at v4.4 34 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <linux/cgroup.h> 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[PERF_MAX_STACK_DEPTH]; 62}; 63 64struct perf_raw_record { 65 u32 size; 66 void *data; 67}; 68 69/* 70 * branch stack layout: 71 * nr: number of taken branches stored in entries[] 72 * 73 * Note that nr can vary from sample to sample 74 * branches (to, from) are stored from most recent 75 * to least recent, i.e., entries[0] contains the most 76 * recent branch. 77 */ 78struct perf_branch_stack { 79 __u64 nr; 80 struct perf_branch_entry entries[0]; 81}; 82 83struct task_struct; 84 85/* 86 * extra PMU register associated with an event 87 */ 88struct hw_perf_event_extra { 89 u64 config; /* register value */ 90 unsigned int reg; /* register address or index */ 91 int alloc; /* extra register already allocated */ 92 int idx; /* index in shared_regs->regs[] */ 93}; 94 95/** 96 * struct hw_perf_event - performance event hardware details: 97 */ 98struct hw_perf_event { 99#ifdef CONFIG_PERF_EVENTS 100 union { 101 struct { /* hardware */ 102 u64 config; 103 u64 last_tag; 104 unsigned long config_base; 105 unsigned long event_base; 106 int event_base_rdpmc; 107 int idx; 108 int last_cpu; 109 int flags; 110 111 struct hw_perf_event_extra extra_reg; 112 struct hw_perf_event_extra branch_reg; 113 }; 114 struct { /* software */ 115 struct hrtimer hrtimer; 116 }; 117 struct { /* tracepoint */ 118 /* for tp_event->class */ 119 struct list_head tp_list; 120 }; 121 struct { /* intel_cqm */ 122 int cqm_state; 123 u32 cqm_rmid; 124 struct list_head cqm_events_entry; 125 struct list_head cqm_groups_entry; 126 struct list_head cqm_group_entry; 127 }; 128 struct { /* itrace */ 129 int itrace_started; 130 }; 131#ifdef CONFIG_HAVE_HW_BREAKPOINT 132 struct { /* breakpoint */ 133 /* 134 * Crufty hack to avoid the chicken and egg 135 * problem hw_breakpoint has with context 136 * creation and event initalization. 137 */ 138 struct arch_hw_breakpoint info; 139 struct list_head bp_list; 140 }; 141#endif 142 }; 143 /* 144 * If the event is a per task event, this will point to the task in 145 * question. See the comment in perf_event_alloc(). 146 */ 147 struct task_struct *target; 148 149/* 150 * hw_perf_event::state flags; used to track the PERF_EF_* state. 151 */ 152#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 153#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 154#define PERF_HES_ARCH 0x04 155 156 int state; 157 158 /* 159 * The last observed hardware counter value, updated with a 160 * local64_cmpxchg() such that pmu::read() can be called nested. 161 */ 162 local64_t prev_count; 163 164 /* 165 * The period to start the next sample with. 166 */ 167 u64 sample_period; 168 169 /* 170 * The period we started this sample with. 171 */ 172 u64 last_period; 173 174 /* 175 * However much is left of the current period; note that this is 176 * a full 64bit value and allows for generation of periods longer 177 * than hardware might allow. 178 */ 179 local64_t period_left; 180 181 /* 182 * State for throttling the event, see __perf_event_overflow() and 183 * perf_adjust_freq_unthr_context(). 184 */ 185 u64 interrupts_seq; 186 u64 interrupts; 187 188 /* 189 * State for freq target events, see __perf_event_overflow() and 190 * perf_adjust_freq_unthr_context(). 191 */ 192 u64 freq_time_stamp; 193 u64 freq_count_stamp; 194#endif 195}; 196 197struct perf_event; 198 199/* 200 * Common implementation detail of pmu::{start,commit,cancel}_txn 201 */ 202#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 203#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 204 205/** 206 * pmu::capabilities flags 207 */ 208#define PERF_PMU_CAP_NO_INTERRUPT 0x01 209#define PERF_PMU_CAP_NO_NMI 0x02 210#define PERF_PMU_CAP_AUX_NO_SG 0x04 211#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 212#define PERF_PMU_CAP_EXCLUSIVE 0x10 213#define PERF_PMU_CAP_ITRACE 0x20 214 215/** 216 * struct pmu - generic performance monitoring unit 217 */ 218struct pmu { 219 struct list_head entry; 220 221 struct module *module; 222 struct device *dev; 223 const struct attribute_group **attr_groups; 224 const char *name; 225 int type; 226 227 /* 228 * various common per-pmu feature flags 229 */ 230 int capabilities; 231 232 int * __percpu pmu_disable_count; 233 struct perf_cpu_context * __percpu pmu_cpu_context; 234 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 235 int task_ctx_nr; 236 int hrtimer_interval_ms; 237 238 /* 239 * Fully disable/enable this PMU, can be used to protect from the PMI 240 * as well as for lazy/batch writing of the MSRs. 241 */ 242 void (*pmu_enable) (struct pmu *pmu); /* optional */ 243 void (*pmu_disable) (struct pmu *pmu); /* optional */ 244 245 /* 246 * Try and initialize the event for this PMU. 247 * 248 * Returns: 249 * -ENOENT -- @event is not for this PMU 250 * 251 * -ENODEV -- @event is for this PMU but PMU not present 252 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 253 * -EINVAL -- @event is for this PMU but @event is not valid 254 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 255 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 256 * 257 * 0 -- @event is for this PMU and valid 258 * 259 * Other error return values are allowed. 260 */ 261 int (*event_init) (struct perf_event *event); 262 263 /* 264 * Notification that the event was mapped or unmapped. Called 265 * in the context of the mapping task. 266 */ 267 void (*event_mapped) (struct perf_event *event); /*optional*/ 268 void (*event_unmapped) (struct perf_event *event); /*optional*/ 269 270 /* 271 * Flags for ->add()/->del()/ ->start()/->stop(). There are 272 * matching hw_perf_event::state flags. 273 */ 274#define PERF_EF_START 0x01 /* start the counter when adding */ 275#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 276#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 277 278 /* 279 * Adds/Removes a counter to/from the PMU, can be done inside a 280 * transaction, see the ->*_txn() methods. 281 * 282 * The add/del callbacks will reserve all hardware resources required 283 * to service the event, this includes any counter constraint 284 * scheduling etc. 285 * 286 * Called with IRQs disabled and the PMU disabled on the CPU the event 287 * is on. 288 * 289 * ->add() called without PERF_EF_START should result in the same state 290 * as ->add() followed by ->stop(). 291 * 292 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 293 * ->stop() that must deal with already being stopped without 294 * PERF_EF_UPDATE. 295 */ 296 int (*add) (struct perf_event *event, int flags); 297 void (*del) (struct perf_event *event, int flags); 298 299 /* 300 * Starts/Stops a counter present on the PMU. 301 * 302 * The PMI handler should stop the counter when perf_event_overflow() 303 * returns !0. ->start() will be used to continue. 304 * 305 * Also used to change the sample period. 306 * 307 * Called with IRQs disabled and the PMU disabled on the CPU the event 308 * is on -- will be called from NMI context with the PMU generates 309 * NMIs. 310 * 311 * ->stop() with PERF_EF_UPDATE will read the counter and update 312 * period/count values like ->read() would. 313 * 314 * ->start() with PERF_EF_RELOAD will reprogram the the counter 315 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 316 */ 317 void (*start) (struct perf_event *event, int flags); 318 void (*stop) (struct perf_event *event, int flags); 319 320 /* 321 * Updates the counter value of the event. 322 * 323 * For sampling capable PMUs this will also update the software period 324 * hw_perf_event::period_left field. 325 */ 326 void (*read) (struct perf_event *event); 327 328 /* 329 * Group events scheduling is treated as a transaction, add 330 * group events as a whole and perform one schedulability test. 331 * If the test fails, roll back the whole group 332 * 333 * Start the transaction, after this ->add() doesn't need to 334 * do schedulability tests. 335 * 336 * Optional. 337 */ 338 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 339 /* 340 * If ->start_txn() disabled the ->add() schedulability test 341 * then ->commit_txn() is required to perform one. On success 342 * the transaction is closed. On error the transaction is kept 343 * open until ->cancel_txn() is called. 344 * 345 * Optional. 346 */ 347 int (*commit_txn) (struct pmu *pmu); 348 /* 349 * Will cancel the transaction, assumes ->del() is called 350 * for each successful ->add() during the transaction. 351 * 352 * Optional. 353 */ 354 void (*cancel_txn) (struct pmu *pmu); 355 356 /* 357 * Will return the value for perf_event_mmap_page::index for this event, 358 * if no implementation is provided it will default to: event->hw.idx + 1. 359 */ 360 int (*event_idx) (struct perf_event *event); /*optional */ 361 362 /* 363 * context-switches callback 364 */ 365 void (*sched_task) (struct perf_event_context *ctx, 366 bool sched_in); 367 /* 368 * PMU specific data size 369 */ 370 size_t task_ctx_size; 371 372 373 /* 374 * Return the count value for a counter. 375 */ 376 u64 (*count) (struct perf_event *event); /*optional*/ 377 378 /* 379 * Set up pmu-private data structures for an AUX area 380 */ 381 void *(*setup_aux) (int cpu, void **pages, 382 int nr_pages, bool overwrite); 383 /* optional */ 384 385 /* 386 * Free pmu-private AUX data structures 387 */ 388 void (*free_aux) (void *aux); /* optional */ 389 390 /* 391 * Filter events for PMU-specific reasons. 392 */ 393 int (*filter_match) (struct perf_event *event); /* optional */ 394}; 395 396/** 397 * enum perf_event_active_state - the states of a event 398 */ 399enum perf_event_active_state { 400 PERF_EVENT_STATE_EXIT = -3, 401 PERF_EVENT_STATE_ERROR = -2, 402 PERF_EVENT_STATE_OFF = -1, 403 PERF_EVENT_STATE_INACTIVE = 0, 404 PERF_EVENT_STATE_ACTIVE = 1, 405}; 406 407struct file; 408struct perf_sample_data; 409 410typedef void (*perf_overflow_handler_t)(struct perf_event *, 411 struct perf_sample_data *, 412 struct pt_regs *regs); 413 414enum perf_group_flag { 415 PERF_GROUP_SOFTWARE = 0x1, 416}; 417 418#define SWEVENT_HLIST_BITS 8 419#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 420 421struct swevent_hlist { 422 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 423 struct rcu_head rcu_head; 424}; 425 426#define PERF_ATTACH_CONTEXT 0x01 427#define PERF_ATTACH_GROUP 0x02 428#define PERF_ATTACH_TASK 0x04 429#define PERF_ATTACH_TASK_DATA 0x08 430 431struct perf_cgroup; 432struct ring_buffer; 433 434/** 435 * struct perf_event - performance event kernel representation: 436 */ 437struct perf_event { 438#ifdef CONFIG_PERF_EVENTS 439 /* 440 * entry onto perf_event_context::event_list; 441 * modifications require ctx->lock 442 * RCU safe iterations. 443 */ 444 struct list_head event_entry; 445 446 /* 447 * XXX: group_entry and sibling_list should be mutually exclusive; 448 * either you're a sibling on a group, or you're the group leader. 449 * Rework the code to always use the same list element. 450 * 451 * Locked for modification by both ctx->mutex and ctx->lock; holding 452 * either sufficies for read. 453 */ 454 struct list_head group_entry; 455 struct list_head sibling_list; 456 457 /* 458 * We need storage to track the entries in perf_pmu_migrate_context; we 459 * cannot use the event_entry because of RCU and we want to keep the 460 * group in tact which avoids us using the other two entries. 461 */ 462 struct list_head migrate_entry; 463 464 struct hlist_node hlist_entry; 465 struct list_head active_entry; 466 int nr_siblings; 467 int group_flags; 468 struct perf_event *group_leader; 469 struct pmu *pmu; 470 471 enum perf_event_active_state state; 472 unsigned int attach_state; 473 local64_t count; 474 atomic64_t child_count; 475 476 /* 477 * These are the total time in nanoseconds that the event 478 * has been enabled (i.e. eligible to run, and the task has 479 * been scheduled in, if this is a per-task event) 480 * and running (scheduled onto the CPU), respectively. 481 * 482 * They are computed from tstamp_enabled, tstamp_running and 483 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 484 */ 485 u64 total_time_enabled; 486 u64 total_time_running; 487 488 /* 489 * These are timestamps used for computing total_time_enabled 490 * and total_time_running when the event is in INACTIVE or 491 * ACTIVE state, measured in nanoseconds from an arbitrary point 492 * in time. 493 * tstamp_enabled: the notional time when the event was enabled 494 * tstamp_running: the notional time when the event was scheduled on 495 * tstamp_stopped: in INACTIVE state, the notional time when the 496 * event was scheduled off. 497 */ 498 u64 tstamp_enabled; 499 u64 tstamp_running; 500 u64 tstamp_stopped; 501 502 /* 503 * timestamp shadows the actual context timing but it can 504 * be safely used in NMI interrupt context. It reflects the 505 * context time as it was when the event was last scheduled in. 506 * 507 * ctx_time already accounts for ctx->timestamp. Therefore to 508 * compute ctx_time for a sample, simply add perf_clock(). 509 */ 510 u64 shadow_ctx_time; 511 512 struct perf_event_attr attr; 513 u16 header_size; 514 u16 id_header_size; 515 u16 read_size; 516 struct hw_perf_event hw; 517 518 struct perf_event_context *ctx; 519 atomic_long_t refcount; 520 521 /* 522 * These accumulate total time (in nanoseconds) that children 523 * events have been enabled and running, respectively. 524 */ 525 atomic64_t child_total_time_enabled; 526 atomic64_t child_total_time_running; 527 528 /* 529 * Protect attach/detach and child_list: 530 */ 531 struct mutex child_mutex; 532 struct list_head child_list; 533 struct perf_event *parent; 534 535 int oncpu; 536 int cpu; 537 538 struct list_head owner_entry; 539 struct task_struct *owner; 540 541 /* mmap bits */ 542 struct mutex mmap_mutex; 543 atomic_t mmap_count; 544 545 struct ring_buffer *rb; 546 struct list_head rb_entry; 547 unsigned long rcu_batches; 548 int rcu_pending; 549 550 /* poll related */ 551 wait_queue_head_t waitq; 552 struct fasync_struct *fasync; 553 554 /* delayed work for NMIs and such */ 555 int pending_wakeup; 556 int pending_kill; 557 int pending_disable; 558 struct irq_work pending; 559 560 atomic_t event_limit; 561 562 void (*destroy)(struct perf_event *); 563 struct rcu_head rcu_head; 564 565 struct pid_namespace *ns; 566 u64 id; 567 568 u64 (*clock)(void); 569 perf_overflow_handler_t overflow_handler; 570 void *overflow_handler_context; 571 572#ifdef CONFIG_EVENT_TRACING 573 struct trace_event_call *tp_event; 574 struct event_filter *filter; 575#ifdef CONFIG_FUNCTION_TRACER 576 struct ftrace_ops ftrace_ops; 577#endif 578#endif 579 580#ifdef CONFIG_CGROUP_PERF 581 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 582 int cgrp_defer_enabled; 583#endif 584 585#endif /* CONFIG_PERF_EVENTS */ 586}; 587 588/** 589 * struct perf_event_context - event context structure 590 * 591 * Used as a container for task events and CPU events as well: 592 */ 593struct perf_event_context { 594 struct pmu *pmu; 595 /* 596 * Protect the states of the events in the list, 597 * nr_active, and the list: 598 */ 599 raw_spinlock_t lock; 600 /* 601 * Protect the list of events. Locking either mutex or lock 602 * is sufficient to ensure the list doesn't change; to change 603 * the list you need to lock both the mutex and the spinlock. 604 */ 605 struct mutex mutex; 606 607 struct list_head active_ctx_list; 608 struct list_head pinned_groups; 609 struct list_head flexible_groups; 610 struct list_head event_list; 611 int nr_events; 612 int nr_active; 613 int is_active; 614 int nr_stat; 615 int nr_freq; 616 int rotate_disable; 617 atomic_t refcount; 618 struct task_struct *task; 619 620 /* 621 * Context clock, runs when context enabled. 622 */ 623 u64 time; 624 u64 timestamp; 625 626 /* 627 * These fields let us detect when two contexts have both 628 * been cloned (inherited) from a common ancestor. 629 */ 630 struct perf_event_context *parent_ctx; 631 u64 parent_gen; 632 u64 generation; 633 int pin_count; 634 int nr_cgroups; /* cgroup evts */ 635 void *task_ctx_data; /* pmu specific data */ 636 struct rcu_head rcu_head; 637 638 struct delayed_work orphans_remove; 639 bool orphans_remove_sched; 640}; 641 642/* 643 * Number of contexts where an event can trigger: 644 * task, softirq, hardirq, nmi. 645 */ 646#define PERF_NR_CONTEXTS 4 647 648/** 649 * struct perf_event_cpu_context - per cpu event context structure 650 */ 651struct perf_cpu_context { 652 struct perf_event_context ctx; 653 struct perf_event_context *task_ctx; 654 int active_oncpu; 655 int exclusive; 656 657 raw_spinlock_t hrtimer_lock; 658 struct hrtimer hrtimer; 659 ktime_t hrtimer_interval; 660 unsigned int hrtimer_active; 661 662 struct pmu *unique_pmu; 663 struct perf_cgroup *cgrp; 664}; 665 666struct perf_output_handle { 667 struct perf_event *event; 668 struct ring_buffer *rb; 669 unsigned long wakeup; 670 unsigned long size; 671 union { 672 void *addr; 673 unsigned long head; 674 }; 675 int page; 676}; 677 678#ifdef CONFIG_CGROUP_PERF 679 680/* 681 * perf_cgroup_info keeps track of time_enabled for a cgroup. 682 * This is a per-cpu dynamically allocated data structure. 683 */ 684struct perf_cgroup_info { 685 u64 time; 686 u64 timestamp; 687}; 688 689struct perf_cgroup { 690 struct cgroup_subsys_state css; 691 struct perf_cgroup_info __percpu *info; 692}; 693 694/* 695 * Must ensure cgroup is pinned (css_get) before calling 696 * this function. In other words, we cannot call this function 697 * if there is no cgroup event for the current CPU context. 698 */ 699static inline struct perf_cgroup * 700perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 701{ 702 return container_of(task_css_check(task, perf_event_cgrp_id, 703 ctx ? lockdep_is_held(&ctx->lock) 704 : true), 705 struct perf_cgroup, css); 706} 707#endif /* CONFIG_CGROUP_PERF */ 708 709#ifdef CONFIG_PERF_EVENTS 710 711extern void *perf_aux_output_begin(struct perf_output_handle *handle, 712 struct perf_event *event); 713extern void perf_aux_output_end(struct perf_output_handle *handle, 714 unsigned long size, bool truncated); 715extern int perf_aux_output_skip(struct perf_output_handle *handle, 716 unsigned long size); 717extern void *perf_get_aux(struct perf_output_handle *handle); 718 719extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 720extern void perf_pmu_unregister(struct pmu *pmu); 721 722extern int perf_num_counters(void); 723extern const char *perf_pmu_name(void); 724extern void __perf_event_task_sched_in(struct task_struct *prev, 725 struct task_struct *task); 726extern void __perf_event_task_sched_out(struct task_struct *prev, 727 struct task_struct *next); 728extern int perf_event_init_task(struct task_struct *child); 729extern void perf_event_exit_task(struct task_struct *child); 730extern void perf_event_free_task(struct task_struct *task); 731extern void perf_event_delayed_put(struct task_struct *task); 732extern struct perf_event *perf_event_get(unsigned int fd); 733extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 734extern void perf_event_print_debug(void); 735extern void perf_pmu_disable(struct pmu *pmu); 736extern void perf_pmu_enable(struct pmu *pmu); 737extern void perf_sched_cb_dec(struct pmu *pmu); 738extern void perf_sched_cb_inc(struct pmu *pmu); 739extern int perf_event_task_disable(void); 740extern int perf_event_task_enable(void); 741extern int perf_event_refresh(struct perf_event *event, int refresh); 742extern void perf_event_update_userpage(struct perf_event *event); 743extern int perf_event_release_kernel(struct perf_event *event); 744extern struct perf_event * 745perf_event_create_kernel_counter(struct perf_event_attr *attr, 746 int cpu, 747 struct task_struct *task, 748 perf_overflow_handler_t callback, 749 void *context); 750extern void perf_pmu_migrate_context(struct pmu *pmu, 751 int src_cpu, int dst_cpu); 752extern u64 perf_event_read_local(struct perf_event *event); 753extern u64 perf_event_read_value(struct perf_event *event, 754 u64 *enabled, u64 *running); 755 756 757struct perf_sample_data { 758 /* 759 * Fields set by perf_sample_data_init(), group so as to 760 * minimize the cachelines touched. 761 */ 762 u64 addr; 763 struct perf_raw_record *raw; 764 struct perf_branch_stack *br_stack; 765 u64 period; 766 u64 weight; 767 u64 txn; 768 union perf_mem_data_src data_src; 769 770 /* 771 * The other fields, optionally {set,used} by 772 * perf_{prepare,output}_sample(). 773 */ 774 u64 type; 775 u64 ip; 776 struct { 777 u32 pid; 778 u32 tid; 779 } tid_entry; 780 u64 time; 781 u64 id; 782 u64 stream_id; 783 struct { 784 u32 cpu; 785 u32 reserved; 786 } cpu_entry; 787 struct perf_callchain_entry *callchain; 788 789 /* 790 * regs_user may point to task_pt_regs or to regs_user_copy, depending 791 * on arch details. 792 */ 793 struct perf_regs regs_user; 794 struct pt_regs regs_user_copy; 795 796 struct perf_regs regs_intr; 797 u64 stack_user_size; 798} ____cacheline_aligned; 799 800/* default value for data source */ 801#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 802 PERF_MEM_S(LVL, NA) |\ 803 PERF_MEM_S(SNOOP, NA) |\ 804 PERF_MEM_S(LOCK, NA) |\ 805 PERF_MEM_S(TLB, NA)) 806 807static inline void perf_sample_data_init(struct perf_sample_data *data, 808 u64 addr, u64 period) 809{ 810 /* remaining struct members initialized in perf_prepare_sample() */ 811 data->addr = addr; 812 data->raw = NULL; 813 data->br_stack = NULL; 814 data->period = period; 815 data->weight = 0; 816 data->data_src.val = PERF_MEM_NA; 817 data->txn = 0; 818} 819 820extern void perf_output_sample(struct perf_output_handle *handle, 821 struct perf_event_header *header, 822 struct perf_sample_data *data, 823 struct perf_event *event); 824extern void perf_prepare_sample(struct perf_event_header *header, 825 struct perf_sample_data *data, 826 struct perf_event *event, 827 struct pt_regs *regs); 828 829extern int perf_event_overflow(struct perf_event *event, 830 struct perf_sample_data *data, 831 struct pt_regs *regs); 832 833extern void perf_event_output(struct perf_event *event, 834 struct perf_sample_data *data, 835 struct pt_regs *regs); 836 837extern void 838perf_event_header__init_id(struct perf_event_header *header, 839 struct perf_sample_data *data, 840 struct perf_event *event); 841extern void 842perf_event__output_id_sample(struct perf_event *event, 843 struct perf_output_handle *handle, 844 struct perf_sample_data *sample); 845 846extern void 847perf_log_lost_samples(struct perf_event *event, u64 lost); 848 849static inline bool is_sampling_event(struct perf_event *event) 850{ 851 return event->attr.sample_period != 0; 852} 853 854/* 855 * Return 1 for a software event, 0 for a hardware event 856 */ 857static inline int is_software_event(struct perf_event *event) 858{ 859 return event->pmu->task_ctx_nr == perf_sw_context; 860} 861 862extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 863 864extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 865extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 866 867#ifndef perf_arch_fetch_caller_regs 868static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 869#endif 870 871/* 872 * Take a snapshot of the regs. Skip ip and frame pointer to 873 * the nth caller. We only need a few of the regs: 874 * - ip for PERF_SAMPLE_IP 875 * - cs for user_mode() tests 876 * - bp for callchains 877 * - eflags, for future purposes, just in case 878 */ 879static inline void perf_fetch_caller_regs(struct pt_regs *regs) 880{ 881 memset(regs, 0, sizeof(*regs)); 882 883 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 884} 885 886static __always_inline void 887perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 888{ 889 if (static_key_false(&perf_swevent_enabled[event_id])) 890 __perf_sw_event(event_id, nr, regs, addr); 891} 892 893DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 894 895/* 896 * 'Special' version for the scheduler, it hard assumes no recursion, 897 * which is guaranteed by us not actually scheduling inside other swevents 898 * because those disable preemption. 899 */ 900static __always_inline void 901perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 902{ 903 if (static_key_false(&perf_swevent_enabled[event_id])) { 904 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 905 906 perf_fetch_caller_regs(regs); 907 ___perf_sw_event(event_id, nr, regs, addr); 908 } 909} 910 911extern struct static_key_deferred perf_sched_events; 912 913static __always_inline bool 914perf_sw_migrate_enabled(void) 915{ 916 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 917 return true; 918 return false; 919} 920 921static inline void perf_event_task_migrate(struct task_struct *task) 922{ 923 if (perf_sw_migrate_enabled()) 924 task->sched_migrated = 1; 925} 926 927static inline void perf_event_task_sched_in(struct task_struct *prev, 928 struct task_struct *task) 929{ 930 if (static_key_false(&perf_sched_events.key)) 931 __perf_event_task_sched_in(prev, task); 932 933 if (perf_sw_migrate_enabled() && task->sched_migrated) { 934 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 935 936 perf_fetch_caller_regs(regs); 937 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 938 task->sched_migrated = 0; 939 } 940} 941 942static inline void perf_event_task_sched_out(struct task_struct *prev, 943 struct task_struct *next) 944{ 945 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 946 947 if (static_key_false(&perf_sched_events.key)) 948 __perf_event_task_sched_out(prev, next); 949} 950 951static inline u64 __perf_event_count(struct perf_event *event) 952{ 953 return local64_read(&event->count) + atomic64_read(&event->child_count); 954} 955 956extern void perf_event_mmap(struct vm_area_struct *vma); 957extern struct perf_guest_info_callbacks *perf_guest_cbs; 958extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 959extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 960 961extern void perf_event_exec(void); 962extern void perf_event_comm(struct task_struct *tsk, bool exec); 963extern void perf_event_fork(struct task_struct *tsk); 964 965/* Callchains */ 966DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 967 968extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 969extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 970 971static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 972{ 973 if (entry->nr < PERF_MAX_STACK_DEPTH) 974 entry->ip[entry->nr++] = ip; 975} 976 977extern int sysctl_perf_event_paranoid; 978extern int sysctl_perf_event_mlock; 979extern int sysctl_perf_event_sample_rate; 980extern int sysctl_perf_cpu_time_max_percent; 981 982extern void perf_sample_event_took(u64 sample_len_ns); 983 984extern int perf_proc_update_handler(struct ctl_table *table, int write, 985 void __user *buffer, size_t *lenp, 986 loff_t *ppos); 987extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 988 void __user *buffer, size_t *lenp, 989 loff_t *ppos); 990 991 992static inline bool perf_paranoid_tracepoint_raw(void) 993{ 994 return sysctl_perf_event_paranoid > -1; 995} 996 997static inline bool perf_paranoid_cpu(void) 998{ 999 return sysctl_perf_event_paranoid > 0; 1000} 1001 1002static inline bool perf_paranoid_kernel(void) 1003{ 1004 return sysctl_perf_event_paranoid > 1; 1005} 1006 1007extern void perf_event_init(void); 1008extern void perf_tp_event(u64 addr, u64 count, void *record, 1009 int entry_size, struct pt_regs *regs, 1010 struct hlist_head *head, int rctx, 1011 struct task_struct *task); 1012extern void perf_bp_event(struct perf_event *event, void *data); 1013 1014#ifndef perf_misc_flags 1015# define perf_misc_flags(regs) \ 1016 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1017# define perf_instruction_pointer(regs) instruction_pointer(regs) 1018#endif 1019 1020static inline bool has_branch_stack(struct perf_event *event) 1021{ 1022 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1023} 1024 1025static inline bool needs_branch_stack(struct perf_event *event) 1026{ 1027 return event->attr.branch_sample_type != 0; 1028} 1029 1030static inline bool has_aux(struct perf_event *event) 1031{ 1032 return event->pmu->setup_aux; 1033} 1034 1035extern int perf_output_begin(struct perf_output_handle *handle, 1036 struct perf_event *event, unsigned int size); 1037extern void perf_output_end(struct perf_output_handle *handle); 1038extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1039 const void *buf, unsigned int len); 1040extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1041 unsigned int len); 1042extern int perf_swevent_get_recursion_context(void); 1043extern void perf_swevent_put_recursion_context(int rctx); 1044extern u64 perf_swevent_set_period(struct perf_event *event); 1045extern void perf_event_enable(struct perf_event *event); 1046extern void perf_event_disable(struct perf_event *event); 1047extern int __perf_event_disable(void *info); 1048extern void perf_event_task_tick(void); 1049#else /* !CONFIG_PERF_EVENTS: */ 1050static inline void * 1051perf_aux_output_begin(struct perf_output_handle *handle, 1052 struct perf_event *event) { return NULL; } 1053static inline void 1054perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1055 bool truncated) { } 1056static inline int 1057perf_aux_output_skip(struct perf_output_handle *handle, 1058 unsigned long size) { return -EINVAL; } 1059static inline void * 1060perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1061static inline void 1062perf_event_task_migrate(struct task_struct *task) { } 1063static inline void 1064perf_event_task_sched_in(struct task_struct *prev, 1065 struct task_struct *task) { } 1066static inline void 1067perf_event_task_sched_out(struct task_struct *prev, 1068 struct task_struct *next) { } 1069static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1070static inline void perf_event_exit_task(struct task_struct *child) { } 1071static inline void perf_event_free_task(struct task_struct *task) { } 1072static inline void perf_event_delayed_put(struct task_struct *task) { } 1073static inline struct perf_event *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1074static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1075{ 1076 return ERR_PTR(-EINVAL); 1077} 1078static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1079static inline void perf_event_print_debug(void) { } 1080static inline int perf_event_task_disable(void) { return -EINVAL; } 1081static inline int perf_event_task_enable(void) { return -EINVAL; } 1082static inline int perf_event_refresh(struct perf_event *event, int refresh) 1083{ 1084 return -EINVAL; 1085} 1086 1087static inline void 1088perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1089static inline void 1090perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1091static inline void 1092perf_bp_event(struct perf_event *event, void *data) { } 1093 1094static inline int perf_register_guest_info_callbacks 1095(struct perf_guest_info_callbacks *callbacks) { return 0; } 1096static inline int perf_unregister_guest_info_callbacks 1097(struct perf_guest_info_callbacks *callbacks) { return 0; } 1098 1099static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1100static inline void perf_event_exec(void) { } 1101static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1102static inline void perf_event_fork(struct task_struct *tsk) { } 1103static inline void perf_event_init(void) { } 1104static inline int perf_swevent_get_recursion_context(void) { return -1; } 1105static inline void perf_swevent_put_recursion_context(int rctx) { } 1106static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1107static inline void perf_event_enable(struct perf_event *event) { } 1108static inline void perf_event_disable(struct perf_event *event) { } 1109static inline int __perf_event_disable(void *info) { return -1; } 1110static inline void perf_event_task_tick(void) { } 1111static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1112#endif 1113 1114#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 1115extern bool perf_event_can_stop_tick(void); 1116#else 1117static inline bool perf_event_can_stop_tick(void) { return true; } 1118#endif 1119 1120#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1121extern void perf_restore_debug_store(void); 1122#else 1123static inline void perf_restore_debug_store(void) { } 1124#endif 1125 1126#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1127 1128/* 1129 * This has to have a higher priority than migration_notifier in sched/core.c. 1130 */ 1131#define perf_cpu_notifier(fn) \ 1132do { \ 1133 static struct notifier_block fn##_nb = \ 1134 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1135 unsigned long cpu = smp_processor_id(); \ 1136 unsigned long flags; \ 1137 \ 1138 cpu_notifier_register_begin(); \ 1139 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 1140 (void *)(unsigned long)cpu); \ 1141 local_irq_save(flags); \ 1142 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 1143 (void *)(unsigned long)cpu); \ 1144 local_irq_restore(flags); \ 1145 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 1146 (void *)(unsigned long)cpu); \ 1147 __register_cpu_notifier(&fn##_nb); \ 1148 cpu_notifier_register_done(); \ 1149} while (0) 1150 1151/* 1152 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 1153 * callback for already online CPUs. 1154 */ 1155#define __perf_cpu_notifier(fn) \ 1156do { \ 1157 static struct notifier_block fn##_nb = \ 1158 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 1159 \ 1160 __register_cpu_notifier(&fn##_nb); \ 1161} while (0) 1162 1163struct perf_pmu_events_attr { 1164 struct device_attribute attr; 1165 u64 id; 1166 const char *event_str; 1167}; 1168 1169ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1170 char *page); 1171 1172#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1173static struct perf_pmu_events_attr _var = { \ 1174 .attr = __ATTR(_name, 0444, _show, NULL), \ 1175 .id = _id, \ 1176}; 1177 1178#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1179static struct perf_pmu_events_attr _var = { \ 1180 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1181 .id = 0, \ 1182 .event_str = _str, \ 1183}; 1184 1185#define PMU_FORMAT_ATTR(_name, _format) \ 1186static ssize_t \ 1187_name##_show(struct device *dev, \ 1188 struct device_attribute *attr, \ 1189 char *page) \ 1190{ \ 1191 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1192 return sprintf(page, _format "\n"); \ 1193} \ 1194 \ 1195static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1196 1197#endif /* _LINUX_PERF_EVENT_H */