Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
14/*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26#ifndef __ASSEMBLY__
27#include <linux/sched.h>
28#include <linux/mm_types.h>
29#include <linux/page-flags.h>
30#include <linux/radix-tree.h>
31#include <asm/bug.h>
32#include <asm/page.h>
33
34extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35extern void paging_init(void);
36extern void vmem_map_init(void);
37
38/*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
42#define update_mmu_cache(vma, address, ptep) do { } while (0)
43#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44
45/*
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
48 */
49
50extern unsigned long empty_zero_page;
51extern unsigned long zero_page_mask;
52
53#define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56#define __HAVE_COLOR_ZERO_PAGE
57
58/* TODO: s390 cannot support io_remap_pfn_range... */
59#endif /* !__ASSEMBLY__ */
60
61/*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
66#define PMD_SHIFT 20
67#define PUD_SHIFT 31
68#define PGDIR_SHIFT 42
69
70#define PMD_SIZE (1UL << PMD_SHIFT)
71#define PMD_MASK (~(PMD_SIZE-1))
72#define PUD_SIZE (1UL << PUD_SHIFT)
73#define PUD_MASK (~(PUD_SIZE-1))
74#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75#define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77/*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83#define PTRS_PER_PTE 256
84#define PTRS_PER_PMD 2048
85#define PTRS_PER_PUD 2048
86#define PTRS_PER_PGD 2048
87
88#define FIRST_USER_ADDRESS 0UL
89
90#define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92#define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94#define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96#define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99#ifndef __ASSEMBLY__
100/*
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
107 */
108extern unsigned long VMALLOC_START;
109extern unsigned long VMALLOC_END;
110extern struct page *vmemmap;
111
112#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113
114extern unsigned long MODULES_VADDR;
115extern unsigned long MODULES_END;
116#define MODULES_VADDR MODULES_VADDR
117#define MODULES_END MODULES_END
118#define MODULES_LEN (1UL << 31)
119
120static inline int is_module_addr(void *addr)
121{
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
127 return 1;
128}
129
130/*
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181/* Hardware bits in the page table entry */
182#define _PAGE_PROTECT 0x200 /* HW read-only bit */
183#define _PAGE_INVALID 0x400 /* HW invalid bit */
184#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
185
186/* Software bits in the page table entry */
187#define _PAGE_PRESENT 0x001 /* SW pte present bit */
188#define _PAGE_YOUNG 0x004 /* SW pte young bit */
189#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190#define _PAGE_READ 0x010 /* SW pte read bit */
191#define _PAGE_WRITE 0x020 /* SW pte write bit */
192#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194#define __HAVE_ARCH_PTE_SPECIAL
195
196#ifdef CONFIG_MEM_SOFT_DIRTY
197#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198#else
199#define _PAGE_SOFT_DIRTY 0x000
200#endif
201
202/* Set of bits not changed in pte_modify */
203#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205
206/*
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
210 * table lock held.
211 *
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
215 *
216 * 842100000000
217 * 000084210000
218 * 000000008421
219 * .IR.uswrdy.p
220 * empty .10.00000000
221 * swap .11..ttttt.0
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
236 * u unused, l large
237 *
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241 */
242
243/* Bits in the segment/region table address-space-control-element */
244#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248#define _ASCE_REAL_SPACE 0x20 /* real space control */
249#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
255
256/* Bits in the region table entry */
257#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
258#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
260#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
265
266#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272
273#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
274#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
275
276/* Bits in the segment table entry */
277#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
278#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
280#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
281#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283
284#define _SEGMENT_ENTRY (0)
285#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
286
287#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
291#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
292
293#ifdef CONFIG_MEM_SOFT_DIRTY
294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295#else
296#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297#endif
298
299/*
300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
301 * dy..R...I...wr
302 * prot-none, clean, old 00..1...1...00
303 * prot-none, clean, young 01..1...1...00
304 * prot-none, dirty, old 10..1...1...00
305 * prot-none, dirty, young 11..1...1...00
306 * read-only, clean, old 00..1...1...01
307 * read-only, clean, young 01..1...0...01
308 * read-only, dirty, old 10..1...1...01
309 * read-only, dirty, young 11..1...0...01
310 * read-write, clean, old 00..1...1...11
311 * read-write, clean, young 01..1...0...11
312 * read-write, dirty, old 10..0...1...11
313 * read-write, dirty, young 11..0...0...11
314 * The segment table origin is used to distinguish empty (origin==0) from
315 * read-write, old segment table entries (origin!=0)
316 * HW-bits: R read-only, I invalid
317 * SW-bits: y young, d dirty, r read, w write
318 */
319
320/* Page status table bits for virtualization */
321#define PGSTE_ACC_BITS 0xf000000000000000UL
322#define PGSTE_FP_BIT 0x0800000000000000UL
323#define PGSTE_PCL_BIT 0x0080000000000000UL
324#define PGSTE_HR_BIT 0x0040000000000000UL
325#define PGSTE_HC_BIT 0x0020000000000000UL
326#define PGSTE_GR_BIT 0x0004000000000000UL
327#define PGSTE_GC_BIT 0x0002000000000000UL
328#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
329#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
330
331/* Guest Page State used for virtualization */
332#define _PGSTE_GPS_ZERO 0x0000000080000000UL
333#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
334#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
335#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
336
337/*
338 * A user page table pointer has the space-switch-event bit, the
339 * private-space-control bit and the storage-alteration-event-control
340 * bit set. A kernel page table pointer doesn't need them.
341 */
342#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
343 _ASCE_ALT_EVENT)
344
345/*
346 * Page protection definitions.
347 */
348#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
349#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
350 _PAGE_INVALID | _PAGE_PROTECT)
351#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
352 _PAGE_INVALID | _PAGE_PROTECT)
353
354#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_YOUNG | _PAGE_DIRTY)
356#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
357 _PAGE_YOUNG | _PAGE_DIRTY)
358#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
359 _PAGE_PROTECT)
360
361/*
362 * On s390 the page table entry has an invalid bit and a read-only bit.
363 * Read permission implies execute permission and write permission
364 * implies read permission.
365 */
366 /*xwr*/
367#define __P000 PAGE_NONE
368#define __P001 PAGE_READ
369#define __P010 PAGE_READ
370#define __P011 PAGE_READ
371#define __P100 PAGE_READ
372#define __P101 PAGE_READ
373#define __P110 PAGE_READ
374#define __P111 PAGE_READ
375
376#define __S000 PAGE_NONE
377#define __S001 PAGE_READ
378#define __S010 PAGE_WRITE
379#define __S011 PAGE_WRITE
380#define __S100 PAGE_READ
381#define __S101 PAGE_READ
382#define __S110 PAGE_WRITE
383#define __S111 PAGE_WRITE
384
385/*
386 * Segment entry (large page) protection definitions.
387 */
388#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
389 _SEGMENT_ENTRY_PROTECT)
390#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
391 _SEGMENT_ENTRY_READ)
392#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
393 _SEGMENT_ENTRY_WRITE)
394
395static inline int mm_has_pgste(struct mm_struct *mm)
396{
397#ifdef CONFIG_PGSTE
398 if (unlikely(mm->context.has_pgste))
399 return 1;
400#endif
401 return 0;
402}
403
404static inline int mm_alloc_pgste(struct mm_struct *mm)
405{
406#ifdef CONFIG_PGSTE
407 if (unlikely(mm->context.alloc_pgste))
408 return 1;
409#endif
410 return 0;
411}
412
413/*
414 * In the case that a guest uses storage keys
415 * faults should no longer be backed by zero pages
416 */
417#define mm_forbids_zeropage mm_use_skey
418static inline int mm_use_skey(struct mm_struct *mm)
419{
420#ifdef CONFIG_PGSTE
421 if (mm->context.use_skey)
422 return 1;
423#endif
424 return 0;
425}
426
427/*
428 * pgd/pmd/pte query functions
429 */
430static inline int pgd_present(pgd_t pgd)
431{
432 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 return 1;
434 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435}
436
437static inline int pgd_none(pgd_t pgd)
438{
439 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 return 0;
441 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
442}
443
444static inline int pgd_bad(pgd_t pgd)
445{
446 /*
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
450 */
451 unsigned long mask =
452 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
453 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 return (pgd_val(pgd) & mask) != 0;
455}
456
457static inline int pud_present(pud_t pud)
458{
459 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 return 1;
461 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
462}
463
464static inline int pud_none(pud_t pud)
465{
466 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 return 0;
468 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
469}
470
471static inline int pud_large(pud_t pud)
472{
473 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
474 return 0;
475 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
476}
477
478static inline int pud_bad(pud_t pud)
479{
480 /*
481 * With dynamic page table levels the pud can be a region table
482 * entry or a segment table entry. Check for the bit that are
483 * invalid for either table entry.
484 */
485 unsigned long mask =
486 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
487 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
488 return (pud_val(pud) & mask) != 0;
489}
490
491static inline int pmd_present(pmd_t pmd)
492{
493 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
494}
495
496static inline int pmd_none(pmd_t pmd)
497{
498 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
499}
500
501static inline int pmd_large(pmd_t pmd)
502{
503 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
504}
505
506static inline unsigned long pmd_pfn(pmd_t pmd)
507{
508 unsigned long origin_mask;
509
510 origin_mask = _SEGMENT_ENTRY_ORIGIN;
511 if (pmd_large(pmd))
512 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
513 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
514}
515
516static inline int pmd_bad(pmd_t pmd)
517{
518 if (pmd_large(pmd))
519 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
520 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
521}
522
523#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
524extern int pmdp_set_access_flags(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp,
526 pmd_t entry, int dirty);
527
528#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
529extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
530 unsigned long address, pmd_t *pmdp);
531
532#define __HAVE_ARCH_PMD_WRITE
533static inline int pmd_write(pmd_t pmd)
534{
535 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
536}
537
538static inline int pmd_dirty(pmd_t pmd)
539{
540 int dirty = 1;
541 if (pmd_large(pmd))
542 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
543 return dirty;
544}
545
546static inline int pmd_young(pmd_t pmd)
547{
548 int young = 1;
549 if (pmd_large(pmd))
550 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
551 return young;
552}
553
554static inline int pte_present(pte_t pte)
555{
556 /* Bit pattern: (pte & 0x001) == 0x001 */
557 return (pte_val(pte) & _PAGE_PRESENT) != 0;
558}
559
560static inline int pte_none(pte_t pte)
561{
562 /* Bit pattern: pte == 0x400 */
563 return pte_val(pte) == _PAGE_INVALID;
564}
565
566static inline int pte_swap(pte_t pte)
567{
568 /* Bit pattern: (pte & 0x201) == 0x200 */
569 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
570 == _PAGE_PROTECT;
571}
572
573static inline int pte_special(pte_t pte)
574{
575 return (pte_val(pte) & _PAGE_SPECIAL);
576}
577
578#define __HAVE_ARCH_PTE_SAME
579static inline int pte_same(pte_t a, pte_t b)
580{
581 return pte_val(a) == pte_val(b);
582}
583
584#ifdef CONFIG_NUMA_BALANCING
585static inline int pte_protnone(pte_t pte)
586{
587 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
588}
589
590static inline int pmd_protnone(pmd_t pmd)
591{
592 /* pmd_large(pmd) implies pmd_present(pmd) */
593 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
594}
595#endif
596
597static inline int pte_soft_dirty(pte_t pte)
598{
599 return pte_val(pte) & _PAGE_SOFT_DIRTY;
600}
601#define pte_swp_soft_dirty pte_soft_dirty
602
603static inline pte_t pte_mksoft_dirty(pte_t pte)
604{
605 pte_val(pte) |= _PAGE_SOFT_DIRTY;
606 return pte;
607}
608#define pte_swp_mksoft_dirty pte_mksoft_dirty
609
610static inline pte_t pte_clear_soft_dirty(pte_t pte)
611{
612 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
613 return pte;
614}
615#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
616
617static inline int pmd_soft_dirty(pmd_t pmd)
618{
619 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
620}
621
622static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
623{
624 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
625 return pmd;
626}
627
628static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
629{
630 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
631 return pmd;
632}
633
634static inline pgste_t pgste_get_lock(pte_t *ptep)
635{
636 unsigned long new = 0;
637#ifdef CONFIG_PGSTE
638 unsigned long old;
639
640 preempt_disable();
641 asm(
642 " lg %0,%2\n"
643 "0: lgr %1,%0\n"
644 " nihh %0,0xff7f\n" /* clear PCL bit in old */
645 " oihh %1,0x0080\n" /* set PCL bit in new */
646 " csg %0,%1,%2\n"
647 " jl 0b\n"
648 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
649 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
650#endif
651 return __pgste(new);
652}
653
654static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
655{
656#ifdef CONFIG_PGSTE
657 asm(
658 " nihh %1,0xff7f\n" /* clear PCL bit */
659 " stg %1,%0\n"
660 : "=Q" (ptep[PTRS_PER_PTE])
661 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
662 : "cc", "memory");
663 preempt_enable();
664#endif
665}
666
667static inline pgste_t pgste_get(pte_t *ptep)
668{
669 unsigned long pgste = 0;
670#ifdef CONFIG_PGSTE
671 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
672#endif
673 return __pgste(pgste);
674}
675
676static inline void pgste_set(pte_t *ptep, pgste_t pgste)
677{
678#ifdef CONFIG_PGSTE
679 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
680#endif
681}
682
683static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
684 struct mm_struct *mm)
685{
686#ifdef CONFIG_PGSTE
687 unsigned long address, bits, skey;
688
689 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
690 return pgste;
691 address = pte_val(*ptep) & PAGE_MASK;
692 skey = (unsigned long) page_get_storage_key(address);
693 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
694 /* Transfer page changed & referenced bit to guest bits in pgste */
695 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
696 /* Copy page access key and fetch protection bit to pgste */
697 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
698 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
699#endif
700 return pgste;
701
702}
703
704static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
705 struct mm_struct *mm)
706{
707#ifdef CONFIG_PGSTE
708 unsigned long address;
709 unsigned long nkey;
710
711 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
712 return;
713 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
714 address = pte_val(entry) & PAGE_MASK;
715 /*
716 * Set page access key and fetch protection bit from pgste.
717 * The guest C/R information is still in the PGSTE, set real
718 * key C/R to 0.
719 */
720 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
721 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
722 page_set_storage_key(address, nkey, 0);
723#endif
724}
725
726static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
727{
728 if ((pte_val(entry) & _PAGE_PRESENT) &&
729 (pte_val(entry) & _PAGE_WRITE) &&
730 !(pte_val(entry) & _PAGE_INVALID)) {
731 if (!MACHINE_HAS_ESOP) {
732 /*
733 * Without enhanced suppression-on-protection force
734 * the dirty bit on for all writable ptes.
735 */
736 pte_val(entry) |= _PAGE_DIRTY;
737 pte_val(entry) &= ~_PAGE_PROTECT;
738 }
739 if (!(pte_val(entry) & _PAGE_PROTECT))
740 /* This pte allows write access, set user-dirty */
741 pgste_val(pgste) |= PGSTE_UC_BIT;
742 }
743 *ptep = entry;
744 return pgste;
745}
746
747/**
748 * struct gmap_struct - guest address space
749 * @crst_list: list of all crst tables used in the guest address space
750 * @mm: pointer to the parent mm_struct
751 * @guest_to_host: radix tree with guest to host address translation
752 * @host_to_guest: radix tree with pointer to segment table entries
753 * @guest_table_lock: spinlock to protect all entries in the guest page table
754 * @table: pointer to the page directory
755 * @asce: address space control element for gmap page table
756 * @pfault_enabled: defines if pfaults are applicable for the guest
757 */
758struct gmap {
759 struct list_head list;
760 struct list_head crst_list;
761 struct mm_struct *mm;
762 struct radix_tree_root guest_to_host;
763 struct radix_tree_root host_to_guest;
764 spinlock_t guest_table_lock;
765 unsigned long *table;
766 unsigned long asce;
767 unsigned long asce_end;
768 void *private;
769 bool pfault_enabled;
770};
771
772/**
773 * struct gmap_notifier - notify function block for page invalidation
774 * @notifier_call: address of callback function
775 */
776struct gmap_notifier {
777 struct list_head list;
778 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
779};
780
781struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
782void gmap_free(struct gmap *gmap);
783void gmap_enable(struct gmap *gmap);
784void gmap_disable(struct gmap *gmap);
785int gmap_map_segment(struct gmap *gmap, unsigned long from,
786 unsigned long to, unsigned long len);
787int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
788unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
789unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
790int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
791int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
792void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
793void __gmap_zap(struct gmap *, unsigned long gaddr);
794bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
795
796
797void gmap_register_ipte_notifier(struct gmap_notifier *);
798void gmap_unregister_ipte_notifier(struct gmap_notifier *);
799int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
800void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
801
802static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
803 unsigned long addr,
804 pte_t *ptep, pgste_t pgste)
805{
806#ifdef CONFIG_PGSTE
807 if (pgste_val(pgste) & PGSTE_IN_BIT) {
808 pgste_val(pgste) &= ~PGSTE_IN_BIT;
809 gmap_do_ipte_notify(mm, addr, ptep);
810 }
811#endif
812 return pgste;
813}
814
815/*
816 * Certain architectures need to do special things when PTEs
817 * within a page table are directly modified. Thus, the following
818 * hook is made available.
819 */
820static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
821 pte_t *ptep, pte_t entry)
822{
823 pgste_t pgste;
824
825 if (mm_has_pgste(mm)) {
826 pgste = pgste_get_lock(ptep);
827 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
828 pgste_set_key(ptep, pgste, entry, mm);
829 pgste = pgste_set_pte(ptep, pgste, entry);
830 pgste_set_unlock(ptep, pgste);
831 } else {
832 *ptep = entry;
833 }
834}
835
836/*
837 * query functions pte_write/pte_dirty/pte_young only work if
838 * pte_present() is true. Undefined behaviour if not..
839 */
840static inline int pte_write(pte_t pte)
841{
842 return (pte_val(pte) & _PAGE_WRITE) != 0;
843}
844
845static inline int pte_dirty(pte_t pte)
846{
847 return (pte_val(pte) & _PAGE_DIRTY) != 0;
848}
849
850static inline int pte_young(pte_t pte)
851{
852 return (pte_val(pte) & _PAGE_YOUNG) != 0;
853}
854
855#define __HAVE_ARCH_PTE_UNUSED
856static inline int pte_unused(pte_t pte)
857{
858 return pte_val(pte) & _PAGE_UNUSED;
859}
860
861/*
862 * pgd/pmd/pte modification functions
863 */
864
865static inline void pgd_clear(pgd_t *pgd)
866{
867 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
868 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
869}
870
871static inline void pud_clear(pud_t *pud)
872{
873 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
874 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
875}
876
877static inline void pmd_clear(pmd_t *pmdp)
878{
879 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
880}
881
882static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
883{
884 pte_val(*ptep) = _PAGE_INVALID;
885}
886
887/*
888 * The following pte modification functions only work if
889 * pte_present() is true. Undefined behaviour if not..
890 */
891static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
892{
893 pte_val(pte) &= _PAGE_CHG_MASK;
894 pte_val(pte) |= pgprot_val(newprot);
895 /*
896 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
897 * invalid bit set, clear it again for readable, young pages
898 */
899 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
900 pte_val(pte) &= ~_PAGE_INVALID;
901 /*
902 * newprot for PAGE_READ and PAGE_WRITE has the page protection
903 * bit set, clear it again for writable, dirty pages
904 */
905 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
906 pte_val(pte) &= ~_PAGE_PROTECT;
907 return pte;
908}
909
910static inline pte_t pte_wrprotect(pte_t pte)
911{
912 pte_val(pte) &= ~_PAGE_WRITE;
913 pte_val(pte) |= _PAGE_PROTECT;
914 return pte;
915}
916
917static inline pte_t pte_mkwrite(pte_t pte)
918{
919 pte_val(pte) |= _PAGE_WRITE;
920 if (pte_val(pte) & _PAGE_DIRTY)
921 pte_val(pte) &= ~_PAGE_PROTECT;
922 return pte;
923}
924
925static inline pte_t pte_mkclean(pte_t pte)
926{
927 pte_val(pte) &= ~_PAGE_DIRTY;
928 pte_val(pte) |= _PAGE_PROTECT;
929 return pte;
930}
931
932static inline pte_t pte_mkdirty(pte_t pte)
933{
934 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
935 if (pte_val(pte) & _PAGE_WRITE)
936 pte_val(pte) &= ~_PAGE_PROTECT;
937 return pte;
938}
939
940static inline pte_t pte_mkold(pte_t pte)
941{
942 pte_val(pte) &= ~_PAGE_YOUNG;
943 pte_val(pte) |= _PAGE_INVALID;
944 return pte;
945}
946
947static inline pte_t pte_mkyoung(pte_t pte)
948{
949 pte_val(pte) |= _PAGE_YOUNG;
950 if (pte_val(pte) & _PAGE_READ)
951 pte_val(pte) &= ~_PAGE_INVALID;
952 return pte;
953}
954
955static inline pte_t pte_mkspecial(pte_t pte)
956{
957 pte_val(pte) |= _PAGE_SPECIAL;
958 return pte;
959}
960
961#ifdef CONFIG_HUGETLB_PAGE
962static inline pte_t pte_mkhuge(pte_t pte)
963{
964 pte_val(pte) |= _PAGE_LARGE;
965 return pte;
966}
967#endif
968
969static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
970{
971 unsigned long pto = (unsigned long) ptep;
972
973 /* Invalidation + global TLB flush for the pte */
974 asm volatile(
975 " ipte %2,%3"
976 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
977}
978
979static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
980{
981 unsigned long pto = (unsigned long) ptep;
982
983 /* Invalidation + local TLB flush for the pte */
984 asm volatile(
985 " .insn rrf,0xb2210000,%2,%3,0,1"
986 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
987}
988
989static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
990{
991 unsigned long pto = (unsigned long) ptep;
992
993 /* Invalidate a range of ptes + global TLB flush of the ptes */
994 do {
995 asm volatile(
996 " .insn rrf,0xb2210000,%2,%0,%1,0"
997 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
998 } while (nr != 255);
999}
1000
1001static inline void ptep_flush_direct(struct mm_struct *mm,
1002 unsigned long address, pte_t *ptep)
1003{
1004 int active, count;
1005
1006 if (pte_val(*ptep) & _PAGE_INVALID)
1007 return;
1008 active = (mm == current->active_mm) ? 1 : 0;
1009 count = atomic_add_return(0x10000, &mm->context.attach_count);
1010 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1011 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1012 __ptep_ipte_local(address, ptep);
1013 else
1014 __ptep_ipte(address, ptep);
1015 atomic_sub(0x10000, &mm->context.attach_count);
1016}
1017
1018static inline void ptep_flush_lazy(struct mm_struct *mm,
1019 unsigned long address, pte_t *ptep)
1020{
1021 int active, count;
1022
1023 if (pte_val(*ptep) & _PAGE_INVALID)
1024 return;
1025 active = (mm == current->active_mm) ? 1 : 0;
1026 count = atomic_add_return(0x10000, &mm->context.attach_count);
1027 if ((count & 0xffff) <= active) {
1028 pte_val(*ptep) |= _PAGE_INVALID;
1029 mm->context.flush_mm = 1;
1030 } else
1031 __ptep_ipte(address, ptep);
1032 atomic_sub(0x10000, &mm->context.attach_count);
1033}
1034
1035/*
1036 * Get (and clear) the user dirty bit for a pte.
1037 */
1038static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1039 unsigned long addr,
1040 pte_t *ptep)
1041{
1042 pgste_t pgste;
1043 pte_t pte;
1044 int dirty;
1045
1046 if (!mm_has_pgste(mm))
1047 return 0;
1048 pgste = pgste_get_lock(ptep);
1049 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1050 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1051 pte = *ptep;
1052 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1053 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1054 __ptep_ipte(addr, ptep);
1055 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1056 pte_val(pte) |= _PAGE_PROTECT;
1057 else
1058 pte_val(pte) |= _PAGE_INVALID;
1059 *ptep = pte;
1060 }
1061 pgste_set_unlock(ptep, pgste);
1062 return dirty;
1063}
1064
1065#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1066static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1067 unsigned long addr, pte_t *ptep)
1068{
1069 pgste_t pgste;
1070 pte_t pte, oldpte;
1071 int young;
1072
1073 if (mm_has_pgste(vma->vm_mm)) {
1074 pgste = pgste_get_lock(ptep);
1075 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1076 }
1077
1078 oldpte = pte = *ptep;
1079 ptep_flush_direct(vma->vm_mm, addr, ptep);
1080 young = pte_young(pte);
1081 pte = pte_mkold(pte);
1082
1083 if (mm_has_pgste(vma->vm_mm)) {
1084 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1085 pgste = pgste_set_pte(ptep, pgste, pte);
1086 pgste_set_unlock(ptep, pgste);
1087 } else
1088 *ptep = pte;
1089
1090 return young;
1091}
1092
1093#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1094static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1095 unsigned long address, pte_t *ptep)
1096{
1097 return ptep_test_and_clear_young(vma, address, ptep);
1098}
1099
1100/*
1101 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1102 * both clear the TLB for the unmapped pte. The reason is that
1103 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1104 * to modify an active pte. The sequence is
1105 * 1) ptep_get_and_clear
1106 * 2) set_pte_at
1107 * 3) flush_tlb_range
1108 * On s390 the tlb needs to get flushed with the modification of the pte
1109 * if the pte is active. The only way how this can be implemented is to
1110 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1111 * is a nop.
1112 */
1113#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1115 unsigned long address, pte_t *ptep)
1116{
1117 pgste_t pgste;
1118 pte_t pte;
1119
1120 if (mm_has_pgste(mm)) {
1121 pgste = pgste_get_lock(ptep);
1122 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1123 }
1124
1125 pte = *ptep;
1126 ptep_flush_lazy(mm, address, ptep);
1127 pte_val(*ptep) = _PAGE_INVALID;
1128
1129 if (mm_has_pgste(mm)) {
1130 pgste = pgste_update_all(&pte, pgste, mm);
1131 pgste_set_unlock(ptep, pgste);
1132 }
1133 return pte;
1134}
1135
1136#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1137static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1138 unsigned long address,
1139 pte_t *ptep)
1140{
1141 pgste_t pgste;
1142 pte_t pte;
1143
1144 if (mm_has_pgste(mm)) {
1145 pgste = pgste_get_lock(ptep);
1146 pgste_ipte_notify(mm, address, ptep, pgste);
1147 }
1148
1149 pte = *ptep;
1150 ptep_flush_lazy(mm, address, ptep);
1151
1152 if (mm_has_pgste(mm)) {
1153 pgste = pgste_update_all(&pte, pgste, mm);
1154 pgste_set(ptep, pgste);
1155 }
1156 return pte;
1157}
1158
1159static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1160 unsigned long address,
1161 pte_t *ptep, pte_t pte)
1162{
1163 pgste_t pgste;
1164
1165 if (mm_has_pgste(mm)) {
1166 pgste = pgste_get(ptep);
1167 pgste_set_key(ptep, pgste, pte, mm);
1168 pgste = pgste_set_pte(ptep, pgste, pte);
1169 pgste_set_unlock(ptep, pgste);
1170 } else
1171 *ptep = pte;
1172}
1173
1174#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1175static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1176 unsigned long address, pte_t *ptep)
1177{
1178 pgste_t pgste;
1179 pte_t pte;
1180
1181 if (mm_has_pgste(vma->vm_mm)) {
1182 pgste = pgste_get_lock(ptep);
1183 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1184 }
1185
1186 pte = *ptep;
1187 ptep_flush_direct(vma->vm_mm, address, ptep);
1188 pte_val(*ptep) = _PAGE_INVALID;
1189
1190 if (mm_has_pgste(vma->vm_mm)) {
1191 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1192 _PGSTE_GPS_USAGE_UNUSED)
1193 pte_val(pte) |= _PAGE_UNUSED;
1194 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1195 pgste_set_unlock(ptep, pgste);
1196 }
1197 return pte;
1198}
1199
1200/*
1201 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1202 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1203 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1204 * cannot be accessed while the batched unmap is running. In this case
1205 * full==1 and a simple pte_clear is enough. See tlb.h.
1206 */
1207#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1208static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1209 unsigned long address,
1210 pte_t *ptep, int full)
1211{
1212 pgste_t pgste;
1213 pte_t pte;
1214
1215 if (!full && mm_has_pgste(mm)) {
1216 pgste = pgste_get_lock(ptep);
1217 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1218 }
1219
1220 pte = *ptep;
1221 if (!full)
1222 ptep_flush_lazy(mm, address, ptep);
1223 pte_val(*ptep) = _PAGE_INVALID;
1224
1225 if (!full && mm_has_pgste(mm)) {
1226 pgste = pgste_update_all(&pte, pgste, mm);
1227 pgste_set_unlock(ptep, pgste);
1228 }
1229 return pte;
1230}
1231
1232#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1233static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1234 unsigned long address, pte_t *ptep)
1235{
1236 pgste_t pgste;
1237 pte_t pte = *ptep;
1238
1239 if (pte_write(pte)) {
1240 if (mm_has_pgste(mm)) {
1241 pgste = pgste_get_lock(ptep);
1242 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1243 }
1244
1245 ptep_flush_lazy(mm, address, ptep);
1246 pte = pte_wrprotect(pte);
1247
1248 if (mm_has_pgste(mm)) {
1249 pgste = pgste_set_pte(ptep, pgste, pte);
1250 pgste_set_unlock(ptep, pgste);
1251 } else
1252 *ptep = pte;
1253 }
1254 return pte;
1255}
1256
1257#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1258static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1259 unsigned long address, pte_t *ptep,
1260 pte_t entry, int dirty)
1261{
1262 pgste_t pgste;
1263 pte_t oldpte;
1264
1265 oldpte = *ptep;
1266 if (pte_same(oldpte, entry))
1267 return 0;
1268 if (mm_has_pgste(vma->vm_mm)) {
1269 pgste = pgste_get_lock(ptep);
1270 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1271 }
1272
1273 ptep_flush_direct(vma->vm_mm, address, ptep);
1274
1275 if (mm_has_pgste(vma->vm_mm)) {
1276 if (pte_val(oldpte) & _PAGE_INVALID)
1277 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1278 pgste = pgste_set_pte(ptep, pgste, entry);
1279 pgste_set_unlock(ptep, pgste);
1280 } else
1281 *ptep = entry;
1282 return 1;
1283}
1284
1285/*
1286 * Conversion functions: convert a page and protection to a page entry,
1287 * and a page entry and page directory to the page they refer to.
1288 */
1289static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1290{
1291 pte_t __pte;
1292 pte_val(__pte) = physpage + pgprot_val(pgprot);
1293 return pte_mkyoung(__pte);
1294}
1295
1296static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1297{
1298 unsigned long physpage = page_to_phys(page);
1299 pte_t __pte = mk_pte_phys(physpage, pgprot);
1300
1301 if (pte_write(__pte) && PageDirty(page))
1302 __pte = pte_mkdirty(__pte);
1303 return __pte;
1304}
1305
1306#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1307#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1308#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1309#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1310
1311#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1312#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1313
1314#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1315#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1316#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1317
1318static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1319{
1320 pud_t *pud = (pud_t *) pgd;
1321 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1322 pud = (pud_t *) pgd_deref(*pgd);
1323 return pud + pud_index(address);
1324}
1325
1326static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1327{
1328 pmd_t *pmd = (pmd_t *) pud;
1329 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1330 pmd = (pmd_t *) pud_deref(*pud);
1331 return pmd + pmd_index(address);
1332}
1333
1334#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1335#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1336#define pte_page(x) pfn_to_page(pte_pfn(x))
1337
1338#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1339
1340/* Find an entry in the lowest level page table.. */
1341#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1342#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1343#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1344#define pte_unmap(pte) do { } while (0)
1345
1346#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1347static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1348{
1349 /*
1350 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1351 * Convert to segment table entry format.
1352 */
1353 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1354 return pgprot_val(SEGMENT_NONE);
1355 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1356 return pgprot_val(SEGMENT_READ);
1357 return pgprot_val(SEGMENT_WRITE);
1358}
1359
1360static inline pmd_t pmd_wrprotect(pmd_t pmd)
1361{
1362 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1363 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1364 return pmd;
1365}
1366
1367static inline pmd_t pmd_mkwrite(pmd_t pmd)
1368{
1369 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1370 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1371 return pmd;
1372 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1373 return pmd;
1374}
1375
1376static inline pmd_t pmd_mkclean(pmd_t pmd)
1377{
1378 if (pmd_large(pmd)) {
1379 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1380 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1381 }
1382 return pmd;
1383}
1384
1385static inline pmd_t pmd_mkdirty(pmd_t pmd)
1386{
1387 if (pmd_large(pmd)) {
1388 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1389 _SEGMENT_ENTRY_SOFT_DIRTY;
1390 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1391 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1392 }
1393 return pmd;
1394}
1395
1396static inline pmd_t pmd_mkyoung(pmd_t pmd)
1397{
1398 if (pmd_large(pmd)) {
1399 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1400 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1401 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1402 }
1403 return pmd;
1404}
1405
1406static inline pmd_t pmd_mkold(pmd_t pmd)
1407{
1408 if (pmd_large(pmd)) {
1409 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1410 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1411 }
1412 return pmd;
1413}
1414
1415static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1416{
1417 if (pmd_large(pmd)) {
1418 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1419 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1420 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1421 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1422 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1423 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1424 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1425 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1426 return pmd;
1427 }
1428 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1429 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1430 return pmd;
1431}
1432
1433static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1434{
1435 pmd_t __pmd;
1436 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1437 return __pmd;
1438}
1439
1440#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1441
1442static inline void __pmdp_csp(pmd_t *pmdp)
1443{
1444 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1445 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1446 _SEGMENT_ENTRY_INVALID;
1447 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1448
1449 asm volatile(
1450 " csp %1,%3"
1451 : "=m" (*pmdp)
1452 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1453}
1454
1455static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1456{
1457 unsigned long sto;
1458
1459 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1460 asm volatile(
1461 " .insn rrf,0xb98e0000,%2,%3,0,0"
1462 : "=m" (*pmdp)
1463 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1464 : "cc" );
1465}
1466
1467static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1468{
1469 unsigned long sto;
1470
1471 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1472 asm volatile(
1473 " .insn rrf,0xb98e0000,%2,%3,0,1"
1474 : "=m" (*pmdp)
1475 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1476 : "cc" );
1477}
1478
1479static inline void pmdp_flush_direct(struct mm_struct *mm,
1480 unsigned long address, pmd_t *pmdp)
1481{
1482 int active, count;
1483
1484 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1485 return;
1486 if (!MACHINE_HAS_IDTE) {
1487 __pmdp_csp(pmdp);
1488 return;
1489 }
1490 active = (mm == current->active_mm) ? 1 : 0;
1491 count = atomic_add_return(0x10000, &mm->context.attach_count);
1492 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1493 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1494 __pmdp_idte_local(address, pmdp);
1495 else
1496 __pmdp_idte(address, pmdp);
1497 atomic_sub(0x10000, &mm->context.attach_count);
1498}
1499
1500static inline void pmdp_flush_lazy(struct mm_struct *mm,
1501 unsigned long address, pmd_t *pmdp)
1502{
1503 int active, count;
1504
1505 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1506 return;
1507 active = (mm == current->active_mm) ? 1 : 0;
1508 count = atomic_add_return(0x10000, &mm->context.attach_count);
1509 if ((count & 0xffff) <= active) {
1510 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1511 mm->context.flush_mm = 1;
1512 } else if (MACHINE_HAS_IDTE)
1513 __pmdp_idte(address, pmdp);
1514 else
1515 __pmdp_csp(pmdp);
1516 atomic_sub(0x10000, &mm->context.attach_count);
1517}
1518
1519#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520
1521#define __HAVE_ARCH_PGTABLE_DEPOSIT
1522extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1523 pgtable_t pgtable);
1524
1525#define __HAVE_ARCH_PGTABLE_WITHDRAW
1526extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1527
1528static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1529 pmd_t *pmdp, pmd_t entry)
1530{
1531 *pmdp = entry;
1532}
1533
1534static inline pmd_t pmd_mkhuge(pmd_t pmd)
1535{
1536 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1537 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1538 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1539 return pmd;
1540}
1541
1542#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1543static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1544 unsigned long address, pmd_t *pmdp)
1545{
1546 pmd_t pmd;
1547
1548 pmd = *pmdp;
1549 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1550 *pmdp = pmd_mkold(pmd);
1551 return pmd_young(pmd);
1552}
1553
1554#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1555static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1556 unsigned long address, pmd_t *pmdp)
1557{
1558 pmd_t pmd = *pmdp;
1559
1560 pmdp_flush_direct(mm, address, pmdp);
1561 pmd_clear(pmdp);
1562 return pmd;
1563}
1564
1565#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1566static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1567 unsigned long address,
1568 pmd_t *pmdp, int full)
1569{
1570 pmd_t pmd = *pmdp;
1571
1572 if (!full)
1573 pmdp_flush_lazy(mm, address, pmdp);
1574 pmd_clear(pmdp);
1575 return pmd;
1576}
1577
1578#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1579static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1580 unsigned long address, pmd_t *pmdp)
1581{
1582 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1583}
1584
1585#define __HAVE_ARCH_PMDP_INVALIDATE
1586static inline void pmdp_invalidate(struct vm_area_struct *vma,
1587 unsigned long address, pmd_t *pmdp)
1588{
1589 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1590}
1591
1592#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1593static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1594 unsigned long address, pmd_t *pmdp)
1595{
1596 pmd_t pmd = *pmdp;
1597
1598 if (pmd_write(pmd)) {
1599 pmdp_flush_direct(mm, address, pmdp);
1600 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1601 }
1602}
1603
1604static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1605 unsigned long address,
1606 pmd_t *pmdp)
1607{
1608 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1609}
1610#define pmdp_collapse_flush pmdp_collapse_flush
1611
1612#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1613#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1614
1615static inline int pmd_trans_huge(pmd_t pmd)
1616{
1617 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1618}
1619
1620static inline int has_transparent_hugepage(void)
1621{
1622 return MACHINE_HAS_HPAGE ? 1 : 0;
1623}
1624#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1625
1626/*
1627 * 64 bit swap entry format:
1628 * A page-table entry has some bits we have to treat in a special way.
1629 * Bits 52 and bit 55 have to be zero, otherwise a specification
1630 * exception will occur instead of a page translation exception. The
1631 * specification exception has the bad habit not to store necessary
1632 * information in the lowcore.
1633 * Bits 54 and 63 are used to indicate the page type.
1634 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1635 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1636 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1637 * for the offset.
1638 * | offset |01100|type |00|
1639 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1640 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1641 */
1642
1643#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1644#define __SWP_OFFSET_SHIFT 12
1645#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1646#define __SWP_TYPE_SHIFT 2
1647
1648static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1649{
1650 pte_t pte;
1651
1652 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1653 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1654 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1655 return pte;
1656}
1657
1658static inline unsigned long __swp_type(swp_entry_t entry)
1659{
1660 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1661}
1662
1663static inline unsigned long __swp_offset(swp_entry_t entry)
1664{
1665 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1666}
1667
1668static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1669{
1670 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1671}
1672
1673#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1674#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1675
1676#endif /* !__ASSEMBLY__ */
1677
1678#define kern_addr_valid(addr) (1)
1679
1680extern int vmem_add_mapping(unsigned long start, unsigned long size);
1681extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1682extern int s390_enable_sie(void);
1683extern int s390_enable_skey(void);
1684extern void s390_reset_cmma(struct mm_struct *mm);
1685
1686/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1687#define HAVE_ARCH_UNMAPPED_AREA
1688#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1689
1690/*
1691 * No page table caches to initialise
1692 */
1693static inline void pgtable_cache_init(void) { }
1694static inline void check_pgt_cache(void) { }
1695
1696#include <asm-generic/pgtable.h>
1697
1698#endif /* _S390_PAGE_H */