at v4.4 20 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 20 * allocation mode flags. 21 */ 22enum mapping_flags { 23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */ 28}; 29 30static inline void mapping_set_error(struct address_space *mapping, int error) 31{ 32 if (unlikely(error)) { 33 if (error == -ENOSPC) 34 set_bit(AS_ENOSPC, &mapping->flags); 35 else 36 set_bit(AS_EIO, &mapping->flags); 37 } 38} 39 40static inline void mapping_set_unevictable(struct address_space *mapping) 41{ 42 set_bit(AS_UNEVICTABLE, &mapping->flags); 43} 44 45static inline void mapping_clear_unevictable(struct address_space *mapping) 46{ 47 clear_bit(AS_UNEVICTABLE, &mapping->flags); 48} 49 50static inline int mapping_unevictable(struct address_space *mapping) 51{ 52 if (mapping) 53 return test_bit(AS_UNEVICTABLE, &mapping->flags); 54 return !!mapping; 55} 56 57static inline void mapping_set_exiting(struct address_space *mapping) 58{ 59 set_bit(AS_EXITING, &mapping->flags); 60} 61 62static inline int mapping_exiting(struct address_space *mapping) 63{ 64 return test_bit(AS_EXITING, &mapping->flags); 65} 66 67static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 68{ 69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 70} 71 72/* Restricts the given gfp_mask to what the mapping allows. */ 73static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 74 gfp_t gfp_mask) 75{ 76 return mapping_gfp_mask(mapping) & gfp_mask; 77} 78 79/* 80 * This is non-atomic. Only to be used before the mapping is activated. 81 * Probably needs a barrier... 82 */ 83static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 84{ 85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 86 (__force unsigned long)mask; 87} 88 89/* 90 * The page cache can be done in larger chunks than 91 * one page, because it allows for more efficient 92 * throughput (it can then be mapped into user 93 * space in smaller chunks for same flexibility). 94 * 95 * Or rather, it _will_ be done in larger chunks. 96 */ 97#define PAGE_CACHE_SHIFT PAGE_SHIFT 98#define PAGE_CACHE_SIZE PAGE_SIZE 99#define PAGE_CACHE_MASK PAGE_MASK 100#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 101 102#define page_cache_get(page) get_page(page) 103#define page_cache_release(page) put_page(page) 104void release_pages(struct page **pages, int nr, bool cold); 105 106/* 107 * speculatively take a reference to a page. 108 * If the page is free (_count == 0), then _count is untouched, and 0 109 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 110 * 111 * This function must be called inside the same rcu_read_lock() section as has 112 * been used to lookup the page in the pagecache radix-tree (or page table): 113 * this allows allocators to use a synchronize_rcu() to stabilize _count. 114 * 115 * Unless an RCU grace period has passed, the count of all pages coming out 116 * of the allocator must be considered unstable. page_count may return higher 117 * than expected, and put_page must be able to do the right thing when the 118 * page has been finished with, no matter what it is subsequently allocated 119 * for (because put_page is what is used here to drop an invalid speculative 120 * reference). 121 * 122 * This is the interesting part of the lockless pagecache (and lockless 123 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 124 * has the following pattern: 125 * 1. find page in radix tree 126 * 2. conditionally increment refcount 127 * 3. check the page is still in pagecache (if no, goto 1) 128 * 129 * Remove-side that cares about stability of _count (eg. reclaim) has the 130 * following (with tree_lock held for write): 131 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 132 * B. remove page from pagecache 133 * C. free the page 134 * 135 * There are 2 critical interleavings that matter: 136 * - 2 runs before A: in this case, A sees elevated refcount and bails out 137 * - A runs before 2: in this case, 2 sees zero refcount and retries; 138 * subsequently, B will complete and 1 will find no page, causing the 139 * lookup to return NULL. 140 * 141 * It is possible that between 1 and 2, the page is removed then the exact same 142 * page is inserted into the same position in pagecache. That's OK: the 143 * old find_get_page using tree_lock could equally have run before or after 144 * such a re-insertion, depending on order that locks are granted. 145 * 146 * Lookups racing against pagecache insertion isn't a big problem: either 1 147 * will find the page or it will not. Likewise, the old find_get_page could run 148 * either before the insertion or afterwards, depending on timing. 149 */ 150static inline int page_cache_get_speculative(struct page *page) 151{ 152 VM_BUG_ON(in_interrupt()); 153 154#ifdef CONFIG_TINY_RCU 155# ifdef CONFIG_PREEMPT_COUNT 156 VM_BUG_ON(!in_atomic()); 157# endif 158 /* 159 * Preempt must be disabled here - we rely on rcu_read_lock doing 160 * this for us. 161 * 162 * Pagecache won't be truncated from interrupt context, so if we have 163 * found a page in the radix tree here, we have pinned its refcount by 164 * disabling preempt, and hence no need for the "speculative get" that 165 * SMP requires. 166 */ 167 VM_BUG_ON_PAGE(page_count(page) == 0, page); 168 atomic_inc(&page->_count); 169 170#else 171 if (unlikely(!get_page_unless_zero(page))) { 172 /* 173 * Either the page has been freed, or will be freed. 174 * In either case, retry here and the caller should 175 * do the right thing (see comments above). 176 */ 177 return 0; 178 } 179#endif 180 VM_BUG_ON_PAGE(PageTail(page), page); 181 182 return 1; 183} 184 185/* 186 * Same as above, but add instead of inc (could just be merged) 187 */ 188static inline int page_cache_add_speculative(struct page *page, int count) 189{ 190 VM_BUG_ON(in_interrupt()); 191 192#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 193# ifdef CONFIG_PREEMPT_COUNT 194 VM_BUG_ON(!in_atomic()); 195# endif 196 VM_BUG_ON_PAGE(page_count(page) == 0, page); 197 atomic_add(count, &page->_count); 198 199#else 200 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 201 return 0; 202#endif 203 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 204 205 return 1; 206} 207 208static inline int page_freeze_refs(struct page *page, int count) 209{ 210 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 211} 212 213static inline void page_unfreeze_refs(struct page *page, int count) 214{ 215 VM_BUG_ON_PAGE(page_count(page) != 0, page); 216 VM_BUG_ON(count == 0); 217 218 atomic_set(&page->_count, count); 219} 220 221#ifdef CONFIG_NUMA 222extern struct page *__page_cache_alloc(gfp_t gfp); 223#else 224static inline struct page *__page_cache_alloc(gfp_t gfp) 225{ 226 return alloc_pages(gfp, 0); 227} 228#endif 229 230static inline struct page *page_cache_alloc(struct address_space *x) 231{ 232 return __page_cache_alloc(mapping_gfp_mask(x)); 233} 234 235static inline struct page *page_cache_alloc_cold(struct address_space *x) 236{ 237 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 238} 239 240static inline struct page *page_cache_alloc_readahead(struct address_space *x) 241{ 242 return __page_cache_alloc(mapping_gfp_mask(x) | 243 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN); 244} 245 246typedef int filler_t(void *, struct page *); 247 248pgoff_t page_cache_next_hole(struct address_space *mapping, 249 pgoff_t index, unsigned long max_scan); 250pgoff_t page_cache_prev_hole(struct address_space *mapping, 251 pgoff_t index, unsigned long max_scan); 252 253#define FGP_ACCESSED 0x00000001 254#define FGP_LOCK 0x00000002 255#define FGP_CREAT 0x00000004 256#define FGP_WRITE 0x00000008 257#define FGP_NOFS 0x00000010 258#define FGP_NOWAIT 0x00000020 259 260struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 261 int fgp_flags, gfp_t cache_gfp_mask); 262 263/** 264 * find_get_page - find and get a page reference 265 * @mapping: the address_space to search 266 * @offset: the page index 267 * 268 * Looks up the page cache slot at @mapping & @offset. If there is a 269 * page cache page, it is returned with an increased refcount. 270 * 271 * Otherwise, %NULL is returned. 272 */ 273static inline struct page *find_get_page(struct address_space *mapping, 274 pgoff_t offset) 275{ 276 return pagecache_get_page(mapping, offset, 0, 0); 277} 278 279static inline struct page *find_get_page_flags(struct address_space *mapping, 280 pgoff_t offset, int fgp_flags) 281{ 282 return pagecache_get_page(mapping, offset, fgp_flags, 0); 283} 284 285/** 286 * find_lock_page - locate, pin and lock a pagecache page 287 * pagecache_get_page - find and get a page reference 288 * @mapping: the address_space to search 289 * @offset: the page index 290 * 291 * Looks up the page cache slot at @mapping & @offset. If there is a 292 * page cache page, it is returned locked and with an increased 293 * refcount. 294 * 295 * Otherwise, %NULL is returned. 296 * 297 * find_lock_page() may sleep. 298 */ 299static inline struct page *find_lock_page(struct address_space *mapping, 300 pgoff_t offset) 301{ 302 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 303} 304 305/** 306 * find_or_create_page - locate or add a pagecache page 307 * @mapping: the page's address_space 308 * @index: the page's index into the mapping 309 * @gfp_mask: page allocation mode 310 * 311 * Looks up the page cache slot at @mapping & @offset. If there is a 312 * page cache page, it is returned locked and with an increased 313 * refcount. 314 * 315 * If the page is not present, a new page is allocated using @gfp_mask 316 * and added to the page cache and the VM's LRU list. The page is 317 * returned locked and with an increased refcount. 318 * 319 * On memory exhaustion, %NULL is returned. 320 * 321 * find_or_create_page() may sleep, even if @gfp_flags specifies an 322 * atomic allocation! 323 */ 324static inline struct page *find_or_create_page(struct address_space *mapping, 325 pgoff_t offset, gfp_t gfp_mask) 326{ 327 return pagecache_get_page(mapping, offset, 328 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 329 gfp_mask); 330} 331 332/** 333 * grab_cache_page_nowait - returns locked page at given index in given cache 334 * @mapping: target address_space 335 * @index: the page index 336 * 337 * Same as grab_cache_page(), but do not wait if the page is unavailable. 338 * This is intended for speculative data generators, where the data can 339 * be regenerated if the page couldn't be grabbed. This routine should 340 * be safe to call while holding the lock for another page. 341 * 342 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 343 * and deadlock against the caller's locked page. 344 */ 345static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 346 pgoff_t index) 347{ 348 return pagecache_get_page(mapping, index, 349 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 350 mapping_gfp_mask(mapping)); 351} 352 353struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 354struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 355unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 356 unsigned int nr_entries, struct page **entries, 357 pgoff_t *indices); 358unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 359 unsigned int nr_pages, struct page **pages); 360unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 361 unsigned int nr_pages, struct page **pages); 362unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 363 int tag, unsigned int nr_pages, struct page **pages); 364 365struct page *grab_cache_page_write_begin(struct address_space *mapping, 366 pgoff_t index, unsigned flags); 367 368/* 369 * Returns locked page at given index in given cache, creating it if needed. 370 */ 371static inline struct page *grab_cache_page(struct address_space *mapping, 372 pgoff_t index) 373{ 374 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 375} 376 377extern struct page * read_cache_page(struct address_space *mapping, 378 pgoff_t index, filler_t *filler, void *data); 379extern struct page * read_cache_page_gfp(struct address_space *mapping, 380 pgoff_t index, gfp_t gfp_mask); 381extern int read_cache_pages(struct address_space *mapping, 382 struct list_head *pages, filler_t *filler, void *data); 383 384static inline struct page *read_mapping_page(struct address_space *mapping, 385 pgoff_t index, void *data) 386{ 387 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 388 return read_cache_page(mapping, index, filler, data); 389} 390 391/* 392 * Get the offset in PAGE_SIZE. 393 * (TODO: hugepage should have ->index in PAGE_SIZE) 394 */ 395static inline pgoff_t page_to_pgoff(struct page *page) 396{ 397 if (unlikely(PageHeadHuge(page))) 398 return page->index << compound_order(page); 399 else 400 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 401} 402 403/* 404 * Return byte-offset into filesystem object for page. 405 */ 406static inline loff_t page_offset(struct page *page) 407{ 408 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 409} 410 411static inline loff_t page_file_offset(struct page *page) 412{ 413 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT; 414} 415 416extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 417 unsigned long address); 418 419static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 420 unsigned long address) 421{ 422 pgoff_t pgoff; 423 if (unlikely(is_vm_hugetlb_page(vma))) 424 return linear_hugepage_index(vma, address); 425 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 426 pgoff += vma->vm_pgoff; 427 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 428} 429 430extern void __lock_page(struct page *page); 431extern int __lock_page_killable(struct page *page); 432extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 433 unsigned int flags); 434extern void unlock_page(struct page *page); 435 436static inline void __set_page_locked(struct page *page) 437{ 438 __set_bit(PG_locked, &page->flags); 439} 440 441static inline void __clear_page_locked(struct page *page) 442{ 443 __clear_bit(PG_locked, &page->flags); 444} 445 446static inline int trylock_page(struct page *page) 447{ 448 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 449} 450 451/* 452 * lock_page may only be called if we have the page's inode pinned. 453 */ 454static inline void lock_page(struct page *page) 455{ 456 might_sleep(); 457 if (!trylock_page(page)) 458 __lock_page(page); 459} 460 461/* 462 * lock_page_killable is like lock_page but can be interrupted by fatal 463 * signals. It returns 0 if it locked the page and -EINTR if it was 464 * killed while waiting. 465 */ 466static inline int lock_page_killable(struct page *page) 467{ 468 might_sleep(); 469 if (!trylock_page(page)) 470 return __lock_page_killable(page); 471 return 0; 472} 473 474/* 475 * lock_page_or_retry - Lock the page, unless this would block and the 476 * caller indicated that it can handle a retry. 477 * 478 * Return value and mmap_sem implications depend on flags; see 479 * __lock_page_or_retry(). 480 */ 481static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 482 unsigned int flags) 483{ 484 might_sleep(); 485 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 486} 487 488/* 489 * This is exported only for wait_on_page_locked/wait_on_page_writeback, 490 * and for filesystems which need to wait on PG_private. 491 */ 492extern void wait_on_page_bit(struct page *page, int bit_nr); 493 494extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 495extern int wait_on_page_bit_killable_timeout(struct page *page, 496 int bit_nr, unsigned long timeout); 497 498static inline int wait_on_page_locked_killable(struct page *page) 499{ 500 if (PageLocked(page)) 501 return wait_on_page_bit_killable(page, PG_locked); 502 return 0; 503} 504 505extern wait_queue_head_t *page_waitqueue(struct page *page); 506static inline void wake_up_page(struct page *page, int bit) 507{ 508 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 509} 510 511/* 512 * Wait for a page to be unlocked. 513 * 514 * This must be called with the caller "holding" the page, 515 * ie with increased "page->count" so that the page won't 516 * go away during the wait.. 517 */ 518static inline void wait_on_page_locked(struct page *page) 519{ 520 if (PageLocked(page)) 521 wait_on_page_bit(page, PG_locked); 522} 523 524/* 525 * Wait for a page to complete writeback 526 */ 527static inline void wait_on_page_writeback(struct page *page) 528{ 529 if (PageWriteback(page)) 530 wait_on_page_bit(page, PG_writeback); 531} 532 533extern void end_page_writeback(struct page *page); 534void wait_for_stable_page(struct page *page); 535 536void page_endio(struct page *page, int rw, int err); 537 538/* 539 * Add an arbitrary waiter to a page's wait queue 540 */ 541extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 542 543/* 544 * Fault a userspace page into pagetables. Return non-zero on a fault. 545 * 546 * This assumes that two userspace pages are always sufficient. That's 547 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 548 */ 549static inline int fault_in_pages_writeable(char __user *uaddr, int size) 550{ 551 int ret; 552 553 if (unlikely(size == 0)) 554 return 0; 555 556 /* 557 * Writing zeroes into userspace here is OK, because we know that if 558 * the zero gets there, we'll be overwriting it. 559 */ 560 ret = __put_user(0, uaddr); 561 if (ret == 0) { 562 char __user *end = uaddr + size - 1; 563 564 /* 565 * If the page was already mapped, this will get a cache miss 566 * for sure, so try to avoid doing it. 567 */ 568 if (((unsigned long)uaddr & PAGE_MASK) != 569 ((unsigned long)end & PAGE_MASK)) 570 ret = __put_user(0, end); 571 } 572 return ret; 573} 574 575static inline int fault_in_pages_readable(const char __user *uaddr, int size) 576{ 577 volatile char c; 578 int ret; 579 580 if (unlikely(size == 0)) 581 return 0; 582 583 ret = __get_user(c, uaddr); 584 if (ret == 0) { 585 const char __user *end = uaddr + size - 1; 586 587 if (((unsigned long)uaddr & PAGE_MASK) != 588 ((unsigned long)end & PAGE_MASK)) { 589 ret = __get_user(c, end); 590 (void)c; 591 } 592 } 593 return ret; 594} 595 596/* 597 * Multipage variants of the above prefault helpers, useful if more than 598 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above 599 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the 600 * filemap.c hotpaths. 601 */ 602static inline int fault_in_multipages_writeable(char __user *uaddr, int size) 603{ 604 int ret = 0; 605 char __user *end = uaddr + size - 1; 606 607 if (unlikely(size == 0)) 608 return ret; 609 610 /* 611 * Writing zeroes into userspace here is OK, because we know that if 612 * the zero gets there, we'll be overwriting it. 613 */ 614 while (uaddr <= end) { 615 ret = __put_user(0, uaddr); 616 if (ret != 0) 617 return ret; 618 uaddr += PAGE_SIZE; 619 } 620 621 /* Check whether the range spilled into the next page. */ 622 if (((unsigned long)uaddr & PAGE_MASK) == 623 ((unsigned long)end & PAGE_MASK)) 624 ret = __put_user(0, end); 625 626 return ret; 627} 628 629static inline int fault_in_multipages_readable(const char __user *uaddr, 630 int size) 631{ 632 volatile char c; 633 int ret = 0; 634 const char __user *end = uaddr + size - 1; 635 636 if (unlikely(size == 0)) 637 return ret; 638 639 while (uaddr <= end) { 640 ret = __get_user(c, uaddr); 641 if (ret != 0) 642 return ret; 643 uaddr += PAGE_SIZE; 644 } 645 646 /* Check whether the range spilled into the next page. */ 647 if (((unsigned long)uaddr & PAGE_MASK) == 648 ((unsigned long)end & PAGE_MASK)) { 649 ret = __get_user(c, end); 650 (void)c; 651 } 652 653 return ret; 654} 655 656int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 657 pgoff_t index, gfp_t gfp_mask); 658int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 659 pgoff_t index, gfp_t gfp_mask); 660extern void delete_from_page_cache(struct page *page); 661extern void __delete_from_page_cache(struct page *page, void *shadow, 662 struct mem_cgroup *memcg); 663int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 664 665/* 666 * Like add_to_page_cache_locked, but used to add newly allocated pages: 667 * the page is new, so we can just run __set_page_locked() against it. 668 */ 669static inline int add_to_page_cache(struct page *page, 670 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 671{ 672 int error; 673 674 __set_page_locked(page); 675 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 676 if (unlikely(error)) 677 __clear_page_locked(page); 678 return error; 679} 680 681static inline unsigned long dir_pages(struct inode *inode) 682{ 683 return (unsigned long)(inode->i_size + PAGE_CACHE_SIZE - 1) >> 684 PAGE_CACHE_SHIFT; 685} 686 687#endif /* _LINUX_PAGEMAP_H */