at v4.5-rc7 2810 lines 76 kB view raw
1/* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7/* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12#include <linux/export.h> 13#include <linux/compiler.h> 14#include <linux/dax.h> 15#include <linux/fs.h> 16#include <linux/uaccess.h> 17#include <linux/capability.h> 18#include <linux/kernel_stat.h> 19#include <linux/gfp.h> 20#include <linux/mm.h> 21#include <linux/swap.h> 22#include <linux/mman.h> 23#include <linux/pagemap.h> 24#include <linux/file.h> 25#include <linux/uio.h> 26#include <linux/hash.h> 27#include <linux/writeback.h> 28#include <linux/backing-dev.h> 29#include <linux/pagevec.h> 30#include <linux/blkdev.h> 31#include <linux/security.h> 32#include <linux/cpuset.h> 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34#include <linux/hugetlb.h> 35#include <linux/memcontrol.h> 36#include <linux/cleancache.h> 37#include <linux/rmap.h> 38#include "internal.h" 39 40#define CREATE_TRACE_POINTS 41#include <trace/events/filemap.h> 42 43/* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46#include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48#include <asm/mman.h> 49 50/* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62/* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat) 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 106 * ->inode->i_lock (zap_pte_range->set_page_dirty) 107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 108 * 109 * ->i_mmap_rwsem 110 * ->tasklist_lock (memory_failure, collect_procs_ao) 111 */ 112 113static void page_cache_tree_delete(struct address_space *mapping, 114 struct page *page, void *shadow) 115{ 116 struct radix_tree_node *node; 117 unsigned long index; 118 unsigned int offset; 119 unsigned int tag; 120 void **slot; 121 122 VM_BUG_ON(!PageLocked(page)); 123 124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 125 126 if (shadow) { 127 mapping->nrexceptional++; 128 /* 129 * Make sure the nrexceptional update is committed before 130 * the nrpages update so that final truncate racing 131 * with reclaim does not see both counters 0 at the 132 * same time and miss a shadow entry. 133 */ 134 smp_wmb(); 135 } 136 mapping->nrpages--; 137 138 if (!node) { 139 /* Clear direct pointer tags in root node */ 140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 141 radix_tree_replace_slot(slot, shadow); 142 return; 143 } 144 145 /* Clear tree tags for the removed page */ 146 index = page->index; 147 offset = index & RADIX_TREE_MAP_MASK; 148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 149 if (test_bit(offset, node->tags[tag])) 150 radix_tree_tag_clear(&mapping->page_tree, index, tag); 151 } 152 153 /* Delete page, swap shadow entry */ 154 radix_tree_replace_slot(slot, shadow); 155 workingset_node_pages_dec(node); 156 if (shadow) 157 workingset_node_shadows_inc(node); 158 else 159 if (__radix_tree_delete_node(&mapping->page_tree, node)) 160 return; 161 162 /* 163 * Track node that only contains shadow entries. 164 * 165 * Avoid acquiring the list_lru lock if already tracked. The 166 * list_empty() test is safe as node->private_list is 167 * protected by mapping->tree_lock. 168 */ 169 if (!workingset_node_pages(node) && 170 list_empty(&node->private_list)) { 171 node->private_data = mapping; 172 list_lru_add(&workingset_shadow_nodes, &node->private_list); 173 } 174} 175 176/* 177 * Delete a page from the page cache and free it. Caller has to make 178 * sure the page is locked and that nobody else uses it - or that usage 179 * is safe. The caller must hold the mapping's tree_lock and 180 * mem_cgroup_begin_page_stat(). 181 */ 182void __delete_from_page_cache(struct page *page, void *shadow, 183 struct mem_cgroup *memcg) 184{ 185 struct address_space *mapping = page->mapping; 186 187 trace_mm_filemap_delete_from_page_cache(page); 188 /* 189 * if we're uptodate, flush out into the cleancache, otherwise 190 * invalidate any existing cleancache entries. We can't leave 191 * stale data around in the cleancache once our page is gone 192 */ 193 if (PageUptodate(page) && PageMappedToDisk(page)) 194 cleancache_put_page(page); 195 else 196 cleancache_invalidate_page(mapping, page); 197 198 page_cache_tree_delete(mapping, page, shadow); 199 200 page->mapping = NULL; 201 /* Leave page->index set: truncation lookup relies upon it */ 202 203 /* hugetlb pages do not participate in page cache accounting. */ 204 if (!PageHuge(page)) 205 __dec_zone_page_state(page, NR_FILE_PAGES); 206 if (PageSwapBacked(page)) 207 __dec_zone_page_state(page, NR_SHMEM); 208 VM_BUG_ON_PAGE(page_mapped(page), page); 209 210 /* 211 * At this point page must be either written or cleaned by truncate. 212 * Dirty page here signals a bug and loss of unwritten data. 213 * 214 * This fixes dirty accounting after removing the page entirely but 215 * leaves PageDirty set: it has no effect for truncated page and 216 * anyway will be cleared before returning page into buddy allocator. 217 */ 218 if (WARN_ON_ONCE(PageDirty(page))) 219 account_page_cleaned(page, mapping, memcg, 220 inode_to_wb(mapping->host)); 221} 222 223/** 224 * delete_from_page_cache - delete page from page cache 225 * @page: the page which the kernel is trying to remove from page cache 226 * 227 * This must be called only on pages that have been verified to be in the page 228 * cache and locked. It will never put the page into the free list, the caller 229 * has a reference on the page. 230 */ 231void delete_from_page_cache(struct page *page) 232{ 233 struct address_space *mapping = page->mapping; 234 struct mem_cgroup *memcg; 235 unsigned long flags; 236 237 void (*freepage)(struct page *); 238 239 BUG_ON(!PageLocked(page)); 240 241 freepage = mapping->a_ops->freepage; 242 243 memcg = mem_cgroup_begin_page_stat(page); 244 spin_lock_irqsave(&mapping->tree_lock, flags); 245 __delete_from_page_cache(page, NULL, memcg); 246 spin_unlock_irqrestore(&mapping->tree_lock, flags); 247 mem_cgroup_end_page_stat(memcg); 248 249 if (freepage) 250 freepage(page); 251 page_cache_release(page); 252} 253EXPORT_SYMBOL(delete_from_page_cache); 254 255static int filemap_check_errors(struct address_space *mapping) 256{ 257 int ret = 0; 258 /* Check for outstanding write errors */ 259 if (test_bit(AS_ENOSPC, &mapping->flags) && 260 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 261 ret = -ENOSPC; 262 if (test_bit(AS_EIO, &mapping->flags) && 263 test_and_clear_bit(AS_EIO, &mapping->flags)) 264 ret = -EIO; 265 return ret; 266} 267 268/** 269 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 270 * @mapping: address space structure to write 271 * @start: offset in bytes where the range starts 272 * @end: offset in bytes where the range ends (inclusive) 273 * @sync_mode: enable synchronous operation 274 * 275 * Start writeback against all of a mapping's dirty pages that lie 276 * within the byte offsets <start, end> inclusive. 277 * 278 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 279 * opposed to a regular memory cleansing writeback. The difference between 280 * these two operations is that if a dirty page/buffer is encountered, it must 281 * be waited upon, and not just skipped over. 282 */ 283int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 284 loff_t end, int sync_mode) 285{ 286 int ret; 287 struct writeback_control wbc = { 288 .sync_mode = sync_mode, 289 .nr_to_write = LONG_MAX, 290 .range_start = start, 291 .range_end = end, 292 }; 293 294 if (!mapping_cap_writeback_dirty(mapping)) 295 return 0; 296 297 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 298 ret = do_writepages(mapping, &wbc); 299 wbc_detach_inode(&wbc); 300 return ret; 301} 302 303static inline int __filemap_fdatawrite(struct address_space *mapping, 304 int sync_mode) 305{ 306 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 307} 308 309int filemap_fdatawrite(struct address_space *mapping) 310{ 311 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 312} 313EXPORT_SYMBOL(filemap_fdatawrite); 314 315int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 316 loff_t end) 317{ 318 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 319} 320EXPORT_SYMBOL(filemap_fdatawrite_range); 321 322/** 323 * filemap_flush - mostly a non-blocking flush 324 * @mapping: target address_space 325 * 326 * This is a mostly non-blocking flush. Not suitable for data-integrity 327 * purposes - I/O may not be started against all dirty pages. 328 */ 329int filemap_flush(struct address_space *mapping) 330{ 331 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 332} 333EXPORT_SYMBOL(filemap_flush); 334 335static int __filemap_fdatawait_range(struct address_space *mapping, 336 loff_t start_byte, loff_t end_byte) 337{ 338 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 339 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 340 struct pagevec pvec; 341 int nr_pages; 342 int ret = 0; 343 344 if (end_byte < start_byte) 345 goto out; 346 347 pagevec_init(&pvec, 0); 348 while ((index <= end) && 349 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 350 PAGECACHE_TAG_WRITEBACK, 351 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 352 unsigned i; 353 354 for (i = 0; i < nr_pages; i++) { 355 struct page *page = pvec.pages[i]; 356 357 /* until radix tree lookup accepts end_index */ 358 if (page->index > end) 359 continue; 360 361 wait_on_page_writeback(page); 362 if (TestClearPageError(page)) 363 ret = -EIO; 364 } 365 pagevec_release(&pvec); 366 cond_resched(); 367 } 368out: 369 return ret; 370} 371 372/** 373 * filemap_fdatawait_range - wait for writeback to complete 374 * @mapping: address space structure to wait for 375 * @start_byte: offset in bytes where the range starts 376 * @end_byte: offset in bytes where the range ends (inclusive) 377 * 378 * Walk the list of under-writeback pages of the given address space 379 * in the given range and wait for all of them. Check error status of 380 * the address space and return it. 381 * 382 * Since the error status of the address space is cleared by this function, 383 * callers are responsible for checking the return value and handling and/or 384 * reporting the error. 385 */ 386int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 387 loff_t end_byte) 388{ 389 int ret, ret2; 390 391 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 392 ret2 = filemap_check_errors(mapping); 393 if (!ret) 394 ret = ret2; 395 396 return ret; 397} 398EXPORT_SYMBOL(filemap_fdatawait_range); 399 400/** 401 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 402 * @mapping: address space structure to wait for 403 * 404 * Walk the list of under-writeback pages of the given address space 405 * and wait for all of them. Unlike filemap_fdatawait(), this function 406 * does not clear error status of the address space. 407 * 408 * Use this function if callers don't handle errors themselves. Expected 409 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 410 * fsfreeze(8) 411 */ 412void filemap_fdatawait_keep_errors(struct address_space *mapping) 413{ 414 loff_t i_size = i_size_read(mapping->host); 415 416 if (i_size == 0) 417 return; 418 419 __filemap_fdatawait_range(mapping, 0, i_size - 1); 420} 421 422/** 423 * filemap_fdatawait - wait for all under-writeback pages to complete 424 * @mapping: address space structure to wait for 425 * 426 * Walk the list of under-writeback pages of the given address space 427 * and wait for all of them. Check error status of the address space 428 * and return it. 429 * 430 * Since the error status of the address space is cleared by this function, 431 * callers are responsible for checking the return value and handling and/or 432 * reporting the error. 433 */ 434int filemap_fdatawait(struct address_space *mapping) 435{ 436 loff_t i_size = i_size_read(mapping->host); 437 438 if (i_size == 0) 439 return 0; 440 441 return filemap_fdatawait_range(mapping, 0, i_size - 1); 442} 443EXPORT_SYMBOL(filemap_fdatawait); 444 445int filemap_write_and_wait(struct address_space *mapping) 446{ 447 int err = 0; 448 449 if ((!dax_mapping(mapping) && mapping->nrpages) || 450 (dax_mapping(mapping) && mapping->nrexceptional)) { 451 err = filemap_fdatawrite(mapping); 452 /* 453 * Even if the above returned error, the pages may be 454 * written partially (e.g. -ENOSPC), so we wait for it. 455 * But the -EIO is special case, it may indicate the worst 456 * thing (e.g. bug) happened, so we avoid waiting for it. 457 */ 458 if (err != -EIO) { 459 int err2 = filemap_fdatawait(mapping); 460 if (!err) 461 err = err2; 462 } 463 } else { 464 err = filemap_check_errors(mapping); 465 } 466 return err; 467} 468EXPORT_SYMBOL(filemap_write_and_wait); 469 470/** 471 * filemap_write_and_wait_range - write out & wait on a file range 472 * @mapping: the address_space for the pages 473 * @lstart: offset in bytes where the range starts 474 * @lend: offset in bytes where the range ends (inclusive) 475 * 476 * Write out and wait upon file offsets lstart->lend, inclusive. 477 * 478 * Note that `lend' is inclusive (describes the last byte to be written) so 479 * that this function can be used to write to the very end-of-file (end = -1). 480 */ 481int filemap_write_and_wait_range(struct address_space *mapping, 482 loff_t lstart, loff_t lend) 483{ 484 int err = 0; 485 486 if ((!dax_mapping(mapping) && mapping->nrpages) || 487 (dax_mapping(mapping) && mapping->nrexceptional)) { 488 err = __filemap_fdatawrite_range(mapping, lstart, lend, 489 WB_SYNC_ALL); 490 /* See comment of filemap_write_and_wait() */ 491 if (err != -EIO) { 492 int err2 = filemap_fdatawait_range(mapping, 493 lstart, lend); 494 if (!err) 495 err = err2; 496 } 497 } else { 498 err = filemap_check_errors(mapping); 499 } 500 return err; 501} 502EXPORT_SYMBOL(filemap_write_and_wait_range); 503 504/** 505 * replace_page_cache_page - replace a pagecache page with a new one 506 * @old: page to be replaced 507 * @new: page to replace with 508 * @gfp_mask: allocation mode 509 * 510 * This function replaces a page in the pagecache with a new one. On 511 * success it acquires the pagecache reference for the new page and 512 * drops it for the old page. Both the old and new pages must be 513 * locked. This function does not add the new page to the LRU, the 514 * caller must do that. 515 * 516 * The remove + add is atomic. The only way this function can fail is 517 * memory allocation failure. 518 */ 519int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 520{ 521 int error; 522 523 VM_BUG_ON_PAGE(!PageLocked(old), old); 524 VM_BUG_ON_PAGE(!PageLocked(new), new); 525 VM_BUG_ON_PAGE(new->mapping, new); 526 527 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 528 if (!error) { 529 struct address_space *mapping = old->mapping; 530 void (*freepage)(struct page *); 531 struct mem_cgroup *memcg; 532 unsigned long flags; 533 534 pgoff_t offset = old->index; 535 freepage = mapping->a_ops->freepage; 536 537 page_cache_get(new); 538 new->mapping = mapping; 539 new->index = offset; 540 541 memcg = mem_cgroup_begin_page_stat(old); 542 spin_lock_irqsave(&mapping->tree_lock, flags); 543 __delete_from_page_cache(old, NULL, memcg); 544 error = radix_tree_insert(&mapping->page_tree, offset, new); 545 BUG_ON(error); 546 mapping->nrpages++; 547 548 /* 549 * hugetlb pages do not participate in page cache accounting. 550 */ 551 if (!PageHuge(new)) 552 __inc_zone_page_state(new, NR_FILE_PAGES); 553 if (PageSwapBacked(new)) 554 __inc_zone_page_state(new, NR_SHMEM); 555 spin_unlock_irqrestore(&mapping->tree_lock, flags); 556 mem_cgroup_end_page_stat(memcg); 557 mem_cgroup_replace_page(old, new); 558 radix_tree_preload_end(); 559 if (freepage) 560 freepage(old); 561 page_cache_release(old); 562 } 563 564 return error; 565} 566EXPORT_SYMBOL_GPL(replace_page_cache_page); 567 568static int page_cache_tree_insert(struct address_space *mapping, 569 struct page *page, void **shadowp) 570{ 571 struct radix_tree_node *node; 572 void **slot; 573 int error; 574 575 error = __radix_tree_create(&mapping->page_tree, page->index, 576 &node, &slot); 577 if (error) 578 return error; 579 if (*slot) { 580 void *p; 581 582 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 583 if (!radix_tree_exceptional_entry(p)) 584 return -EEXIST; 585 586 if (WARN_ON(dax_mapping(mapping))) 587 return -EINVAL; 588 589 if (shadowp) 590 *shadowp = p; 591 mapping->nrexceptional--; 592 if (node) 593 workingset_node_shadows_dec(node); 594 } 595 radix_tree_replace_slot(slot, page); 596 mapping->nrpages++; 597 if (node) { 598 workingset_node_pages_inc(node); 599 /* 600 * Don't track node that contains actual pages. 601 * 602 * Avoid acquiring the list_lru lock if already 603 * untracked. The list_empty() test is safe as 604 * node->private_list is protected by 605 * mapping->tree_lock. 606 */ 607 if (!list_empty(&node->private_list)) 608 list_lru_del(&workingset_shadow_nodes, 609 &node->private_list); 610 } 611 return 0; 612} 613 614static int __add_to_page_cache_locked(struct page *page, 615 struct address_space *mapping, 616 pgoff_t offset, gfp_t gfp_mask, 617 void **shadowp) 618{ 619 int huge = PageHuge(page); 620 struct mem_cgroup *memcg; 621 int error; 622 623 VM_BUG_ON_PAGE(!PageLocked(page), page); 624 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 625 626 if (!huge) { 627 error = mem_cgroup_try_charge(page, current->mm, 628 gfp_mask, &memcg, false); 629 if (error) 630 return error; 631 } 632 633 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 634 if (error) { 635 if (!huge) 636 mem_cgroup_cancel_charge(page, memcg, false); 637 return error; 638 } 639 640 page_cache_get(page); 641 page->mapping = mapping; 642 page->index = offset; 643 644 spin_lock_irq(&mapping->tree_lock); 645 error = page_cache_tree_insert(mapping, page, shadowp); 646 radix_tree_preload_end(); 647 if (unlikely(error)) 648 goto err_insert; 649 650 /* hugetlb pages do not participate in page cache accounting. */ 651 if (!huge) 652 __inc_zone_page_state(page, NR_FILE_PAGES); 653 spin_unlock_irq(&mapping->tree_lock); 654 if (!huge) 655 mem_cgroup_commit_charge(page, memcg, false, false); 656 trace_mm_filemap_add_to_page_cache(page); 657 return 0; 658err_insert: 659 page->mapping = NULL; 660 /* Leave page->index set: truncation relies upon it */ 661 spin_unlock_irq(&mapping->tree_lock); 662 if (!huge) 663 mem_cgroup_cancel_charge(page, memcg, false); 664 page_cache_release(page); 665 return error; 666} 667 668/** 669 * add_to_page_cache_locked - add a locked page to the pagecache 670 * @page: page to add 671 * @mapping: the page's address_space 672 * @offset: page index 673 * @gfp_mask: page allocation mode 674 * 675 * This function is used to add a page to the pagecache. It must be locked. 676 * This function does not add the page to the LRU. The caller must do that. 677 */ 678int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 679 pgoff_t offset, gfp_t gfp_mask) 680{ 681 return __add_to_page_cache_locked(page, mapping, offset, 682 gfp_mask, NULL); 683} 684EXPORT_SYMBOL(add_to_page_cache_locked); 685 686int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 687 pgoff_t offset, gfp_t gfp_mask) 688{ 689 void *shadow = NULL; 690 int ret; 691 692 __SetPageLocked(page); 693 ret = __add_to_page_cache_locked(page, mapping, offset, 694 gfp_mask, &shadow); 695 if (unlikely(ret)) 696 __ClearPageLocked(page); 697 else { 698 /* 699 * The page might have been evicted from cache only 700 * recently, in which case it should be activated like 701 * any other repeatedly accessed page. 702 */ 703 if (shadow && workingset_refault(shadow)) { 704 SetPageActive(page); 705 workingset_activation(page); 706 } else 707 ClearPageActive(page); 708 lru_cache_add(page); 709 } 710 return ret; 711} 712EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 713 714#ifdef CONFIG_NUMA 715struct page *__page_cache_alloc(gfp_t gfp) 716{ 717 int n; 718 struct page *page; 719 720 if (cpuset_do_page_mem_spread()) { 721 unsigned int cpuset_mems_cookie; 722 do { 723 cpuset_mems_cookie = read_mems_allowed_begin(); 724 n = cpuset_mem_spread_node(); 725 page = __alloc_pages_node(n, gfp, 0); 726 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 727 728 return page; 729 } 730 return alloc_pages(gfp, 0); 731} 732EXPORT_SYMBOL(__page_cache_alloc); 733#endif 734 735/* 736 * In order to wait for pages to become available there must be 737 * waitqueues associated with pages. By using a hash table of 738 * waitqueues where the bucket discipline is to maintain all 739 * waiters on the same queue and wake all when any of the pages 740 * become available, and for the woken contexts to check to be 741 * sure the appropriate page became available, this saves space 742 * at a cost of "thundering herd" phenomena during rare hash 743 * collisions. 744 */ 745wait_queue_head_t *page_waitqueue(struct page *page) 746{ 747 const struct zone *zone = page_zone(page); 748 749 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 750} 751EXPORT_SYMBOL(page_waitqueue); 752 753void wait_on_page_bit(struct page *page, int bit_nr) 754{ 755 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 756 757 if (test_bit(bit_nr, &page->flags)) 758 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 759 TASK_UNINTERRUPTIBLE); 760} 761EXPORT_SYMBOL(wait_on_page_bit); 762 763int wait_on_page_bit_killable(struct page *page, int bit_nr) 764{ 765 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 766 767 if (!test_bit(bit_nr, &page->flags)) 768 return 0; 769 770 return __wait_on_bit(page_waitqueue(page), &wait, 771 bit_wait_io, TASK_KILLABLE); 772} 773 774int wait_on_page_bit_killable_timeout(struct page *page, 775 int bit_nr, unsigned long timeout) 776{ 777 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 778 779 wait.key.timeout = jiffies + timeout; 780 if (!test_bit(bit_nr, &page->flags)) 781 return 0; 782 return __wait_on_bit(page_waitqueue(page), &wait, 783 bit_wait_io_timeout, TASK_KILLABLE); 784} 785EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout); 786 787/** 788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 789 * @page: Page defining the wait queue of interest 790 * @waiter: Waiter to add to the queue 791 * 792 * Add an arbitrary @waiter to the wait queue for the nominated @page. 793 */ 794void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 795{ 796 wait_queue_head_t *q = page_waitqueue(page); 797 unsigned long flags; 798 799 spin_lock_irqsave(&q->lock, flags); 800 __add_wait_queue(q, waiter); 801 spin_unlock_irqrestore(&q->lock, flags); 802} 803EXPORT_SYMBOL_GPL(add_page_wait_queue); 804 805/** 806 * unlock_page - unlock a locked page 807 * @page: the page 808 * 809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 811 * mechanism between PageLocked pages and PageWriteback pages is shared. 812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 813 * 814 * The mb is necessary to enforce ordering between the clear_bit and the read 815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 816 */ 817void unlock_page(struct page *page) 818{ 819 page = compound_head(page); 820 VM_BUG_ON_PAGE(!PageLocked(page), page); 821 clear_bit_unlock(PG_locked, &page->flags); 822 smp_mb__after_atomic(); 823 wake_up_page(page, PG_locked); 824} 825EXPORT_SYMBOL(unlock_page); 826 827/** 828 * end_page_writeback - end writeback against a page 829 * @page: the page 830 */ 831void end_page_writeback(struct page *page) 832{ 833 /* 834 * TestClearPageReclaim could be used here but it is an atomic 835 * operation and overkill in this particular case. Failing to 836 * shuffle a page marked for immediate reclaim is too mild to 837 * justify taking an atomic operation penalty at the end of 838 * ever page writeback. 839 */ 840 if (PageReclaim(page)) { 841 ClearPageReclaim(page); 842 rotate_reclaimable_page(page); 843 } 844 845 if (!test_clear_page_writeback(page)) 846 BUG(); 847 848 smp_mb__after_atomic(); 849 wake_up_page(page, PG_writeback); 850} 851EXPORT_SYMBOL(end_page_writeback); 852 853/* 854 * After completing I/O on a page, call this routine to update the page 855 * flags appropriately 856 */ 857void page_endio(struct page *page, int rw, int err) 858{ 859 if (rw == READ) { 860 if (!err) { 861 SetPageUptodate(page); 862 } else { 863 ClearPageUptodate(page); 864 SetPageError(page); 865 } 866 unlock_page(page); 867 } else { /* rw == WRITE */ 868 if (err) { 869 SetPageError(page); 870 if (page->mapping) 871 mapping_set_error(page->mapping, err); 872 } 873 end_page_writeback(page); 874 } 875} 876EXPORT_SYMBOL_GPL(page_endio); 877 878/** 879 * __lock_page - get a lock on the page, assuming we need to sleep to get it 880 * @page: the page to lock 881 */ 882void __lock_page(struct page *page) 883{ 884 struct page *page_head = compound_head(page); 885 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); 886 887 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io, 888 TASK_UNINTERRUPTIBLE); 889} 890EXPORT_SYMBOL(__lock_page); 891 892int __lock_page_killable(struct page *page) 893{ 894 struct page *page_head = compound_head(page); 895 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); 896 897 return __wait_on_bit_lock(page_waitqueue(page_head), &wait, 898 bit_wait_io, TASK_KILLABLE); 899} 900EXPORT_SYMBOL_GPL(__lock_page_killable); 901 902/* 903 * Return values: 904 * 1 - page is locked; mmap_sem is still held. 905 * 0 - page is not locked. 906 * mmap_sem has been released (up_read()), unless flags had both 907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 908 * which case mmap_sem is still held. 909 * 910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 911 * with the page locked and the mmap_sem unperturbed. 912 */ 913int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 914 unsigned int flags) 915{ 916 if (flags & FAULT_FLAG_ALLOW_RETRY) { 917 /* 918 * CAUTION! In this case, mmap_sem is not released 919 * even though return 0. 920 */ 921 if (flags & FAULT_FLAG_RETRY_NOWAIT) 922 return 0; 923 924 up_read(&mm->mmap_sem); 925 if (flags & FAULT_FLAG_KILLABLE) 926 wait_on_page_locked_killable(page); 927 else 928 wait_on_page_locked(page); 929 return 0; 930 } else { 931 if (flags & FAULT_FLAG_KILLABLE) { 932 int ret; 933 934 ret = __lock_page_killable(page); 935 if (ret) { 936 up_read(&mm->mmap_sem); 937 return 0; 938 } 939 } else 940 __lock_page(page); 941 return 1; 942 } 943} 944 945/** 946 * page_cache_next_hole - find the next hole (not-present entry) 947 * @mapping: mapping 948 * @index: index 949 * @max_scan: maximum range to search 950 * 951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 952 * lowest indexed hole. 953 * 954 * Returns: the index of the hole if found, otherwise returns an index 955 * outside of the set specified (in which case 'return - index >= 956 * max_scan' will be true). In rare cases of index wrap-around, 0 will 957 * be returned. 958 * 959 * page_cache_next_hole may be called under rcu_read_lock. However, 960 * like radix_tree_gang_lookup, this will not atomically search a 961 * snapshot of the tree at a single point in time. For example, if a 962 * hole is created at index 5, then subsequently a hole is created at 963 * index 10, page_cache_next_hole covering both indexes may return 10 964 * if called under rcu_read_lock. 965 */ 966pgoff_t page_cache_next_hole(struct address_space *mapping, 967 pgoff_t index, unsigned long max_scan) 968{ 969 unsigned long i; 970 971 for (i = 0; i < max_scan; i++) { 972 struct page *page; 973 974 page = radix_tree_lookup(&mapping->page_tree, index); 975 if (!page || radix_tree_exceptional_entry(page)) 976 break; 977 index++; 978 if (index == 0) 979 break; 980 } 981 982 return index; 983} 984EXPORT_SYMBOL(page_cache_next_hole); 985 986/** 987 * page_cache_prev_hole - find the prev hole (not-present entry) 988 * @mapping: mapping 989 * @index: index 990 * @max_scan: maximum range to search 991 * 992 * Search backwards in the range [max(index-max_scan+1, 0), index] for 993 * the first hole. 994 * 995 * Returns: the index of the hole if found, otherwise returns an index 996 * outside of the set specified (in which case 'index - return >= 997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 998 * will be returned. 999 * 1000 * page_cache_prev_hole may be called under rcu_read_lock. However, 1001 * like radix_tree_gang_lookup, this will not atomically search a 1002 * snapshot of the tree at a single point in time. For example, if a 1003 * hole is created at index 10, then subsequently a hole is created at 1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1005 * called under rcu_read_lock. 1006 */ 1007pgoff_t page_cache_prev_hole(struct address_space *mapping, 1008 pgoff_t index, unsigned long max_scan) 1009{ 1010 unsigned long i; 1011 1012 for (i = 0; i < max_scan; i++) { 1013 struct page *page; 1014 1015 page = radix_tree_lookup(&mapping->page_tree, index); 1016 if (!page || radix_tree_exceptional_entry(page)) 1017 break; 1018 index--; 1019 if (index == ULONG_MAX) 1020 break; 1021 } 1022 1023 return index; 1024} 1025EXPORT_SYMBOL(page_cache_prev_hole); 1026 1027/** 1028 * find_get_entry - find and get a page cache entry 1029 * @mapping: the address_space to search 1030 * @offset: the page cache index 1031 * 1032 * Looks up the page cache slot at @mapping & @offset. If there is a 1033 * page cache page, it is returned with an increased refcount. 1034 * 1035 * If the slot holds a shadow entry of a previously evicted page, or a 1036 * swap entry from shmem/tmpfs, it is returned. 1037 * 1038 * Otherwise, %NULL is returned. 1039 */ 1040struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1041{ 1042 void **pagep; 1043 struct page *page; 1044 1045 rcu_read_lock(); 1046repeat: 1047 page = NULL; 1048 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1049 if (pagep) { 1050 page = radix_tree_deref_slot(pagep); 1051 if (unlikely(!page)) 1052 goto out; 1053 if (radix_tree_exception(page)) { 1054 if (radix_tree_deref_retry(page)) 1055 goto repeat; 1056 /* 1057 * A shadow entry of a recently evicted page, 1058 * or a swap entry from shmem/tmpfs. Return 1059 * it without attempting to raise page count. 1060 */ 1061 goto out; 1062 } 1063 if (!page_cache_get_speculative(page)) 1064 goto repeat; 1065 1066 /* 1067 * Has the page moved? 1068 * This is part of the lockless pagecache protocol. See 1069 * include/linux/pagemap.h for details. 1070 */ 1071 if (unlikely(page != *pagep)) { 1072 page_cache_release(page); 1073 goto repeat; 1074 } 1075 } 1076out: 1077 rcu_read_unlock(); 1078 1079 return page; 1080} 1081EXPORT_SYMBOL(find_get_entry); 1082 1083/** 1084 * find_lock_entry - locate, pin and lock a page cache entry 1085 * @mapping: the address_space to search 1086 * @offset: the page cache index 1087 * 1088 * Looks up the page cache slot at @mapping & @offset. If there is a 1089 * page cache page, it is returned locked and with an increased 1090 * refcount. 1091 * 1092 * If the slot holds a shadow entry of a previously evicted page, or a 1093 * swap entry from shmem/tmpfs, it is returned. 1094 * 1095 * Otherwise, %NULL is returned. 1096 * 1097 * find_lock_entry() may sleep. 1098 */ 1099struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1100{ 1101 struct page *page; 1102 1103repeat: 1104 page = find_get_entry(mapping, offset); 1105 if (page && !radix_tree_exception(page)) { 1106 lock_page(page); 1107 /* Has the page been truncated? */ 1108 if (unlikely(page->mapping != mapping)) { 1109 unlock_page(page); 1110 page_cache_release(page); 1111 goto repeat; 1112 } 1113 VM_BUG_ON_PAGE(page->index != offset, page); 1114 } 1115 return page; 1116} 1117EXPORT_SYMBOL(find_lock_entry); 1118 1119/** 1120 * pagecache_get_page - find and get a page reference 1121 * @mapping: the address_space to search 1122 * @offset: the page index 1123 * @fgp_flags: PCG flags 1124 * @gfp_mask: gfp mask to use for the page cache data page allocation 1125 * 1126 * Looks up the page cache slot at @mapping & @offset. 1127 * 1128 * PCG flags modify how the page is returned. 1129 * 1130 * FGP_ACCESSED: the page will be marked accessed 1131 * FGP_LOCK: Page is return locked 1132 * FGP_CREAT: If page is not present then a new page is allocated using 1133 * @gfp_mask and added to the page cache and the VM's LRU 1134 * list. The page is returned locked and with an increased 1135 * refcount. Otherwise, %NULL is returned. 1136 * 1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1138 * if the GFP flags specified for FGP_CREAT are atomic. 1139 * 1140 * If there is a page cache page, it is returned with an increased refcount. 1141 */ 1142struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1143 int fgp_flags, gfp_t gfp_mask) 1144{ 1145 struct page *page; 1146 1147repeat: 1148 page = find_get_entry(mapping, offset); 1149 if (radix_tree_exceptional_entry(page)) 1150 page = NULL; 1151 if (!page) 1152 goto no_page; 1153 1154 if (fgp_flags & FGP_LOCK) { 1155 if (fgp_flags & FGP_NOWAIT) { 1156 if (!trylock_page(page)) { 1157 page_cache_release(page); 1158 return NULL; 1159 } 1160 } else { 1161 lock_page(page); 1162 } 1163 1164 /* Has the page been truncated? */ 1165 if (unlikely(page->mapping != mapping)) { 1166 unlock_page(page); 1167 page_cache_release(page); 1168 goto repeat; 1169 } 1170 VM_BUG_ON_PAGE(page->index != offset, page); 1171 } 1172 1173 if (page && (fgp_flags & FGP_ACCESSED)) 1174 mark_page_accessed(page); 1175 1176no_page: 1177 if (!page && (fgp_flags & FGP_CREAT)) { 1178 int err; 1179 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1180 gfp_mask |= __GFP_WRITE; 1181 if (fgp_flags & FGP_NOFS) 1182 gfp_mask &= ~__GFP_FS; 1183 1184 page = __page_cache_alloc(gfp_mask); 1185 if (!page) 1186 return NULL; 1187 1188 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1189 fgp_flags |= FGP_LOCK; 1190 1191 /* Init accessed so avoid atomic mark_page_accessed later */ 1192 if (fgp_flags & FGP_ACCESSED) 1193 __SetPageReferenced(page); 1194 1195 err = add_to_page_cache_lru(page, mapping, offset, 1196 gfp_mask & GFP_RECLAIM_MASK); 1197 if (unlikely(err)) { 1198 page_cache_release(page); 1199 page = NULL; 1200 if (err == -EEXIST) 1201 goto repeat; 1202 } 1203 } 1204 1205 return page; 1206} 1207EXPORT_SYMBOL(pagecache_get_page); 1208 1209/** 1210 * find_get_entries - gang pagecache lookup 1211 * @mapping: The address_space to search 1212 * @start: The starting page cache index 1213 * @nr_entries: The maximum number of entries 1214 * @entries: Where the resulting entries are placed 1215 * @indices: The cache indices corresponding to the entries in @entries 1216 * 1217 * find_get_entries() will search for and return a group of up to 1218 * @nr_entries entries in the mapping. The entries are placed at 1219 * @entries. find_get_entries() takes a reference against any actual 1220 * pages it returns. 1221 * 1222 * The search returns a group of mapping-contiguous page cache entries 1223 * with ascending indexes. There may be holes in the indices due to 1224 * not-present pages. 1225 * 1226 * Any shadow entries of evicted pages, or swap entries from 1227 * shmem/tmpfs, are included in the returned array. 1228 * 1229 * find_get_entries() returns the number of pages and shadow entries 1230 * which were found. 1231 */ 1232unsigned find_get_entries(struct address_space *mapping, 1233 pgoff_t start, unsigned int nr_entries, 1234 struct page **entries, pgoff_t *indices) 1235{ 1236 void **slot; 1237 unsigned int ret = 0; 1238 struct radix_tree_iter iter; 1239 1240 if (!nr_entries) 1241 return 0; 1242 1243 rcu_read_lock(); 1244restart: 1245 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1246 struct page *page; 1247repeat: 1248 page = radix_tree_deref_slot(slot); 1249 if (unlikely(!page)) 1250 continue; 1251 if (radix_tree_exception(page)) { 1252 if (radix_tree_deref_retry(page)) 1253 goto restart; 1254 /* 1255 * A shadow entry of a recently evicted page, a swap 1256 * entry from shmem/tmpfs or a DAX entry. Return it 1257 * without attempting to raise page count. 1258 */ 1259 goto export; 1260 } 1261 if (!page_cache_get_speculative(page)) 1262 goto repeat; 1263 1264 /* Has the page moved? */ 1265 if (unlikely(page != *slot)) { 1266 page_cache_release(page); 1267 goto repeat; 1268 } 1269export: 1270 indices[ret] = iter.index; 1271 entries[ret] = page; 1272 if (++ret == nr_entries) 1273 break; 1274 } 1275 rcu_read_unlock(); 1276 return ret; 1277} 1278 1279/** 1280 * find_get_pages - gang pagecache lookup 1281 * @mapping: The address_space to search 1282 * @start: The starting page index 1283 * @nr_pages: The maximum number of pages 1284 * @pages: Where the resulting pages are placed 1285 * 1286 * find_get_pages() will search for and return a group of up to 1287 * @nr_pages pages in the mapping. The pages are placed at @pages. 1288 * find_get_pages() takes a reference against the returned pages. 1289 * 1290 * The search returns a group of mapping-contiguous pages with ascending 1291 * indexes. There may be holes in the indices due to not-present pages. 1292 * 1293 * find_get_pages() returns the number of pages which were found. 1294 */ 1295unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1296 unsigned int nr_pages, struct page **pages) 1297{ 1298 struct radix_tree_iter iter; 1299 void **slot; 1300 unsigned ret = 0; 1301 1302 if (unlikely(!nr_pages)) 1303 return 0; 1304 1305 rcu_read_lock(); 1306restart: 1307 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1308 struct page *page; 1309repeat: 1310 page = radix_tree_deref_slot(slot); 1311 if (unlikely(!page)) 1312 continue; 1313 1314 if (radix_tree_exception(page)) { 1315 if (radix_tree_deref_retry(page)) { 1316 /* 1317 * Transient condition which can only trigger 1318 * when entry at index 0 moves out of or back 1319 * to root: none yet gotten, safe to restart. 1320 */ 1321 WARN_ON(iter.index); 1322 goto restart; 1323 } 1324 /* 1325 * A shadow entry of a recently evicted page, 1326 * or a swap entry from shmem/tmpfs. Skip 1327 * over it. 1328 */ 1329 continue; 1330 } 1331 1332 if (!page_cache_get_speculative(page)) 1333 goto repeat; 1334 1335 /* Has the page moved? */ 1336 if (unlikely(page != *slot)) { 1337 page_cache_release(page); 1338 goto repeat; 1339 } 1340 1341 pages[ret] = page; 1342 if (++ret == nr_pages) 1343 break; 1344 } 1345 1346 rcu_read_unlock(); 1347 return ret; 1348} 1349 1350/** 1351 * find_get_pages_contig - gang contiguous pagecache lookup 1352 * @mapping: The address_space to search 1353 * @index: The starting page index 1354 * @nr_pages: The maximum number of pages 1355 * @pages: Where the resulting pages are placed 1356 * 1357 * find_get_pages_contig() works exactly like find_get_pages(), except 1358 * that the returned number of pages are guaranteed to be contiguous. 1359 * 1360 * find_get_pages_contig() returns the number of pages which were found. 1361 */ 1362unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1363 unsigned int nr_pages, struct page **pages) 1364{ 1365 struct radix_tree_iter iter; 1366 void **slot; 1367 unsigned int ret = 0; 1368 1369 if (unlikely(!nr_pages)) 1370 return 0; 1371 1372 rcu_read_lock(); 1373restart: 1374 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1375 struct page *page; 1376repeat: 1377 page = radix_tree_deref_slot(slot); 1378 /* The hole, there no reason to continue */ 1379 if (unlikely(!page)) 1380 break; 1381 1382 if (radix_tree_exception(page)) { 1383 if (radix_tree_deref_retry(page)) { 1384 /* 1385 * Transient condition which can only trigger 1386 * when entry at index 0 moves out of or back 1387 * to root: none yet gotten, safe to restart. 1388 */ 1389 goto restart; 1390 } 1391 /* 1392 * A shadow entry of a recently evicted page, 1393 * or a swap entry from shmem/tmpfs. Stop 1394 * looking for contiguous pages. 1395 */ 1396 break; 1397 } 1398 1399 if (!page_cache_get_speculative(page)) 1400 goto repeat; 1401 1402 /* Has the page moved? */ 1403 if (unlikely(page != *slot)) { 1404 page_cache_release(page); 1405 goto repeat; 1406 } 1407 1408 /* 1409 * must check mapping and index after taking the ref. 1410 * otherwise we can get both false positives and false 1411 * negatives, which is just confusing to the caller. 1412 */ 1413 if (page->mapping == NULL || page->index != iter.index) { 1414 page_cache_release(page); 1415 break; 1416 } 1417 1418 pages[ret] = page; 1419 if (++ret == nr_pages) 1420 break; 1421 } 1422 rcu_read_unlock(); 1423 return ret; 1424} 1425EXPORT_SYMBOL(find_get_pages_contig); 1426 1427/** 1428 * find_get_pages_tag - find and return pages that match @tag 1429 * @mapping: the address_space to search 1430 * @index: the starting page index 1431 * @tag: the tag index 1432 * @nr_pages: the maximum number of pages 1433 * @pages: where the resulting pages are placed 1434 * 1435 * Like find_get_pages, except we only return pages which are tagged with 1436 * @tag. We update @index to index the next page for the traversal. 1437 */ 1438unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1439 int tag, unsigned int nr_pages, struct page **pages) 1440{ 1441 struct radix_tree_iter iter; 1442 void **slot; 1443 unsigned ret = 0; 1444 1445 if (unlikely(!nr_pages)) 1446 return 0; 1447 1448 rcu_read_lock(); 1449restart: 1450 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1451 &iter, *index, tag) { 1452 struct page *page; 1453repeat: 1454 page = radix_tree_deref_slot(slot); 1455 if (unlikely(!page)) 1456 continue; 1457 1458 if (radix_tree_exception(page)) { 1459 if (radix_tree_deref_retry(page)) { 1460 /* 1461 * Transient condition which can only trigger 1462 * when entry at index 0 moves out of or back 1463 * to root: none yet gotten, safe to restart. 1464 */ 1465 goto restart; 1466 } 1467 /* 1468 * A shadow entry of a recently evicted page. 1469 * 1470 * Those entries should never be tagged, but 1471 * this tree walk is lockless and the tags are 1472 * looked up in bulk, one radix tree node at a 1473 * time, so there is a sizable window for page 1474 * reclaim to evict a page we saw tagged. 1475 * 1476 * Skip over it. 1477 */ 1478 continue; 1479 } 1480 1481 if (!page_cache_get_speculative(page)) 1482 goto repeat; 1483 1484 /* Has the page moved? */ 1485 if (unlikely(page != *slot)) { 1486 page_cache_release(page); 1487 goto repeat; 1488 } 1489 1490 pages[ret] = page; 1491 if (++ret == nr_pages) 1492 break; 1493 } 1494 1495 rcu_read_unlock(); 1496 1497 if (ret) 1498 *index = pages[ret - 1]->index + 1; 1499 1500 return ret; 1501} 1502EXPORT_SYMBOL(find_get_pages_tag); 1503 1504/** 1505 * find_get_entries_tag - find and return entries that match @tag 1506 * @mapping: the address_space to search 1507 * @start: the starting page cache index 1508 * @tag: the tag index 1509 * @nr_entries: the maximum number of entries 1510 * @entries: where the resulting entries are placed 1511 * @indices: the cache indices corresponding to the entries in @entries 1512 * 1513 * Like find_get_entries, except we only return entries which are tagged with 1514 * @tag. 1515 */ 1516unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1517 int tag, unsigned int nr_entries, 1518 struct page **entries, pgoff_t *indices) 1519{ 1520 void **slot; 1521 unsigned int ret = 0; 1522 struct radix_tree_iter iter; 1523 1524 if (!nr_entries) 1525 return 0; 1526 1527 rcu_read_lock(); 1528restart: 1529 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1530 &iter, start, tag) { 1531 struct page *page; 1532repeat: 1533 page = radix_tree_deref_slot(slot); 1534 if (unlikely(!page)) 1535 continue; 1536 if (radix_tree_exception(page)) { 1537 if (radix_tree_deref_retry(page)) { 1538 /* 1539 * Transient condition which can only trigger 1540 * when entry at index 0 moves out of or back 1541 * to root: none yet gotten, safe to restart. 1542 */ 1543 goto restart; 1544 } 1545 1546 /* 1547 * A shadow entry of a recently evicted page, a swap 1548 * entry from shmem/tmpfs or a DAX entry. Return it 1549 * without attempting to raise page count. 1550 */ 1551 goto export; 1552 } 1553 if (!page_cache_get_speculative(page)) 1554 goto repeat; 1555 1556 /* Has the page moved? */ 1557 if (unlikely(page != *slot)) { 1558 page_cache_release(page); 1559 goto repeat; 1560 } 1561export: 1562 indices[ret] = iter.index; 1563 entries[ret] = page; 1564 if (++ret == nr_entries) 1565 break; 1566 } 1567 rcu_read_unlock(); 1568 return ret; 1569} 1570EXPORT_SYMBOL(find_get_entries_tag); 1571 1572/* 1573 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1574 * a _large_ part of the i/o request. Imagine the worst scenario: 1575 * 1576 * ---R__________________________________________B__________ 1577 * ^ reading here ^ bad block(assume 4k) 1578 * 1579 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1580 * => failing the whole request => read(R) => read(R+1) => 1581 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1582 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1583 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1584 * 1585 * It is going insane. Fix it by quickly scaling down the readahead size. 1586 */ 1587static void shrink_readahead_size_eio(struct file *filp, 1588 struct file_ra_state *ra) 1589{ 1590 ra->ra_pages /= 4; 1591} 1592 1593/** 1594 * do_generic_file_read - generic file read routine 1595 * @filp: the file to read 1596 * @ppos: current file position 1597 * @iter: data destination 1598 * @written: already copied 1599 * 1600 * This is a generic file read routine, and uses the 1601 * mapping->a_ops->readpage() function for the actual low-level stuff. 1602 * 1603 * This is really ugly. But the goto's actually try to clarify some 1604 * of the logic when it comes to error handling etc. 1605 */ 1606static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1607 struct iov_iter *iter, ssize_t written) 1608{ 1609 struct address_space *mapping = filp->f_mapping; 1610 struct inode *inode = mapping->host; 1611 struct file_ra_state *ra = &filp->f_ra; 1612 pgoff_t index; 1613 pgoff_t last_index; 1614 pgoff_t prev_index; 1615 unsigned long offset; /* offset into pagecache page */ 1616 unsigned int prev_offset; 1617 int error = 0; 1618 1619 index = *ppos >> PAGE_CACHE_SHIFT; 1620 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1621 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1622 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1623 offset = *ppos & ~PAGE_CACHE_MASK; 1624 1625 for (;;) { 1626 struct page *page; 1627 pgoff_t end_index; 1628 loff_t isize; 1629 unsigned long nr, ret; 1630 1631 cond_resched(); 1632find_page: 1633 page = find_get_page(mapping, index); 1634 if (!page) { 1635 page_cache_sync_readahead(mapping, 1636 ra, filp, 1637 index, last_index - index); 1638 page = find_get_page(mapping, index); 1639 if (unlikely(page == NULL)) 1640 goto no_cached_page; 1641 } 1642 if (PageReadahead(page)) { 1643 page_cache_async_readahead(mapping, 1644 ra, filp, page, 1645 index, last_index - index); 1646 } 1647 if (!PageUptodate(page)) { 1648 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1649 !mapping->a_ops->is_partially_uptodate) 1650 goto page_not_up_to_date; 1651 if (!trylock_page(page)) 1652 goto page_not_up_to_date; 1653 /* Did it get truncated before we got the lock? */ 1654 if (!page->mapping) 1655 goto page_not_up_to_date_locked; 1656 if (!mapping->a_ops->is_partially_uptodate(page, 1657 offset, iter->count)) 1658 goto page_not_up_to_date_locked; 1659 unlock_page(page); 1660 } 1661page_ok: 1662 /* 1663 * i_size must be checked after we know the page is Uptodate. 1664 * 1665 * Checking i_size after the check allows us to calculate 1666 * the correct value for "nr", which means the zero-filled 1667 * part of the page is not copied back to userspace (unless 1668 * another truncate extends the file - this is desired though). 1669 */ 1670 1671 isize = i_size_read(inode); 1672 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1673 if (unlikely(!isize || index > end_index)) { 1674 page_cache_release(page); 1675 goto out; 1676 } 1677 1678 /* nr is the maximum number of bytes to copy from this page */ 1679 nr = PAGE_CACHE_SIZE; 1680 if (index == end_index) { 1681 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1682 if (nr <= offset) { 1683 page_cache_release(page); 1684 goto out; 1685 } 1686 } 1687 nr = nr - offset; 1688 1689 /* If users can be writing to this page using arbitrary 1690 * virtual addresses, take care about potential aliasing 1691 * before reading the page on the kernel side. 1692 */ 1693 if (mapping_writably_mapped(mapping)) 1694 flush_dcache_page(page); 1695 1696 /* 1697 * When a sequential read accesses a page several times, 1698 * only mark it as accessed the first time. 1699 */ 1700 if (prev_index != index || offset != prev_offset) 1701 mark_page_accessed(page); 1702 prev_index = index; 1703 1704 /* 1705 * Ok, we have the page, and it's up-to-date, so 1706 * now we can copy it to user space... 1707 */ 1708 1709 ret = copy_page_to_iter(page, offset, nr, iter); 1710 offset += ret; 1711 index += offset >> PAGE_CACHE_SHIFT; 1712 offset &= ~PAGE_CACHE_MASK; 1713 prev_offset = offset; 1714 1715 page_cache_release(page); 1716 written += ret; 1717 if (!iov_iter_count(iter)) 1718 goto out; 1719 if (ret < nr) { 1720 error = -EFAULT; 1721 goto out; 1722 } 1723 continue; 1724 1725page_not_up_to_date: 1726 /* Get exclusive access to the page ... */ 1727 error = lock_page_killable(page); 1728 if (unlikely(error)) 1729 goto readpage_error; 1730 1731page_not_up_to_date_locked: 1732 /* Did it get truncated before we got the lock? */ 1733 if (!page->mapping) { 1734 unlock_page(page); 1735 page_cache_release(page); 1736 continue; 1737 } 1738 1739 /* Did somebody else fill it already? */ 1740 if (PageUptodate(page)) { 1741 unlock_page(page); 1742 goto page_ok; 1743 } 1744 1745readpage: 1746 /* 1747 * A previous I/O error may have been due to temporary 1748 * failures, eg. multipath errors. 1749 * PG_error will be set again if readpage fails. 1750 */ 1751 ClearPageError(page); 1752 /* Start the actual read. The read will unlock the page. */ 1753 error = mapping->a_ops->readpage(filp, page); 1754 1755 if (unlikely(error)) { 1756 if (error == AOP_TRUNCATED_PAGE) { 1757 page_cache_release(page); 1758 error = 0; 1759 goto find_page; 1760 } 1761 goto readpage_error; 1762 } 1763 1764 if (!PageUptodate(page)) { 1765 error = lock_page_killable(page); 1766 if (unlikely(error)) 1767 goto readpage_error; 1768 if (!PageUptodate(page)) { 1769 if (page->mapping == NULL) { 1770 /* 1771 * invalidate_mapping_pages got it 1772 */ 1773 unlock_page(page); 1774 page_cache_release(page); 1775 goto find_page; 1776 } 1777 unlock_page(page); 1778 shrink_readahead_size_eio(filp, ra); 1779 error = -EIO; 1780 goto readpage_error; 1781 } 1782 unlock_page(page); 1783 } 1784 1785 goto page_ok; 1786 1787readpage_error: 1788 /* UHHUH! A synchronous read error occurred. Report it */ 1789 page_cache_release(page); 1790 goto out; 1791 1792no_cached_page: 1793 /* 1794 * Ok, it wasn't cached, so we need to create a new 1795 * page.. 1796 */ 1797 page = page_cache_alloc_cold(mapping); 1798 if (!page) { 1799 error = -ENOMEM; 1800 goto out; 1801 } 1802 error = add_to_page_cache_lru(page, mapping, index, 1803 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1804 if (error) { 1805 page_cache_release(page); 1806 if (error == -EEXIST) { 1807 error = 0; 1808 goto find_page; 1809 } 1810 goto out; 1811 } 1812 goto readpage; 1813 } 1814 1815out: 1816 ra->prev_pos = prev_index; 1817 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1818 ra->prev_pos |= prev_offset; 1819 1820 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1821 file_accessed(filp); 1822 return written ? written : error; 1823} 1824 1825/** 1826 * generic_file_read_iter - generic filesystem read routine 1827 * @iocb: kernel I/O control block 1828 * @iter: destination for the data read 1829 * 1830 * This is the "read_iter()" routine for all filesystems 1831 * that can use the page cache directly. 1832 */ 1833ssize_t 1834generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1835{ 1836 struct file *file = iocb->ki_filp; 1837 ssize_t retval = 0; 1838 loff_t *ppos = &iocb->ki_pos; 1839 loff_t pos = *ppos; 1840 1841 if (iocb->ki_flags & IOCB_DIRECT) { 1842 struct address_space *mapping = file->f_mapping; 1843 struct inode *inode = mapping->host; 1844 size_t count = iov_iter_count(iter); 1845 loff_t size; 1846 1847 if (!count) 1848 goto out; /* skip atime */ 1849 size = i_size_read(inode); 1850 retval = filemap_write_and_wait_range(mapping, pos, 1851 pos + count - 1); 1852 if (!retval) { 1853 struct iov_iter data = *iter; 1854 retval = mapping->a_ops->direct_IO(iocb, &data, pos); 1855 } 1856 1857 if (retval > 0) { 1858 *ppos = pos + retval; 1859 iov_iter_advance(iter, retval); 1860 } 1861 1862 /* 1863 * Btrfs can have a short DIO read if we encounter 1864 * compressed extents, so if there was an error, or if 1865 * we've already read everything we wanted to, or if 1866 * there was a short read because we hit EOF, go ahead 1867 * and return. Otherwise fallthrough to buffered io for 1868 * the rest of the read. Buffered reads will not work for 1869 * DAX files, so don't bother trying. 1870 */ 1871 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size || 1872 IS_DAX(inode)) { 1873 file_accessed(file); 1874 goto out; 1875 } 1876 } 1877 1878 retval = do_generic_file_read(file, ppos, iter, retval); 1879out: 1880 return retval; 1881} 1882EXPORT_SYMBOL(generic_file_read_iter); 1883 1884#ifdef CONFIG_MMU 1885/** 1886 * page_cache_read - adds requested page to the page cache if not already there 1887 * @file: file to read 1888 * @offset: page index 1889 * @gfp_mask: memory allocation flags 1890 * 1891 * This adds the requested page to the page cache if it isn't already there, 1892 * and schedules an I/O to read in its contents from disk. 1893 */ 1894static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 1895{ 1896 struct address_space *mapping = file->f_mapping; 1897 struct page *page; 1898 int ret; 1899 1900 do { 1901 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 1902 if (!page) 1903 return -ENOMEM; 1904 1905 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 1906 if (ret == 0) 1907 ret = mapping->a_ops->readpage(file, page); 1908 else if (ret == -EEXIST) 1909 ret = 0; /* losing race to add is OK */ 1910 1911 page_cache_release(page); 1912 1913 } while (ret == AOP_TRUNCATED_PAGE); 1914 1915 return ret; 1916} 1917 1918#define MMAP_LOTSAMISS (100) 1919 1920/* 1921 * Synchronous readahead happens when we don't even find 1922 * a page in the page cache at all. 1923 */ 1924static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1925 struct file_ra_state *ra, 1926 struct file *file, 1927 pgoff_t offset) 1928{ 1929 struct address_space *mapping = file->f_mapping; 1930 1931 /* If we don't want any read-ahead, don't bother */ 1932 if (vma->vm_flags & VM_RAND_READ) 1933 return; 1934 if (!ra->ra_pages) 1935 return; 1936 1937 if (vma->vm_flags & VM_SEQ_READ) { 1938 page_cache_sync_readahead(mapping, ra, file, offset, 1939 ra->ra_pages); 1940 return; 1941 } 1942 1943 /* Avoid banging the cache line if not needed */ 1944 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1945 ra->mmap_miss++; 1946 1947 /* 1948 * Do we miss much more than hit in this file? If so, 1949 * stop bothering with read-ahead. It will only hurt. 1950 */ 1951 if (ra->mmap_miss > MMAP_LOTSAMISS) 1952 return; 1953 1954 /* 1955 * mmap read-around 1956 */ 1957 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 1958 ra->size = ra->ra_pages; 1959 ra->async_size = ra->ra_pages / 4; 1960 ra_submit(ra, mapping, file); 1961} 1962 1963/* 1964 * Asynchronous readahead happens when we find the page and PG_readahead, 1965 * so we want to possibly extend the readahead further.. 1966 */ 1967static void do_async_mmap_readahead(struct vm_area_struct *vma, 1968 struct file_ra_state *ra, 1969 struct file *file, 1970 struct page *page, 1971 pgoff_t offset) 1972{ 1973 struct address_space *mapping = file->f_mapping; 1974 1975 /* If we don't want any read-ahead, don't bother */ 1976 if (vma->vm_flags & VM_RAND_READ) 1977 return; 1978 if (ra->mmap_miss > 0) 1979 ra->mmap_miss--; 1980 if (PageReadahead(page)) 1981 page_cache_async_readahead(mapping, ra, file, 1982 page, offset, ra->ra_pages); 1983} 1984 1985/** 1986 * filemap_fault - read in file data for page fault handling 1987 * @vma: vma in which the fault was taken 1988 * @vmf: struct vm_fault containing details of the fault 1989 * 1990 * filemap_fault() is invoked via the vma operations vector for a 1991 * mapped memory region to read in file data during a page fault. 1992 * 1993 * The goto's are kind of ugly, but this streamlines the normal case of having 1994 * it in the page cache, and handles the special cases reasonably without 1995 * having a lot of duplicated code. 1996 * 1997 * vma->vm_mm->mmap_sem must be held on entry. 1998 * 1999 * If our return value has VM_FAULT_RETRY set, it's because 2000 * lock_page_or_retry() returned 0. 2001 * The mmap_sem has usually been released in this case. 2002 * See __lock_page_or_retry() for the exception. 2003 * 2004 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2005 * has not been released. 2006 * 2007 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2008 */ 2009int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2010{ 2011 int error; 2012 struct file *file = vma->vm_file; 2013 struct address_space *mapping = file->f_mapping; 2014 struct file_ra_state *ra = &file->f_ra; 2015 struct inode *inode = mapping->host; 2016 pgoff_t offset = vmf->pgoff; 2017 struct page *page; 2018 loff_t size; 2019 int ret = 0; 2020 2021 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 2022 if (offset >= size >> PAGE_CACHE_SHIFT) 2023 return VM_FAULT_SIGBUS; 2024 2025 /* 2026 * Do we have something in the page cache already? 2027 */ 2028 page = find_get_page(mapping, offset); 2029 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2030 /* 2031 * We found the page, so try async readahead before 2032 * waiting for the lock. 2033 */ 2034 do_async_mmap_readahead(vma, ra, file, page, offset); 2035 } else if (!page) { 2036 /* No page in the page cache at all */ 2037 do_sync_mmap_readahead(vma, ra, file, offset); 2038 count_vm_event(PGMAJFAULT); 2039 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2040 ret = VM_FAULT_MAJOR; 2041retry_find: 2042 page = find_get_page(mapping, offset); 2043 if (!page) 2044 goto no_cached_page; 2045 } 2046 2047 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 2048 page_cache_release(page); 2049 return ret | VM_FAULT_RETRY; 2050 } 2051 2052 /* Did it get truncated? */ 2053 if (unlikely(page->mapping != mapping)) { 2054 unlock_page(page); 2055 put_page(page); 2056 goto retry_find; 2057 } 2058 VM_BUG_ON_PAGE(page->index != offset, page); 2059 2060 /* 2061 * We have a locked page in the page cache, now we need to check 2062 * that it's up-to-date. If not, it is going to be due to an error. 2063 */ 2064 if (unlikely(!PageUptodate(page))) 2065 goto page_not_uptodate; 2066 2067 /* 2068 * Found the page and have a reference on it. 2069 * We must recheck i_size under page lock. 2070 */ 2071 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 2072 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 2073 unlock_page(page); 2074 page_cache_release(page); 2075 return VM_FAULT_SIGBUS; 2076 } 2077 2078 vmf->page = page; 2079 return ret | VM_FAULT_LOCKED; 2080 2081no_cached_page: 2082 /* 2083 * We're only likely to ever get here if MADV_RANDOM is in 2084 * effect. 2085 */ 2086 error = page_cache_read(file, offset, vmf->gfp_mask); 2087 2088 /* 2089 * The page we want has now been added to the page cache. 2090 * In the unlikely event that someone removed it in the 2091 * meantime, we'll just come back here and read it again. 2092 */ 2093 if (error >= 0) 2094 goto retry_find; 2095 2096 /* 2097 * An error return from page_cache_read can result if the 2098 * system is low on memory, or a problem occurs while trying 2099 * to schedule I/O. 2100 */ 2101 if (error == -ENOMEM) 2102 return VM_FAULT_OOM; 2103 return VM_FAULT_SIGBUS; 2104 2105page_not_uptodate: 2106 /* 2107 * Umm, take care of errors if the page isn't up-to-date. 2108 * Try to re-read it _once_. We do this synchronously, 2109 * because there really aren't any performance issues here 2110 * and we need to check for errors. 2111 */ 2112 ClearPageError(page); 2113 error = mapping->a_ops->readpage(file, page); 2114 if (!error) { 2115 wait_on_page_locked(page); 2116 if (!PageUptodate(page)) 2117 error = -EIO; 2118 } 2119 page_cache_release(page); 2120 2121 if (!error || error == AOP_TRUNCATED_PAGE) 2122 goto retry_find; 2123 2124 /* Things didn't work out. Return zero to tell the mm layer so. */ 2125 shrink_readahead_size_eio(file, ra); 2126 return VM_FAULT_SIGBUS; 2127} 2128EXPORT_SYMBOL(filemap_fault); 2129 2130void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 2131{ 2132 struct radix_tree_iter iter; 2133 void **slot; 2134 struct file *file = vma->vm_file; 2135 struct address_space *mapping = file->f_mapping; 2136 loff_t size; 2137 struct page *page; 2138 unsigned long address = (unsigned long) vmf->virtual_address; 2139 unsigned long addr; 2140 pte_t *pte; 2141 2142 rcu_read_lock(); 2143 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 2144 if (iter.index > vmf->max_pgoff) 2145 break; 2146repeat: 2147 page = radix_tree_deref_slot(slot); 2148 if (unlikely(!page)) 2149 goto next; 2150 if (radix_tree_exception(page)) { 2151 if (radix_tree_deref_retry(page)) 2152 break; 2153 else 2154 goto next; 2155 } 2156 2157 if (!page_cache_get_speculative(page)) 2158 goto repeat; 2159 2160 /* Has the page moved? */ 2161 if (unlikely(page != *slot)) { 2162 page_cache_release(page); 2163 goto repeat; 2164 } 2165 2166 if (!PageUptodate(page) || 2167 PageReadahead(page) || 2168 PageHWPoison(page)) 2169 goto skip; 2170 if (!trylock_page(page)) 2171 goto skip; 2172 2173 if (page->mapping != mapping || !PageUptodate(page)) 2174 goto unlock; 2175 2176 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2177 if (page->index >= size >> PAGE_CACHE_SHIFT) 2178 goto unlock; 2179 2180 pte = vmf->pte + page->index - vmf->pgoff; 2181 if (!pte_none(*pte)) 2182 goto unlock; 2183 2184 if (file->f_ra.mmap_miss > 0) 2185 file->f_ra.mmap_miss--; 2186 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2187 do_set_pte(vma, addr, page, pte, false, false); 2188 unlock_page(page); 2189 goto next; 2190unlock: 2191 unlock_page(page); 2192skip: 2193 page_cache_release(page); 2194next: 2195 if (iter.index == vmf->max_pgoff) 2196 break; 2197 } 2198 rcu_read_unlock(); 2199} 2200EXPORT_SYMBOL(filemap_map_pages); 2201 2202int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2203{ 2204 struct page *page = vmf->page; 2205 struct inode *inode = file_inode(vma->vm_file); 2206 int ret = VM_FAULT_LOCKED; 2207 2208 sb_start_pagefault(inode->i_sb); 2209 file_update_time(vma->vm_file); 2210 lock_page(page); 2211 if (page->mapping != inode->i_mapping) { 2212 unlock_page(page); 2213 ret = VM_FAULT_NOPAGE; 2214 goto out; 2215 } 2216 /* 2217 * We mark the page dirty already here so that when freeze is in 2218 * progress, we are guaranteed that writeback during freezing will 2219 * see the dirty page and writeprotect it again. 2220 */ 2221 set_page_dirty(page); 2222 wait_for_stable_page(page); 2223out: 2224 sb_end_pagefault(inode->i_sb); 2225 return ret; 2226} 2227EXPORT_SYMBOL(filemap_page_mkwrite); 2228 2229const struct vm_operations_struct generic_file_vm_ops = { 2230 .fault = filemap_fault, 2231 .map_pages = filemap_map_pages, 2232 .page_mkwrite = filemap_page_mkwrite, 2233}; 2234 2235/* This is used for a general mmap of a disk file */ 2236 2237int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2238{ 2239 struct address_space *mapping = file->f_mapping; 2240 2241 if (!mapping->a_ops->readpage) 2242 return -ENOEXEC; 2243 file_accessed(file); 2244 vma->vm_ops = &generic_file_vm_ops; 2245 return 0; 2246} 2247 2248/* 2249 * This is for filesystems which do not implement ->writepage. 2250 */ 2251int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2252{ 2253 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2254 return -EINVAL; 2255 return generic_file_mmap(file, vma); 2256} 2257#else 2258int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2259{ 2260 return -ENOSYS; 2261} 2262int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2263{ 2264 return -ENOSYS; 2265} 2266#endif /* CONFIG_MMU */ 2267 2268EXPORT_SYMBOL(generic_file_mmap); 2269EXPORT_SYMBOL(generic_file_readonly_mmap); 2270 2271static struct page *wait_on_page_read(struct page *page) 2272{ 2273 if (!IS_ERR(page)) { 2274 wait_on_page_locked(page); 2275 if (!PageUptodate(page)) { 2276 page_cache_release(page); 2277 page = ERR_PTR(-EIO); 2278 } 2279 } 2280 return page; 2281} 2282 2283static struct page *__read_cache_page(struct address_space *mapping, 2284 pgoff_t index, 2285 int (*filler)(void *, struct page *), 2286 void *data, 2287 gfp_t gfp) 2288{ 2289 struct page *page; 2290 int err; 2291repeat: 2292 page = find_get_page(mapping, index); 2293 if (!page) { 2294 page = __page_cache_alloc(gfp | __GFP_COLD); 2295 if (!page) 2296 return ERR_PTR(-ENOMEM); 2297 err = add_to_page_cache_lru(page, mapping, index, gfp); 2298 if (unlikely(err)) { 2299 page_cache_release(page); 2300 if (err == -EEXIST) 2301 goto repeat; 2302 /* Presumably ENOMEM for radix tree node */ 2303 return ERR_PTR(err); 2304 } 2305 err = filler(data, page); 2306 if (err < 0) { 2307 page_cache_release(page); 2308 page = ERR_PTR(err); 2309 } else { 2310 page = wait_on_page_read(page); 2311 } 2312 } 2313 return page; 2314} 2315 2316static struct page *do_read_cache_page(struct address_space *mapping, 2317 pgoff_t index, 2318 int (*filler)(void *, struct page *), 2319 void *data, 2320 gfp_t gfp) 2321 2322{ 2323 struct page *page; 2324 int err; 2325 2326retry: 2327 page = __read_cache_page(mapping, index, filler, data, gfp); 2328 if (IS_ERR(page)) 2329 return page; 2330 if (PageUptodate(page)) 2331 goto out; 2332 2333 lock_page(page); 2334 if (!page->mapping) { 2335 unlock_page(page); 2336 page_cache_release(page); 2337 goto retry; 2338 } 2339 if (PageUptodate(page)) { 2340 unlock_page(page); 2341 goto out; 2342 } 2343 err = filler(data, page); 2344 if (err < 0) { 2345 page_cache_release(page); 2346 return ERR_PTR(err); 2347 } else { 2348 page = wait_on_page_read(page); 2349 if (IS_ERR(page)) 2350 return page; 2351 } 2352out: 2353 mark_page_accessed(page); 2354 return page; 2355} 2356 2357/** 2358 * read_cache_page - read into page cache, fill it if needed 2359 * @mapping: the page's address_space 2360 * @index: the page index 2361 * @filler: function to perform the read 2362 * @data: first arg to filler(data, page) function, often left as NULL 2363 * 2364 * Read into the page cache. If a page already exists, and PageUptodate() is 2365 * not set, try to fill the page and wait for it to become unlocked. 2366 * 2367 * If the page does not get brought uptodate, return -EIO. 2368 */ 2369struct page *read_cache_page(struct address_space *mapping, 2370 pgoff_t index, 2371 int (*filler)(void *, struct page *), 2372 void *data) 2373{ 2374 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2375} 2376EXPORT_SYMBOL(read_cache_page); 2377 2378/** 2379 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2380 * @mapping: the page's address_space 2381 * @index: the page index 2382 * @gfp: the page allocator flags to use if allocating 2383 * 2384 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2385 * any new page allocations done using the specified allocation flags. 2386 * 2387 * If the page does not get brought uptodate, return -EIO. 2388 */ 2389struct page *read_cache_page_gfp(struct address_space *mapping, 2390 pgoff_t index, 2391 gfp_t gfp) 2392{ 2393 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2394 2395 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2396} 2397EXPORT_SYMBOL(read_cache_page_gfp); 2398 2399/* 2400 * Performs necessary checks before doing a write 2401 * 2402 * Can adjust writing position or amount of bytes to write. 2403 * Returns appropriate error code that caller should return or 2404 * zero in case that write should be allowed. 2405 */ 2406inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2407{ 2408 struct file *file = iocb->ki_filp; 2409 struct inode *inode = file->f_mapping->host; 2410 unsigned long limit = rlimit(RLIMIT_FSIZE); 2411 loff_t pos; 2412 2413 if (!iov_iter_count(from)) 2414 return 0; 2415 2416 /* FIXME: this is for backwards compatibility with 2.4 */ 2417 if (iocb->ki_flags & IOCB_APPEND) 2418 iocb->ki_pos = i_size_read(inode); 2419 2420 pos = iocb->ki_pos; 2421 2422 if (limit != RLIM_INFINITY) { 2423 if (iocb->ki_pos >= limit) { 2424 send_sig(SIGXFSZ, current, 0); 2425 return -EFBIG; 2426 } 2427 iov_iter_truncate(from, limit - (unsigned long)pos); 2428 } 2429 2430 /* 2431 * LFS rule 2432 */ 2433 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2434 !(file->f_flags & O_LARGEFILE))) { 2435 if (pos >= MAX_NON_LFS) 2436 return -EFBIG; 2437 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2438 } 2439 2440 /* 2441 * Are we about to exceed the fs block limit ? 2442 * 2443 * If we have written data it becomes a short write. If we have 2444 * exceeded without writing data we send a signal and return EFBIG. 2445 * Linus frestrict idea will clean these up nicely.. 2446 */ 2447 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2448 return -EFBIG; 2449 2450 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2451 return iov_iter_count(from); 2452} 2453EXPORT_SYMBOL(generic_write_checks); 2454 2455int pagecache_write_begin(struct file *file, struct address_space *mapping, 2456 loff_t pos, unsigned len, unsigned flags, 2457 struct page **pagep, void **fsdata) 2458{ 2459 const struct address_space_operations *aops = mapping->a_ops; 2460 2461 return aops->write_begin(file, mapping, pos, len, flags, 2462 pagep, fsdata); 2463} 2464EXPORT_SYMBOL(pagecache_write_begin); 2465 2466int pagecache_write_end(struct file *file, struct address_space *mapping, 2467 loff_t pos, unsigned len, unsigned copied, 2468 struct page *page, void *fsdata) 2469{ 2470 const struct address_space_operations *aops = mapping->a_ops; 2471 2472 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2473} 2474EXPORT_SYMBOL(pagecache_write_end); 2475 2476ssize_t 2477generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2478{ 2479 struct file *file = iocb->ki_filp; 2480 struct address_space *mapping = file->f_mapping; 2481 struct inode *inode = mapping->host; 2482 ssize_t written; 2483 size_t write_len; 2484 pgoff_t end; 2485 struct iov_iter data; 2486 2487 write_len = iov_iter_count(from); 2488 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2489 2490 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2491 if (written) 2492 goto out; 2493 2494 /* 2495 * After a write we want buffered reads to be sure to go to disk to get 2496 * the new data. We invalidate clean cached page from the region we're 2497 * about to write. We do this *before* the write so that we can return 2498 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2499 */ 2500 if (mapping->nrpages) { 2501 written = invalidate_inode_pages2_range(mapping, 2502 pos >> PAGE_CACHE_SHIFT, end); 2503 /* 2504 * If a page can not be invalidated, return 0 to fall back 2505 * to buffered write. 2506 */ 2507 if (written) { 2508 if (written == -EBUSY) 2509 return 0; 2510 goto out; 2511 } 2512 } 2513 2514 data = *from; 2515 written = mapping->a_ops->direct_IO(iocb, &data, pos); 2516 2517 /* 2518 * Finally, try again to invalidate clean pages which might have been 2519 * cached by non-direct readahead, or faulted in by get_user_pages() 2520 * if the source of the write was an mmap'ed region of the file 2521 * we're writing. Either one is a pretty crazy thing to do, 2522 * so we don't support it 100%. If this invalidation 2523 * fails, tough, the write still worked... 2524 */ 2525 if (mapping->nrpages) { 2526 invalidate_inode_pages2_range(mapping, 2527 pos >> PAGE_CACHE_SHIFT, end); 2528 } 2529 2530 if (written > 0) { 2531 pos += written; 2532 iov_iter_advance(from, written); 2533 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2534 i_size_write(inode, pos); 2535 mark_inode_dirty(inode); 2536 } 2537 iocb->ki_pos = pos; 2538 } 2539out: 2540 return written; 2541} 2542EXPORT_SYMBOL(generic_file_direct_write); 2543 2544/* 2545 * Find or create a page at the given pagecache position. Return the locked 2546 * page. This function is specifically for buffered writes. 2547 */ 2548struct page *grab_cache_page_write_begin(struct address_space *mapping, 2549 pgoff_t index, unsigned flags) 2550{ 2551 struct page *page; 2552 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2553 2554 if (flags & AOP_FLAG_NOFS) 2555 fgp_flags |= FGP_NOFS; 2556 2557 page = pagecache_get_page(mapping, index, fgp_flags, 2558 mapping_gfp_mask(mapping)); 2559 if (page) 2560 wait_for_stable_page(page); 2561 2562 return page; 2563} 2564EXPORT_SYMBOL(grab_cache_page_write_begin); 2565 2566ssize_t generic_perform_write(struct file *file, 2567 struct iov_iter *i, loff_t pos) 2568{ 2569 struct address_space *mapping = file->f_mapping; 2570 const struct address_space_operations *a_ops = mapping->a_ops; 2571 long status = 0; 2572 ssize_t written = 0; 2573 unsigned int flags = 0; 2574 2575 /* 2576 * Copies from kernel address space cannot fail (NFSD is a big user). 2577 */ 2578 if (!iter_is_iovec(i)) 2579 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2580 2581 do { 2582 struct page *page; 2583 unsigned long offset; /* Offset into pagecache page */ 2584 unsigned long bytes; /* Bytes to write to page */ 2585 size_t copied; /* Bytes copied from user */ 2586 void *fsdata; 2587 2588 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2589 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2590 iov_iter_count(i)); 2591 2592again: 2593 /* 2594 * Bring in the user page that we will copy from _first_. 2595 * Otherwise there's a nasty deadlock on copying from the 2596 * same page as we're writing to, without it being marked 2597 * up-to-date. 2598 * 2599 * Not only is this an optimisation, but it is also required 2600 * to check that the address is actually valid, when atomic 2601 * usercopies are used, below. 2602 */ 2603 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2604 status = -EFAULT; 2605 break; 2606 } 2607 2608 if (fatal_signal_pending(current)) { 2609 status = -EINTR; 2610 break; 2611 } 2612 2613 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2614 &page, &fsdata); 2615 if (unlikely(status < 0)) 2616 break; 2617 2618 if (mapping_writably_mapped(mapping)) 2619 flush_dcache_page(page); 2620 2621 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2622 flush_dcache_page(page); 2623 2624 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2625 page, fsdata); 2626 if (unlikely(status < 0)) 2627 break; 2628 copied = status; 2629 2630 cond_resched(); 2631 2632 iov_iter_advance(i, copied); 2633 if (unlikely(copied == 0)) { 2634 /* 2635 * If we were unable to copy any data at all, we must 2636 * fall back to a single segment length write. 2637 * 2638 * If we didn't fallback here, we could livelock 2639 * because not all segments in the iov can be copied at 2640 * once without a pagefault. 2641 */ 2642 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2643 iov_iter_single_seg_count(i)); 2644 goto again; 2645 } 2646 pos += copied; 2647 written += copied; 2648 2649 balance_dirty_pages_ratelimited(mapping); 2650 } while (iov_iter_count(i)); 2651 2652 return written ? written : status; 2653} 2654EXPORT_SYMBOL(generic_perform_write); 2655 2656/** 2657 * __generic_file_write_iter - write data to a file 2658 * @iocb: IO state structure (file, offset, etc.) 2659 * @from: iov_iter with data to write 2660 * 2661 * This function does all the work needed for actually writing data to a 2662 * file. It does all basic checks, removes SUID from the file, updates 2663 * modification times and calls proper subroutines depending on whether we 2664 * do direct IO or a standard buffered write. 2665 * 2666 * It expects i_mutex to be grabbed unless we work on a block device or similar 2667 * object which does not need locking at all. 2668 * 2669 * This function does *not* take care of syncing data in case of O_SYNC write. 2670 * A caller has to handle it. This is mainly due to the fact that we want to 2671 * avoid syncing under i_mutex. 2672 */ 2673ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2674{ 2675 struct file *file = iocb->ki_filp; 2676 struct address_space * mapping = file->f_mapping; 2677 struct inode *inode = mapping->host; 2678 ssize_t written = 0; 2679 ssize_t err; 2680 ssize_t status; 2681 2682 /* We can write back this queue in page reclaim */ 2683 current->backing_dev_info = inode_to_bdi(inode); 2684 err = file_remove_privs(file); 2685 if (err) 2686 goto out; 2687 2688 err = file_update_time(file); 2689 if (err) 2690 goto out; 2691 2692 if (iocb->ki_flags & IOCB_DIRECT) { 2693 loff_t pos, endbyte; 2694 2695 written = generic_file_direct_write(iocb, from, iocb->ki_pos); 2696 /* 2697 * If the write stopped short of completing, fall back to 2698 * buffered writes. Some filesystems do this for writes to 2699 * holes, for example. For DAX files, a buffered write will 2700 * not succeed (even if it did, DAX does not handle dirty 2701 * page-cache pages correctly). 2702 */ 2703 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2704 goto out; 2705 2706 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2707 /* 2708 * If generic_perform_write() returned a synchronous error 2709 * then we want to return the number of bytes which were 2710 * direct-written, or the error code if that was zero. Note 2711 * that this differs from normal direct-io semantics, which 2712 * will return -EFOO even if some bytes were written. 2713 */ 2714 if (unlikely(status < 0)) { 2715 err = status; 2716 goto out; 2717 } 2718 /* 2719 * We need to ensure that the page cache pages are written to 2720 * disk and invalidated to preserve the expected O_DIRECT 2721 * semantics. 2722 */ 2723 endbyte = pos + status - 1; 2724 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2725 if (err == 0) { 2726 iocb->ki_pos = endbyte + 1; 2727 written += status; 2728 invalidate_mapping_pages(mapping, 2729 pos >> PAGE_CACHE_SHIFT, 2730 endbyte >> PAGE_CACHE_SHIFT); 2731 } else { 2732 /* 2733 * We don't know how much we wrote, so just return 2734 * the number of bytes which were direct-written 2735 */ 2736 } 2737 } else { 2738 written = generic_perform_write(file, from, iocb->ki_pos); 2739 if (likely(written > 0)) 2740 iocb->ki_pos += written; 2741 } 2742out: 2743 current->backing_dev_info = NULL; 2744 return written ? written : err; 2745} 2746EXPORT_SYMBOL(__generic_file_write_iter); 2747 2748/** 2749 * generic_file_write_iter - write data to a file 2750 * @iocb: IO state structure 2751 * @from: iov_iter with data to write 2752 * 2753 * This is a wrapper around __generic_file_write_iter() to be used by most 2754 * filesystems. It takes care of syncing the file in case of O_SYNC file 2755 * and acquires i_mutex as needed. 2756 */ 2757ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2758{ 2759 struct file *file = iocb->ki_filp; 2760 struct inode *inode = file->f_mapping->host; 2761 ssize_t ret; 2762 2763 inode_lock(inode); 2764 ret = generic_write_checks(iocb, from); 2765 if (ret > 0) 2766 ret = __generic_file_write_iter(iocb, from); 2767 inode_unlock(inode); 2768 2769 if (ret > 0) { 2770 ssize_t err; 2771 2772 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2773 if (err < 0) 2774 ret = err; 2775 } 2776 return ret; 2777} 2778EXPORT_SYMBOL(generic_file_write_iter); 2779 2780/** 2781 * try_to_release_page() - release old fs-specific metadata on a page 2782 * 2783 * @page: the page which the kernel is trying to free 2784 * @gfp_mask: memory allocation flags (and I/O mode) 2785 * 2786 * The address_space is to try to release any data against the page 2787 * (presumably at page->private). If the release was successful, return `1'. 2788 * Otherwise return zero. 2789 * 2790 * This may also be called if PG_fscache is set on a page, indicating that the 2791 * page is known to the local caching routines. 2792 * 2793 * The @gfp_mask argument specifies whether I/O may be performed to release 2794 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 2795 * 2796 */ 2797int try_to_release_page(struct page *page, gfp_t gfp_mask) 2798{ 2799 struct address_space * const mapping = page->mapping; 2800 2801 BUG_ON(!PageLocked(page)); 2802 if (PageWriteback(page)) 2803 return 0; 2804 2805 if (mapping && mapping->a_ops->releasepage) 2806 return mapping->a_ops->releasepage(page, gfp_mask); 2807 return try_to_free_buffers(page); 2808} 2809 2810EXPORT_SYMBOL(try_to_release_page);