at v4.4 19 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69/* Flag to prevent checks on free */ 70#ifdef CONFIG_DEBUG_OBJECTS 71# define SLAB_DEBUG_OBJECTS 0x00400000UL 72#else 73# define SLAB_DEBUG_OBJECTS 0x00000000UL 74#endif 75 76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78/* Don't track use of uninitialized memory */ 79#ifdef CONFIG_KMEMCHECK 80# define SLAB_NOTRACK 0x01000000UL 81#else 82# define SLAB_NOTRACK 0x00000000UL 83#endif 84#ifdef CONFIG_FAILSLAB 85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86#else 87# define SLAB_FAILSLAB 0x00000000UL 88#endif 89 90/* The following flags affect the page allocator grouping pages by mobility */ 91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 93/* 94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 95 * 96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 97 * 98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 99 * Both make kfree a no-op. 100 */ 101#define ZERO_SIZE_PTR ((void *)16) 102 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 104 (unsigned long)ZERO_SIZE_PTR) 105 106#include <linux/kmemleak.h> 107#include <linux/kasan.h> 108 109struct mem_cgroup; 110/* 111 * struct kmem_cache related prototypes 112 */ 113void __init kmem_cache_init(void); 114bool slab_is_available(void); 115 116struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 117 unsigned long, 118 void (*)(void *)); 119void kmem_cache_destroy(struct kmem_cache *); 120int kmem_cache_shrink(struct kmem_cache *); 121 122void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 123void memcg_deactivate_kmem_caches(struct mem_cgroup *); 124void memcg_destroy_kmem_caches(struct mem_cgroup *); 125 126/* 127 * Please use this macro to create slab caches. Simply specify the 128 * name of the structure and maybe some flags that are listed above. 129 * 130 * The alignment of the struct determines object alignment. If you 131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 132 * then the objects will be properly aligned in SMP configurations. 133 */ 134#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 135 sizeof(struct __struct), __alignof__(struct __struct),\ 136 (__flags), NULL) 137 138/* 139 * Common kmalloc functions provided by all allocators 140 */ 141void * __must_check __krealloc(const void *, size_t, gfp_t); 142void * __must_check krealloc(const void *, size_t, gfp_t); 143void kfree(const void *); 144void kzfree(const void *); 145size_t ksize(const void *); 146 147/* 148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 149 * alignment larger than the alignment of a 64-bit integer. 150 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 151 */ 152#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 153#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 154#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 155#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 156#else 157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 158#endif 159 160/* 161 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 162 * Intended for arches that get misalignment faults even for 64 bit integer 163 * aligned buffers. 164 */ 165#ifndef ARCH_SLAB_MINALIGN 166#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 167#endif 168 169/* 170 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 171 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 172 * aligned pointers. 173 */ 174#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 175#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 176#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 177 178/* 179 * Kmalloc array related definitions 180 */ 181 182#ifdef CONFIG_SLAB 183/* 184 * The largest kmalloc size supported by the SLAB allocators is 185 * 32 megabyte (2^25) or the maximum allocatable page order if that is 186 * less than 32 MB. 187 * 188 * WARNING: Its not easy to increase this value since the allocators have 189 * to do various tricks to work around compiler limitations in order to 190 * ensure proper constant folding. 191 */ 192#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 193 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 194#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 195#ifndef KMALLOC_SHIFT_LOW 196#define KMALLOC_SHIFT_LOW 5 197#endif 198#endif 199 200#ifdef CONFIG_SLUB 201/* 202 * SLUB directly allocates requests fitting in to an order-1 page 203 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 204 */ 205#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 206#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 207#ifndef KMALLOC_SHIFT_LOW 208#define KMALLOC_SHIFT_LOW 3 209#endif 210#endif 211 212#ifdef CONFIG_SLOB 213/* 214 * SLOB passes all requests larger than one page to the page allocator. 215 * No kmalloc array is necessary since objects of different sizes can 216 * be allocated from the same page. 217 */ 218#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 219#define KMALLOC_SHIFT_MAX 30 220#ifndef KMALLOC_SHIFT_LOW 221#define KMALLOC_SHIFT_LOW 3 222#endif 223#endif 224 225/* Maximum allocatable size */ 226#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 227/* Maximum size for which we actually use a slab cache */ 228#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 229/* Maximum order allocatable via the slab allocagtor */ 230#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 231 232/* 233 * Kmalloc subsystem. 234 */ 235#ifndef KMALLOC_MIN_SIZE 236#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 237#endif 238 239/* 240 * This restriction comes from byte sized index implementation. 241 * Page size is normally 2^12 bytes and, in this case, if we want to use 242 * byte sized index which can represent 2^8 entries, the size of the object 243 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 244 * If minimum size of kmalloc is less than 16, we use it as minimum object 245 * size and give up to use byte sized index. 246 */ 247#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 248 (KMALLOC_MIN_SIZE) : 16) 249 250#ifndef CONFIG_SLOB 251extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 252#ifdef CONFIG_ZONE_DMA 253extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 254#endif 255 256/* 257 * Figure out which kmalloc slab an allocation of a certain size 258 * belongs to. 259 * 0 = zero alloc 260 * 1 = 65 .. 96 bytes 261 * 2 = 129 .. 192 bytes 262 * n = 2^(n-1)+1 .. 2^n 263 */ 264static __always_inline int kmalloc_index(size_t size) 265{ 266 if (!size) 267 return 0; 268 269 if (size <= KMALLOC_MIN_SIZE) 270 return KMALLOC_SHIFT_LOW; 271 272 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 273 return 1; 274 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 275 return 2; 276 if (size <= 8) return 3; 277 if (size <= 16) return 4; 278 if (size <= 32) return 5; 279 if (size <= 64) return 6; 280 if (size <= 128) return 7; 281 if (size <= 256) return 8; 282 if (size <= 512) return 9; 283 if (size <= 1024) return 10; 284 if (size <= 2 * 1024) return 11; 285 if (size <= 4 * 1024) return 12; 286 if (size <= 8 * 1024) return 13; 287 if (size <= 16 * 1024) return 14; 288 if (size <= 32 * 1024) return 15; 289 if (size <= 64 * 1024) return 16; 290 if (size <= 128 * 1024) return 17; 291 if (size <= 256 * 1024) return 18; 292 if (size <= 512 * 1024) return 19; 293 if (size <= 1024 * 1024) return 20; 294 if (size <= 2 * 1024 * 1024) return 21; 295 if (size <= 4 * 1024 * 1024) return 22; 296 if (size <= 8 * 1024 * 1024) return 23; 297 if (size <= 16 * 1024 * 1024) return 24; 298 if (size <= 32 * 1024 * 1024) return 25; 299 if (size <= 64 * 1024 * 1024) return 26; 300 BUG(); 301 302 /* Will never be reached. Needed because the compiler may complain */ 303 return -1; 304} 305#endif /* !CONFIG_SLOB */ 306 307void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment; 308void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment; 309void kmem_cache_free(struct kmem_cache *, void *); 310 311/* 312 * Bulk allocation and freeing operations. These are accellerated in an 313 * allocator specific way to avoid taking locks repeatedly or building 314 * metadata structures unnecessarily. 315 * 316 * Note that interrupts must be enabled when calling these functions. 317 */ 318void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 319int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 320 321#ifdef CONFIG_NUMA 322void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment; 323void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment; 324#else 325static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 326{ 327 return __kmalloc(size, flags); 328} 329 330static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 331{ 332 return kmem_cache_alloc(s, flags); 333} 334#endif 335 336#ifdef CONFIG_TRACING 337extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment; 338 339#ifdef CONFIG_NUMA 340extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 341 gfp_t gfpflags, 342 int node, size_t size) __assume_slab_alignment; 343#else 344static __always_inline void * 345kmem_cache_alloc_node_trace(struct kmem_cache *s, 346 gfp_t gfpflags, 347 int node, size_t size) 348{ 349 return kmem_cache_alloc_trace(s, gfpflags, size); 350} 351#endif /* CONFIG_NUMA */ 352 353#else /* CONFIG_TRACING */ 354static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 355 gfp_t flags, size_t size) 356{ 357 void *ret = kmem_cache_alloc(s, flags); 358 359 kasan_kmalloc(s, ret, size); 360 return ret; 361} 362 363static __always_inline void * 364kmem_cache_alloc_node_trace(struct kmem_cache *s, 365 gfp_t gfpflags, 366 int node, size_t size) 367{ 368 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 369 370 kasan_kmalloc(s, ret, size); 371 return ret; 372} 373#endif /* CONFIG_TRACING */ 374 375extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment; 376 377#ifdef CONFIG_TRACING 378extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment; 379#else 380static __always_inline void * 381kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 382{ 383 return kmalloc_order(size, flags, order); 384} 385#endif 386 387static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 388{ 389 unsigned int order = get_order(size); 390 return kmalloc_order_trace(size, flags, order); 391} 392 393/** 394 * kmalloc - allocate memory 395 * @size: how many bytes of memory are required. 396 * @flags: the type of memory to allocate. 397 * 398 * kmalloc is the normal method of allocating memory 399 * for objects smaller than page size in the kernel. 400 * 401 * The @flags argument may be one of: 402 * 403 * %GFP_USER - Allocate memory on behalf of user. May sleep. 404 * 405 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 406 * 407 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 408 * For example, use this inside interrupt handlers. 409 * 410 * %GFP_HIGHUSER - Allocate pages from high memory. 411 * 412 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 413 * 414 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 415 * 416 * %GFP_NOWAIT - Allocation will not sleep. 417 * 418 * %__GFP_THISNODE - Allocate node-local memory only. 419 * 420 * %GFP_DMA - Allocation suitable for DMA. 421 * Should only be used for kmalloc() caches. Otherwise, use a 422 * slab created with SLAB_DMA. 423 * 424 * Also it is possible to set different flags by OR'ing 425 * in one or more of the following additional @flags: 426 * 427 * %__GFP_COLD - Request cache-cold pages instead of 428 * trying to return cache-warm pages. 429 * 430 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 431 * 432 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 433 * (think twice before using). 434 * 435 * %__GFP_NORETRY - If memory is not immediately available, 436 * then give up at once. 437 * 438 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 439 * 440 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 441 * 442 * There are other flags available as well, but these are not intended 443 * for general use, and so are not documented here. For a full list of 444 * potential flags, always refer to linux/gfp.h. 445 */ 446static __always_inline void *kmalloc(size_t size, gfp_t flags) 447{ 448 if (__builtin_constant_p(size)) { 449 if (size > KMALLOC_MAX_CACHE_SIZE) 450 return kmalloc_large(size, flags); 451#ifndef CONFIG_SLOB 452 if (!(flags & GFP_DMA)) { 453 int index = kmalloc_index(size); 454 455 if (!index) 456 return ZERO_SIZE_PTR; 457 458 return kmem_cache_alloc_trace(kmalloc_caches[index], 459 flags, size); 460 } 461#endif 462 } 463 return __kmalloc(size, flags); 464} 465 466/* 467 * Determine size used for the nth kmalloc cache. 468 * return size or 0 if a kmalloc cache for that 469 * size does not exist 470 */ 471static __always_inline int kmalloc_size(int n) 472{ 473#ifndef CONFIG_SLOB 474 if (n > 2) 475 return 1 << n; 476 477 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 478 return 96; 479 480 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 481 return 192; 482#endif 483 return 0; 484} 485 486static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 487{ 488#ifndef CONFIG_SLOB 489 if (__builtin_constant_p(size) && 490 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 491 int i = kmalloc_index(size); 492 493 if (!i) 494 return ZERO_SIZE_PTR; 495 496 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 497 flags, node, size); 498 } 499#endif 500 return __kmalloc_node(size, flags, node); 501} 502 503struct memcg_cache_array { 504 struct rcu_head rcu; 505 struct kmem_cache *entries[0]; 506}; 507 508/* 509 * This is the main placeholder for memcg-related information in kmem caches. 510 * Both the root cache and the child caches will have it. For the root cache, 511 * this will hold a dynamically allocated array large enough to hold 512 * information about the currently limited memcgs in the system. To allow the 513 * array to be accessed without taking any locks, on relocation we free the old 514 * version only after a grace period. 515 * 516 * Child caches will hold extra metadata needed for its operation. Fields are: 517 * 518 * @memcg: pointer to the memcg this cache belongs to 519 * @root_cache: pointer to the global, root cache, this cache was derived from 520 * 521 * Both root and child caches of the same kind are linked into a list chained 522 * through @list. 523 */ 524struct memcg_cache_params { 525 bool is_root_cache; 526 struct list_head list; 527 union { 528 struct memcg_cache_array __rcu *memcg_caches; 529 struct { 530 struct mem_cgroup *memcg; 531 struct kmem_cache *root_cache; 532 }; 533 }; 534}; 535 536int memcg_update_all_caches(int num_memcgs); 537 538/** 539 * kmalloc_array - allocate memory for an array. 540 * @n: number of elements. 541 * @size: element size. 542 * @flags: the type of memory to allocate (see kmalloc). 543 */ 544static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 545{ 546 if (size != 0 && n > SIZE_MAX / size) 547 return NULL; 548 return __kmalloc(n * size, flags); 549} 550 551/** 552 * kcalloc - allocate memory for an array. The memory is set to zero. 553 * @n: number of elements. 554 * @size: element size. 555 * @flags: the type of memory to allocate (see kmalloc). 556 */ 557static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 558{ 559 return kmalloc_array(n, size, flags | __GFP_ZERO); 560} 561 562/* 563 * kmalloc_track_caller is a special version of kmalloc that records the 564 * calling function of the routine calling it for slab leak tracking instead 565 * of just the calling function (confusing, eh?). 566 * It's useful when the call to kmalloc comes from a widely-used standard 567 * allocator where we care about the real place the memory allocation 568 * request comes from. 569 */ 570extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 571#define kmalloc_track_caller(size, flags) \ 572 __kmalloc_track_caller(size, flags, _RET_IP_) 573 574#ifdef CONFIG_NUMA 575extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 576#define kmalloc_node_track_caller(size, flags, node) \ 577 __kmalloc_node_track_caller(size, flags, node, \ 578 _RET_IP_) 579 580#else /* CONFIG_NUMA */ 581 582#define kmalloc_node_track_caller(size, flags, node) \ 583 kmalloc_track_caller(size, flags) 584 585#endif /* CONFIG_NUMA */ 586 587/* 588 * Shortcuts 589 */ 590static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 591{ 592 return kmem_cache_alloc(k, flags | __GFP_ZERO); 593} 594 595/** 596 * kzalloc - allocate memory. The memory is set to zero. 597 * @size: how many bytes of memory are required. 598 * @flags: the type of memory to allocate (see kmalloc). 599 */ 600static inline void *kzalloc(size_t size, gfp_t flags) 601{ 602 return kmalloc(size, flags | __GFP_ZERO); 603} 604 605/** 606 * kzalloc_node - allocate zeroed memory from a particular memory node. 607 * @size: how many bytes of memory are required. 608 * @flags: the type of memory to allocate (see kmalloc). 609 * @node: memory node from which to allocate 610 */ 611static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 612{ 613 return kmalloc_node(size, flags | __GFP_ZERO, node); 614} 615 616unsigned int kmem_cache_size(struct kmem_cache *s); 617void __init kmem_cache_init_late(void); 618 619#endif /* _LINUX_SLAB_H */