at v4.5-rc2 2370 lines 75 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25 26struct mempolicy; 27struct anon_vma; 28struct anon_vma_chain; 29struct file_ra_state; 30struct user_struct; 31struct writeback_control; 32struct bdi_writeback; 33 34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 35extern unsigned long max_mapnr; 36 37static inline void set_max_mapnr(unsigned long limit) 38{ 39 max_mapnr = limit; 40} 41#else 42static inline void set_max_mapnr(unsigned long limit) { } 43#endif 44 45extern unsigned long totalram_pages; 46extern void * high_memory; 47extern int page_cluster; 48 49#ifdef CONFIG_SYSCTL 50extern int sysctl_legacy_va_layout; 51#else 52#define sysctl_legacy_va_layout 0 53#endif 54 55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 56extern const int mmap_rnd_bits_min; 57extern const int mmap_rnd_bits_max; 58extern int mmap_rnd_bits __read_mostly; 59#endif 60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 61extern const int mmap_rnd_compat_bits_min; 62extern const int mmap_rnd_compat_bits_max; 63extern int mmap_rnd_compat_bits __read_mostly; 64#endif 65 66#include <asm/page.h> 67#include <asm/pgtable.h> 68#include <asm/processor.h> 69 70#ifndef __pa_symbol 71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 72#endif 73 74/* 75 * To prevent common memory management code establishing 76 * a zero page mapping on a read fault. 77 * This macro should be defined within <asm/pgtable.h>. 78 * s390 does this to prevent multiplexing of hardware bits 79 * related to the physical page in case of virtualization. 80 */ 81#ifndef mm_forbids_zeropage 82#define mm_forbids_zeropage(X) (0) 83#endif 84 85extern unsigned long sysctl_user_reserve_kbytes; 86extern unsigned long sysctl_admin_reserve_kbytes; 87 88extern int sysctl_overcommit_memory; 89extern int sysctl_overcommit_ratio; 90extern unsigned long sysctl_overcommit_kbytes; 91 92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 93 size_t *, loff_t *); 94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 95 size_t *, loff_t *); 96 97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 98 99/* to align the pointer to the (next) page boundary */ 100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 101 102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 104 105/* 106 * Linux kernel virtual memory manager primitives. 107 * The idea being to have a "virtual" mm in the same way 108 * we have a virtual fs - giving a cleaner interface to the 109 * mm details, and allowing different kinds of memory mappings 110 * (from shared memory to executable loading to arbitrary 111 * mmap() functions). 112 */ 113 114extern struct kmem_cache *vm_area_cachep; 115 116#ifndef CONFIG_MMU 117extern struct rb_root nommu_region_tree; 118extern struct rw_semaphore nommu_region_sem; 119 120extern unsigned int kobjsize(const void *objp); 121#endif 122 123/* 124 * vm_flags in vm_area_struct, see mm_types.h. 125 */ 126#define VM_NONE 0x00000000 127 128#define VM_READ 0x00000001 /* currently active flags */ 129#define VM_WRITE 0x00000002 130#define VM_EXEC 0x00000004 131#define VM_SHARED 0x00000008 132 133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 135#define VM_MAYWRITE 0x00000020 136#define VM_MAYEXEC 0x00000040 137#define VM_MAYSHARE 0x00000080 138 139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 144 145#define VM_LOCKED 0x00002000 146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 147 148 /* Used by sys_madvise() */ 149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 151 152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 159#define VM_ARCH_2 0x02000000 160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 161 162#ifdef CONFIG_MEM_SOFT_DIRTY 163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 164#else 165# define VM_SOFTDIRTY 0 166#endif 167 168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 172 173#if defined(CONFIG_X86) 174# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 175#elif defined(CONFIG_PPC) 176# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 177#elif defined(CONFIG_PARISC) 178# define VM_GROWSUP VM_ARCH_1 179#elif defined(CONFIG_METAG) 180# define VM_GROWSUP VM_ARCH_1 181#elif defined(CONFIG_IA64) 182# define VM_GROWSUP VM_ARCH_1 183#elif !defined(CONFIG_MMU) 184# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 185#endif 186 187#if defined(CONFIG_X86) 188/* MPX specific bounds table or bounds directory */ 189# define VM_MPX VM_ARCH_2 190#endif 191 192#ifndef VM_GROWSUP 193# define VM_GROWSUP VM_NONE 194#endif 195 196/* Bits set in the VMA until the stack is in its final location */ 197#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 198 199#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 200#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 201#endif 202 203#ifdef CONFIG_STACK_GROWSUP 204#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 205#else 206#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 207#endif 208 209/* 210 * Special vmas that are non-mergable, non-mlock()able. 211 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 212 */ 213#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 214 215/* This mask defines which mm->def_flags a process can inherit its parent */ 216#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 217 218/* This mask is used to clear all the VMA flags used by mlock */ 219#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 220 221/* 222 * mapping from the currently active vm_flags protection bits (the 223 * low four bits) to a page protection mask.. 224 */ 225extern pgprot_t protection_map[16]; 226 227#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 228#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 229#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 230#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 231#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 232#define FAULT_FLAG_TRIED 0x20 /* Second try */ 233#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 234 235/* 236 * vm_fault is filled by the the pagefault handler and passed to the vma's 237 * ->fault function. The vma's ->fault is responsible for returning a bitmask 238 * of VM_FAULT_xxx flags that give details about how the fault was handled. 239 * 240 * MM layer fills up gfp_mask for page allocations but fault handler might 241 * alter it if its implementation requires a different allocation context. 242 * 243 * pgoff should be used in favour of virtual_address, if possible. 244 */ 245struct vm_fault { 246 unsigned int flags; /* FAULT_FLAG_xxx flags */ 247 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 248 pgoff_t pgoff; /* Logical page offset based on vma */ 249 void __user *virtual_address; /* Faulting virtual address */ 250 251 struct page *cow_page; /* Handler may choose to COW */ 252 struct page *page; /* ->fault handlers should return a 253 * page here, unless VM_FAULT_NOPAGE 254 * is set (which is also implied by 255 * VM_FAULT_ERROR). 256 */ 257 /* for ->map_pages() only */ 258 pgoff_t max_pgoff; /* map pages for offset from pgoff till 259 * max_pgoff inclusive */ 260 pte_t *pte; /* pte entry associated with ->pgoff */ 261}; 262 263/* 264 * These are the virtual MM functions - opening of an area, closing and 265 * unmapping it (needed to keep files on disk up-to-date etc), pointer 266 * to the functions called when a no-page or a wp-page exception occurs. 267 */ 268struct vm_operations_struct { 269 void (*open)(struct vm_area_struct * area); 270 void (*close)(struct vm_area_struct * area); 271 int (*mremap)(struct vm_area_struct * area); 272 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 273 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 274 pmd_t *, unsigned int flags); 275 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 276 277 /* notification that a previously read-only page is about to become 278 * writable, if an error is returned it will cause a SIGBUS */ 279 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 280 281 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 282 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 283 284 /* called by access_process_vm when get_user_pages() fails, typically 285 * for use by special VMAs that can switch between memory and hardware 286 */ 287 int (*access)(struct vm_area_struct *vma, unsigned long addr, 288 void *buf, int len, int write); 289 290 /* Called by the /proc/PID/maps code to ask the vma whether it 291 * has a special name. Returning non-NULL will also cause this 292 * vma to be dumped unconditionally. */ 293 const char *(*name)(struct vm_area_struct *vma); 294 295#ifdef CONFIG_NUMA 296 /* 297 * set_policy() op must add a reference to any non-NULL @new mempolicy 298 * to hold the policy upon return. Caller should pass NULL @new to 299 * remove a policy and fall back to surrounding context--i.e. do not 300 * install a MPOL_DEFAULT policy, nor the task or system default 301 * mempolicy. 302 */ 303 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 304 305 /* 306 * get_policy() op must add reference [mpol_get()] to any policy at 307 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 308 * in mm/mempolicy.c will do this automatically. 309 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 310 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 311 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 312 * must return NULL--i.e., do not "fallback" to task or system default 313 * policy. 314 */ 315 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 316 unsigned long addr); 317#endif 318 /* 319 * Called by vm_normal_page() for special PTEs to find the 320 * page for @addr. This is useful if the default behavior 321 * (using pte_page()) would not find the correct page. 322 */ 323 struct page *(*find_special_page)(struct vm_area_struct *vma, 324 unsigned long addr); 325}; 326 327struct mmu_gather; 328struct inode; 329 330#define page_private(page) ((page)->private) 331#define set_page_private(page, v) ((page)->private = (v)) 332 333#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 334static inline int pmd_devmap(pmd_t pmd) 335{ 336 return 0; 337} 338#endif 339 340/* 341 * FIXME: take this include out, include page-flags.h in 342 * files which need it (119 of them) 343 */ 344#include <linux/page-flags.h> 345#include <linux/huge_mm.h> 346 347/* 348 * Methods to modify the page usage count. 349 * 350 * What counts for a page usage: 351 * - cache mapping (page->mapping) 352 * - private data (page->private) 353 * - page mapped in a task's page tables, each mapping 354 * is counted separately 355 * 356 * Also, many kernel routines increase the page count before a critical 357 * routine so they can be sure the page doesn't go away from under them. 358 */ 359 360/* 361 * Drop a ref, return true if the refcount fell to zero (the page has no users) 362 */ 363static inline int put_page_testzero(struct page *page) 364{ 365 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 366 return atomic_dec_and_test(&page->_count); 367} 368 369/* 370 * Try to grab a ref unless the page has a refcount of zero, return false if 371 * that is the case. 372 * This can be called when MMU is off so it must not access 373 * any of the virtual mappings. 374 */ 375static inline int get_page_unless_zero(struct page *page) 376{ 377 return atomic_inc_not_zero(&page->_count); 378} 379 380extern int page_is_ram(unsigned long pfn); 381 382enum { 383 REGION_INTERSECTS, 384 REGION_DISJOINT, 385 REGION_MIXED, 386}; 387 388int region_intersects(resource_size_t offset, size_t size, const char *type); 389 390/* Support for virtually mapped pages */ 391struct page *vmalloc_to_page(const void *addr); 392unsigned long vmalloc_to_pfn(const void *addr); 393 394/* 395 * Determine if an address is within the vmalloc range 396 * 397 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 398 * is no special casing required. 399 */ 400static inline int is_vmalloc_addr(const void *x) 401{ 402#ifdef CONFIG_MMU 403 unsigned long addr = (unsigned long)x; 404 405 return addr >= VMALLOC_START && addr < VMALLOC_END; 406#else 407 return 0; 408#endif 409} 410#ifdef CONFIG_MMU 411extern int is_vmalloc_or_module_addr(const void *x); 412#else 413static inline int is_vmalloc_or_module_addr(const void *x) 414{ 415 return 0; 416} 417#endif 418 419extern void kvfree(const void *addr); 420 421static inline atomic_t *compound_mapcount_ptr(struct page *page) 422{ 423 return &page[1].compound_mapcount; 424} 425 426static inline int compound_mapcount(struct page *page) 427{ 428 if (!PageCompound(page)) 429 return 0; 430 page = compound_head(page); 431 return atomic_read(compound_mapcount_ptr(page)) + 1; 432} 433 434/* 435 * The atomic page->_mapcount, starts from -1: so that transitions 436 * both from it and to it can be tracked, using atomic_inc_and_test 437 * and atomic_add_negative(-1). 438 */ 439static inline void page_mapcount_reset(struct page *page) 440{ 441 atomic_set(&(page)->_mapcount, -1); 442} 443 444int __page_mapcount(struct page *page); 445 446static inline int page_mapcount(struct page *page) 447{ 448 VM_BUG_ON_PAGE(PageSlab(page), page); 449 450 if (unlikely(PageCompound(page))) 451 return __page_mapcount(page); 452 return atomic_read(&page->_mapcount) + 1; 453} 454 455#ifdef CONFIG_TRANSPARENT_HUGEPAGE 456int total_mapcount(struct page *page); 457#else 458static inline int total_mapcount(struct page *page) 459{ 460 return page_mapcount(page); 461} 462#endif 463 464static inline int page_count(struct page *page) 465{ 466 return atomic_read(&compound_head(page)->_count); 467} 468 469static inline struct page *virt_to_head_page(const void *x) 470{ 471 struct page *page = virt_to_page(x); 472 473 return compound_head(page); 474} 475 476/* 477 * Setup the page count before being freed into the page allocator for 478 * the first time (boot or memory hotplug) 479 */ 480static inline void init_page_count(struct page *page) 481{ 482 atomic_set(&page->_count, 1); 483} 484 485void __put_page(struct page *page); 486 487void put_pages_list(struct list_head *pages); 488 489void split_page(struct page *page, unsigned int order); 490int split_free_page(struct page *page); 491 492/* 493 * Compound pages have a destructor function. Provide a 494 * prototype for that function and accessor functions. 495 * These are _only_ valid on the head of a compound page. 496 */ 497typedef void compound_page_dtor(struct page *); 498 499/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 500enum compound_dtor_id { 501 NULL_COMPOUND_DTOR, 502 COMPOUND_PAGE_DTOR, 503#ifdef CONFIG_HUGETLB_PAGE 504 HUGETLB_PAGE_DTOR, 505#endif 506#ifdef CONFIG_TRANSPARENT_HUGEPAGE 507 TRANSHUGE_PAGE_DTOR, 508#endif 509 NR_COMPOUND_DTORS, 510}; 511extern compound_page_dtor * const compound_page_dtors[]; 512 513static inline void set_compound_page_dtor(struct page *page, 514 enum compound_dtor_id compound_dtor) 515{ 516 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 517 page[1].compound_dtor = compound_dtor; 518} 519 520static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 521{ 522 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 523 return compound_page_dtors[page[1].compound_dtor]; 524} 525 526static inline unsigned int compound_order(struct page *page) 527{ 528 if (!PageHead(page)) 529 return 0; 530 return page[1].compound_order; 531} 532 533static inline void set_compound_order(struct page *page, unsigned int order) 534{ 535 page[1].compound_order = order; 536} 537 538void free_compound_page(struct page *page); 539 540#ifdef CONFIG_MMU 541/* 542 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 543 * servicing faults for write access. In the normal case, do always want 544 * pte_mkwrite. But get_user_pages can cause write faults for mappings 545 * that do not have writing enabled, when used by access_process_vm. 546 */ 547static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 548{ 549 if (likely(vma->vm_flags & VM_WRITE)) 550 pte = pte_mkwrite(pte); 551 return pte; 552} 553 554void do_set_pte(struct vm_area_struct *vma, unsigned long address, 555 struct page *page, pte_t *pte, bool write, bool anon); 556#endif 557 558/* 559 * Multiple processes may "see" the same page. E.g. for untouched 560 * mappings of /dev/null, all processes see the same page full of 561 * zeroes, and text pages of executables and shared libraries have 562 * only one copy in memory, at most, normally. 563 * 564 * For the non-reserved pages, page_count(page) denotes a reference count. 565 * page_count() == 0 means the page is free. page->lru is then used for 566 * freelist management in the buddy allocator. 567 * page_count() > 0 means the page has been allocated. 568 * 569 * Pages are allocated by the slab allocator in order to provide memory 570 * to kmalloc and kmem_cache_alloc. In this case, the management of the 571 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 572 * unless a particular usage is carefully commented. (the responsibility of 573 * freeing the kmalloc memory is the caller's, of course). 574 * 575 * A page may be used by anyone else who does a __get_free_page(). 576 * In this case, page_count still tracks the references, and should only 577 * be used through the normal accessor functions. The top bits of page->flags 578 * and page->virtual store page management information, but all other fields 579 * are unused and could be used privately, carefully. The management of this 580 * page is the responsibility of the one who allocated it, and those who have 581 * subsequently been given references to it. 582 * 583 * The other pages (we may call them "pagecache pages") are completely 584 * managed by the Linux memory manager: I/O, buffers, swapping etc. 585 * The following discussion applies only to them. 586 * 587 * A pagecache page contains an opaque `private' member, which belongs to the 588 * page's address_space. Usually, this is the address of a circular list of 589 * the page's disk buffers. PG_private must be set to tell the VM to call 590 * into the filesystem to release these pages. 591 * 592 * A page may belong to an inode's memory mapping. In this case, page->mapping 593 * is the pointer to the inode, and page->index is the file offset of the page, 594 * in units of PAGE_CACHE_SIZE. 595 * 596 * If pagecache pages are not associated with an inode, they are said to be 597 * anonymous pages. These may become associated with the swapcache, and in that 598 * case PG_swapcache is set, and page->private is an offset into the swapcache. 599 * 600 * In either case (swapcache or inode backed), the pagecache itself holds one 601 * reference to the page. Setting PG_private should also increment the 602 * refcount. The each user mapping also has a reference to the page. 603 * 604 * The pagecache pages are stored in a per-mapping radix tree, which is 605 * rooted at mapping->page_tree, and indexed by offset. 606 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 607 * lists, we instead now tag pages as dirty/writeback in the radix tree. 608 * 609 * All pagecache pages may be subject to I/O: 610 * - inode pages may need to be read from disk, 611 * - inode pages which have been modified and are MAP_SHARED may need 612 * to be written back to the inode on disk, 613 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 614 * modified may need to be swapped out to swap space and (later) to be read 615 * back into memory. 616 */ 617 618/* 619 * The zone field is never updated after free_area_init_core() 620 * sets it, so none of the operations on it need to be atomic. 621 */ 622 623/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 624#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 625#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 626#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 627#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 628 629/* 630 * Define the bit shifts to access each section. For non-existent 631 * sections we define the shift as 0; that plus a 0 mask ensures 632 * the compiler will optimise away reference to them. 633 */ 634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 637#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 638 639/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 640#ifdef NODE_NOT_IN_PAGE_FLAGS 641#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 642#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 643 SECTIONS_PGOFF : ZONES_PGOFF) 644#else 645#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 646#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 647 NODES_PGOFF : ZONES_PGOFF) 648#endif 649 650#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 651 652#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 653#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 654#endif 655 656#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 657#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 658#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 659#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 660#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 661 662static inline enum zone_type page_zonenum(const struct page *page) 663{ 664 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 665} 666 667#ifdef CONFIG_ZONE_DEVICE 668void get_zone_device_page(struct page *page); 669void put_zone_device_page(struct page *page); 670static inline bool is_zone_device_page(const struct page *page) 671{ 672 return page_zonenum(page) == ZONE_DEVICE; 673} 674#else 675static inline void get_zone_device_page(struct page *page) 676{ 677} 678static inline void put_zone_device_page(struct page *page) 679{ 680} 681static inline bool is_zone_device_page(const struct page *page) 682{ 683 return false; 684} 685#endif 686 687static inline void get_page(struct page *page) 688{ 689 page = compound_head(page); 690 /* 691 * Getting a normal page or the head of a compound page 692 * requires to already have an elevated page->_count. 693 */ 694 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 695 atomic_inc(&page->_count); 696 697 if (unlikely(is_zone_device_page(page))) 698 get_zone_device_page(page); 699} 700 701static inline void put_page(struct page *page) 702{ 703 page = compound_head(page); 704 705 if (put_page_testzero(page)) 706 __put_page(page); 707 708 if (unlikely(is_zone_device_page(page))) 709 put_zone_device_page(page); 710} 711 712#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 713#define SECTION_IN_PAGE_FLAGS 714#endif 715 716/* 717 * The identification function is mainly used by the buddy allocator for 718 * determining if two pages could be buddies. We are not really identifying 719 * the zone since we could be using the section number id if we do not have 720 * node id available in page flags. 721 * We only guarantee that it will return the same value for two combinable 722 * pages in a zone. 723 */ 724static inline int page_zone_id(struct page *page) 725{ 726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 727} 728 729static inline int zone_to_nid(struct zone *zone) 730{ 731#ifdef CONFIG_NUMA 732 return zone->node; 733#else 734 return 0; 735#endif 736} 737 738#ifdef NODE_NOT_IN_PAGE_FLAGS 739extern int page_to_nid(const struct page *page); 740#else 741static inline int page_to_nid(const struct page *page) 742{ 743 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 744} 745#endif 746 747#ifdef CONFIG_NUMA_BALANCING 748static inline int cpu_pid_to_cpupid(int cpu, int pid) 749{ 750 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 751} 752 753static inline int cpupid_to_pid(int cpupid) 754{ 755 return cpupid & LAST__PID_MASK; 756} 757 758static inline int cpupid_to_cpu(int cpupid) 759{ 760 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 761} 762 763static inline int cpupid_to_nid(int cpupid) 764{ 765 return cpu_to_node(cpupid_to_cpu(cpupid)); 766} 767 768static inline bool cpupid_pid_unset(int cpupid) 769{ 770 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 771} 772 773static inline bool cpupid_cpu_unset(int cpupid) 774{ 775 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 776} 777 778static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 779{ 780 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 781} 782 783#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 784#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 785static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 786{ 787 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 788} 789 790static inline int page_cpupid_last(struct page *page) 791{ 792 return page->_last_cpupid; 793} 794static inline void page_cpupid_reset_last(struct page *page) 795{ 796 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 797} 798#else 799static inline int page_cpupid_last(struct page *page) 800{ 801 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 802} 803 804extern int page_cpupid_xchg_last(struct page *page, int cpupid); 805 806static inline void page_cpupid_reset_last(struct page *page) 807{ 808 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 809 810 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 811 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 812} 813#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 814#else /* !CONFIG_NUMA_BALANCING */ 815static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 816{ 817 return page_to_nid(page); /* XXX */ 818} 819 820static inline int page_cpupid_last(struct page *page) 821{ 822 return page_to_nid(page); /* XXX */ 823} 824 825static inline int cpupid_to_nid(int cpupid) 826{ 827 return -1; 828} 829 830static inline int cpupid_to_pid(int cpupid) 831{ 832 return -1; 833} 834 835static inline int cpupid_to_cpu(int cpupid) 836{ 837 return -1; 838} 839 840static inline int cpu_pid_to_cpupid(int nid, int pid) 841{ 842 return -1; 843} 844 845static inline bool cpupid_pid_unset(int cpupid) 846{ 847 return 1; 848} 849 850static inline void page_cpupid_reset_last(struct page *page) 851{ 852} 853 854static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 855{ 856 return false; 857} 858#endif /* CONFIG_NUMA_BALANCING */ 859 860static inline struct zone *page_zone(const struct page *page) 861{ 862 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 863} 864 865#ifdef SECTION_IN_PAGE_FLAGS 866static inline void set_page_section(struct page *page, unsigned long section) 867{ 868 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 869 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 870} 871 872static inline unsigned long page_to_section(const struct page *page) 873{ 874 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 875} 876#endif 877 878static inline void set_page_zone(struct page *page, enum zone_type zone) 879{ 880 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 881 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 882} 883 884static inline void set_page_node(struct page *page, unsigned long node) 885{ 886 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 887 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 888} 889 890static inline void set_page_links(struct page *page, enum zone_type zone, 891 unsigned long node, unsigned long pfn) 892{ 893 set_page_zone(page, zone); 894 set_page_node(page, node); 895#ifdef SECTION_IN_PAGE_FLAGS 896 set_page_section(page, pfn_to_section_nr(pfn)); 897#endif 898} 899 900#ifdef CONFIG_MEMCG 901static inline struct mem_cgroup *page_memcg(struct page *page) 902{ 903 return page->mem_cgroup; 904} 905 906static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 907{ 908 page->mem_cgroup = memcg; 909} 910#else 911static inline struct mem_cgroup *page_memcg(struct page *page) 912{ 913 return NULL; 914} 915 916static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 917{ 918} 919#endif 920 921/* 922 * Some inline functions in vmstat.h depend on page_zone() 923 */ 924#include <linux/vmstat.h> 925 926static __always_inline void *lowmem_page_address(const struct page *page) 927{ 928 return __va(PFN_PHYS(page_to_pfn(page))); 929} 930 931#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 932#define HASHED_PAGE_VIRTUAL 933#endif 934 935#if defined(WANT_PAGE_VIRTUAL) 936static inline void *page_address(const struct page *page) 937{ 938 return page->virtual; 939} 940static inline void set_page_address(struct page *page, void *address) 941{ 942 page->virtual = address; 943} 944#define page_address_init() do { } while(0) 945#endif 946 947#if defined(HASHED_PAGE_VIRTUAL) 948void *page_address(const struct page *page); 949void set_page_address(struct page *page, void *virtual); 950void page_address_init(void); 951#endif 952 953#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 954#define page_address(page) lowmem_page_address(page) 955#define set_page_address(page, address) do { } while(0) 956#define page_address_init() do { } while(0) 957#endif 958 959extern void *page_rmapping(struct page *page); 960extern struct anon_vma *page_anon_vma(struct page *page); 961extern struct address_space *page_mapping(struct page *page); 962 963extern struct address_space *__page_file_mapping(struct page *); 964 965static inline 966struct address_space *page_file_mapping(struct page *page) 967{ 968 if (unlikely(PageSwapCache(page))) 969 return __page_file_mapping(page); 970 971 return page->mapping; 972} 973 974/* 975 * Return the pagecache index of the passed page. Regular pagecache pages 976 * use ->index whereas swapcache pages use ->private 977 */ 978static inline pgoff_t page_index(struct page *page) 979{ 980 if (unlikely(PageSwapCache(page))) 981 return page_private(page); 982 return page->index; 983} 984 985extern pgoff_t __page_file_index(struct page *page); 986 987/* 988 * Return the file index of the page. Regular pagecache pages use ->index 989 * whereas swapcache pages use swp_offset(->private) 990 */ 991static inline pgoff_t page_file_index(struct page *page) 992{ 993 if (unlikely(PageSwapCache(page))) 994 return __page_file_index(page); 995 996 return page->index; 997} 998 999/* 1000 * Return true if this page is mapped into pagetables. 1001 * For compound page it returns true if any subpage of compound page is mapped. 1002 */ 1003static inline bool page_mapped(struct page *page) 1004{ 1005 int i; 1006 if (likely(!PageCompound(page))) 1007 return atomic_read(&page->_mapcount) >= 0; 1008 page = compound_head(page); 1009 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1010 return true; 1011 for (i = 0; i < hpage_nr_pages(page); i++) { 1012 if (atomic_read(&page[i]._mapcount) >= 0) 1013 return true; 1014 } 1015 return false; 1016} 1017 1018/* 1019 * Return true only if the page has been allocated with 1020 * ALLOC_NO_WATERMARKS and the low watermark was not 1021 * met implying that the system is under some pressure. 1022 */ 1023static inline bool page_is_pfmemalloc(struct page *page) 1024{ 1025 /* 1026 * Page index cannot be this large so this must be 1027 * a pfmemalloc page. 1028 */ 1029 return page->index == -1UL; 1030} 1031 1032/* 1033 * Only to be called by the page allocator on a freshly allocated 1034 * page. 1035 */ 1036static inline void set_page_pfmemalloc(struct page *page) 1037{ 1038 page->index = -1UL; 1039} 1040 1041static inline void clear_page_pfmemalloc(struct page *page) 1042{ 1043 page->index = 0; 1044} 1045 1046/* 1047 * Different kinds of faults, as returned by handle_mm_fault(). 1048 * Used to decide whether a process gets delivered SIGBUS or 1049 * just gets major/minor fault counters bumped up. 1050 */ 1051 1052#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1053 1054#define VM_FAULT_OOM 0x0001 1055#define VM_FAULT_SIGBUS 0x0002 1056#define VM_FAULT_MAJOR 0x0004 1057#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1058#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1059#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1060#define VM_FAULT_SIGSEGV 0x0040 1061 1062#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1063#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1064#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1065#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1066 1067#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1068 1069#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1070 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1071 VM_FAULT_FALLBACK) 1072 1073/* Encode hstate index for a hwpoisoned large page */ 1074#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1075#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1076 1077/* 1078 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1079 */ 1080extern void pagefault_out_of_memory(void); 1081 1082#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1083 1084/* 1085 * Flags passed to show_mem() and show_free_areas() to suppress output in 1086 * various contexts. 1087 */ 1088#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1089 1090extern void show_free_areas(unsigned int flags); 1091extern bool skip_free_areas_node(unsigned int flags, int nid); 1092 1093int shmem_zero_setup(struct vm_area_struct *); 1094#ifdef CONFIG_SHMEM 1095bool shmem_mapping(struct address_space *mapping); 1096#else 1097static inline bool shmem_mapping(struct address_space *mapping) 1098{ 1099 return false; 1100} 1101#endif 1102 1103extern bool can_do_mlock(void); 1104extern int user_shm_lock(size_t, struct user_struct *); 1105extern void user_shm_unlock(size_t, struct user_struct *); 1106 1107/* 1108 * Parameter block passed down to zap_pte_range in exceptional cases. 1109 */ 1110struct zap_details { 1111 struct address_space *check_mapping; /* Check page->mapping if set */ 1112 pgoff_t first_index; /* Lowest page->index to unmap */ 1113 pgoff_t last_index; /* Highest page->index to unmap */ 1114}; 1115 1116struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1117 pte_t pte); 1118 1119int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1120 unsigned long size); 1121void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1122 unsigned long size, struct zap_details *); 1123void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1124 unsigned long start, unsigned long end); 1125 1126/** 1127 * mm_walk - callbacks for walk_page_range 1128 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1129 * this handler is required to be able to handle 1130 * pmd_trans_huge() pmds. They may simply choose to 1131 * split_huge_page() instead of handling it explicitly. 1132 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1133 * @pte_hole: if set, called for each hole at all levels 1134 * @hugetlb_entry: if set, called for each hugetlb entry 1135 * @test_walk: caller specific callback function to determine whether 1136 * we walk over the current vma or not. A positive returned 1137 * value means "do page table walk over the current vma," 1138 * and a negative one means "abort current page table walk 1139 * right now." 0 means "skip the current vma." 1140 * @mm: mm_struct representing the target process of page table walk 1141 * @vma: vma currently walked (NULL if walking outside vmas) 1142 * @private: private data for callbacks' usage 1143 * 1144 * (see the comment on walk_page_range() for more details) 1145 */ 1146struct mm_walk { 1147 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1148 unsigned long next, struct mm_walk *walk); 1149 int (*pte_entry)(pte_t *pte, unsigned long addr, 1150 unsigned long next, struct mm_walk *walk); 1151 int (*pte_hole)(unsigned long addr, unsigned long next, 1152 struct mm_walk *walk); 1153 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1154 unsigned long addr, unsigned long next, 1155 struct mm_walk *walk); 1156 int (*test_walk)(unsigned long addr, unsigned long next, 1157 struct mm_walk *walk); 1158 struct mm_struct *mm; 1159 struct vm_area_struct *vma; 1160 void *private; 1161}; 1162 1163int walk_page_range(unsigned long addr, unsigned long end, 1164 struct mm_walk *walk); 1165int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1166void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1167 unsigned long end, unsigned long floor, unsigned long ceiling); 1168int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1169 struct vm_area_struct *vma); 1170void unmap_mapping_range(struct address_space *mapping, 1171 loff_t const holebegin, loff_t const holelen, int even_cows); 1172int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1173 unsigned long *pfn); 1174int follow_phys(struct vm_area_struct *vma, unsigned long address, 1175 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1176int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1177 void *buf, int len, int write); 1178 1179static inline void unmap_shared_mapping_range(struct address_space *mapping, 1180 loff_t const holebegin, loff_t const holelen) 1181{ 1182 unmap_mapping_range(mapping, holebegin, holelen, 0); 1183} 1184 1185extern void truncate_pagecache(struct inode *inode, loff_t new); 1186extern void truncate_setsize(struct inode *inode, loff_t newsize); 1187void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1188void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1189int truncate_inode_page(struct address_space *mapping, struct page *page); 1190int generic_error_remove_page(struct address_space *mapping, struct page *page); 1191int invalidate_inode_page(struct page *page); 1192 1193#ifdef CONFIG_MMU 1194extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1195 unsigned long address, unsigned int flags); 1196extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1197 unsigned long address, unsigned int fault_flags, 1198 bool *unlocked); 1199#else 1200static inline int handle_mm_fault(struct mm_struct *mm, 1201 struct vm_area_struct *vma, unsigned long address, 1202 unsigned int flags) 1203{ 1204 /* should never happen if there's no MMU */ 1205 BUG(); 1206 return VM_FAULT_SIGBUS; 1207} 1208static inline int fixup_user_fault(struct task_struct *tsk, 1209 struct mm_struct *mm, unsigned long address, 1210 unsigned int fault_flags, bool *unlocked) 1211{ 1212 /* should never happen if there's no MMU */ 1213 BUG(); 1214 return -EFAULT; 1215} 1216#endif 1217 1218extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1219extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1220 void *buf, int len, int write); 1221 1222long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1223 unsigned long start, unsigned long nr_pages, 1224 unsigned int foll_flags, struct page **pages, 1225 struct vm_area_struct **vmas, int *nonblocking); 1226long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1227 unsigned long start, unsigned long nr_pages, 1228 int write, int force, struct page **pages, 1229 struct vm_area_struct **vmas); 1230long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1231 unsigned long start, unsigned long nr_pages, 1232 int write, int force, struct page **pages, 1233 int *locked); 1234long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1235 unsigned long start, unsigned long nr_pages, 1236 int write, int force, struct page **pages, 1237 unsigned int gup_flags); 1238long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1239 unsigned long start, unsigned long nr_pages, 1240 int write, int force, struct page **pages); 1241int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1242 struct page **pages); 1243 1244/* Container for pinned pfns / pages */ 1245struct frame_vector { 1246 unsigned int nr_allocated; /* Number of frames we have space for */ 1247 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1248 bool got_ref; /* Did we pin pages by getting page ref? */ 1249 bool is_pfns; /* Does array contain pages or pfns? */ 1250 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1251 * pfns_vector_pages() or pfns_vector_pfns() 1252 * for access */ 1253}; 1254 1255struct frame_vector *frame_vector_create(unsigned int nr_frames); 1256void frame_vector_destroy(struct frame_vector *vec); 1257int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1258 bool write, bool force, struct frame_vector *vec); 1259void put_vaddr_frames(struct frame_vector *vec); 1260int frame_vector_to_pages(struct frame_vector *vec); 1261void frame_vector_to_pfns(struct frame_vector *vec); 1262 1263static inline unsigned int frame_vector_count(struct frame_vector *vec) 1264{ 1265 return vec->nr_frames; 1266} 1267 1268static inline struct page **frame_vector_pages(struct frame_vector *vec) 1269{ 1270 if (vec->is_pfns) { 1271 int err = frame_vector_to_pages(vec); 1272 1273 if (err) 1274 return ERR_PTR(err); 1275 } 1276 return (struct page **)(vec->ptrs); 1277} 1278 1279static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1280{ 1281 if (!vec->is_pfns) 1282 frame_vector_to_pfns(vec); 1283 return (unsigned long *)(vec->ptrs); 1284} 1285 1286struct kvec; 1287int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1288 struct page **pages); 1289int get_kernel_page(unsigned long start, int write, struct page **pages); 1290struct page *get_dump_page(unsigned long addr); 1291 1292extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1293extern void do_invalidatepage(struct page *page, unsigned int offset, 1294 unsigned int length); 1295 1296int __set_page_dirty_nobuffers(struct page *page); 1297int __set_page_dirty_no_writeback(struct page *page); 1298int redirty_page_for_writepage(struct writeback_control *wbc, 1299 struct page *page); 1300void account_page_dirtied(struct page *page, struct address_space *mapping, 1301 struct mem_cgroup *memcg); 1302void account_page_cleaned(struct page *page, struct address_space *mapping, 1303 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1304int set_page_dirty(struct page *page); 1305int set_page_dirty_lock(struct page *page); 1306void cancel_dirty_page(struct page *page); 1307int clear_page_dirty_for_io(struct page *page); 1308 1309int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1310 1311/* Is the vma a continuation of the stack vma above it? */ 1312static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1313{ 1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1315} 1316 1317static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1318{ 1319 return !vma->vm_ops; 1320} 1321 1322static inline int stack_guard_page_start(struct vm_area_struct *vma, 1323 unsigned long addr) 1324{ 1325 return (vma->vm_flags & VM_GROWSDOWN) && 1326 (vma->vm_start == addr) && 1327 !vma_growsdown(vma->vm_prev, addr); 1328} 1329 1330/* Is the vma a continuation of the stack vma below it? */ 1331static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1332{ 1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1334} 1335 1336static inline int stack_guard_page_end(struct vm_area_struct *vma, 1337 unsigned long addr) 1338{ 1339 return (vma->vm_flags & VM_GROWSUP) && 1340 (vma->vm_end == addr) && 1341 !vma_growsup(vma->vm_next, addr); 1342} 1343 1344extern struct task_struct *task_of_stack(struct task_struct *task, 1345 struct vm_area_struct *vma, bool in_group); 1346 1347extern unsigned long move_page_tables(struct vm_area_struct *vma, 1348 unsigned long old_addr, struct vm_area_struct *new_vma, 1349 unsigned long new_addr, unsigned long len, 1350 bool need_rmap_locks); 1351extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1352 unsigned long end, pgprot_t newprot, 1353 int dirty_accountable, int prot_numa); 1354extern int mprotect_fixup(struct vm_area_struct *vma, 1355 struct vm_area_struct **pprev, unsigned long start, 1356 unsigned long end, unsigned long newflags); 1357 1358/* 1359 * doesn't attempt to fault and will return short. 1360 */ 1361int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1362 struct page **pages); 1363/* 1364 * per-process(per-mm_struct) statistics. 1365 */ 1366static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1367{ 1368 long val = atomic_long_read(&mm->rss_stat.count[member]); 1369 1370#ifdef SPLIT_RSS_COUNTING 1371 /* 1372 * counter is updated in asynchronous manner and may go to minus. 1373 * But it's never be expected number for users. 1374 */ 1375 if (val < 0) 1376 val = 0; 1377#endif 1378 return (unsigned long)val; 1379} 1380 1381static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1382{ 1383 atomic_long_add(value, &mm->rss_stat.count[member]); 1384} 1385 1386static inline void inc_mm_counter(struct mm_struct *mm, int member) 1387{ 1388 atomic_long_inc(&mm->rss_stat.count[member]); 1389} 1390 1391static inline void dec_mm_counter(struct mm_struct *mm, int member) 1392{ 1393 atomic_long_dec(&mm->rss_stat.count[member]); 1394} 1395 1396/* Optimized variant when page is already known not to be PageAnon */ 1397static inline int mm_counter_file(struct page *page) 1398{ 1399 if (PageSwapBacked(page)) 1400 return MM_SHMEMPAGES; 1401 return MM_FILEPAGES; 1402} 1403 1404static inline int mm_counter(struct page *page) 1405{ 1406 if (PageAnon(page)) 1407 return MM_ANONPAGES; 1408 return mm_counter_file(page); 1409} 1410 1411static inline unsigned long get_mm_rss(struct mm_struct *mm) 1412{ 1413 return get_mm_counter(mm, MM_FILEPAGES) + 1414 get_mm_counter(mm, MM_ANONPAGES) + 1415 get_mm_counter(mm, MM_SHMEMPAGES); 1416} 1417 1418static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1419{ 1420 return max(mm->hiwater_rss, get_mm_rss(mm)); 1421} 1422 1423static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1424{ 1425 return max(mm->hiwater_vm, mm->total_vm); 1426} 1427 1428static inline void update_hiwater_rss(struct mm_struct *mm) 1429{ 1430 unsigned long _rss = get_mm_rss(mm); 1431 1432 if ((mm)->hiwater_rss < _rss) 1433 (mm)->hiwater_rss = _rss; 1434} 1435 1436static inline void update_hiwater_vm(struct mm_struct *mm) 1437{ 1438 if (mm->hiwater_vm < mm->total_vm) 1439 mm->hiwater_vm = mm->total_vm; 1440} 1441 1442static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1443{ 1444 mm->hiwater_rss = get_mm_rss(mm); 1445} 1446 1447static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1448 struct mm_struct *mm) 1449{ 1450 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1451 1452 if (*maxrss < hiwater_rss) 1453 *maxrss = hiwater_rss; 1454} 1455 1456#if defined(SPLIT_RSS_COUNTING) 1457void sync_mm_rss(struct mm_struct *mm); 1458#else 1459static inline void sync_mm_rss(struct mm_struct *mm) 1460{ 1461} 1462#endif 1463 1464#ifndef __HAVE_ARCH_PTE_DEVMAP 1465static inline int pte_devmap(pte_t pte) 1466{ 1467 return 0; 1468} 1469#endif 1470 1471int vma_wants_writenotify(struct vm_area_struct *vma); 1472 1473extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1474 spinlock_t **ptl); 1475static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1476 spinlock_t **ptl) 1477{ 1478 pte_t *ptep; 1479 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1480 return ptep; 1481} 1482 1483#ifdef __PAGETABLE_PUD_FOLDED 1484static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1485 unsigned long address) 1486{ 1487 return 0; 1488} 1489#else 1490int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1491#endif 1492 1493#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1494static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1495 unsigned long address) 1496{ 1497 return 0; 1498} 1499 1500static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1501 1502static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1503{ 1504 return 0; 1505} 1506 1507static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1508static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1509 1510#else 1511int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1512 1513static inline void mm_nr_pmds_init(struct mm_struct *mm) 1514{ 1515 atomic_long_set(&mm->nr_pmds, 0); 1516} 1517 1518static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1519{ 1520 return atomic_long_read(&mm->nr_pmds); 1521} 1522 1523static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1524{ 1525 atomic_long_inc(&mm->nr_pmds); 1526} 1527 1528static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1529{ 1530 atomic_long_dec(&mm->nr_pmds); 1531} 1532#endif 1533 1534int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1535 pmd_t *pmd, unsigned long address); 1536int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1537 1538/* 1539 * The following ifdef needed to get the 4level-fixup.h header to work. 1540 * Remove it when 4level-fixup.h has been removed. 1541 */ 1542#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1543static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1544{ 1545 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1546 NULL: pud_offset(pgd, address); 1547} 1548 1549static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1550{ 1551 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1552 NULL: pmd_offset(pud, address); 1553} 1554#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1555 1556#if USE_SPLIT_PTE_PTLOCKS 1557#if ALLOC_SPLIT_PTLOCKS 1558void __init ptlock_cache_init(void); 1559extern bool ptlock_alloc(struct page *page); 1560extern void ptlock_free(struct page *page); 1561 1562static inline spinlock_t *ptlock_ptr(struct page *page) 1563{ 1564 return page->ptl; 1565} 1566#else /* ALLOC_SPLIT_PTLOCKS */ 1567static inline void ptlock_cache_init(void) 1568{ 1569} 1570 1571static inline bool ptlock_alloc(struct page *page) 1572{ 1573 return true; 1574} 1575 1576static inline void ptlock_free(struct page *page) 1577{ 1578} 1579 1580static inline spinlock_t *ptlock_ptr(struct page *page) 1581{ 1582 return &page->ptl; 1583} 1584#endif /* ALLOC_SPLIT_PTLOCKS */ 1585 1586static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1587{ 1588 return ptlock_ptr(pmd_page(*pmd)); 1589} 1590 1591static inline bool ptlock_init(struct page *page) 1592{ 1593 /* 1594 * prep_new_page() initialize page->private (and therefore page->ptl) 1595 * with 0. Make sure nobody took it in use in between. 1596 * 1597 * It can happen if arch try to use slab for page table allocation: 1598 * slab code uses page->slab_cache, which share storage with page->ptl. 1599 */ 1600 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1601 if (!ptlock_alloc(page)) 1602 return false; 1603 spin_lock_init(ptlock_ptr(page)); 1604 return true; 1605} 1606 1607/* Reset page->mapping so free_pages_check won't complain. */ 1608static inline void pte_lock_deinit(struct page *page) 1609{ 1610 page->mapping = NULL; 1611 ptlock_free(page); 1612} 1613 1614#else /* !USE_SPLIT_PTE_PTLOCKS */ 1615/* 1616 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1617 */ 1618static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1619{ 1620 return &mm->page_table_lock; 1621} 1622static inline void ptlock_cache_init(void) {} 1623static inline bool ptlock_init(struct page *page) { return true; } 1624static inline void pte_lock_deinit(struct page *page) {} 1625#endif /* USE_SPLIT_PTE_PTLOCKS */ 1626 1627static inline void pgtable_init(void) 1628{ 1629 ptlock_cache_init(); 1630 pgtable_cache_init(); 1631} 1632 1633static inline bool pgtable_page_ctor(struct page *page) 1634{ 1635 if (!ptlock_init(page)) 1636 return false; 1637 inc_zone_page_state(page, NR_PAGETABLE); 1638 return true; 1639} 1640 1641static inline void pgtable_page_dtor(struct page *page) 1642{ 1643 pte_lock_deinit(page); 1644 dec_zone_page_state(page, NR_PAGETABLE); 1645} 1646 1647#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1648({ \ 1649 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1650 pte_t *__pte = pte_offset_map(pmd, address); \ 1651 *(ptlp) = __ptl; \ 1652 spin_lock(__ptl); \ 1653 __pte; \ 1654}) 1655 1656#define pte_unmap_unlock(pte, ptl) do { \ 1657 spin_unlock(ptl); \ 1658 pte_unmap(pte); \ 1659} while (0) 1660 1661#define pte_alloc_map(mm, vma, pmd, address) \ 1662 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1663 pmd, address))? \ 1664 NULL: pte_offset_map(pmd, address)) 1665 1666#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1667 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1668 pmd, address))? \ 1669 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1670 1671#define pte_alloc_kernel(pmd, address) \ 1672 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1673 NULL: pte_offset_kernel(pmd, address)) 1674 1675#if USE_SPLIT_PMD_PTLOCKS 1676 1677static struct page *pmd_to_page(pmd_t *pmd) 1678{ 1679 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1680 return virt_to_page((void *)((unsigned long) pmd & mask)); 1681} 1682 1683static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1684{ 1685 return ptlock_ptr(pmd_to_page(pmd)); 1686} 1687 1688static inline bool pgtable_pmd_page_ctor(struct page *page) 1689{ 1690#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1691 page->pmd_huge_pte = NULL; 1692#endif 1693 return ptlock_init(page); 1694} 1695 1696static inline void pgtable_pmd_page_dtor(struct page *page) 1697{ 1698#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1699 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1700#endif 1701 ptlock_free(page); 1702} 1703 1704#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1705 1706#else 1707 1708static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1709{ 1710 return &mm->page_table_lock; 1711} 1712 1713static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1714static inline void pgtable_pmd_page_dtor(struct page *page) {} 1715 1716#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1717 1718#endif 1719 1720static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1721{ 1722 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1723 spin_lock(ptl); 1724 return ptl; 1725} 1726 1727extern void free_area_init(unsigned long * zones_size); 1728extern void free_area_init_node(int nid, unsigned long * zones_size, 1729 unsigned long zone_start_pfn, unsigned long *zholes_size); 1730extern void free_initmem(void); 1731 1732/* 1733 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1734 * into the buddy system. The freed pages will be poisoned with pattern 1735 * "poison" if it's within range [0, UCHAR_MAX]. 1736 * Return pages freed into the buddy system. 1737 */ 1738extern unsigned long free_reserved_area(void *start, void *end, 1739 int poison, char *s); 1740 1741#ifdef CONFIG_HIGHMEM 1742/* 1743 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1744 * and totalram_pages. 1745 */ 1746extern void free_highmem_page(struct page *page); 1747#endif 1748 1749extern void adjust_managed_page_count(struct page *page, long count); 1750extern void mem_init_print_info(const char *str); 1751 1752extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1753 1754/* Free the reserved page into the buddy system, so it gets managed. */ 1755static inline void __free_reserved_page(struct page *page) 1756{ 1757 ClearPageReserved(page); 1758 init_page_count(page); 1759 __free_page(page); 1760} 1761 1762static inline void free_reserved_page(struct page *page) 1763{ 1764 __free_reserved_page(page); 1765 adjust_managed_page_count(page, 1); 1766} 1767 1768static inline void mark_page_reserved(struct page *page) 1769{ 1770 SetPageReserved(page); 1771 adjust_managed_page_count(page, -1); 1772} 1773 1774/* 1775 * Default method to free all the __init memory into the buddy system. 1776 * The freed pages will be poisoned with pattern "poison" if it's within 1777 * range [0, UCHAR_MAX]. 1778 * Return pages freed into the buddy system. 1779 */ 1780static inline unsigned long free_initmem_default(int poison) 1781{ 1782 extern char __init_begin[], __init_end[]; 1783 1784 return free_reserved_area(&__init_begin, &__init_end, 1785 poison, "unused kernel"); 1786} 1787 1788static inline unsigned long get_num_physpages(void) 1789{ 1790 int nid; 1791 unsigned long phys_pages = 0; 1792 1793 for_each_online_node(nid) 1794 phys_pages += node_present_pages(nid); 1795 1796 return phys_pages; 1797} 1798 1799#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1800/* 1801 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1802 * zones, allocate the backing mem_map and account for memory holes in a more 1803 * architecture independent manner. This is a substitute for creating the 1804 * zone_sizes[] and zholes_size[] arrays and passing them to 1805 * free_area_init_node() 1806 * 1807 * An architecture is expected to register range of page frames backed by 1808 * physical memory with memblock_add[_node]() before calling 1809 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1810 * usage, an architecture is expected to do something like 1811 * 1812 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1813 * max_highmem_pfn}; 1814 * for_each_valid_physical_page_range() 1815 * memblock_add_node(base, size, nid) 1816 * free_area_init_nodes(max_zone_pfns); 1817 * 1818 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1819 * registered physical page range. Similarly 1820 * sparse_memory_present_with_active_regions() calls memory_present() for 1821 * each range when SPARSEMEM is enabled. 1822 * 1823 * See mm/page_alloc.c for more information on each function exposed by 1824 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1825 */ 1826extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1827unsigned long node_map_pfn_alignment(void); 1828unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1829 unsigned long end_pfn); 1830extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1831 unsigned long end_pfn); 1832extern void get_pfn_range_for_nid(unsigned int nid, 1833 unsigned long *start_pfn, unsigned long *end_pfn); 1834extern unsigned long find_min_pfn_with_active_regions(void); 1835extern void free_bootmem_with_active_regions(int nid, 1836 unsigned long max_low_pfn); 1837extern void sparse_memory_present_with_active_regions(int nid); 1838 1839#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1840 1841#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1842 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1843static inline int __early_pfn_to_nid(unsigned long pfn, 1844 struct mminit_pfnnid_cache *state) 1845{ 1846 return 0; 1847} 1848#else 1849/* please see mm/page_alloc.c */ 1850extern int __meminit early_pfn_to_nid(unsigned long pfn); 1851/* there is a per-arch backend function. */ 1852extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1853 struct mminit_pfnnid_cache *state); 1854#endif 1855 1856extern void set_dma_reserve(unsigned long new_dma_reserve); 1857extern void memmap_init_zone(unsigned long, int, unsigned long, 1858 unsigned long, enum memmap_context); 1859extern void setup_per_zone_wmarks(void); 1860extern int __meminit init_per_zone_wmark_min(void); 1861extern void mem_init(void); 1862extern void __init mmap_init(void); 1863extern void show_mem(unsigned int flags); 1864extern void si_meminfo(struct sysinfo * val); 1865extern void si_meminfo_node(struct sysinfo *val, int nid); 1866 1867extern __printf(3, 4) 1868void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1869 const char *fmt, ...); 1870 1871extern void setup_per_cpu_pageset(void); 1872 1873extern void zone_pcp_update(struct zone *zone); 1874extern void zone_pcp_reset(struct zone *zone); 1875 1876/* page_alloc.c */ 1877extern int min_free_kbytes; 1878 1879/* nommu.c */ 1880extern atomic_long_t mmap_pages_allocated; 1881extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1882 1883/* interval_tree.c */ 1884void vma_interval_tree_insert(struct vm_area_struct *node, 1885 struct rb_root *root); 1886void vma_interval_tree_insert_after(struct vm_area_struct *node, 1887 struct vm_area_struct *prev, 1888 struct rb_root *root); 1889void vma_interval_tree_remove(struct vm_area_struct *node, 1890 struct rb_root *root); 1891struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1892 unsigned long start, unsigned long last); 1893struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1894 unsigned long start, unsigned long last); 1895 1896#define vma_interval_tree_foreach(vma, root, start, last) \ 1897 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1898 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1899 1900void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1901 struct rb_root *root); 1902void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1903 struct rb_root *root); 1904struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1905 struct rb_root *root, unsigned long start, unsigned long last); 1906struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1907 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1908#ifdef CONFIG_DEBUG_VM_RB 1909void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1910#endif 1911 1912#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1913 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1914 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1915 1916/* mmap.c */ 1917extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1918extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1919 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1920extern struct vm_area_struct *vma_merge(struct mm_struct *, 1921 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1922 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1923 struct mempolicy *, struct vm_userfaultfd_ctx); 1924extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1925extern int split_vma(struct mm_struct *, 1926 struct vm_area_struct *, unsigned long addr, int new_below); 1927extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1928extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1929 struct rb_node **, struct rb_node *); 1930extern void unlink_file_vma(struct vm_area_struct *); 1931extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1932 unsigned long addr, unsigned long len, pgoff_t pgoff, 1933 bool *need_rmap_locks); 1934extern void exit_mmap(struct mm_struct *); 1935 1936static inline int check_data_rlimit(unsigned long rlim, 1937 unsigned long new, 1938 unsigned long start, 1939 unsigned long end_data, 1940 unsigned long start_data) 1941{ 1942 if (rlim < RLIM_INFINITY) { 1943 if (((new - start) + (end_data - start_data)) > rlim) 1944 return -ENOSPC; 1945 } 1946 1947 return 0; 1948} 1949 1950extern int mm_take_all_locks(struct mm_struct *mm); 1951extern void mm_drop_all_locks(struct mm_struct *mm); 1952 1953extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1954extern struct file *get_mm_exe_file(struct mm_struct *mm); 1955 1956extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1957extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1958 1959extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1960 unsigned long addr, unsigned long len, 1961 unsigned long flags, 1962 const struct vm_special_mapping *spec); 1963/* This is an obsolete alternative to _install_special_mapping. */ 1964extern int install_special_mapping(struct mm_struct *mm, 1965 unsigned long addr, unsigned long len, 1966 unsigned long flags, struct page **pages); 1967 1968extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1969 1970extern unsigned long mmap_region(struct file *file, unsigned long addr, 1971 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1972extern unsigned long do_mmap(struct file *file, unsigned long addr, 1973 unsigned long len, unsigned long prot, unsigned long flags, 1974 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1975extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1976 1977static inline unsigned long 1978do_mmap_pgoff(struct file *file, unsigned long addr, 1979 unsigned long len, unsigned long prot, unsigned long flags, 1980 unsigned long pgoff, unsigned long *populate) 1981{ 1982 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1983} 1984 1985#ifdef CONFIG_MMU 1986extern int __mm_populate(unsigned long addr, unsigned long len, 1987 int ignore_errors); 1988static inline void mm_populate(unsigned long addr, unsigned long len) 1989{ 1990 /* Ignore errors */ 1991 (void) __mm_populate(addr, len, 1); 1992} 1993#else 1994static inline void mm_populate(unsigned long addr, unsigned long len) {} 1995#endif 1996 1997/* These take the mm semaphore themselves */ 1998extern unsigned long vm_brk(unsigned long, unsigned long); 1999extern int vm_munmap(unsigned long, size_t); 2000extern unsigned long vm_mmap(struct file *, unsigned long, 2001 unsigned long, unsigned long, 2002 unsigned long, unsigned long); 2003 2004struct vm_unmapped_area_info { 2005#define VM_UNMAPPED_AREA_TOPDOWN 1 2006 unsigned long flags; 2007 unsigned long length; 2008 unsigned long low_limit; 2009 unsigned long high_limit; 2010 unsigned long align_mask; 2011 unsigned long align_offset; 2012}; 2013 2014extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2015extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2016 2017/* 2018 * Search for an unmapped address range. 2019 * 2020 * We are looking for a range that: 2021 * - does not intersect with any VMA; 2022 * - is contained within the [low_limit, high_limit) interval; 2023 * - is at least the desired size. 2024 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2025 */ 2026static inline unsigned long 2027vm_unmapped_area(struct vm_unmapped_area_info *info) 2028{ 2029 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2030 return unmapped_area_topdown(info); 2031 else 2032 return unmapped_area(info); 2033} 2034 2035/* truncate.c */ 2036extern void truncate_inode_pages(struct address_space *, loff_t); 2037extern void truncate_inode_pages_range(struct address_space *, 2038 loff_t lstart, loff_t lend); 2039extern void truncate_inode_pages_final(struct address_space *); 2040 2041/* generic vm_area_ops exported for stackable file systems */ 2042extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2043extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2044extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2045 2046/* mm/page-writeback.c */ 2047int write_one_page(struct page *page, int wait); 2048void task_dirty_inc(struct task_struct *tsk); 2049 2050/* readahead.c */ 2051#define VM_MAX_READAHEAD 128 /* kbytes */ 2052#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2053 2054int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2055 pgoff_t offset, unsigned long nr_to_read); 2056 2057void page_cache_sync_readahead(struct address_space *mapping, 2058 struct file_ra_state *ra, 2059 struct file *filp, 2060 pgoff_t offset, 2061 unsigned long size); 2062 2063void page_cache_async_readahead(struct address_space *mapping, 2064 struct file_ra_state *ra, 2065 struct file *filp, 2066 struct page *pg, 2067 pgoff_t offset, 2068 unsigned long size); 2069 2070/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2071extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2072 2073/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2074extern int expand_downwards(struct vm_area_struct *vma, 2075 unsigned long address); 2076#if VM_GROWSUP 2077extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2078#else 2079 #define expand_upwards(vma, address) (0) 2080#endif 2081 2082/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2083extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2084extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2085 struct vm_area_struct **pprev); 2086 2087/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2088 NULL if none. Assume start_addr < end_addr. */ 2089static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2090{ 2091 struct vm_area_struct * vma = find_vma(mm,start_addr); 2092 2093 if (vma && end_addr <= vma->vm_start) 2094 vma = NULL; 2095 return vma; 2096} 2097 2098static inline unsigned long vma_pages(struct vm_area_struct *vma) 2099{ 2100 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2101} 2102 2103/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2104static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2105 unsigned long vm_start, unsigned long vm_end) 2106{ 2107 struct vm_area_struct *vma = find_vma(mm, vm_start); 2108 2109 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2110 vma = NULL; 2111 2112 return vma; 2113} 2114 2115#ifdef CONFIG_MMU 2116pgprot_t vm_get_page_prot(unsigned long vm_flags); 2117void vma_set_page_prot(struct vm_area_struct *vma); 2118#else 2119static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2120{ 2121 return __pgprot(0); 2122} 2123static inline void vma_set_page_prot(struct vm_area_struct *vma) 2124{ 2125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2126} 2127#endif 2128 2129#ifdef CONFIG_NUMA_BALANCING 2130unsigned long change_prot_numa(struct vm_area_struct *vma, 2131 unsigned long start, unsigned long end); 2132#endif 2133 2134struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2135int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2136 unsigned long pfn, unsigned long size, pgprot_t); 2137int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2138int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2139 unsigned long pfn); 2140int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2141 pfn_t pfn); 2142int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2143 2144 2145struct page *follow_page_mask(struct vm_area_struct *vma, 2146 unsigned long address, unsigned int foll_flags, 2147 unsigned int *page_mask); 2148 2149static inline struct page *follow_page(struct vm_area_struct *vma, 2150 unsigned long address, unsigned int foll_flags) 2151{ 2152 unsigned int unused_page_mask; 2153 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2154} 2155 2156#define FOLL_WRITE 0x01 /* check pte is writable */ 2157#define FOLL_TOUCH 0x02 /* mark page accessed */ 2158#define FOLL_GET 0x04 /* do get_page on page */ 2159#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2160#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2161#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2162 * and return without waiting upon it */ 2163#define FOLL_POPULATE 0x40 /* fault in page */ 2164#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2165#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2166#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2167#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2168#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2169#define FOLL_MLOCK 0x1000 /* lock present pages */ 2170 2171typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2172 void *data); 2173extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2174 unsigned long size, pte_fn_t fn, void *data); 2175 2176 2177#ifdef CONFIG_DEBUG_PAGEALLOC 2178extern bool _debug_pagealloc_enabled; 2179extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2180 2181static inline bool debug_pagealloc_enabled(void) 2182{ 2183 return _debug_pagealloc_enabled; 2184} 2185 2186static inline void 2187kernel_map_pages(struct page *page, int numpages, int enable) 2188{ 2189 if (!debug_pagealloc_enabled()) 2190 return; 2191 2192 __kernel_map_pages(page, numpages, enable); 2193} 2194#ifdef CONFIG_HIBERNATION 2195extern bool kernel_page_present(struct page *page); 2196#endif /* CONFIG_HIBERNATION */ 2197#else 2198static inline void 2199kernel_map_pages(struct page *page, int numpages, int enable) {} 2200#ifdef CONFIG_HIBERNATION 2201static inline bool kernel_page_present(struct page *page) { return true; } 2202#endif /* CONFIG_HIBERNATION */ 2203#endif 2204 2205#ifdef __HAVE_ARCH_GATE_AREA 2206extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2207extern int in_gate_area_no_mm(unsigned long addr); 2208extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2209#else 2210static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2211{ 2212 return NULL; 2213} 2214static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2215static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2216{ 2217 return 0; 2218} 2219#endif /* __HAVE_ARCH_GATE_AREA */ 2220 2221#ifdef CONFIG_SYSCTL 2222extern int sysctl_drop_caches; 2223int drop_caches_sysctl_handler(struct ctl_table *, int, 2224 void __user *, size_t *, loff_t *); 2225#endif 2226 2227void drop_slab(void); 2228void drop_slab_node(int nid); 2229 2230#ifndef CONFIG_MMU 2231#define randomize_va_space 0 2232#else 2233extern int randomize_va_space; 2234#endif 2235 2236const char * arch_vma_name(struct vm_area_struct *vma); 2237void print_vma_addr(char *prefix, unsigned long rip); 2238 2239void sparse_mem_maps_populate_node(struct page **map_map, 2240 unsigned long pnum_begin, 2241 unsigned long pnum_end, 2242 unsigned long map_count, 2243 int nodeid); 2244 2245struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2246pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2247pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2248pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2249pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2250void *vmemmap_alloc_block(unsigned long size, int node); 2251struct vmem_altmap; 2252void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2253 struct vmem_altmap *altmap); 2254static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2255{ 2256 return __vmemmap_alloc_block_buf(size, node, NULL); 2257} 2258 2259void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2260int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2261 int node); 2262int vmemmap_populate(unsigned long start, unsigned long end, int node); 2263void vmemmap_populate_print_last(void); 2264#ifdef CONFIG_MEMORY_HOTPLUG 2265void vmemmap_free(unsigned long start, unsigned long end); 2266#endif 2267void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2268 unsigned long size); 2269 2270enum mf_flags { 2271 MF_COUNT_INCREASED = 1 << 0, 2272 MF_ACTION_REQUIRED = 1 << 1, 2273 MF_MUST_KILL = 1 << 2, 2274 MF_SOFT_OFFLINE = 1 << 3, 2275}; 2276extern int memory_failure(unsigned long pfn, int trapno, int flags); 2277extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2278extern int unpoison_memory(unsigned long pfn); 2279extern int get_hwpoison_page(struct page *page); 2280#define put_hwpoison_page(page) put_page(page) 2281extern int sysctl_memory_failure_early_kill; 2282extern int sysctl_memory_failure_recovery; 2283extern void shake_page(struct page *p, int access); 2284extern atomic_long_t num_poisoned_pages; 2285extern int soft_offline_page(struct page *page, int flags); 2286 2287 2288/* 2289 * Error handlers for various types of pages. 2290 */ 2291enum mf_result { 2292 MF_IGNORED, /* Error: cannot be handled */ 2293 MF_FAILED, /* Error: handling failed */ 2294 MF_DELAYED, /* Will be handled later */ 2295 MF_RECOVERED, /* Successfully recovered */ 2296}; 2297 2298enum mf_action_page_type { 2299 MF_MSG_KERNEL, 2300 MF_MSG_KERNEL_HIGH_ORDER, 2301 MF_MSG_SLAB, 2302 MF_MSG_DIFFERENT_COMPOUND, 2303 MF_MSG_POISONED_HUGE, 2304 MF_MSG_HUGE, 2305 MF_MSG_FREE_HUGE, 2306 MF_MSG_UNMAP_FAILED, 2307 MF_MSG_DIRTY_SWAPCACHE, 2308 MF_MSG_CLEAN_SWAPCACHE, 2309 MF_MSG_DIRTY_MLOCKED_LRU, 2310 MF_MSG_CLEAN_MLOCKED_LRU, 2311 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2312 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2313 MF_MSG_DIRTY_LRU, 2314 MF_MSG_CLEAN_LRU, 2315 MF_MSG_TRUNCATED_LRU, 2316 MF_MSG_BUDDY, 2317 MF_MSG_BUDDY_2ND, 2318 MF_MSG_UNKNOWN, 2319}; 2320 2321#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2322extern void clear_huge_page(struct page *page, 2323 unsigned long addr, 2324 unsigned int pages_per_huge_page); 2325extern void copy_user_huge_page(struct page *dst, struct page *src, 2326 unsigned long addr, struct vm_area_struct *vma, 2327 unsigned int pages_per_huge_page); 2328#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2329 2330extern struct page_ext_operations debug_guardpage_ops; 2331extern struct page_ext_operations page_poisoning_ops; 2332 2333#ifdef CONFIG_DEBUG_PAGEALLOC 2334extern unsigned int _debug_guardpage_minorder; 2335extern bool _debug_guardpage_enabled; 2336 2337static inline unsigned int debug_guardpage_minorder(void) 2338{ 2339 return _debug_guardpage_minorder; 2340} 2341 2342static inline bool debug_guardpage_enabled(void) 2343{ 2344 return _debug_guardpage_enabled; 2345} 2346 2347static inline bool page_is_guard(struct page *page) 2348{ 2349 struct page_ext *page_ext; 2350 2351 if (!debug_guardpage_enabled()) 2352 return false; 2353 2354 page_ext = lookup_page_ext(page); 2355 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2356} 2357#else 2358static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2359static inline bool debug_guardpage_enabled(void) { return false; } 2360static inline bool page_is_guard(struct page *page) { return false; } 2361#endif /* CONFIG_DEBUG_PAGEALLOC */ 2362 2363#if MAX_NUMNODES > 1 2364void __init setup_nr_node_ids(void); 2365#else 2366static inline void setup_nr_node_ids(void) {} 2367#endif 2368 2369#endif /* __KERNEL__ */ 2370#endif /* _LINUX_MM_H */