_lock); 708 709 bdev = bdget(inode->i_rdev); 710 if (bdev) { 711 spin_lock(&bdev_lock); 712 if (!inode->i_bdev) { 713 /* 714 * We take an additional reference to bd_inode, 715 * and it's released in clear_inode() of inode. 716 * So, we can access it via ->i_mapping always 717 * without igrab(). 718 */ 719 bdgrab(bdev); 720 inode->i_bdev = bdev; 721 inode->i_mapping = bdev->bd_inode->i_mapping; 722 list_add(&inode->i_devices, &bdev->bd_inodes); 723 } 724 spin_unlock(&bdev_lock); 725 } 726 return bdev; 727} 728 729/* Call when you free inode */ 730 731void bd_forget(struct inode *inode) 732{ 733 struct block_device *bdev = NULL; 734 735 spin_lock(&bdev_lock); 736 if (!sb_is_blkdev_sb(inode->i_sb)) 737 bdev = inode->i_bdev; 738 __bd_forget(inode); 739 spin_unlock(&bdev_lock); 740 741 if (bdev) 742 bdput(bdev); 743} 744 745/** 746 * bd_may_claim - test whether a block device can be claimed 747 * @bdev: block device of interest 748 * @whole: whole block device containing @bdev, may equal @bdev 749 * @holder: holder trying to claim @bdev 750 * 751 * Test whether @bdev can be claimed by @holder. 752 * 753 * CONTEXT: 754 * spin_lock(&bdev_lock). 755 * 756 * RETURNS: 757 * %true if @bdev can be claimed, %false otherwise. 758 */ 759static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 760 void *holder) 761{ 762 if (bdev->bd_holder == holder) 763 return true; /* already a holder */ 764 else if (bdev->bd_holder != NULL) 765 return false; /* held by someone else */ 766 else if (bdev->bd_contains == bdev) 767 return true; /* is a whole device which isn't held */ 768 769 else if (whole->bd_holder == bd_may_claim) 770 return true; /* is a partition of a device that is being partitioned */ 771 else if (whole->bd_holder != NULL) 772 return false; /* is a partition of a held device */ 773 else 774 return true; /* is a partition of an un-held device */ 775} 776 777/** 778 * bd_prepare_to_claim - prepare to claim a block device 779 * @bdev: block device of interest 780 * @whole: the whole device containing @bdev, may equal @bdev 781 * @holder: holder trying to claim @bdev 782 * 783 * Prepare to claim @bdev. This function fails if @bdev is already 784 * claimed by another holder and waits if another claiming is in 785 * progress. This function doesn't actually claim. On successful 786 * return, the caller has ownership of bd_claiming and bd_holder[s]. 787 * 788 * CONTEXT: 789 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 790 * it multiple times. 791 * 792 * RETURNS: 793 * 0 if @bdev can be claimed, -EBUSY otherwise. 794 */ 795static int bd_prepare_to_claim(struct block_device *bdev, 796 struct block_device *whole, void *holder) 797{ 798retry: 799 /* if someone else claimed, fail */ 800 if (!bd_may_claim(bdev, whole, holder)) 801 return -EBUSY; 802 803 /* if claiming is already in progress, wait for it to finish */ 804 if (whole->bd_claiming) { 805 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 806 DEFINE_WAIT(wait); 807 808 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 809 spin_unlock(&bdev_lock); 810 schedule(); 811 finish_wait(wq, &wait); 812 spin_lock(&bdev_lock); 813 goto retry; 814 } 815 816 /* yay, all mine */ 817 return 0; 818} 819 820/** 821 * bd_start_claiming - start claiming a block device 822 * @bdev: block device of interest 823 * @holder: holder trying to claim @bdev 824 * 825 * @bdev is about to be opened exclusively. Check @bdev can be opened 826 * exclusively and mark that an exclusive open is in progress. Each 827 * successful call to this function must be matched with a call to 828 * either bd_finish_claiming() or bd_abort_claiming() (which do not 829 * fail). 830 * 831 * This function is used to gain exclusive access to the block device 832 * without actually causing other exclusive open attempts to fail. It 833 * should be used when the open sequence itself requires exclusive 834 * access but may subsequently fail. 835 * 836 * CONTEXT: 837 * Might sleep. 838 * 839 * RETURNS: 840 * Pointer to the block device containing @bdev on success, ERR_PTR() 841 * value on failure. 842 */ 843static struct block_device *bd_start_claiming(struct block_device *bdev, 844 void *holder) 845{ 846 struct gendisk *disk; 847 struct block_device *whole; 848 int partno, err; 849 850 might_sleep(); 851 852 /* 853 * @bdev might not have been initialized properly yet, look up 854 * and grab the outer block device the hard way. 855 */ 856 disk = get_gendisk(bdev->bd_dev, &partno); 857 if (!disk) 858 return ERR_PTR(-ENXIO); 859 860 /* 861 * Normally, @bdev should equal what's returned from bdget_disk() 862 * if partno is 0; however, some drivers (floppy) use multiple 863 * bdev's for the same physical device and @bdev may be one of the 864 * aliases. Keep @bdev if partno is 0. This means claimer 865 * tracking is broken for those devices but it has always been that 866 * way. 867 */ 868 if (partno) 869 whole = bdget_disk(disk, 0); 870 else 871 whole = bdgrab(bdev); 872 873 module_put(disk->fops->owner); 874 put_disk(disk); 875 if (!whole) 876 return ERR_PTR(-ENOMEM); 877 878 /* prepare to claim, if successful, mark claiming in progress */ 879 spin_lock(&bdev_lock); 880 881 err = bd_prepare_to_claim(bdev, whole, holder); 882 if (err == 0) { 883 whole->bd_claiming = holder; 884 spin_unlock(&bdev_lock); 885 return whole; 886 } else { 887 spin_unlock(&bdev_lock); 888 bdput(whole); 889 return ERR_PTR(err); 890 } 891} 892 893#ifdef CONFIG_SYSFS 894struct bd_holder_disk { 895 struct list_head list; 896 struct gendisk *disk; 897 int refcnt; 898}; 899 900static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 901 struct gendisk *disk) 902{ 903 struct bd_holder_disk *holder; 904 905 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 906 if (holder->disk == disk) 907 return holder; 908 return NULL; 909} 910 911static int add_symlink(struct kobject *from, struct kobject *to) 912{ 913 return sysfs_create_link(from, to, kobject_name(to)); 914} 915 916static void del_symlink(struct kobject *from, struct kobject *to) 917{ 918 sysfs_remove_link(from, kobject_name(to)); 919} 920 921/** 922 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 923 * @bdev: the claimed slave bdev 924 * @disk: the holding disk 925 * 926 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 927 * 928 * This functions creates the following sysfs symlinks. 929 * 930 * - from "slaves" directory of the holder @disk to the claimed @bdev 931 * - from "holders" directory of the @bdev to the holder @disk 932 * 933 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 934 * passed to bd_link_disk_holder(), then: 935 * 936 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 937 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 938 * 939 * The caller must have claimed @bdev before calling this function and 940 * ensure that both @bdev and @disk are valid during the creation and 941 * lifetime of these symlinks. 942 * 943 * CONTEXT: 944 * Might sleep. 945 * 946 * RETURNS: 947 * 0 on success, -errno on failure. 948 */ 949int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 950{ 951 struct bd_holder_disk *holder; 952 int ret = 0; 953 954 mutex_lock(&bdev->bd_mutex); 955 956 WARN_ON_ONCE(!bdev->bd_holder); 957 958 /* FIXME: remove the following once add_disk() handles errors */ 959 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 960 goto out_unlock; 961 962 holder = bd_find_holder_disk(bdev, disk); 963 if (holder) { 964 holder->refcnt++; 965 goto out_unlock; 966 } 967 968 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 969 if (!holder) { 970 ret = -ENOMEM; 971 goto out_unlock; 972 } 973 974 INIT_LIST_HEAD(&holder->list); 975 holder->disk = disk; 976 holder->refcnt = 1; 977 978 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 979 if (ret) 980 goto out_free; 981 982 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 983 if (ret) 984 goto out_del; 985 /* 986 * bdev could be deleted beneath us which would implicitly destroy 987 * the holder directory. Hold on to it. 988 */ 989 kobject_get(bdev->bd_part->holder_dir); 990 991 list_add(&holder->list, &bdev->bd_holder_disks); 992 goto out_unlock; 993 994out_del: 995 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 996out_free: 997 kfree(holder); 998out_unlock: 999 mutex_unlock(&bdev->bd_mutex); 1000 return ret; 1001} 1002EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1003 1004/** 1005 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1006 * @bdev: the calimed slave bdev 1007 * @disk: the holding disk 1008 * 1009 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1010 * 1011 * CONTEXT: 1012 * Might sleep. 1013 */ 1014void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1015{ 1016 struct bd_holder_disk *holder; 1017 1018 mutex_lock(&bdev->bd_mutex); 1019 1020 holder = bd_find_holder_disk(bdev, disk); 1021 1022 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1023 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1024 del_symlink(bdev->bd_part->holder_dir, 1025 &disk_to_dev(disk)->kobj); 1026 kobject_put(bdev->bd_part->holder_dir); 1027 list_del_init(&holder->list); 1028 kfree(holder); 1029 } 1030 1031 mutex_unlock(&bdev->bd_mutex); 1032} 1033EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1034#endif 1035 1036/** 1037 * flush_disk - invalidates all buffer-cache entries on a disk 1038 * 1039 * @bdev: struct block device to be flushed 1040 * @kill_dirty: flag to guide handling of dirty inodes 1041 * 1042 * Invalidates all buffer-cache entries on a disk. It should be called 1043 * when a disk has been changed -- either by a media change or online 1044 * resize. 1045 */ 1046static void flush_disk(struct block_device *bdev, bool kill_dirty) 1047{ 1048 if (__invalidate_device(bdev, kill_dirty)) { 1049 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1050 "resized disk %s\n", 1051 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1052 } 1053 1054 if (!bdev->bd_disk) 1055 return; 1056 if (disk_part_scan_enabled(bdev->bd_disk)) 1057 bdev->bd_invalidated = 1; 1058} 1059 1060/** 1061 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1062 * @disk: struct gendisk to check 1063 * @bdev: struct bdev to adjust. 1064 * 1065 * This routine checks to see if the bdev size does not match the disk size 1066 * and adjusts it if it differs. 1067 */ 1068void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1069{ 1070 loff_t disk_size, bdev_size; 1071 1072 disk_size = (loff_t)get_capacity(disk) << 9; 1073 bdev_size = i_size_read(bdev->bd_inode); 1074 if (disk_size != bdev_size) { 1075 printk(KERN_INFO 1076 "%s: detected capacity change from %lld to %lld\n", 1077 disk->disk_name, bdev_size, disk_size); 1078 i_size_write(bdev->bd_inode, disk_size); 1079 flush_disk(bdev, false); 1080 } 1081} 1082EXPORT_SYMBOL(check_disk_size_change); 1083 1084/** 1085 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1086 * @disk: struct gendisk to be revalidated 1087 * 1088 * This routine is a wrapper for lower-level driver's revalidate_disk 1089 * call-backs. It is used to do common pre and post operations needed 1090 * for all revalidate_disk operations. 1091 */ 1092int revalidate_disk(struct gendisk *disk) 1093{ 1094 struct block_device *bdev; 1095 int ret = 0; 1096 1097 if (disk->fops->revalidate_disk) 1098 ret = disk->fops->revalidate_disk(disk); 1099 blk_integrity_revalidate(disk); 1100 bdev = bdget_disk(disk, 0); 1101 if (!bdev) 1102 return ret; 1103 1104 mutex_lock(&bdev->bd_mutex); 1105 check_disk_size_change(disk, bdev); 1106 bdev->bd_invalidated = 0; 1107 mutex_unlock(&bdev->bd_mutex); 1108 bdput(bdev); 1109 return ret; 1110} 1111EXPORT_SYMBOL(revalidate_disk); 1112 1113/* 1114 * This routine checks whether a removable media has been changed, 1115 * and invalidates all buffer-cache-entries in that case. This 1116 * is a relatively slow routine, so we have to try to minimize using 1117 * it. Thus it is called only upon a 'mount' or 'open'. This 1118 * is the best way of combining speed and utility, I think. 1119 * People changing diskettes in the middle of an operation deserve 1120 * to lose :-) 1121 */ 1122int check_disk_change(struct block_device *bdev) 1123{ 1124 struct gendisk *disk = bdev->bd_disk; 1125 const struct block_device_operations *bdops = disk->fops; 1126 unsigned int events; 1127 1128 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1129 DISK_EVENT_EJECT_REQUEST); 1130 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1131 return 0; 1132 1133 flush_disk(bdev, true); 1134 if (bdops->revalidate_disk) 1135 bdops->revalidate_disk(bdev->bd_disk); 1136 return 1; 1137} 1138 1139EXPORT_SYMBOL(check_disk_change); 1140 1141void bd_set_size(struct block_device *bdev, loff_t size) 1142{ 1143 unsigned bsize = bdev_logical_block_size(bdev); 1144 1145 inode_lock(bdev->bd_inode); 1146 i_size_write(bdev->bd_inode, size); 1147 inode_unlock(bdev->bd_inode); 1148 while (bsize < PAGE_CACHE_SIZE) { 1149 if (size & bsize) 1150 break; 1151 bsize <<= 1; 1152 } 1153 bdev->bd_block_size = bsize; 1154 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1155} 1156EXPORT_SYMBOL(bd_set_size); 1157 1158static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1159 1160/* 1161 * bd_mutex locking: 1162 * 1163 * mutex_lock(part->bd_mutex) 1164 * mutex_lock_nested(whole->bd_mutex, 1) 1165 */ 1166 1167static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1168{ 1169 struct gendisk *disk; 1170 struct module *owner; 1171 int ret; 1172 int partno; 1173 int perm = 0; 1174 1175 if (mode & FMODE_READ) 1176 perm |= MAY_READ; 1177 if (mode & FMODE_WRITE) 1178 perm |= MAY_WRITE; 1179 /* 1180 * hooks: /n/, see "layering violations". 1181 */ 1182 if (!for_part) { 1183 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1184 if (ret != 0) { 1185 bdput(bdev); 1186 return ret; 1187 } 1188 } 1189 1190 restart: 1191 1192 ret = -ENXIO; 1193 disk = get_gendisk(bdev->bd_dev, &partno); 1194 if (!disk) 1195 goto out; 1196 owner = disk->fops->owner; 1197 1198 disk_block_events(disk); 1199 mutex_lock_nested(&bdev->bd_mutex, for_part); 1200 if (!bdev->bd_openers) { 1201 bdev->bd_disk = disk; 1202 bdev->bd_queue = disk->queue; 1203 bdev->bd_contains = bdev; 1204 if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access) 1205 bdev->bd_inode->i_flags = S_DAX; 1206 else 1207 bdev->bd_inode->i_flags = 0; 1208 1209 if (!partno) { 1210 ret = -ENXIO; 1211 bdev->bd_part = disk_get_part(disk, partno); 1212 if (!bdev->bd_part) 1213 goto out_clear; 1214 1215 ret = 0; 1216 if (disk->fops->open) { 1217 ret = disk->fops->open(bdev, mode); 1218 if (ret == -ERESTARTSYS) { 1219 /* Lost a race with 'disk' being 1220 * deleted, try again. 1221 * See md.c 1222 */ 1223 disk_put_part(bdev->bd_part); 1224 bdev->bd_part = NULL; 1225 bdev->bd_disk = NULL; 1226 bdev->bd_queue = NULL; 1227 mutex_unlock(&bdev->bd_mutex); 1228 disk_unblock_events(disk); 1229 put_disk(disk); 1230 module_put(owner); 1231 goto restart; 1232 } 1233 } 1234 1235 if (!ret) { 1236 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1237 if (!blkdev_dax_capable(bdev)) 1238 bdev->bd_inode->i_flags &= ~S_DAX; 1239 } 1240 1241 /* 1242 * If the device is invalidated, rescan partition 1243 * if open succeeded or failed with -ENOMEDIUM. 1244 * The latter is necessary to prevent ghost 1245 * partitions on a removed medium. 1246 */ 1247 if (bdev->bd_invalidated) { 1248 if (!ret) 1249 rescan_partitions(disk, bdev); 1250 else if (ret == -ENOMEDIUM) 1251 invalidate_partitions(disk, bdev); 1252 } 1253 1254 if (ret) 1255 goto out_clear; 1256 } else { 1257 struct block_device *whole; 1258 whole = bdget_disk(disk, 0); 1259 ret = -ENOMEM; 1260 if (!whole) 1261 goto out_clear; 1262 BUG_ON(for_part); 1263 ret = __blkdev_get(whole, mode, 1); 1264 if (ret) 1265 goto out_clear; 1266 bdev->bd_contains = whole; 1267 bdev->bd_part = disk_get_part(disk, partno); 1268 if (!(disk->flags & GENHD_FL_UP) || 1269 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1270 ret = -ENXIO; 1271 goto out_clear; 1272 } 1273 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1274 if (!blkdev_dax_capable(bdev)) 1275 bdev->bd_inode->i_flags &= ~S_DAX; 1276 } 1277 } else { 1278 if (bdev->bd_contains == bdev) { 1279 ret = 0; 1280 if (bdev->bd_disk->fops->open) 1281 ret = bdev->bd_disk->fops->open(bdev, mode); 1282 /* the same as first opener case, read comment there */ 1283 if (bdev->bd_invalidated) { 1284 if (!ret) 1285 rescan_partitions(bdev->bd_disk, bdev); 1286 else if (ret == -ENOMEDIUM) 1287 invalidate_partitions(bdev->bd_disk, bdev); 1288 } 1289 if (ret) 1290 goto out_unlock_bdev; 1291 } 1292 /* only one opener holds refs to the module and disk */ 1293 put_disk(disk); 1294 module_put(owner); 1295 } 1296 bdev->bd_openers++; 1297 if (for_part) 1298 bdev->bd_part_count++; 1299 mutex_unlock(&bdev->bd_mutex); 1300 disk_unblock_events(disk); 1301 return 0; 1302 1303 out_clear: 1304 disk_put_part(bdev->bd_part); 1305 bdev->bd_disk = NULL; 1306 bdev->bd_part = NULL; 1307 bdev->bd_queue = NULL; 1308 if (bdev != bdev->bd_contains) 1309 __blkdev_put(bdev->bd_contains, mode, 1); 1310 bdev->bd_contains = NULL; 1311 out_unlock_bdev: 1312 mutex_unlock(&bdev->bd_mutex); 1313 disk_unblock_events(disk); 1314 put_disk(disk); 1315 module_put(owner); 1316 out: 1317 bdput(bdev); 1318 1319 return ret; 1320} 1321 1322/** 1323 * blkdev_get - open a block device 1324 * @bdev: block_device to open 1325 * @mode: FMODE_* mask 1326 * @holder: exclusive holder identifier 1327 * 1328 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1329 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1330 * @holder is invalid. Exclusive opens may nest for the same @holder. 1331 * 1332 * On success, the reference count of @bdev is unchanged. On failure, 1333 * @bdev is put. 1334 * 1335 * CONTEXT: 1336 * Might sleep. 1337 * 1338 * RETURNS: 1339 * 0 on success, -errno on failure. 1340 */ 1341int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1342{ 1343 struct block_device *whole = NULL; 1344 int res; 1345 1346 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1347 1348 if ((mode & FMODE_EXCL) && holder) { 1349 whole = bd_start_claiming(bdev, holder); 1350 if (IS_ERR(whole)) { 1351 bdput(bdev); 1352 return PTR_ERR(whole); 1353 } 1354 } 1355 1356 res = __blkdev_get(bdev, mode, 0); 1357 1358 if (whole) { 1359 struct gendisk *disk = whole->bd_disk; 1360 1361 /* finish claiming */ 1362 mutex_lock(&bdev->bd_mutex); 1363 spin_lock(&bdev_lock); 1364 1365 if (!res) { 1366 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1367 /* 1368 * Note that for a whole device bd_holders 1369 * will be incremented twice, and bd_holder 1370 * will be set to bd_may_claim before being 1371 * set to holder 1372 */ 1373 whole->bd_holders++; 1374 whole->bd_holder = bd_may_claim; 1375 bdev->bd_holders++; 1376 bdev->bd_holder = holder; 1377 } 1378 1379 /* tell others that we're done */ 1380 BUG_ON(whole->bd_claiming != holder); 1381 whole->bd_claiming = NULL; 1382 wake_up_bit(&whole->bd_claiming, 0); 1383 1384 spin_unlock(&bdev_lock); 1385 1386 /* 1387 * Block event polling for write claims if requested. Any 1388 * write holder makes the write_holder state stick until 1389 * all are released. This is good enough and tracking 1390 * individual writeable reference is too fragile given the 1391 * way @mode is used in blkdev_get/put(). 1392 */ 1393 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1394 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1395 bdev->bd_write_holder = true; 1396 disk_block_events(disk); 1397 } 1398 1399 mutex_unlock(&bdev->bd_mutex); 1400 bdput(whole); 1401 } 1402 1403 return res; 1404} 1405EXPORT_SYMBOL(blkdev_get); 1406 1407/** 1408 * blkdev_get_by_path - open a block device by name 1409 * @path: path to the block device to open 1410 * @mode: FMODE_* mask 1411 * @holder: exclusive holder identifier 1412 * 1413 * Open the blockdevice described by the device file at @path. @mode 1414 * and @holder are identical to blkdev_get(). 1415 * 1416 * On success, the returned block_device has reference count of one. 1417 * 1418 * CONTEXT: 1419 * Might sleep. 1420 * 1421 * RETURNS: 1422 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1423 */ 1424struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1425 void *holder) 1426{ 1427 struct block_device *bdev; 1428 int err; 1429 1430 bdev = lookup_bdev(path); 1431 if (IS_ERR(bdev)) 1432 return bdev; 1433 1434 err = blkdev_get(bdev, mode, holder); 1435 if (err) 1436 return ERR_PTR(err); 1437 1438 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1439 blkdev_put(bdev, mode); 1440 return ERR_PTR(-EACCES); 1441 } 1442 1443 return bdev; 1444} 1445EXPORT_SYMBOL(blkdev_get_by_path); 1446 1447/** 1448 * blkdev_get_by_dev - open a block device by device number 1449 * @dev: device number of block device to open 1450 * @mode: FMODE_* mask 1451 * @holder: exclusive holder identifier 1452 * 1453 * Open the blockdevice described by device number @dev. @mode and 1454 * @holder are identical to blkdev_get(). 1455 * 1456 * Use it ONLY if you really do not have anything better - i.e. when 1457 * you are behind a truly sucky interface and all you are given is a 1458 * device number. _Never_ to be used for internal purposes. If you 1459 * ever need it - reconsider your API. 1460 * 1461 * On success, the returned block_device has reference count of one. 1462 * 1463 * CONTEXT: 1464 * Might sleep. 1465 * 1466 * RETURNS: 1467 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1468 */ 1469struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1470{ 1471 struct block_device *bdev; 1472 int err; 1473 1474 bdev = bdget(dev); 1475 if (!bdev) 1476 return ERR_PTR(-ENOMEM); 1477 1478 err = blkdev_get(bdev, mode, holder); 1479 if (err) 1480 return ERR_PTR(err); 1481 1482 return bdev; 1483} 1484EXPORT_SYMBOL(blkdev_get_by_dev); 1485 1486static int blkdev_open(struct inode * inode, struct file * filp) 1487{ 1488 struct block_device *bdev; 1489 1490 /* 1491 * Preserve backwards compatibility and allow large file access 1492 * even if userspace doesn't ask for it explicitly. Some mkfs 1493 * binary needs it. We might want to drop this workaround 1494 * during an unstable branch. 1495 */ 1496 filp->f_flags |= O_LARGEFILE; 1497 1498 if (filp->f_flags & O_NDELAY) 1499 filp->f_mode |= FMODE_NDELAY; 1500 if (filp->f_flags & O_EXCL) 1501 filp->f_mode |= FMODE_EXCL; 1502 if ((filp->f_flags & O_ACCMODE) == 3) 1503 filp->f_mode |= FMODE_WRITE_IOCTL; 1504 1505 bdev = bd_acquire(inode); 1506 if (bdev == NULL) 1507 return -ENOMEM; 1508 1509 filp->f_mapping = bdev->bd_inode->i_mapping; 1510 1511 return blkdev_get(bdev, filp->f_mode, filp); 1512} 1513 1514static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1515{ 1516 struct gendisk *disk = bdev->bd_disk; 1517 struct block_device *victim = NULL; 1518 1519 mutex_lock_nested(&bdev->bd_mutex, for_part); 1520 if (for_part) 1521 bdev->bd_part_count--; 1522 1523 if (!--bdev->bd_openers) { 1524 WARN_ON_ONCE(bdev->bd_holders); 1525 sync_blockdev(bdev); 1526 kill_bdev(bdev); 1527 1528 bdev_write_inode(bdev); 1529 /* 1530 * Detaching bdev inode from its wb in __destroy_inode() 1531 * is too late: the queue which embeds its bdi (along with 1532 * root wb) can be gone as soon as we put_disk() below. 1533 */ 1534 inode_detach_wb(bdev->bd_inode); 1535 } 1536 if (bdev->bd_contains == bdev) { 1537 if (disk->fops->release) 1538 disk->fops->release(disk, mode); 1539 } 1540 if (!bdev->bd_openers) { 1541 struct module *owner = disk->fops->owner; 1542 1543 disk_put_part(bdev->bd_part); 1544 bdev->bd_part = NULL; 1545 bdev->bd_disk = NULL; 1546 if (bdev != bdev->bd_contains) 1547 victim = bdev->bd_contains; 1548 bdev->bd_contains = NULL; 1549 1550 put_disk(disk); 1551 module_put(owner); 1552 } 1553 mutex_unlock(&bdev->bd_mutex); 1554 bdput(bdev); 1555 if (victim) 1556 __blkdev_put(victim, mode, 1); 1557} 1558 1559void blkdev_put(struct block_device *bdev, fmode_t mode) 1560{ 1561 mutex_lock(&bdev->bd_mutex); 1562 1563 if (mode & FMODE_EXCL) { 1564 bool bdev_free; 1565 1566 /* 1567 * Release a claim on the device. The holder fields 1568 * are protected with bdev_lock. bd_mutex is to 1569 * synchronize disk_holder unlinking. 1570 */ 1571 spin_lock(&bdev_lock); 1572 1573 WARN_ON_ONCE(--bdev->bd_holders < 0); 1574 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1575 1576 /* bd_contains might point to self, check in a separate step */ 1577 if ((bdev_free = !bdev->bd_holders)) 1578 bdev->bd_holder = NULL; 1579 if (!bdev->bd_contains->bd_holders) 1580 bdev->bd_contains->bd_holder = NULL; 1581 1582 spin_unlock(&bdev_lock); 1583 1584 /* 1585 * If this was the last claim, remove holder link and 1586 * unblock evpoll if it was a write holder. 1587 */ 1588 if (bdev_free && bdev->bd_write_holder) { 1589 disk_unblock_events(bdev->bd_disk); 1590 bdev->bd_write_holder = false; 1591 } 1592 } 1593 1594 /* 1595 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1596 * event. This is to ensure detection of media removal commanded 1597 * from userland - e.g. eject(1). 1598 */ 1599 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1600 1601 mutex_unlock(&bdev->bd_mutex); 1602 1603 __blkdev_put(bdev, mode, 0); 1604} 1605EXPORT_SYMBOL(blkdev_put); 1606 1607static int blkdev_close(struct inode * inode, struct file * filp) 1608{ 1609 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1610 blkdev_put(bdev, filp->f_mode); 1611 return 0; 1612} 1613 1614static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1615{ 1616 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1617 fmode_t mode = file->f_mode; 1618 1619 /* 1620 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1621 * to updated it before every ioctl. 1622 */ 1623 if (file->f_flags & O_NDELAY) 1624 mode |= FMODE_NDELAY; 1625 else 1626 mode &= ~FMODE_NDELAY; 1627 1628 return blkdev_ioctl(bdev, mode, cmd, arg); 1629} 1630 1631/* 1632 * Write data to the block device. Only intended for the block device itself 1633 * and the raw driver which basically is a fake block device. 1634 * 1635 * Does not take i_mutex for the write and thus is not for general purpose 1636 * use. 1637 */ 1638ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1639{ 1640 struct file *file = iocb->ki_filp; 1641 struct inode *bd_inode = bdev_file_inode(file); 1642 loff_t size = i_size_read(bd_inode); 1643 struct blk_plug plug; 1644 ssize_t ret; 1645 1646 if (bdev_read_only(I_BDEV(bd_inode))) 1647 return -EPERM; 1648 1649 if (!iov_iter_count(from)) 1650 return 0; 1651 1652 if (iocb->ki_pos >= size) 1653 return -ENOSPC; 1654 1655 iov_iter_truncate(from, size - iocb->ki_pos); 1656 1657 blk_start_plug(&plug); 1658 ret = __generic_file_write_iter(iocb, from); 1659 if (ret > 0) { 1660 ssize_t err; 1661 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1662 if (err < 0) 1663 ret = err; 1664 } 1665 blk_finish_plug(&plug); 1666 return ret; 1667} 1668EXPORT_SYMBOL_GPL(blkdev_write_iter); 1669 1670ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1671{ 1672 struct file *file = iocb->ki_filp; 1673 struct inode *bd_inode = bdev_file_inode(file); 1674 loff_t size = i_size_read(bd_inode); 1675 loff_t pos = iocb->ki_pos; 1676 1677 if (pos >= size) 1678 return 0; 1679 1680 size -= pos; 1681 iov_iter_truncate(to, size); 1682 return generic_file_read_iter(iocb, to); 1683} 1684EXPORT_SYMBOL_GPL(blkdev_read_iter); 1685 1686/* 1687 * Try to release a page associated with block device when the system 1688 * is under memory pressure. 1689 */ 1690static int blkdev_releasepage(struct page *page, gfp_t wait) 1691{ 1692 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1693 1694 if (super && super->s_op->bdev_try_to_free_page) 1695 return super->s_op->bdev_try_to_free_page(super, page, wait); 1696 1697 return try_to_free_buffers(page); 1698} 1699 1700static int blkdev_writepages(struct address_space *mapping, 1701 struct writeback_control *wbc) 1702{ 1703 if (dax_mapping(mapping)) { 1704 struct block_device *bdev = I_BDEV(mapping->host); 1705 1706 return dax_writeback_mapping_range(mapping, bdev, wbc); 1707 } 1708 return generic_writepages(mapping, wbc); 1709} 1710 1711static const struct address_space_operations def_blk_aops = { 1712 .readpage = blkdev_readpage, 1713 .readpages = blkdev_readpages, 1714 .writepage = blkdev_writepage, 1715 .write_begin = blkdev_write_begin, 1716 .write_end = blkdev_write_end, 1717 .writepages = blkdev_writepages, 1718 .releasepage = blkdev_releasepage, 1719 .direct_IO = blkdev_direct_IO, 1720 .is_dirty_writeback = buffer_check_dirty_writeback, 1721}; 1722 1723#ifdef CONFIG_FS_DAX 1724/* 1725 * In the raw block case we do not need to contend with truncation nor 1726 * unwritten file extents. Without those concerns there is no need for 1727 * additional locking beyond the mmap_sem context that these routines 1728 * are already executing under. 1729 * 1730 * Note, there is no protection if the block device is dynamically 1731 * resized (partition grow/shrink) during a fault. A stable block device 1732 * size is already not enforced in the blkdev_direct_IO path. 1733 * 1734 * For DAX, it is the responsibility of the block device driver to 1735 * ensure the whole-disk device size is stable while requests are in 1736 * flight. 1737 * 1738 * Finally, unlike the filemap_page_mkwrite() case there is no 1739 * filesystem superblock to sync against freezing. We still include a 1740 * pfn_mkwrite callback for dax drivers to receive write fault 1741 * notifications. 1742 */ 1743static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1744{ 1745 return __dax_fault(vma, vmf, blkdev_get_block, NULL); 1746} 1747 1748static int blkdev_dax_pfn_mkwrite(struct vm_area_struct *vma, 1749 struct vm_fault *vmf) 1750{ 1751 return dax_pfn_mkwrite(vma, vmf); 1752} 1753 1754static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr, 1755 pmd_t *pmd, unsigned int flags) 1756{ 1757 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL); 1758} 1759 1760static const struct vm_operations_struct blkdev_dax_vm_ops = { 1761 .fault = blkdev_dax_fault, 1762 .pmd_fault = blkdev_dax_pmd_fault, 1763 .pfn_mkwrite = blkdev_dax_pfn_mkwrite, 1764}; 1765 1766static const struct vm_operations_struct blkdev_default_vm_ops = { 1767 .fault = filemap_fault, 1768 .map_pages = filemap_map_pages, 1769}; 1770 1771static int blkdev_mmap(struct file *file, struct vm_area_struct *vma) 1772{ 1773 struct inode *bd_inode = bdev_file_inode(file); 1774 1775 file_accessed(file); 1776 if (IS_DAX(bd_inode)) { 1777 vma->vm_ops = &blkdev_dax_vm_ops; 1778 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE; 1779 } else { 1780 vma->vm_ops = &blkdev_default_vm_ops; 1781 } 1782 1783 return 0; 1784} 1785#else 1786#define blkdev_mmap generic_file_mmap 1787#endif 1788 1789const struct file_operations def_blk_fops = { 1790 .open = blkdev_open, 1791 .release = blkdev_close, 1792 .llseek = block_llseek, 1793 .read_iter = blkdev_read_iter, 1794 .write_iter = blkdev_write_iter, 1795 .mmap = blkdev_mmap, 1796 .fsync = blkdev_fsync, 1797 .unlocked_ioctl = block_ioctl, 1798#ifdef CONFIG_COMPAT 1799 .compat_ioctl = compat_blkdev_ioctl, 1800#endif 1801 .splice_read = generic_file_splice_read, 1802 .splice_write = iter_file_splice_write, 1803}; 1804 1805int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1806{ 1807 int res; 1808 mm_segment_t old_fs = get_fs(); 1809 set_fs(KERNEL_DS); 1810 res = blkdev_ioctl(bdev, 0, cmd, arg); 1811 set_fs(old_fs); 1812 return res; 1813} 1814 1815EXPORT_SYMBOL(ioctl_by_bdev); 1816 1817/** 1818 * lookup_bdev - lookup a struct block_device by name 1819 * @pathname: special file representing the block device 1820 * 1821 * Get a reference to the blockdevice at @pathname in the current 1822 * namespace if possible and return it. Return ERR_PTR(error) 1823 * otherwise. 1824 */ 1825struct block_device *lookup_bdev(const char *pathname) 1826{ 1827 struct block_device *bdev; 1828 struct inode *inode; 1829 struct path path; 1830 int error; 1831 1832 if (!pathname || !*pathname) 1833 return ERR_PTR(-EINVAL); 1834 1835 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1836 if (error) 1837 return ERR_PTR(error); 1838 1839 inode = d_backing_inode(path.dentry); 1840 error = -ENOTBLK; 1841 if (!S_ISBLK(inode->i_mode)) 1842 goto fail; 1843 error = -EACCES; 1844 if (path.mnt->mnt_flags & MNT_NODEV) 1845 goto fail; 1846 error = -ENOMEM; 1847 bdev = bd_acquire(inode); 1848 if (!bdev) 1849 goto fail; 1850out: 1851 path_put(&path); 1852 return bdev; 1853fail: 1854 bdev = ERR_PTR(error); 1855 goto out; 1856} 1857EXPORT_SYMBOL(lookup_bdev); 1858 1859int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1860{ 1861 struct super_block *sb = get_super(bdev); 1862 int res = 0; 1863 1864 if (sb) { 1865 /* 1866 * no need to lock the super, get_super holds the 1867 * read mutex so the filesystem cannot go away 1868 * under us (->put_super runs with the write lock 1869 * hold). 1870 */ 1871 shrink_dcache_sb(sb); 1872 res = invalidate_inodes(sb, kill_dirty); 1873 drop_super(sb); 1874 } 1875 invalidate_bdev(bdev); 1876 return res; 1877} 1878EXPORT_SYMBOL(__invalidate_device); 1879 1880void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1881{ 1882 struct inode *inode, *old_inode = NULL; 1883 1884 spin_lock(&blockdev_superblock->s_inode_list_lock); 1885 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1886 struct address_space *mapping = inode->i_mapping; 1887 1888 spin_lock(&inode->i_lock); 1889 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1890 mapping->nrpages == 0) { 1891 spin_unlock(&inode->i_lock); 1892 continue; 1893 } 1894 __iget(inode); 1895 spin_unlock(&inode->i_lock); 1896 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1897 /* 1898 * We hold a reference to 'inode' so it couldn't have been 1899 * removed from s_inodes list while we dropped the 1900 * s_inode_list_lock We cannot iput the inode now as we can 1901 * be holding the last reference and we cannot iput it under 1902 * s_inode_list_lock. So we keep the reference and iput it 1903 * later. 1904 */ 1905 iput(old_inode); 1906 old_inode = inode; 1907 1908 func(I_BDEV(inode), arg); 1909 1910 spin_lock(&blockdev_superblock->s_inode_list_lock); 1911 } 1912 spin_unlock(&blockdev_superblock->s_inode_list_lock); 1913 iput(old_inode); 1914}