at v4.5-rc7 13 kB view raw
1/* 2 * include/linux/writeback.h 3 */ 4#ifndef WRITEBACK_H 5#define WRITEBACK_H 6 7#include <linux/sched.h> 8#include <linux/workqueue.h> 9#include <linux/fs.h> 10#include <linux/flex_proportions.h> 11#include <linux/backing-dev-defs.h> 12 13DECLARE_PER_CPU(int, dirty_throttle_leaks); 14 15/* 16 * The 1/4 region under the global dirty thresh is for smooth dirty throttling: 17 * 18 * (thresh - thresh/DIRTY_FULL_SCOPE, thresh) 19 * 20 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long 21 * time) for the dirty pages to drop, unless written enough pages. 22 * 23 * The global dirty threshold is normally equal to the global dirty limit, 24 * except when the system suddenly allocates a lot of anonymous memory and 25 * knocks down the global dirty threshold quickly, in which case the global 26 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks. 27 */ 28#define DIRTY_SCOPE 8 29#define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2) 30 31struct backing_dev_info; 32 33/* 34 * fs/fs-writeback.c 35 */ 36enum writeback_sync_modes { 37 WB_SYNC_NONE, /* Don't wait on anything */ 38 WB_SYNC_ALL, /* Wait on every mapping */ 39}; 40 41/* 42 * why some writeback work was initiated 43 */ 44enum wb_reason { 45 WB_REASON_BACKGROUND, 46 WB_REASON_TRY_TO_FREE_PAGES, 47 WB_REASON_SYNC, 48 WB_REASON_PERIODIC, 49 WB_REASON_LAPTOP_TIMER, 50 WB_REASON_FREE_MORE_MEM, 51 WB_REASON_FS_FREE_SPACE, 52 /* 53 * There is no bdi forker thread any more and works are done 54 * by emergency worker, however, this is TPs userland visible 55 * and we'll be exposing exactly the same information, 56 * so it has a mismatch name. 57 */ 58 WB_REASON_FORKER_THREAD, 59 60 WB_REASON_MAX, 61}; 62 63/* 64 * A control structure which tells the writeback code what to do. These are 65 * always on the stack, and hence need no locking. They are always initialised 66 * in a manner such that unspecified fields are set to zero. 67 */ 68struct writeback_control { 69 long nr_to_write; /* Write this many pages, and decrement 70 this for each page written */ 71 long pages_skipped; /* Pages which were not written */ 72 73 /* 74 * For a_ops->writepages(): if start or end are non-zero then this is 75 * a hint that the filesystem need only write out the pages inside that 76 * byterange. The byte at `end' is included in the writeout request. 77 */ 78 loff_t range_start; 79 loff_t range_end; 80 81 enum writeback_sync_modes sync_mode; 82 83 unsigned for_kupdate:1; /* A kupdate writeback */ 84 unsigned for_background:1; /* A background writeback */ 85 unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ 86 unsigned for_reclaim:1; /* Invoked from the page allocator */ 87 unsigned range_cyclic:1; /* range_start is cyclic */ 88 unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 89#ifdef CONFIG_CGROUP_WRITEBACK 90 struct bdi_writeback *wb; /* wb this writeback is issued under */ 91 struct inode *inode; /* inode being written out */ 92 93 /* foreign inode detection, see wbc_detach_inode() */ 94 int wb_id; /* current wb id */ 95 int wb_lcand_id; /* last foreign candidate wb id */ 96 int wb_tcand_id; /* this foreign candidate wb id */ 97 size_t wb_bytes; /* bytes written by current wb */ 98 size_t wb_lcand_bytes; /* bytes written by last candidate */ 99 size_t wb_tcand_bytes; /* bytes written by this candidate */ 100#endif 101}; 102 103/* 104 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to 105 * and are measured against each other in. There always is one global 106 * domain, global_wb_domain, that every wb in the system is a member of. 107 * This allows measuring the relative bandwidth of each wb to distribute 108 * dirtyable memory accordingly. 109 */ 110struct wb_domain { 111 spinlock_t lock; 112 113 /* 114 * Scale the writeback cache size proportional to the relative 115 * writeout speed. 116 * 117 * We do this by keeping a floating proportion between BDIs, based 118 * on page writeback completions [end_page_writeback()]. Those 119 * devices that write out pages fastest will get the larger share, 120 * while the slower will get a smaller share. 121 * 122 * We use page writeout completions because we are interested in 123 * getting rid of dirty pages. Having them written out is the 124 * primary goal. 125 * 126 * We introduce a concept of time, a period over which we measure 127 * these events, because demand can/will vary over time. The length 128 * of this period itself is measured in page writeback completions. 129 */ 130 struct fprop_global completions; 131 struct timer_list period_timer; /* timer for aging of completions */ 132 unsigned long period_time; 133 134 /* 135 * The dirtyable memory and dirty threshold could be suddenly 136 * knocked down by a large amount (eg. on the startup of KVM in a 137 * swapless system). This may throw the system into deep dirty 138 * exceeded state and throttle heavy/light dirtiers alike. To 139 * retain good responsiveness, maintain global_dirty_limit for 140 * tracking slowly down to the knocked down dirty threshold. 141 * 142 * Both fields are protected by ->lock. 143 */ 144 unsigned long dirty_limit_tstamp; 145 unsigned long dirty_limit; 146}; 147 148/** 149 * wb_domain_size_changed - memory available to a wb_domain has changed 150 * @dom: wb_domain of interest 151 * 152 * This function should be called when the amount of memory available to 153 * @dom has changed. It resets @dom's dirty limit parameters to prevent 154 * the past values which don't match the current configuration from skewing 155 * dirty throttling. Without this, when memory size of a wb_domain is 156 * greatly reduced, the dirty throttling logic may allow too many pages to 157 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in 158 * that situation. 159 */ 160static inline void wb_domain_size_changed(struct wb_domain *dom) 161{ 162 spin_lock(&dom->lock); 163 dom->dirty_limit_tstamp = jiffies; 164 dom->dirty_limit = 0; 165 spin_unlock(&dom->lock); 166} 167 168/* 169 * fs/fs-writeback.c 170 */ 171struct bdi_writeback; 172void writeback_inodes_sb(struct super_block *, enum wb_reason reason); 173void writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 174 enum wb_reason reason); 175bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason); 176bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 177 enum wb_reason reason); 178void sync_inodes_sb(struct super_block *); 179void wakeup_flusher_threads(long nr_pages, enum wb_reason reason); 180void inode_wait_for_writeback(struct inode *inode); 181 182/* writeback.h requires fs.h; it, too, is not included from here. */ 183static inline void wait_on_inode(struct inode *inode) 184{ 185 might_sleep(); 186 wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE); 187} 188 189#ifdef CONFIG_CGROUP_WRITEBACK 190 191#include <linux/cgroup.h> 192#include <linux/bio.h> 193 194void __inode_attach_wb(struct inode *inode, struct page *page); 195void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 196 struct inode *inode) 197 __releases(&inode->i_lock); 198void wbc_detach_inode(struct writeback_control *wbc); 199void wbc_account_io(struct writeback_control *wbc, struct page *page, 200 size_t bytes); 201void cgroup_writeback_umount(void); 202 203/** 204 * inode_attach_wb - associate an inode with its wb 205 * @inode: inode of interest 206 * @page: page being dirtied (may be NULL) 207 * 208 * If @inode doesn't have its wb, associate it with the wb matching the 209 * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o 210 * @inode->i_lock. 211 */ 212static inline void inode_attach_wb(struct inode *inode, struct page *page) 213{ 214 if (!inode->i_wb) 215 __inode_attach_wb(inode, page); 216} 217 218/** 219 * inode_detach_wb - disassociate an inode from its wb 220 * @inode: inode of interest 221 * 222 * @inode is being freed. Detach from its wb. 223 */ 224static inline void inode_detach_wb(struct inode *inode) 225{ 226 if (inode->i_wb) { 227 wb_put(inode->i_wb); 228 inode->i_wb = NULL; 229 } 230} 231 232/** 233 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite 234 * @wbc: writeback_control of interest 235 * @inode: target inode 236 * 237 * This function is to be used by __filemap_fdatawrite_range(), which is an 238 * alternative entry point into writeback code, and first ensures @inode is 239 * associated with a bdi_writeback and attaches it to @wbc. 240 */ 241static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 242 struct inode *inode) 243{ 244 spin_lock(&inode->i_lock); 245 inode_attach_wb(inode, NULL); 246 wbc_attach_and_unlock_inode(wbc, inode); 247} 248 249/** 250 * wbc_init_bio - writeback specific initializtion of bio 251 * @wbc: writeback_control for the writeback in progress 252 * @bio: bio to be initialized 253 * 254 * @bio is a part of the writeback in progress controlled by @wbc. Perform 255 * writeback specific initialization. This is used to apply the cgroup 256 * writeback context. 257 */ 258static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 259{ 260 /* 261 * pageout() path doesn't attach @wbc to the inode being written 262 * out. This is intentional as we don't want the function to block 263 * behind a slow cgroup. Ultimately, we want pageout() to kick off 264 * regular writeback instead of writing things out itself. 265 */ 266 if (wbc->wb) 267 bio_associate_blkcg(bio, wbc->wb->blkcg_css); 268} 269 270#else /* CONFIG_CGROUP_WRITEBACK */ 271 272static inline void inode_attach_wb(struct inode *inode, struct page *page) 273{ 274} 275 276static inline void inode_detach_wb(struct inode *inode) 277{ 278} 279 280static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 281 struct inode *inode) 282 __releases(&inode->i_lock) 283{ 284 spin_unlock(&inode->i_lock); 285} 286 287static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 288 struct inode *inode) 289{ 290} 291 292static inline void wbc_detach_inode(struct writeback_control *wbc) 293{ 294} 295 296static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 297{ 298} 299 300static inline void wbc_account_io(struct writeback_control *wbc, 301 struct page *page, size_t bytes) 302{ 303} 304 305static inline void cgroup_writeback_umount(void) 306{ 307} 308 309#endif /* CONFIG_CGROUP_WRITEBACK */ 310 311/* 312 * mm/page-writeback.c 313 */ 314#ifdef CONFIG_BLOCK 315void laptop_io_completion(struct backing_dev_info *info); 316void laptop_sync_completion(void); 317void laptop_mode_sync(struct work_struct *work); 318void laptop_mode_timer_fn(unsigned long data); 319#else 320static inline void laptop_sync_completion(void) { } 321#endif 322void throttle_vm_writeout(gfp_t gfp_mask); 323bool zone_dirty_ok(struct zone *zone); 324int wb_domain_init(struct wb_domain *dom, gfp_t gfp); 325#ifdef CONFIG_CGROUP_WRITEBACK 326void wb_domain_exit(struct wb_domain *dom); 327#endif 328 329extern struct wb_domain global_wb_domain; 330 331/* These are exported to sysctl. */ 332extern int dirty_background_ratio; 333extern unsigned long dirty_background_bytes; 334extern int vm_dirty_ratio; 335extern unsigned long vm_dirty_bytes; 336extern unsigned int dirty_writeback_interval; 337extern unsigned int dirty_expire_interval; 338extern unsigned int dirtytime_expire_interval; 339extern int vm_highmem_is_dirtyable; 340extern int block_dump; 341extern int laptop_mode; 342 343extern int dirty_background_ratio_handler(struct ctl_table *table, int write, 344 void __user *buffer, size_t *lenp, 345 loff_t *ppos); 346extern int dirty_background_bytes_handler(struct ctl_table *table, int write, 347 void __user *buffer, size_t *lenp, 348 loff_t *ppos); 349extern int dirty_ratio_handler(struct ctl_table *table, int write, 350 void __user *buffer, size_t *lenp, 351 loff_t *ppos); 352extern int dirty_bytes_handler(struct ctl_table *table, int write, 353 void __user *buffer, size_t *lenp, 354 loff_t *ppos); 355int dirtytime_interval_handler(struct ctl_table *table, int write, 356 void __user *buffer, size_t *lenp, loff_t *ppos); 357 358struct ctl_table; 359int dirty_writeback_centisecs_handler(struct ctl_table *, int, 360 void __user *, size_t *, loff_t *); 361 362void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty); 363unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh); 364 365void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time); 366void page_writeback_init(void); 367void balance_dirty_pages_ratelimited(struct address_space *mapping); 368bool wb_over_bg_thresh(struct bdi_writeback *wb); 369 370typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, 371 void *data); 372 373int generic_writepages(struct address_space *mapping, 374 struct writeback_control *wbc); 375void tag_pages_for_writeback(struct address_space *mapping, 376 pgoff_t start, pgoff_t end); 377int write_cache_pages(struct address_space *mapping, 378 struct writeback_control *wbc, writepage_t writepage, 379 void *data); 380int do_writepages(struct address_space *mapping, struct writeback_control *wbc); 381void writeback_set_ratelimit(void); 382void tag_pages_for_writeback(struct address_space *mapping, 383 pgoff_t start, pgoff_t end); 384 385void account_page_redirty(struct page *page); 386 387#endif /* WRITEBACK_H */