at v4.4 127 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54 55struct netpoll_info; 56struct device; 57struct phy_device; 58/* 802.11 specific */ 59struct wireless_dev; 60/* 802.15.4 specific */ 61struct wpan_dev; 62struct mpls_dev; 63 64void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67/* Backlog congestion levels */ 68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69#define NET_RX_DROP 1 /* packet dropped */ 70 71/* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88/* qdisc ->enqueue() return codes. */ 89#define NET_XMIT_SUCCESS 0x00 90#define NET_XMIT_DROP 0x01 /* skb dropped */ 91#define NET_XMIT_CN 0x02 /* congestion notification */ 92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101/* Driver transmit return codes */ 102#define NETDEV_TX_MASK 0xf0 103 104enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109}; 110typedef enum netdev_tx netdev_tx_t; 111 112/* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116static inline bool dev_xmit_complete(int rc) 117{ 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128} 129 130/* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136# if defined(CONFIG_MAC80211_MESH) 137# define LL_MAX_HEADER 128 138# else 139# define LL_MAX_HEADER 96 140# endif 141#else 142# define LL_MAX_HEADER 32 143#endif 144 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147#define MAX_HEADER LL_MAX_HEADER 148#else 149#define MAX_HEADER (LL_MAX_HEADER + 48) 150#endif 151 152/* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181}; 182 183 184#include <linux/cache.h> 185#include <linux/skbuff.h> 186 187#ifdef CONFIG_RPS 188#include <linux/static_key.h> 189extern struct static_key rps_needed; 190#endif 191 192struct neighbour; 193struct neigh_parms; 194struct sk_buff; 195 196struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200#define NETDEV_HW_ADDR_T_LAN 1 201#define NETDEV_HW_ADDR_T_SAN 2 202#define NETDEV_HW_ADDR_T_SLAVE 3 203#define NETDEV_HW_ADDR_T_UNICAST 4 204#define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210}; 211 212struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215}; 216 217#define netdev_hw_addr_list_count(l) ((l)->count) 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219#define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224#define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229#define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238#define HH_DATA_MOD 16 239#define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241#define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244}; 245 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254#define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 265 void (*cache_update)(struct hh_cache *hh, 266 const struct net_device *dev, 267 const unsigned char *haddr); 268}; 269 270/* These flag bits are private to the generic network queueing 271 * layer, they may not be explicitly referenced by any other 272 * code. 273 */ 274 275enum netdev_state_t { 276 __LINK_STATE_START, 277 __LINK_STATE_PRESENT, 278 __LINK_STATE_NOCARRIER, 279 __LINK_STATE_LINKWATCH_PENDING, 280 __LINK_STATE_DORMANT, 281}; 282 283 284/* 285 * This structure holds at boot time configured netdevice settings. They 286 * are then used in the device probing. 287 */ 288struct netdev_boot_setup { 289 char name[IFNAMSIZ]; 290 struct ifmap map; 291}; 292#define NETDEV_BOOT_SETUP_MAX 8 293 294int __init netdev_boot_setup(char *str); 295 296/* 297 * Structure for NAPI scheduling similar to tasklet but with weighting 298 */ 299struct napi_struct { 300 /* The poll_list must only be managed by the entity which 301 * changes the state of the NAPI_STATE_SCHED bit. This means 302 * whoever atomically sets that bit can add this napi_struct 303 * to the per-cpu poll_list, and whoever clears that bit 304 * can remove from the list right before clearing the bit. 305 */ 306 struct list_head poll_list; 307 308 unsigned long state; 309 int weight; 310 unsigned int gro_count; 311 int (*poll)(struct napi_struct *, int); 312#ifdef CONFIG_NETPOLL 313 spinlock_t poll_lock; 314 int poll_owner; 315#endif 316 struct net_device *dev; 317 struct sk_buff *gro_list; 318 struct sk_buff *skb; 319 struct hrtimer timer; 320 struct list_head dev_list; 321 struct hlist_node napi_hash_node; 322 unsigned int napi_id; 323}; 324 325enum { 326 NAPI_STATE_SCHED, /* Poll is scheduled */ 327 NAPI_STATE_DISABLE, /* Disable pending */ 328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 329 NAPI_STATE_HASHED, /* In NAPI hash */ 330}; 331 332enum gro_result { 333 GRO_MERGED, 334 GRO_MERGED_FREE, 335 GRO_HELD, 336 GRO_NORMAL, 337 GRO_DROP, 338}; 339typedef enum gro_result gro_result_t; 340 341/* 342 * enum rx_handler_result - Possible return values for rx_handlers. 343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 344 * further. 345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 346 * case skb->dev was changed by rx_handler. 347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 349 * 350 * rx_handlers are functions called from inside __netif_receive_skb(), to do 351 * special processing of the skb, prior to delivery to protocol handlers. 352 * 353 * Currently, a net_device can only have a single rx_handler registered. Trying 354 * to register a second rx_handler will return -EBUSY. 355 * 356 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 357 * To unregister a rx_handler on a net_device, use 358 * netdev_rx_handler_unregister(). 359 * 360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 361 * do with the skb. 362 * 363 * If the rx_handler consumed to skb in some way, it should return 364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 365 * the skb to be delivered in some other ways. 366 * 367 * If the rx_handler changed skb->dev, to divert the skb to another 368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 369 * new device will be called if it exists. 370 * 371 * If the rx_handler consider the skb should be ignored, it should return 372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 373 * are registered on exact device (ptype->dev == skb->dev). 374 * 375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 376 * delivered, it should return RX_HANDLER_PASS. 377 * 378 * A device without a registered rx_handler will behave as if rx_handler 379 * returned RX_HANDLER_PASS. 380 */ 381 382enum rx_handler_result { 383 RX_HANDLER_CONSUMED, 384 RX_HANDLER_ANOTHER, 385 RX_HANDLER_EXACT, 386 RX_HANDLER_PASS, 387}; 388typedef enum rx_handler_result rx_handler_result_t; 389typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 390 391void __napi_schedule(struct napi_struct *n); 392void __napi_schedule_irqoff(struct napi_struct *n); 393 394static inline bool napi_disable_pending(struct napi_struct *n) 395{ 396 return test_bit(NAPI_STATE_DISABLE, &n->state); 397} 398 399/** 400 * napi_schedule_prep - check if napi can be scheduled 401 * @n: napi context 402 * 403 * Test if NAPI routine is already running, and if not mark 404 * it as running. This is used as a condition variable 405 * insure only one NAPI poll instance runs. We also make 406 * sure there is no pending NAPI disable. 407 */ 408static inline bool napi_schedule_prep(struct napi_struct *n) 409{ 410 return !napi_disable_pending(n) && 411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 412} 413 414/** 415 * napi_schedule - schedule NAPI poll 416 * @n: napi context 417 * 418 * Schedule NAPI poll routine to be called if it is not already 419 * running. 420 */ 421static inline void napi_schedule(struct napi_struct *n) 422{ 423 if (napi_schedule_prep(n)) 424 __napi_schedule(n); 425} 426 427/** 428 * napi_schedule_irqoff - schedule NAPI poll 429 * @n: napi context 430 * 431 * Variant of napi_schedule(), assuming hard irqs are masked. 432 */ 433static inline void napi_schedule_irqoff(struct napi_struct *n) 434{ 435 if (napi_schedule_prep(n)) 436 __napi_schedule_irqoff(n); 437} 438 439/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 440static inline bool napi_reschedule(struct napi_struct *napi) 441{ 442 if (napi_schedule_prep(napi)) { 443 __napi_schedule(napi); 444 return true; 445 } 446 return false; 447} 448 449void __napi_complete(struct napi_struct *n); 450void napi_complete_done(struct napi_struct *n, int work_done); 451/** 452 * napi_complete - NAPI processing complete 453 * @n: napi context 454 * 455 * Mark NAPI processing as complete. 456 * Consider using napi_complete_done() instead. 457 */ 458static inline void napi_complete(struct napi_struct *n) 459{ 460 return napi_complete_done(n, 0); 461} 462 463/** 464 * napi_by_id - lookup a NAPI by napi_id 465 * @napi_id: hashed napi_id 466 * 467 * lookup @napi_id in napi_hash table 468 * must be called under rcu_read_lock() 469 */ 470struct napi_struct *napi_by_id(unsigned int napi_id); 471 472/** 473 * napi_hash_add - add a NAPI to global hashtable 474 * @napi: napi context 475 * 476 * generate a new napi_id and store a @napi under it in napi_hash 477 */ 478void napi_hash_add(struct napi_struct *napi); 479 480/** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: napi context 483 * 484 * Warning: caller must observe rcu grace period 485 * before freeing memory containing @napi 486 */ 487void napi_hash_del(struct napi_struct *napi); 488 489/** 490 * napi_disable - prevent NAPI from scheduling 491 * @n: napi context 492 * 493 * Stop NAPI from being scheduled on this context. 494 * Waits till any outstanding processing completes. 495 */ 496void napi_disable(struct napi_struct *n); 497 498/** 499 * napi_enable - enable NAPI scheduling 500 * @n: napi context 501 * 502 * Resume NAPI from being scheduled on this context. 503 * Must be paired with napi_disable. 504 */ 505static inline void napi_enable(struct napi_struct *n) 506{ 507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 508 smp_mb__before_atomic(); 509 clear_bit(NAPI_STATE_SCHED, &n->state); 510 clear_bit(NAPI_STATE_NPSVC, &n->state); 511} 512 513#ifdef CONFIG_SMP 514/** 515 * napi_synchronize - wait until NAPI is not running 516 * @n: napi context 517 * 518 * Wait until NAPI is done being scheduled on this context. 519 * Waits till any outstanding processing completes but 520 * does not disable future activations. 521 */ 522static inline void napi_synchronize(const struct napi_struct *n) 523{ 524 while (test_bit(NAPI_STATE_SCHED, &n->state)) 525 msleep(1); 526} 527#else 528# define napi_synchronize(n) barrier() 529#endif 530 531enum netdev_queue_state_t { 532 __QUEUE_STATE_DRV_XOFF, 533 __QUEUE_STATE_STACK_XOFF, 534 __QUEUE_STATE_FROZEN, 535}; 536 537#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 538#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 539#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 540 541#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 542#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 543 QUEUE_STATE_FROZEN) 544#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 545 QUEUE_STATE_FROZEN) 546 547/* 548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 549 * netif_tx_* functions below are used to manipulate this flag. The 550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 551 * queue independently. The netif_xmit_*stopped functions below are called 552 * to check if the queue has been stopped by the driver or stack (either 553 * of the XOFF bits are set in the state). Drivers should not need to call 554 * netif_xmit*stopped functions, they should only be using netif_tx_*. 555 */ 556 557struct netdev_queue { 558/* 559 * read mostly part 560 */ 561 struct net_device *dev; 562 struct Qdisc __rcu *qdisc; 563 struct Qdisc *qdisc_sleeping; 564#ifdef CONFIG_SYSFS 565 struct kobject kobj; 566#endif 567#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 568 int numa_node; 569#endif 570/* 571 * write mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * please use this field instead of dev->trans_start 577 */ 578 unsigned long trans_start; 579 580 /* 581 * Number of TX timeouts for this queue 582 * (/sys/class/net/DEV/Q/trans_timeout) 583 */ 584 unsigned long trans_timeout; 585 586 unsigned long state; 587 588#ifdef CONFIG_BQL 589 struct dql dql; 590#endif 591 unsigned long tx_maxrate; 592} ____cacheline_aligned_in_smp; 593 594static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 595{ 596#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 597 return q->numa_node; 598#else 599 return NUMA_NO_NODE; 600#endif 601} 602 603static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 604{ 605#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 606 q->numa_node = node; 607#endif 608} 609 610#ifdef CONFIG_RPS 611/* 612 * This structure holds an RPS map which can be of variable length. The 613 * map is an array of CPUs. 614 */ 615struct rps_map { 616 unsigned int len; 617 struct rcu_head rcu; 618 u16 cpus[0]; 619}; 620#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 621 622/* 623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 624 * tail pointer for that CPU's input queue at the time of last enqueue, and 625 * a hardware filter index. 626 */ 627struct rps_dev_flow { 628 u16 cpu; 629 u16 filter; 630 unsigned int last_qtail; 631}; 632#define RPS_NO_FILTER 0xffff 633 634/* 635 * The rps_dev_flow_table structure contains a table of flow mappings. 636 */ 637struct rps_dev_flow_table { 638 unsigned int mask; 639 struct rcu_head rcu; 640 struct rps_dev_flow flows[0]; 641}; 642#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 643 ((_num) * sizeof(struct rps_dev_flow))) 644 645/* 646 * The rps_sock_flow_table contains mappings of flows to the last CPU 647 * on which they were processed by the application (set in recvmsg). 648 * Each entry is a 32bit value. Upper part is the high order bits 649 * of flow hash, lower part is cpu number. 650 * rps_cpu_mask is used to partition the space, depending on number of 651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 653 * meaning we use 32-6=26 bits for the hash. 654 */ 655struct rps_sock_flow_table { 656 u32 mask; 657 658 u32 ents[0] ____cacheline_aligned_in_smp; 659}; 660#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 661 662#define RPS_NO_CPU 0xffff 663 664extern u32 rps_cpu_mask; 665extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 666 667static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 668 u32 hash) 669{ 670 if (table && hash) { 671 unsigned int index = hash & table->mask; 672 u32 val = hash & ~rps_cpu_mask; 673 674 /* We only give a hint, preemption can change cpu under us */ 675 val |= raw_smp_processor_id(); 676 677 if (table->ents[index] != val) 678 table->ents[index] = val; 679 } 680} 681 682#ifdef CONFIG_RFS_ACCEL 683bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 684 u16 filter_id); 685#endif 686#endif /* CONFIG_RPS */ 687 688/* This structure contains an instance of an RX queue. */ 689struct netdev_rx_queue { 690#ifdef CONFIG_RPS 691 struct rps_map __rcu *rps_map; 692 struct rps_dev_flow_table __rcu *rps_flow_table; 693#endif 694 struct kobject kobj; 695 struct net_device *dev; 696} ____cacheline_aligned_in_smp; 697 698/* 699 * RX queue sysfs structures and functions. 700 */ 701struct rx_queue_attribute { 702 struct attribute attr; 703 ssize_t (*show)(struct netdev_rx_queue *queue, 704 struct rx_queue_attribute *attr, char *buf); 705 ssize_t (*store)(struct netdev_rx_queue *queue, 706 struct rx_queue_attribute *attr, const char *buf, size_t len); 707}; 708 709#ifdef CONFIG_XPS 710/* 711 * This structure holds an XPS map which can be of variable length. The 712 * map is an array of queues. 713 */ 714struct xps_map { 715 unsigned int len; 716 unsigned int alloc_len; 717 struct rcu_head rcu; 718 u16 queues[0]; 719}; 720#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 721#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 722 - sizeof(struct xps_map)) / sizeof(u16)) 723 724/* 725 * This structure holds all XPS maps for device. Maps are indexed by CPU. 726 */ 727struct xps_dev_maps { 728 struct rcu_head rcu; 729 struct xps_map __rcu *cpu_map[0]; 730}; 731#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 732 (nr_cpu_ids * sizeof(struct xps_map *))) 733#endif /* CONFIG_XPS */ 734 735#define TC_MAX_QUEUE 16 736#define TC_BITMASK 15 737/* HW offloaded queuing disciplines txq count and offset maps */ 738struct netdev_tc_txq { 739 u16 count; 740 u16 offset; 741}; 742 743#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 744/* 745 * This structure is to hold information about the device 746 * configured to run FCoE protocol stack. 747 */ 748struct netdev_fcoe_hbainfo { 749 char manufacturer[64]; 750 char serial_number[64]; 751 char hardware_version[64]; 752 char driver_version[64]; 753 char optionrom_version[64]; 754 char firmware_version[64]; 755 char model[256]; 756 char model_description[256]; 757}; 758#endif 759 760#define MAX_PHYS_ITEM_ID_LEN 32 761 762/* This structure holds a unique identifier to identify some 763 * physical item (port for example) used by a netdevice. 764 */ 765struct netdev_phys_item_id { 766 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 767 unsigned char id_len; 768}; 769 770static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 771 struct netdev_phys_item_id *b) 772{ 773 return a->id_len == b->id_len && 774 memcmp(a->id, b->id, a->id_len) == 0; 775} 776 777typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 778 struct sk_buff *skb); 779 780/* 781 * This structure defines the management hooks for network devices. 782 * The following hooks can be defined; unless noted otherwise, they are 783 * optional and can be filled with a null pointer. 784 * 785 * int (*ndo_init)(struct net_device *dev); 786 * This function is called once when network device is registered. 787 * The network device can use this to any late stage initializaton 788 * or semantic validattion. It can fail with an error code which will 789 * be propogated back to register_netdev 790 * 791 * void (*ndo_uninit)(struct net_device *dev); 792 * This function is called when device is unregistered or when registration 793 * fails. It is not called if init fails. 794 * 795 * int (*ndo_open)(struct net_device *dev); 796 * This function is called when network device transistions to the up 797 * state. 798 * 799 * int (*ndo_stop)(struct net_device *dev); 800 * This function is called when network device transistions to the down 801 * state. 802 * 803 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 804 * struct net_device *dev); 805 * Called when a packet needs to be transmitted. 806 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 807 * the queue before that can happen; it's for obsolete devices and weird 808 * corner cases, but the stack really does a non-trivial amount 809 * of useless work if you return NETDEV_TX_BUSY. 810 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 811 * Required can not be NULL. 812 * 813 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 814 * void *accel_priv, select_queue_fallback_t fallback); 815 * Called to decide which queue to when device supports multiple 816 * transmit queues. 817 * 818 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 819 * This function is called to allow device receiver to make 820 * changes to configuration when multicast or promiscious is enabled. 821 * 822 * void (*ndo_set_rx_mode)(struct net_device *dev); 823 * This function is called device changes address list filtering. 824 * If driver handles unicast address filtering, it should set 825 * IFF_UNICAST_FLT to its priv_flags. 826 * 827 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 828 * This function is called when the Media Access Control address 829 * needs to be changed. If this interface is not defined, the 830 * mac address can not be changed. 831 * 832 * int (*ndo_validate_addr)(struct net_device *dev); 833 * Test if Media Access Control address is valid for the device. 834 * 835 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 836 * Called when a user request an ioctl which can't be handled by 837 * the generic interface code. If not defined ioctl's return 838 * not supported error code. 839 * 840 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 841 * Used to set network devices bus interface parameters. This interface 842 * is retained for legacy reason, new devices should use the bus 843 * interface (PCI) for low level management. 844 * 845 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 846 * Called when a user wants to change the Maximum Transfer Unit 847 * of a device. If not defined, any request to change MTU will 848 * will return an error. 849 * 850 * void (*ndo_tx_timeout)(struct net_device *dev); 851 * Callback uses when the transmitter has not made any progress 852 * for dev->watchdog ticks. 853 * 854 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 855 * struct rtnl_link_stats64 *storage); 856 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 857 * Called when a user wants to get the network device usage 858 * statistics. Drivers must do one of the following: 859 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 860 * rtnl_link_stats64 structure passed by the caller. 861 * 2. Define @ndo_get_stats to update a net_device_stats structure 862 * (which should normally be dev->stats) and return a pointer to 863 * it. The structure may be changed asynchronously only if each 864 * field is written atomically. 865 * 3. Update dev->stats asynchronously and atomically, and define 866 * neither operation. 867 * 868 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 869 * If device support VLAN filtering this function is called when a 870 * VLAN id is registered. 871 * 872 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 873 * If device support VLAN filtering this function is called when a 874 * VLAN id is unregistered. 875 * 876 * void (*ndo_poll_controller)(struct net_device *dev); 877 * 878 * SR-IOV management functions. 879 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 880 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 881 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 882 * int max_tx_rate); 883 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 884 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 885 * int (*ndo_get_vf_config)(struct net_device *dev, 886 * int vf, struct ifla_vf_info *ivf); 887 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 888 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 889 * struct nlattr *port[]); 890 * 891 * Enable or disable the VF ability to query its RSS Redirection Table and 892 * Hash Key. This is needed since on some devices VF share this information 893 * with PF and querying it may adduce a theoretical security risk. 894 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 895 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 896 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 897 * Called to setup 'tc' number of traffic classes in the net device. This 898 * is always called from the stack with the rtnl lock held and netif tx 899 * queues stopped. This allows the netdevice to perform queue management 900 * safely. 901 * 902 * Fiber Channel over Ethernet (FCoE) offload functions. 903 * int (*ndo_fcoe_enable)(struct net_device *dev); 904 * Called when the FCoE protocol stack wants to start using LLD for FCoE 905 * so the underlying device can perform whatever needed configuration or 906 * initialization to support acceleration of FCoE traffic. 907 * 908 * int (*ndo_fcoe_disable)(struct net_device *dev); 909 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 910 * so the underlying device can perform whatever needed clean-ups to 911 * stop supporting acceleration of FCoE traffic. 912 * 913 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 914 * struct scatterlist *sgl, unsigned int sgc); 915 * Called when the FCoE Initiator wants to initialize an I/O that 916 * is a possible candidate for Direct Data Placement (DDP). The LLD can 917 * perform necessary setup and returns 1 to indicate the device is set up 918 * successfully to perform DDP on this I/O, otherwise this returns 0. 919 * 920 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 921 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 922 * indicated by the FC exchange id 'xid', so the underlying device can 923 * clean up and reuse resources for later DDP requests. 924 * 925 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 926 * struct scatterlist *sgl, unsigned int sgc); 927 * Called when the FCoE Target wants to initialize an I/O that 928 * is a possible candidate for Direct Data Placement (DDP). The LLD can 929 * perform necessary setup and returns 1 to indicate the device is set up 930 * successfully to perform DDP on this I/O, otherwise this returns 0. 931 * 932 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 933 * struct netdev_fcoe_hbainfo *hbainfo); 934 * Called when the FCoE Protocol stack wants information on the underlying 935 * device. This information is utilized by the FCoE protocol stack to 936 * register attributes with Fiber Channel management service as per the 937 * FC-GS Fabric Device Management Information(FDMI) specification. 938 * 939 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 940 * Called when the underlying device wants to override default World Wide 941 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 942 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 943 * protocol stack to use. 944 * 945 * RFS acceleration. 946 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 947 * u16 rxq_index, u32 flow_id); 948 * Set hardware filter for RFS. rxq_index is the target queue index; 949 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 950 * Return the filter ID on success, or a negative error code. 951 * 952 * Slave management functions (for bridge, bonding, etc). 953 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 954 * Called to make another netdev an underling. 955 * 956 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 957 * Called to release previously enslaved netdev. 958 * 959 * Feature/offload setting functions. 960 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 961 * netdev_features_t features); 962 * Adjusts the requested feature flags according to device-specific 963 * constraints, and returns the resulting flags. Must not modify 964 * the device state. 965 * 966 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 967 * Called to update device configuration to new features. Passed 968 * feature set might be less than what was returned by ndo_fix_features()). 969 * Must return >0 or -errno if it changed dev->features itself. 970 * 971 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 972 * struct net_device *dev, 973 * const unsigned char *addr, u16 vid, u16 flags) 974 * Adds an FDB entry to dev for addr. 975 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 976 * struct net_device *dev, 977 * const unsigned char *addr, u16 vid) 978 * Deletes the FDB entry from dev coresponding to addr. 979 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 980 * struct net_device *dev, struct net_device *filter_dev, 981 * int idx) 982 * Used to add FDB entries to dump requests. Implementers should add 983 * entries to skb and update idx with the number of entries. 984 * 985 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 986 * u16 flags) 987 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 988 * struct net_device *dev, u32 filter_mask, 989 * int nlflags) 990 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 991 * u16 flags); 992 * 993 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 994 * Called to change device carrier. Soft-devices (like dummy, team, etc) 995 * which do not represent real hardware may define this to allow their 996 * userspace components to manage their virtual carrier state. Devices 997 * that determine carrier state from physical hardware properties (eg 998 * network cables) or protocol-dependent mechanisms (eg 999 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1000 * 1001 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1002 * struct netdev_phys_item_id *ppid); 1003 * Called to get ID of physical port of this device. If driver does 1004 * not implement this, it is assumed that the hw is not able to have 1005 * multiple net devices on single physical port. 1006 * 1007 * void (*ndo_add_vxlan_port)(struct net_device *dev, 1008 * sa_family_t sa_family, __be16 port); 1009 * Called by vxlan to notiy a driver about the UDP port and socket 1010 * address family that vxlan is listnening to. It is called only when 1011 * a new port starts listening. The operation is protected by the 1012 * vxlan_net->sock_lock. 1013 * 1014 * void (*ndo_del_vxlan_port)(struct net_device *dev, 1015 * sa_family_t sa_family, __be16 port); 1016 * Called by vxlan to notify the driver about a UDP port and socket 1017 * address family that vxlan is not listening to anymore. The operation 1018 * is protected by the vxlan_net->sock_lock. 1019 * 1020 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1021 * struct net_device *dev) 1022 * Called by upper layer devices to accelerate switching or other 1023 * station functionality into hardware. 'pdev is the lowerdev 1024 * to use for the offload and 'dev' is the net device that will 1025 * back the offload. Returns a pointer to the private structure 1026 * the upper layer will maintain. 1027 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1028 * Called by upper layer device to delete the station created 1029 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1030 * the station and priv is the structure returned by the add 1031 * operation. 1032 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1033 * struct net_device *dev, 1034 * void *priv); 1035 * Callback to use for xmit over the accelerated station. This 1036 * is used in place of ndo_start_xmit on accelerated net 1037 * devices. 1038 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1039 * struct net_device *dev 1040 * netdev_features_t features); 1041 * Called by core transmit path to determine if device is capable of 1042 * performing offload operations on a given packet. This is to give 1043 * the device an opportunity to implement any restrictions that cannot 1044 * be otherwise expressed by feature flags. The check is called with 1045 * the set of features that the stack has calculated and it returns 1046 * those the driver believes to be appropriate. 1047 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1048 * int queue_index, u32 maxrate); 1049 * Called when a user wants to set a max-rate limitation of specific 1050 * TX queue. 1051 * int (*ndo_get_iflink)(const struct net_device *dev); 1052 * Called to get the iflink value of this device. 1053 * void (*ndo_change_proto_down)(struct net_device *dev, 1054 * bool proto_down); 1055 * This function is used to pass protocol port error state information 1056 * to the switch driver. The switch driver can react to the proto_down 1057 * by doing a phys down on the associated switch port. 1058 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1059 * This function is used to get egress tunnel information for given skb. 1060 * This is useful for retrieving outer tunnel header parameters while 1061 * sampling packet. 1062 * 1063 */ 1064struct net_device_ops { 1065 int (*ndo_init)(struct net_device *dev); 1066 void (*ndo_uninit)(struct net_device *dev); 1067 int (*ndo_open)(struct net_device *dev); 1068 int (*ndo_stop)(struct net_device *dev); 1069 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1070 struct net_device *dev); 1071 u16 (*ndo_select_queue)(struct net_device *dev, 1072 struct sk_buff *skb, 1073 void *accel_priv, 1074 select_queue_fallback_t fallback); 1075 void (*ndo_change_rx_flags)(struct net_device *dev, 1076 int flags); 1077 void (*ndo_set_rx_mode)(struct net_device *dev); 1078 int (*ndo_set_mac_address)(struct net_device *dev, 1079 void *addr); 1080 int (*ndo_validate_addr)(struct net_device *dev); 1081 int (*ndo_do_ioctl)(struct net_device *dev, 1082 struct ifreq *ifr, int cmd); 1083 int (*ndo_set_config)(struct net_device *dev, 1084 struct ifmap *map); 1085 int (*ndo_change_mtu)(struct net_device *dev, 1086 int new_mtu); 1087 int (*ndo_neigh_setup)(struct net_device *dev, 1088 struct neigh_parms *); 1089 void (*ndo_tx_timeout) (struct net_device *dev); 1090 1091 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1092 struct rtnl_link_stats64 *storage); 1093 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1094 1095 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1096 __be16 proto, u16 vid); 1097 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1098 __be16 proto, u16 vid); 1099#ifdef CONFIG_NET_POLL_CONTROLLER 1100 void (*ndo_poll_controller)(struct net_device *dev); 1101 int (*ndo_netpoll_setup)(struct net_device *dev, 1102 struct netpoll_info *info); 1103 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1104#endif 1105#ifdef CONFIG_NET_RX_BUSY_POLL 1106 int (*ndo_busy_poll)(struct napi_struct *dev); 1107#endif 1108 int (*ndo_set_vf_mac)(struct net_device *dev, 1109 int queue, u8 *mac); 1110 int (*ndo_set_vf_vlan)(struct net_device *dev, 1111 int queue, u16 vlan, u8 qos); 1112 int (*ndo_set_vf_rate)(struct net_device *dev, 1113 int vf, int min_tx_rate, 1114 int max_tx_rate); 1115 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1116 int vf, bool setting); 1117 int (*ndo_set_vf_trust)(struct net_device *dev, 1118 int vf, bool setting); 1119 int (*ndo_get_vf_config)(struct net_device *dev, 1120 int vf, 1121 struct ifla_vf_info *ivf); 1122 int (*ndo_set_vf_link_state)(struct net_device *dev, 1123 int vf, int link_state); 1124 int (*ndo_get_vf_stats)(struct net_device *dev, 1125 int vf, 1126 struct ifla_vf_stats 1127 *vf_stats); 1128 int (*ndo_set_vf_port)(struct net_device *dev, 1129 int vf, 1130 struct nlattr *port[]); 1131 int (*ndo_get_vf_port)(struct net_device *dev, 1132 int vf, struct sk_buff *skb); 1133 int (*ndo_set_vf_rss_query_en)( 1134 struct net_device *dev, 1135 int vf, bool setting); 1136 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1137#if IS_ENABLED(CONFIG_FCOE) 1138 int (*ndo_fcoe_enable)(struct net_device *dev); 1139 int (*ndo_fcoe_disable)(struct net_device *dev); 1140 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1141 u16 xid, 1142 struct scatterlist *sgl, 1143 unsigned int sgc); 1144 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1145 u16 xid); 1146 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1147 u16 xid, 1148 struct scatterlist *sgl, 1149 unsigned int sgc); 1150 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1151 struct netdev_fcoe_hbainfo *hbainfo); 1152#endif 1153 1154#if IS_ENABLED(CONFIG_LIBFCOE) 1155#define NETDEV_FCOE_WWNN 0 1156#define NETDEV_FCOE_WWPN 1 1157 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1158 u64 *wwn, int type); 1159#endif 1160 1161#ifdef CONFIG_RFS_ACCEL 1162 int (*ndo_rx_flow_steer)(struct net_device *dev, 1163 const struct sk_buff *skb, 1164 u16 rxq_index, 1165 u32 flow_id); 1166#endif 1167 int (*ndo_add_slave)(struct net_device *dev, 1168 struct net_device *slave_dev); 1169 int (*ndo_del_slave)(struct net_device *dev, 1170 struct net_device *slave_dev); 1171 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1172 netdev_features_t features); 1173 int (*ndo_set_features)(struct net_device *dev, 1174 netdev_features_t features); 1175 int (*ndo_neigh_construct)(struct neighbour *n); 1176 void (*ndo_neigh_destroy)(struct neighbour *n); 1177 1178 int (*ndo_fdb_add)(struct ndmsg *ndm, 1179 struct nlattr *tb[], 1180 struct net_device *dev, 1181 const unsigned char *addr, 1182 u16 vid, 1183 u16 flags); 1184 int (*ndo_fdb_del)(struct ndmsg *ndm, 1185 struct nlattr *tb[], 1186 struct net_device *dev, 1187 const unsigned char *addr, 1188 u16 vid); 1189 int (*ndo_fdb_dump)(struct sk_buff *skb, 1190 struct netlink_callback *cb, 1191 struct net_device *dev, 1192 struct net_device *filter_dev, 1193 int idx); 1194 1195 int (*ndo_bridge_setlink)(struct net_device *dev, 1196 struct nlmsghdr *nlh, 1197 u16 flags); 1198 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1199 u32 pid, u32 seq, 1200 struct net_device *dev, 1201 u32 filter_mask, 1202 int nlflags); 1203 int (*ndo_bridge_dellink)(struct net_device *dev, 1204 struct nlmsghdr *nlh, 1205 u16 flags); 1206 int (*ndo_change_carrier)(struct net_device *dev, 1207 bool new_carrier); 1208 int (*ndo_get_phys_port_id)(struct net_device *dev, 1209 struct netdev_phys_item_id *ppid); 1210 int (*ndo_get_phys_port_name)(struct net_device *dev, 1211 char *name, size_t len); 1212 void (*ndo_add_vxlan_port)(struct net_device *dev, 1213 sa_family_t sa_family, 1214 __be16 port); 1215 void (*ndo_del_vxlan_port)(struct net_device *dev, 1216 sa_family_t sa_family, 1217 __be16 port); 1218 1219 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1220 struct net_device *dev); 1221 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1222 void *priv); 1223 1224 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1225 struct net_device *dev, 1226 void *priv); 1227 int (*ndo_get_lock_subclass)(struct net_device *dev); 1228 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1229 struct net_device *dev, 1230 netdev_features_t features); 1231 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1232 int queue_index, 1233 u32 maxrate); 1234 int (*ndo_get_iflink)(const struct net_device *dev); 1235 int (*ndo_change_proto_down)(struct net_device *dev, 1236 bool proto_down); 1237 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1238 struct sk_buff *skb); 1239}; 1240 1241/** 1242 * enum net_device_priv_flags - &struct net_device priv_flags 1243 * 1244 * These are the &struct net_device, they are only set internally 1245 * by drivers and used in the kernel. These flags are invisible to 1246 * userspace, this means that the order of these flags can change 1247 * during any kernel release. 1248 * 1249 * You should have a pretty good reason to be extending these flags. 1250 * 1251 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1252 * @IFF_EBRIDGE: Ethernet bridging device 1253 * @IFF_BONDING: bonding master or slave 1254 * @IFF_ISATAP: ISATAP interface (RFC4214) 1255 * @IFF_WAN_HDLC: WAN HDLC device 1256 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1257 * release skb->dst 1258 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1259 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1260 * @IFF_MACVLAN_PORT: device used as macvlan port 1261 * @IFF_BRIDGE_PORT: device used as bridge port 1262 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1263 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1264 * @IFF_UNICAST_FLT: Supports unicast filtering 1265 * @IFF_TEAM_PORT: device used as team port 1266 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1267 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1268 * change when it's running 1269 * @IFF_MACVLAN: Macvlan device 1270 * @IFF_L3MDEV_MASTER: device is an L3 master device 1271 * @IFF_NO_QUEUE: device can run without qdisc attached 1272 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1273 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1274 */ 1275enum netdev_priv_flags { 1276 IFF_802_1Q_VLAN = 1<<0, 1277 IFF_EBRIDGE = 1<<1, 1278 IFF_BONDING = 1<<2, 1279 IFF_ISATAP = 1<<3, 1280 IFF_WAN_HDLC = 1<<4, 1281 IFF_XMIT_DST_RELEASE = 1<<5, 1282 IFF_DONT_BRIDGE = 1<<6, 1283 IFF_DISABLE_NETPOLL = 1<<7, 1284 IFF_MACVLAN_PORT = 1<<8, 1285 IFF_BRIDGE_PORT = 1<<9, 1286 IFF_OVS_DATAPATH = 1<<10, 1287 IFF_TX_SKB_SHARING = 1<<11, 1288 IFF_UNICAST_FLT = 1<<12, 1289 IFF_TEAM_PORT = 1<<13, 1290 IFF_SUPP_NOFCS = 1<<14, 1291 IFF_LIVE_ADDR_CHANGE = 1<<15, 1292 IFF_MACVLAN = 1<<16, 1293 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1294 IFF_IPVLAN_MASTER = 1<<18, 1295 IFF_IPVLAN_SLAVE = 1<<19, 1296 IFF_L3MDEV_MASTER = 1<<20, 1297 IFF_NO_QUEUE = 1<<21, 1298 IFF_OPENVSWITCH = 1<<22, 1299 IFF_L3MDEV_SLAVE = 1<<23, 1300}; 1301 1302#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1303#define IFF_EBRIDGE IFF_EBRIDGE 1304#define IFF_BONDING IFF_BONDING 1305#define IFF_ISATAP IFF_ISATAP 1306#define IFF_WAN_HDLC IFF_WAN_HDLC 1307#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1308#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1309#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1310#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1311#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1312#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1313#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1314#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1315#define IFF_TEAM_PORT IFF_TEAM_PORT 1316#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1317#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1318#define IFF_MACVLAN IFF_MACVLAN 1319#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1320#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1321#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1322#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1323#define IFF_NO_QUEUE IFF_NO_QUEUE 1324#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1325#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1326 1327/** 1328 * struct net_device - The DEVICE structure. 1329 * Actually, this whole structure is a big mistake. It mixes I/O 1330 * data with strictly "high-level" data, and it has to know about 1331 * almost every data structure used in the INET module. 1332 * 1333 * @name: This is the first field of the "visible" part of this structure 1334 * (i.e. as seen by users in the "Space.c" file). It is the name 1335 * of the interface. 1336 * 1337 * @name_hlist: Device name hash chain, please keep it close to name[] 1338 * @ifalias: SNMP alias 1339 * @mem_end: Shared memory end 1340 * @mem_start: Shared memory start 1341 * @base_addr: Device I/O address 1342 * @irq: Device IRQ number 1343 * 1344 * @carrier_changes: Stats to monitor carrier on<->off transitions 1345 * 1346 * @state: Generic network queuing layer state, see netdev_state_t 1347 * @dev_list: The global list of network devices 1348 * @napi_list: List entry, that is used for polling napi devices 1349 * @unreg_list: List entry, that is used, when we are unregistering the 1350 * device, see the function unregister_netdev 1351 * @close_list: List entry, that is used, when we are closing the device 1352 * 1353 * @adj_list: Directly linked devices, like slaves for bonding 1354 * @all_adj_list: All linked devices, *including* neighbours 1355 * @features: Currently active device features 1356 * @hw_features: User-changeable features 1357 * 1358 * @wanted_features: User-requested features 1359 * @vlan_features: Mask of features inheritable by VLAN devices 1360 * 1361 * @hw_enc_features: Mask of features inherited by encapsulating devices 1362 * This field indicates what encapsulation 1363 * offloads the hardware is capable of doing, 1364 * and drivers will need to set them appropriately. 1365 * 1366 * @mpls_features: Mask of features inheritable by MPLS 1367 * 1368 * @ifindex: interface index 1369 * @group: The group, that the device belongs to 1370 * 1371 * @stats: Statistics struct, which was left as a legacy, use 1372 * rtnl_link_stats64 instead 1373 * 1374 * @rx_dropped: Dropped packets by core network, 1375 * do not use this in drivers 1376 * @tx_dropped: Dropped packets by core network, 1377 * do not use this in drivers 1378 * 1379 * @wireless_handlers: List of functions to handle Wireless Extensions, 1380 * instead of ioctl, 1381 * see <net/iw_handler.h> for details. 1382 * @wireless_data: Instance data managed by the core of wireless extensions 1383 * 1384 * @netdev_ops: Includes several pointers to callbacks, 1385 * if one wants to override the ndo_*() functions 1386 * @ethtool_ops: Management operations 1387 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1388 * of Layer 2 headers. 1389 * 1390 * @flags: Interface flags (a la BSD) 1391 * @priv_flags: Like 'flags' but invisible to userspace, 1392 * see if.h for the definitions 1393 * @gflags: Global flags ( kept as legacy ) 1394 * @padded: How much padding added by alloc_netdev() 1395 * @operstate: RFC2863 operstate 1396 * @link_mode: Mapping policy to operstate 1397 * @if_port: Selectable AUI, TP, ... 1398 * @dma: DMA channel 1399 * @mtu: Interface MTU value 1400 * @type: Interface hardware type 1401 * @hard_header_len: Hardware header length, which means that this is the 1402 * minimum size of a packet. 1403 * 1404 * @needed_headroom: Extra headroom the hardware may need, but not in all 1405 * cases can this be guaranteed 1406 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1407 * cases can this be guaranteed. Some cases also use 1408 * LL_MAX_HEADER instead to allocate the skb 1409 * 1410 * interface address info: 1411 * 1412 * @perm_addr: Permanent hw address 1413 * @addr_assign_type: Hw address assignment type 1414 * @addr_len: Hardware address length 1415 * @neigh_priv_len; Used in neigh_alloc(), 1416 * initialized only in atm/clip.c 1417 * @dev_id: Used to differentiate devices that share 1418 * the same link layer address 1419 * @dev_port: Used to differentiate devices that share 1420 * the same function 1421 * @addr_list_lock: XXX: need comments on this one 1422 * @uc_promisc: Counter, that indicates, that promiscuous mode 1423 * has been enabled due to the need to listen to 1424 * additional unicast addresses in a device that 1425 * does not implement ndo_set_rx_mode() 1426 * @uc: unicast mac addresses 1427 * @mc: multicast mac addresses 1428 * @dev_addrs: list of device hw addresses 1429 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1430 * @promiscuity: Number of times, the NIC is told to work in 1431 * Promiscuous mode, if it becomes 0 the NIC will 1432 * exit from working in Promiscuous mode 1433 * @allmulti: Counter, enables or disables allmulticast mode 1434 * 1435 * @vlan_info: VLAN info 1436 * @dsa_ptr: dsa specific data 1437 * @tipc_ptr: TIPC specific data 1438 * @atalk_ptr: AppleTalk link 1439 * @ip_ptr: IPv4 specific data 1440 * @dn_ptr: DECnet specific data 1441 * @ip6_ptr: IPv6 specific data 1442 * @ax25_ptr: AX.25 specific data 1443 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1444 * 1445 * @last_rx: Time of last Rx 1446 * @dev_addr: Hw address (before bcast, 1447 * because most packets are unicast) 1448 * 1449 * @_rx: Array of RX queues 1450 * @num_rx_queues: Number of RX queues 1451 * allocated at register_netdev() time 1452 * @real_num_rx_queues: Number of RX queues currently active in device 1453 * 1454 * @rx_handler: handler for received packets 1455 * @rx_handler_data: XXX: need comments on this one 1456 * @ingress_queue: XXX: need comments on this one 1457 * @broadcast: hw bcast address 1458 * 1459 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1460 * indexed by RX queue number. Assigned by driver. 1461 * This must only be set if the ndo_rx_flow_steer 1462 * operation is defined 1463 * @index_hlist: Device index hash chain 1464 * 1465 * @_tx: Array of TX queues 1466 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1467 * @real_num_tx_queues: Number of TX queues currently active in device 1468 * @qdisc: Root qdisc from userspace point of view 1469 * @tx_queue_len: Max frames per queue allowed 1470 * @tx_global_lock: XXX: need comments on this one 1471 * 1472 * @xps_maps: XXX: need comments on this one 1473 * 1474 * @offload_fwd_mark: Offload device fwding mark 1475 * 1476 * @trans_start: Time (in jiffies) of last Tx 1477 * @watchdog_timeo: Represents the timeout that is used by 1478 * the watchdog ( see dev_watchdog() ) 1479 * @watchdog_timer: List of timers 1480 * 1481 * @pcpu_refcnt: Number of references to this device 1482 * @todo_list: Delayed register/unregister 1483 * @link_watch_list: XXX: need comments on this one 1484 * 1485 * @reg_state: Register/unregister state machine 1486 * @dismantle: Device is going to be freed 1487 * @rtnl_link_state: This enum represents the phases of creating 1488 * a new link 1489 * 1490 * @destructor: Called from unregister, 1491 * can be used to call free_netdev 1492 * @npinfo: XXX: need comments on this one 1493 * @nd_net: Network namespace this network device is inside 1494 * 1495 * @ml_priv: Mid-layer private 1496 * @lstats: Loopback statistics 1497 * @tstats: Tunnel statistics 1498 * @dstats: Dummy statistics 1499 * @vstats: Virtual ethernet statistics 1500 * 1501 * @garp_port: GARP 1502 * @mrp_port: MRP 1503 * 1504 * @dev: Class/net/name entry 1505 * @sysfs_groups: Space for optional device, statistics and wireless 1506 * sysfs groups 1507 * 1508 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1509 * @rtnl_link_ops: Rtnl_link_ops 1510 * 1511 * @gso_max_size: Maximum size of generic segmentation offload 1512 * @gso_max_segs: Maximum number of segments that can be passed to the 1513 * NIC for GSO 1514 * @gso_min_segs: Minimum number of segments that can be passed to the 1515 * NIC for GSO 1516 * 1517 * @dcbnl_ops: Data Center Bridging netlink ops 1518 * @num_tc: Number of traffic classes in the net device 1519 * @tc_to_txq: XXX: need comments on this one 1520 * @prio_tc_map XXX: need comments on this one 1521 * 1522 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1523 * 1524 * @priomap: XXX: need comments on this one 1525 * @phydev: Physical device may attach itself 1526 * for hardware timestamping 1527 * 1528 * @qdisc_tx_busylock: XXX: need comments on this one 1529 * 1530 * @proto_down: protocol port state information can be sent to the 1531 * switch driver and used to set the phys state of the 1532 * switch port. 1533 * 1534 * FIXME: cleanup struct net_device such that network protocol info 1535 * moves out. 1536 */ 1537 1538struct net_device { 1539 char name[IFNAMSIZ]; 1540 struct hlist_node name_hlist; 1541 char *ifalias; 1542 /* 1543 * I/O specific fields 1544 * FIXME: Merge these and struct ifmap into one 1545 */ 1546 unsigned long mem_end; 1547 unsigned long mem_start; 1548 unsigned long base_addr; 1549 int irq; 1550 1551 atomic_t carrier_changes; 1552 1553 /* 1554 * Some hardware also needs these fields (state,dev_list, 1555 * napi_list,unreg_list,close_list) but they are not 1556 * part of the usual set specified in Space.c. 1557 */ 1558 1559 unsigned long state; 1560 1561 struct list_head dev_list; 1562 struct list_head napi_list; 1563 struct list_head unreg_list; 1564 struct list_head close_list; 1565 struct list_head ptype_all; 1566 struct list_head ptype_specific; 1567 1568 struct { 1569 struct list_head upper; 1570 struct list_head lower; 1571 } adj_list; 1572 1573 struct { 1574 struct list_head upper; 1575 struct list_head lower; 1576 } all_adj_list; 1577 1578 netdev_features_t features; 1579 netdev_features_t hw_features; 1580 netdev_features_t wanted_features; 1581 netdev_features_t vlan_features; 1582 netdev_features_t hw_enc_features; 1583 netdev_features_t mpls_features; 1584 1585 int ifindex; 1586 int group; 1587 1588 struct net_device_stats stats; 1589 1590 atomic_long_t rx_dropped; 1591 atomic_long_t tx_dropped; 1592 1593#ifdef CONFIG_WIRELESS_EXT 1594 const struct iw_handler_def * wireless_handlers; 1595 struct iw_public_data * wireless_data; 1596#endif 1597 const struct net_device_ops *netdev_ops; 1598 const struct ethtool_ops *ethtool_ops; 1599#ifdef CONFIG_NET_SWITCHDEV 1600 const struct switchdev_ops *switchdev_ops; 1601#endif 1602#ifdef CONFIG_NET_L3_MASTER_DEV 1603 const struct l3mdev_ops *l3mdev_ops; 1604#endif 1605 1606 const struct header_ops *header_ops; 1607 1608 unsigned int flags; 1609 unsigned int priv_flags; 1610 1611 unsigned short gflags; 1612 unsigned short padded; 1613 1614 unsigned char operstate; 1615 unsigned char link_mode; 1616 1617 unsigned char if_port; 1618 unsigned char dma; 1619 1620 unsigned int mtu; 1621 unsigned short type; 1622 unsigned short hard_header_len; 1623 1624 unsigned short needed_headroom; 1625 unsigned short needed_tailroom; 1626 1627 /* Interface address info. */ 1628 unsigned char perm_addr[MAX_ADDR_LEN]; 1629 unsigned char addr_assign_type; 1630 unsigned char addr_len; 1631 unsigned short neigh_priv_len; 1632 unsigned short dev_id; 1633 unsigned short dev_port; 1634 spinlock_t addr_list_lock; 1635 unsigned char name_assign_type; 1636 bool uc_promisc; 1637 struct netdev_hw_addr_list uc; 1638 struct netdev_hw_addr_list mc; 1639 struct netdev_hw_addr_list dev_addrs; 1640 1641#ifdef CONFIG_SYSFS 1642 struct kset *queues_kset; 1643#endif 1644 unsigned int promiscuity; 1645 unsigned int allmulti; 1646 1647 1648 /* Protocol specific pointers */ 1649 1650#if IS_ENABLED(CONFIG_VLAN_8021Q) 1651 struct vlan_info __rcu *vlan_info; 1652#endif 1653#if IS_ENABLED(CONFIG_NET_DSA) 1654 struct dsa_switch_tree *dsa_ptr; 1655#endif 1656#if IS_ENABLED(CONFIG_TIPC) 1657 struct tipc_bearer __rcu *tipc_ptr; 1658#endif 1659 void *atalk_ptr; 1660 struct in_device __rcu *ip_ptr; 1661 struct dn_dev __rcu *dn_ptr; 1662 struct inet6_dev __rcu *ip6_ptr; 1663 void *ax25_ptr; 1664 struct wireless_dev *ieee80211_ptr; 1665 struct wpan_dev *ieee802154_ptr; 1666#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1667 struct mpls_dev __rcu *mpls_ptr; 1668#endif 1669 1670/* 1671 * Cache lines mostly used on receive path (including eth_type_trans()) 1672 */ 1673 unsigned long last_rx; 1674 1675 /* Interface address info used in eth_type_trans() */ 1676 unsigned char *dev_addr; 1677 1678 1679#ifdef CONFIG_SYSFS 1680 struct netdev_rx_queue *_rx; 1681 1682 unsigned int num_rx_queues; 1683 unsigned int real_num_rx_queues; 1684 1685#endif 1686 1687 unsigned long gro_flush_timeout; 1688 rx_handler_func_t __rcu *rx_handler; 1689 void __rcu *rx_handler_data; 1690 1691#ifdef CONFIG_NET_CLS_ACT 1692 struct tcf_proto __rcu *ingress_cl_list; 1693#endif 1694 struct netdev_queue __rcu *ingress_queue; 1695#ifdef CONFIG_NETFILTER_INGRESS 1696 struct list_head nf_hooks_ingress; 1697#endif 1698 1699 unsigned char broadcast[MAX_ADDR_LEN]; 1700#ifdef CONFIG_RFS_ACCEL 1701 struct cpu_rmap *rx_cpu_rmap; 1702#endif 1703 struct hlist_node index_hlist; 1704 1705/* 1706 * Cache lines mostly used on transmit path 1707 */ 1708 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1709 unsigned int num_tx_queues; 1710 unsigned int real_num_tx_queues; 1711 struct Qdisc *qdisc; 1712 unsigned long tx_queue_len; 1713 spinlock_t tx_global_lock; 1714 int watchdog_timeo; 1715 1716#ifdef CONFIG_XPS 1717 struct xps_dev_maps __rcu *xps_maps; 1718#endif 1719 1720#ifdef CONFIG_NET_SWITCHDEV 1721 u32 offload_fwd_mark; 1722#endif 1723 1724 /* These may be needed for future network-power-down code. */ 1725 1726 /* 1727 * trans_start here is expensive for high speed devices on SMP, 1728 * please use netdev_queue->trans_start instead. 1729 */ 1730 unsigned long trans_start; 1731 1732 struct timer_list watchdog_timer; 1733 1734 int __percpu *pcpu_refcnt; 1735 struct list_head todo_list; 1736 1737 struct list_head link_watch_list; 1738 1739 enum { NETREG_UNINITIALIZED=0, 1740 NETREG_REGISTERED, /* completed register_netdevice */ 1741 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1742 NETREG_UNREGISTERED, /* completed unregister todo */ 1743 NETREG_RELEASED, /* called free_netdev */ 1744 NETREG_DUMMY, /* dummy device for NAPI poll */ 1745 } reg_state:8; 1746 1747 bool dismantle; 1748 1749 enum { 1750 RTNL_LINK_INITIALIZED, 1751 RTNL_LINK_INITIALIZING, 1752 } rtnl_link_state:16; 1753 1754 void (*destructor)(struct net_device *dev); 1755 1756#ifdef CONFIG_NETPOLL 1757 struct netpoll_info __rcu *npinfo; 1758#endif 1759 1760 possible_net_t nd_net; 1761 1762 /* mid-layer private */ 1763 union { 1764 void *ml_priv; 1765 struct pcpu_lstats __percpu *lstats; 1766 struct pcpu_sw_netstats __percpu *tstats; 1767 struct pcpu_dstats __percpu *dstats; 1768 struct pcpu_vstats __percpu *vstats; 1769 }; 1770 1771 struct garp_port __rcu *garp_port; 1772 struct mrp_port __rcu *mrp_port; 1773 1774 struct device dev; 1775 const struct attribute_group *sysfs_groups[4]; 1776 const struct attribute_group *sysfs_rx_queue_group; 1777 1778 const struct rtnl_link_ops *rtnl_link_ops; 1779 1780 /* for setting kernel sock attribute on TCP connection setup */ 1781#define GSO_MAX_SIZE 65536 1782 unsigned int gso_max_size; 1783#define GSO_MAX_SEGS 65535 1784 u16 gso_max_segs; 1785 u16 gso_min_segs; 1786#ifdef CONFIG_DCB 1787 const struct dcbnl_rtnl_ops *dcbnl_ops; 1788#endif 1789 u8 num_tc; 1790 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1791 u8 prio_tc_map[TC_BITMASK + 1]; 1792 1793#if IS_ENABLED(CONFIG_FCOE) 1794 unsigned int fcoe_ddp_xid; 1795#endif 1796#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1797 struct netprio_map __rcu *priomap; 1798#endif 1799 struct phy_device *phydev; 1800 struct lock_class_key *qdisc_tx_busylock; 1801 bool proto_down; 1802}; 1803#define to_net_dev(d) container_of(d, struct net_device, dev) 1804 1805#define NETDEV_ALIGN 32 1806 1807static inline 1808int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1809{ 1810 return dev->prio_tc_map[prio & TC_BITMASK]; 1811} 1812 1813static inline 1814int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1815{ 1816 if (tc >= dev->num_tc) 1817 return -EINVAL; 1818 1819 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1820 return 0; 1821} 1822 1823static inline 1824void netdev_reset_tc(struct net_device *dev) 1825{ 1826 dev->num_tc = 0; 1827 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1828 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1829} 1830 1831static inline 1832int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1833{ 1834 if (tc >= dev->num_tc) 1835 return -EINVAL; 1836 1837 dev->tc_to_txq[tc].count = count; 1838 dev->tc_to_txq[tc].offset = offset; 1839 return 0; 1840} 1841 1842static inline 1843int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1844{ 1845 if (num_tc > TC_MAX_QUEUE) 1846 return -EINVAL; 1847 1848 dev->num_tc = num_tc; 1849 return 0; 1850} 1851 1852static inline 1853int netdev_get_num_tc(struct net_device *dev) 1854{ 1855 return dev->num_tc; 1856} 1857 1858static inline 1859struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1860 unsigned int index) 1861{ 1862 return &dev->_tx[index]; 1863} 1864 1865static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1866 const struct sk_buff *skb) 1867{ 1868 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1869} 1870 1871static inline void netdev_for_each_tx_queue(struct net_device *dev, 1872 void (*f)(struct net_device *, 1873 struct netdev_queue *, 1874 void *), 1875 void *arg) 1876{ 1877 unsigned int i; 1878 1879 for (i = 0; i < dev->num_tx_queues; i++) 1880 f(dev, &dev->_tx[i], arg); 1881} 1882 1883struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1884 struct sk_buff *skb, 1885 void *accel_priv); 1886 1887/* 1888 * Net namespace inlines 1889 */ 1890static inline 1891struct net *dev_net(const struct net_device *dev) 1892{ 1893 return read_pnet(&dev->nd_net); 1894} 1895 1896static inline 1897void dev_net_set(struct net_device *dev, struct net *net) 1898{ 1899 write_pnet(&dev->nd_net, net); 1900} 1901 1902static inline bool netdev_uses_dsa(struct net_device *dev) 1903{ 1904#if IS_ENABLED(CONFIG_NET_DSA) 1905 if (dev->dsa_ptr != NULL) 1906 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1907#endif 1908 return false; 1909} 1910 1911/** 1912 * netdev_priv - access network device private data 1913 * @dev: network device 1914 * 1915 * Get network device private data 1916 */ 1917static inline void *netdev_priv(const struct net_device *dev) 1918{ 1919 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1920} 1921 1922/* Set the sysfs physical device reference for the network logical device 1923 * if set prior to registration will cause a symlink during initialization. 1924 */ 1925#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1926 1927/* Set the sysfs device type for the network logical device to allow 1928 * fine-grained identification of different network device types. For 1929 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1930 */ 1931#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1932 1933/* Default NAPI poll() weight 1934 * Device drivers are strongly advised to not use bigger value 1935 */ 1936#define NAPI_POLL_WEIGHT 64 1937 1938/** 1939 * netif_napi_add - initialize a napi context 1940 * @dev: network device 1941 * @napi: napi context 1942 * @poll: polling function 1943 * @weight: default weight 1944 * 1945 * netif_napi_add() must be used to initialize a napi context prior to calling 1946 * *any* of the other napi related functions. 1947 */ 1948void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1949 int (*poll)(struct napi_struct *, int), int weight); 1950 1951/** 1952 * netif_napi_del - remove a napi context 1953 * @napi: napi context 1954 * 1955 * netif_napi_del() removes a napi context from the network device napi list 1956 */ 1957void netif_napi_del(struct napi_struct *napi); 1958 1959struct napi_gro_cb { 1960 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1961 void *frag0; 1962 1963 /* Length of frag0. */ 1964 unsigned int frag0_len; 1965 1966 /* This indicates where we are processing relative to skb->data. */ 1967 int data_offset; 1968 1969 /* This is non-zero if the packet cannot be merged with the new skb. */ 1970 u16 flush; 1971 1972 /* Save the IP ID here and check when we get to the transport layer */ 1973 u16 flush_id; 1974 1975 /* Number of segments aggregated. */ 1976 u16 count; 1977 1978 /* Start offset for remote checksum offload */ 1979 u16 gro_remcsum_start; 1980 1981 /* jiffies when first packet was created/queued */ 1982 unsigned long age; 1983 1984 /* Used in ipv6_gro_receive() and foo-over-udp */ 1985 u16 proto; 1986 1987 /* This is non-zero if the packet may be of the same flow. */ 1988 u8 same_flow:1; 1989 1990 /* Used in udp_gro_receive */ 1991 u8 udp_mark:1; 1992 1993 /* GRO checksum is valid */ 1994 u8 csum_valid:1; 1995 1996 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1997 u8 csum_cnt:3; 1998 1999 /* Free the skb? */ 2000 u8 free:2; 2001#define NAPI_GRO_FREE 1 2002#define NAPI_GRO_FREE_STOLEN_HEAD 2 2003 2004 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2005 u8 is_ipv6:1; 2006 2007 /* 7 bit hole */ 2008 2009 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2010 __wsum csum; 2011 2012 /* used in skb_gro_receive() slow path */ 2013 struct sk_buff *last; 2014}; 2015 2016#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2017 2018struct packet_type { 2019 __be16 type; /* This is really htons(ether_type). */ 2020 struct net_device *dev; /* NULL is wildcarded here */ 2021 int (*func) (struct sk_buff *, 2022 struct net_device *, 2023 struct packet_type *, 2024 struct net_device *); 2025 bool (*id_match)(struct packet_type *ptype, 2026 struct sock *sk); 2027 void *af_packet_priv; 2028 struct list_head list; 2029}; 2030 2031struct offload_callbacks { 2032 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2033 netdev_features_t features); 2034 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2035 struct sk_buff *skb); 2036 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2037}; 2038 2039struct packet_offload { 2040 __be16 type; /* This is really htons(ether_type). */ 2041 u16 priority; 2042 struct offload_callbacks callbacks; 2043 struct list_head list; 2044}; 2045 2046struct udp_offload; 2047 2048struct udp_offload_callbacks { 2049 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2050 struct sk_buff *skb, 2051 struct udp_offload *uoff); 2052 int (*gro_complete)(struct sk_buff *skb, 2053 int nhoff, 2054 struct udp_offload *uoff); 2055}; 2056 2057struct udp_offload { 2058 __be16 port; 2059 u8 ipproto; 2060 struct udp_offload_callbacks callbacks; 2061}; 2062 2063/* often modified stats are per cpu, other are shared (netdev->stats) */ 2064struct pcpu_sw_netstats { 2065 u64 rx_packets; 2066 u64 rx_bytes; 2067 u64 tx_packets; 2068 u64 tx_bytes; 2069 struct u64_stats_sync syncp; 2070}; 2071 2072#define __netdev_alloc_pcpu_stats(type, gfp) \ 2073({ \ 2074 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2075 if (pcpu_stats) { \ 2076 int __cpu; \ 2077 for_each_possible_cpu(__cpu) { \ 2078 typeof(type) *stat; \ 2079 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2080 u64_stats_init(&stat->syncp); \ 2081 } \ 2082 } \ 2083 pcpu_stats; \ 2084}) 2085 2086#define netdev_alloc_pcpu_stats(type) \ 2087 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2088 2089#include <linux/notifier.h> 2090 2091/* netdevice notifier chain. Please remember to update the rtnetlink 2092 * notification exclusion list in rtnetlink_event() when adding new 2093 * types. 2094 */ 2095#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2096#define NETDEV_DOWN 0x0002 2097#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2098 detected a hardware crash and restarted 2099 - we can use this eg to kick tcp sessions 2100 once done */ 2101#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2102#define NETDEV_REGISTER 0x0005 2103#define NETDEV_UNREGISTER 0x0006 2104#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2105#define NETDEV_CHANGEADDR 0x0008 2106#define NETDEV_GOING_DOWN 0x0009 2107#define NETDEV_CHANGENAME 0x000A 2108#define NETDEV_FEAT_CHANGE 0x000B 2109#define NETDEV_BONDING_FAILOVER 0x000C 2110#define NETDEV_PRE_UP 0x000D 2111#define NETDEV_PRE_TYPE_CHANGE 0x000E 2112#define NETDEV_POST_TYPE_CHANGE 0x000F 2113#define NETDEV_POST_INIT 0x0010 2114#define NETDEV_UNREGISTER_FINAL 0x0011 2115#define NETDEV_RELEASE 0x0012 2116#define NETDEV_NOTIFY_PEERS 0x0013 2117#define NETDEV_JOIN 0x0014 2118#define NETDEV_CHANGEUPPER 0x0015 2119#define NETDEV_RESEND_IGMP 0x0016 2120#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2121#define NETDEV_CHANGEINFODATA 0x0018 2122#define NETDEV_BONDING_INFO 0x0019 2123#define NETDEV_PRECHANGEUPPER 0x001A 2124 2125int register_netdevice_notifier(struct notifier_block *nb); 2126int unregister_netdevice_notifier(struct notifier_block *nb); 2127 2128struct netdev_notifier_info { 2129 struct net_device *dev; 2130}; 2131 2132struct netdev_notifier_change_info { 2133 struct netdev_notifier_info info; /* must be first */ 2134 unsigned int flags_changed; 2135}; 2136 2137struct netdev_notifier_changeupper_info { 2138 struct netdev_notifier_info info; /* must be first */ 2139 struct net_device *upper_dev; /* new upper dev */ 2140 bool master; /* is upper dev master */ 2141 bool linking; /* is the nofication for link or unlink */ 2142}; 2143 2144static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2145 struct net_device *dev) 2146{ 2147 info->dev = dev; 2148} 2149 2150static inline struct net_device * 2151netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2152{ 2153 return info->dev; 2154} 2155 2156int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2157 2158 2159extern rwlock_t dev_base_lock; /* Device list lock */ 2160 2161#define for_each_netdev(net, d) \ 2162 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2163#define for_each_netdev_reverse(net, d) \ 2164 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2165#define for_each_netdev_rcu(net, d) \ 2166 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2167#define for_each_netdev_safe(net, d, n) \ 2168 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2169#define for_each_netdev_continue(net, d) \ 2170 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2171#define for_each_netdev_continue_rcu(net, d) \ 2172 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2173#define for_each_netdev_in_bond_rcu(bond, slave) \ 2174 for_each_netdev_rcu(&init_net, slave) \ 2175 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2176#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2177 2178static inline struct net_device *next_net_device(struct net_device *dev) 2179{ 2180 struct list_head *lh; 2181 struct net *net; 2182 2183 net = dev_net(dev); 2184 lh = dev->dev_list.next; 2185 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2186} 2187 2188static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2189{ 2190 struct list_head *lh; 2191 struct net *net; 2192 2193 net = dev_net(dev); 2194 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2195 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2196} 2197 2198static inline struct net_device *first_net_device(struct net *net) 2199{ 2200 return list_empty(&net->dev_base_head) ? NULL : 2201 net_device_entry(net->dev_base_head.next); 2202} 2203 2204static inline struct net_device *first_net_device_rcu(struct net *net) 2205{ 2206 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2207 2208 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2209} 2210 2211int netdev_boot_setup_check(struct net_device *dev); 2212unsigned long netdev_boot_base(const char *prefix, int unit); 2213struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2214 const char *hwaddr); 2215struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2216struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2217void dev_add_pack(struct packet_type *pt); 2218void dev_remove_pack(struct packet_type *pt); 2219void __dev_remove_pack(struct packet_type *pt); 2220void dev_add_offload(struct packet_offload *po); 2221void dev_remove_offload(struct packet_offload *po); 2222 2223int dev_get_iflink(const struct net_device *dev); 2224int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2225struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2226 unsigned short mask); 2227struct net_device *dev_get_by_name(struct net *net, const char *name); 2228struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2229struct net_device *__dev_get_by_name(struct net *net, const char *name); 2230int dev_alloc_name(struct net_device *dev, const char *name); 2231int dev_open(struct net_device *dev); 2232int dev_close(struct net_device *dev); 2233int dev_close_many(struct list_head *head, bool unlink); 2234void dev_disable_lro(struct net_device *dev); 2235int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2236int dev_queue_xmit(struct sk_buff *skb); 2237int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2238int register_netdevice(struct net_device *dev); 2239void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2240void unregister_netdevice_many(struct list_head *head); 2241static inline void unregister_netdevice(struct net_device *dev) 2242{ 2243 unregister_netdevice_queue(dev, NULL); 2244} 2245 2246int netdev_refcnt_read(const struct net_device *dev); 2247void free_netdev(struct net_device *dev); 2248void netdev_freemem(struct net_device *dev); 2249void synchronize_net(void); 2250int init_dummy_netdev(struct net_device *dev); 2251 2252DECLARE_PER_CPU(int, xmit_recursion); 2253static inline int dev_recursion_level(void) 2254{ 2255 return this_cpu_read(xmit_recursion); 2256} 2257 2258struct net_device *dev_get_by_index(struct net *net, int ifindex); 2259struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2260struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2261int netdev_get_name(struct net *net, char *name, int ifindex); 2262int dev_restart(struct net_device *dev); 2263int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2264 2265static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2266{ 2267 return NAPI_GRO_CB(skb)->data_offset; 2268} 2269 2270static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2271{ 2272 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2273} 2274 2275static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2276{ 2277 NAPI_GRO_CB(skb)->data_offset += len; 2278} 2279 2280static inline void *skb_gro_header_fast(struct sk_buff *skb, 2281 unsigned int offset) 2282{ 2283 return NAPI_GRO_CB(skb)->frag0 + offset; 2284} 2285 2286static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2287{ 2288 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2289} 2290 2291static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2292 unsigned int offset) 2293{ 2294 if (!pskb_may_pull(skb, hlen)) 2295 return NULL; 2296 2297 NAPI_GRO_CB(skb)->frag0 = NULL; 2298 NAPI_GRO_CB(skb)->frag0_len = 0; 2299 return skb->data + offset; 2300} 2301 2302static inline void *skb_gro_network_header(struct sk_buff *skb) 2303{ 2304 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2305 skb_network_offset(skb); 2306} 2307 2308static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2309 const void *start, unsigned int len) 2310{ 2311 if (NAPI_GRO_CB(skb)->csum_valid) 2312 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2313 csum_partial(start, len, 0)); 2314} 2315 2316/* GRO checksum functions. These are logical equivalents of the normal 2317 * checksum functions (in skbuff.h) except that they operate on the GRO 2318 * offsets and fields in sk_buff. 2319 */ 2320 2321__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2322 2323static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2324{ 2325 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2326} 2327 2328static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2329 bool zero_okay, 2330 __sum16 check) 2331{ 2332 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2333 skb_checksum_start_offset(skb) < 2334 skb_gro_offset(skb)) && 2335 !skb_at_gro_remcsum_start(skb) && 2336 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2337 (!zero_okay || check)); 2338} 2339 2340static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2341 __wsum psum) 2342{ 2343 if (NAPI_GRO_CB(skb)->csum_valid && 2344 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2345 return 0; 2346 2347 NAPI_GRO_CB(skb)->csum = psum; 2348 2349 return __skb_gro_checksum_complete(skb); 2350} 2351 2352static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2353{ 2354 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2355 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2356 NAPI_GRO_CB(skb)->csum_cnt--; 2357 } else { 2358 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2359 * verified a new top level checksum or an encapsulated one 2360 * during GRO. This saves work if we fallback to normal path. 2361 */ 2362 __skb_incr_checksum_unnecessary(skb); 2363 } 2364} 2365 2366#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2367 compute_pseudo) \ 2368({ \ 2369 __sum16 __ret = 0; \ 2370 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2371 __ret = __skb_gro_checksum_validate_complete(skb, \ 2372 compute_pseudo(skb, proto)); \ 2373 if (__ret) \ 2374 __skb_mark_checksum_bad(skb); \ 2375 else \ 2376 skb_gro_incr_csum_unnecessary(skb); \ 2377 __ret; \ 2378}) 2379 2380#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2381 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2382 2383#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2384 compute_pseudo) \ 2385 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2386 2387#define skb_gro_checksum_simple_validate(skb) \ 2388 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2389 2390static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2391{ 2392 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2393 !NAPI_GRO_CB(skb)->csum_valid); 2394} 2395 2396static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2397 __sum16 check, __wsum pseudo) 2398{ 2399 NAPI_GRO_CB(skb)->csum = ~pseudo; 2400 NAPI_GRO_CB(skb)->csum_valid = 1; 2401} 2402 2403#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2404do { \ 2405 if (__skb_gro_checksum_convert_check(skb)) \ 2406 __skb_gro_checksum_convert(skb, check, \ 2407 compute_pseudo(skb, proto)); \ 2408} while (0) 2409 2410struct gro_remcsum { 2411 int offset; 2412 __wsum delta; 2413}; 2414 2415static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2416{ 2417 grc->offset = 0; 2418 grc->delta = 0; 2419} 2420 2421static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2422 unsigned int off, size_t hdrlen, 2423 int start, int offset, 2424 struct gro_remcsum *grc, 2425 bool nopartial) 2426{ 2427 __wsum delta; 2428 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2429 2430 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2431 2432 if (!nopartial) { 2433 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2434 return ptr; 2435 } 2436 2437 ptr = skb_gro_header_fast(skb, off); 2438 if (skb_gro_header_hard(skb, off + plen)) { 2439 ptr = skb_gro_header_slow(skb, off + plen, off); 2440 if (!ptr) 2441 return NULL; 2442 } 2443 2444 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2445 start, offset); 2446 2447 /* Adjust skb->csum since we changed the packet */ 2448 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2449 2450 grc->offset = off + hdrlen + offset; 2451 grc->delta = delta; 2452 2453 return ptr; 2454} 2455 2456static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2457 struct gro_remcsum *grc) 2458{ 2459 void *ptr; 2460 size_t plen = grc->offset + sizeof(u16); 2461 2462 if (!grc->delta) 2463 return; 2464 2465 ptr = skb_gro_header_fast(skb, grc->offset); 2466 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2467 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2468 if (!ptr) 2469 return; 2470 } 2471 2472 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2473} 2474 2475static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2476 unsigned short type, 2477 const void *daddr, const void *saddr, 2478 unsigned int len) 2479{ 2480 if (!dev->header_ops || !dev->header_ops->create) 2481 return 0; 2482 2483 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2484} 2485 2486static inline int dev_parse_header(const struct sk_buff *skb, 2487 unsigned char *haddr) 2488{ 2489 const struct net_device *dev = skb->dev; 2490 2491 if (!dev->header_ops || !dev->header_ops->parse) 2492 return 0; 2493 return dev->header_ops->parse(skb, haddr); 2494} 2495 2496typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2497int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2498static inline int unregister_gifconf(unsigned int family) 2499{ 2500 return register_gifconf(family, NULL); 2501} 2502 2503#ifdef CONFIG_NET_FLOW_LIMIT 2504#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2505struct sd_flow_limit { 2506 u64 count; 2507 unsigned int num_buckets; 2508 unsigned int history_head; 2509 u16 history[FLOW_LIMIT_HISTORY]; 2510 u8 buckets[]; 2511}; 2512 2513extern int netdev_flow_limit_table_len; 2514#endif /* CONFIG_NET_FLOW_LIMIT */ 2515 2516/* 2517 * Incoming packets are placed on per-cpu queues 2518 */ 2519struct softnet_data { 2520 struct list_head poll_list; 2521 struct sk_buff_head process_queue; 2522 2523 /* stats */ 2524 unsigned int processed; 2525 unsigned int time_squeeze; 2526 unsigned int cpu_collision; 2527 unsigned int received_rps; 2528#ifdef CONFIG_RPS 2529 struct softnet_data *rps_ipi_list; 2530#endif 2531#ifdef CONFIG_NET_FLOW_LIMIT 2532 struct sd_flow_limit __rcu *flow_limit; 2533#endif 2534 struct Qdisc *output_queue; 2535 struct Qdisc **output_queue_tailp; 2536 struct sk_buff *completion_queue; 2537 2538#ifdef CONFIG_RPS 2539 /* Elements below can be accessed between CPUs for RPS */ 2540 struct call_single_data csd ____cacheline_aligned_in_smp; 2541 struct softnet_data *rps_ipi_next; 2542 unsigned int cpu; 2543 unsigned int input_queue_head; 2544 unsigned int input_queue_tail; 2545#endif 2546 unsigned int dropped; 2547 struct sk_buff_head input_pkt_queue; 2548 struct napi_struct backlog; 2549 2550}; 2551 2552static inline void input_queue_head_incr(struct softnet_data *sd) 2553{ 2554#ifdef CONFIG_RPS 2555 sd->input_queue_head++; 2556#endif 2557} 2558 2559static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2560 unsigned int *qtail) 2561{ 2562#ifdef CONFIG_RPS 2563 *qtail = ++sd->input_queue_tail; 2564#endif 2565} 2566 2567DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2568 2569void __netif_schedule(struct Qdisc *q); 2570void netif_schedule_queue(struct netdev_queue *txq); 2571 2572static inline void netif_tx_schedule_all(struct net_device *dev) 2573{ 2574 unsigned int i; 2575 2576 for (i = 0; i < dev->num_tx_queues; i++) 2577 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2578} 2579 2580static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2581{ 2582 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2583} 2584 2585/** 2586 * netif_start_queue - allow transmit 2587 * @dev: network device 2588 * 2589 * Allow upper layers to call the device hard_start_xmit routine. 2590 */ 2591static inline void netif_start_queue(struct net_device *dev) 2592{ 2593 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2594} 2595 2596static inline void netif_tx_start_all_queues(struct net_device *dev) 2597{ 2598 unsigned int i; 2599 2600 for (i = 0; i < dev->num_tx_queues; i++) { 2601 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2602 netif_tx_start_queue(txq); 2603 } 2604} 2605 2606void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2607 2608/** 2609 * netif_wake_queue - restart transmit 2610 * @dev: network device 2611 * 2612 * Allow upper layers to call the device hard_start_xmit routine. 2613 * Used for flow control when transmit resources are available. 2614 */ 2615static inline void netif_wake_queue(struct net_device *dev) 2616{ 2617 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2618} 2619 2620static inline void netif_tx_wake_all_queues(struct net_device *dev) 2621{ 2622 unsigned int i; 2623 2624 for (i = 0; i < dev->num_tx_queues; i++) { 2625 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2626 netif_tx_wake_queue(txq); 2627 } 2628} 2629 2630static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2631{ 2632 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2633} 2634 2635/** 2636 * netif_stop_queue - stop transmitted packets 2637 * @dev: network device 2638 * 2639 * Stop upper layers calling the device hard_start_xmit routine. 2640 * Used for flow control when transmit resources are unavailable. 2641 */ 2642static inline void netif_stop_queue(struct net_device *dev) 2643{ 2644 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2645} 2646 2647void netif_tx_stop_all_queues(struct net_device *dev); 2648 2649static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2650{ 2651 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2652} 2653 2654/** 2655 * netif_queue_stopped - test if transmit queue is flowblocked 2656 * @dev: network device 2657 * 2658 * Test if transmit queue on device is currently unable to send. 2659 */ 2660static inline bool netif_queue_stopped(const struct net_device *dev) 2661{ 2662 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2663} 2664 2665static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2666{ 2667 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2668} 2669 2670static inline bool 2671netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2672{ 2673 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2674} 2675 2676static inline bool 2677netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2678{ 2679 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2680} 2681 2682/** 2683 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2684 * @dev_queue: pointer to transmit queue 2685 * 2686 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2687 * to give appropriate hint to the cpu. 2688 */ 2689static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2690{ 2691#ifdef CONFIG_BQL 2692 prefetchw(&dev_queue->dql.num_queued); 2693#endif 2694} 2695 2696/** 2697 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2698 * @dev_queue: pointer to transmit queue 2699 * 2700 * BQL enabled drivers might use this helper in their TX completion path, 2701 * to give appropriate hint to the cpu. 2702 */ 2703static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2704{ 2705#ifdef CONFIG_BQL 2706 prefetchw(&dev_queue->dql.limit); 2707#endif 2708} 2709 2710static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2711 unsigned int bytes) 2712{ 2713#ifdef CONFIG_BQL 2714 dql_queued(&dev_queue->dql, bytes); 2715 2716 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2717 return; 2718 2719 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2720 2721 /* 2722 * The XOFF flag must be set before checking the dql_avail below, 2723 * because in netdev_tx_completed_queue we update the dql_completed 2724 * before checking the XOFF flag. 2725 */ 2726 smp_mb(); 2727 2728 /* check again in case another CPU has just made room avail */ 2729 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2730 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2731#endif 2732} 2733 2734/** 2735 * netdev_sent_queue - report the number of bytes queued to hardware 2736 * @dev: network device 2737 * @bytes: number of bytes queued to the hardware device queue 2738 * 2739 * Report the number of bytes queued for sending/completion to the network 2740 * device hardware queue. @bytes should be a good approximation and should 2741 * exactly match netdev_completed_queue() @bytes 2742 */ 2743static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2744{ 2745 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2746} 2747 2748static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2749 unsigned int pkts, unsigned int bytes) 2750{ 2751#ifdef CONFIG_BQL 2752 if (unlikely(!bytes)) 2753 return; 2754 2755 dql_completed(&dev_queue->dql, bytes); 2756 2757 /* 2758 * Without the memory barrier there is a small possiblity that 2759 * netdev_tx_sent_queue will miss the update and cause the queue to 2760 * be stopped forever 2761 */ 2762 smp_mb(); 2763 2764 if (dql_avail(&dev_queue->dql) < 0) 2765 return; 2766 2767 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2768 netif_schedule_queue(dev_queue); 2769#endif 2770} 2771 2772/** 2773 * netdev_completed_queue - report bytes and packets completed by device 2774 * @dev: network device 2775 * @pkts: actual number of packets sent over the medium 2776 * @bytes: actual number of bytes sent over the medium 2777 * 2778 * Report the number of bytes and packets transmitted by the network device 2779 * hardware queue over the physical medium, @bytes must exactly match the 2780 * @bytes amount passed to netdev_sent_queue() 2781 */ 2782static inline void netdev_completed_queue(struct net_device *dev, 2783 unsigned int pkts, unsigned int bytes) 2784{ 2785 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2786} 2787 2788static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2789{ 2790#ifdef CONFIG_BQL 2791 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2792 dql_reset(&q->dql); 2793#endif 2794} 2795 2796/** 2797 * netdev_reset_queue - reset the packets and bytes count of a network device 2798 * @dev_queue: network device 2799 * 2800 * Reset the bytes and packet count of a network device and clear the 2801 * software flow control OFF bit for this network device 2802 */ 2803static inline void netdev_reset_queue(struct net_device *dev_queue) 2804{ 2805 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2806} 2807 2808/** 2809 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2810 * @dev: network device 2811 * @queue_index: given tx queue index 2812 * 2813 * Returns 0 if given tx queue index >= number of device tx queues, 2814 * otherwise returns the originally passed tx queue index. 2815 */ 2816static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2817{ 2818 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2819 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2820 dev->name, queue_index, 2821 dev->real_num_tx_queues); 2822 return 0; 2823 } 2824 2825 return queue_index; 2826} 2827 2828/** 2829 * netif_running - test if up 2830 * @dev: network device 2831 * 2832 * Test if the device has been brought up. 2833 */ 2834static inline bool netif_running(const struct net_device *dev) 2835{ 2836 return test_bit(__LINK_STATE_START, &dev->state); 2837} 2838 2839/* 2840 * Routines to manage the subqueues on a device. We only need start 2841 * stop, and a check if it's stopped. All other device management is 2842 * done at the overall netdevice level. 2843 * Also test the device if we're multiqueue. 2844 */ 2845 2846/** 2847 * netif_start_subqueue - allow sending packets on subqueue 2848 * @dev: network device 2849 * @queue_index: sub queue index 2850 * 2851 * Start individual transmit queue of a device with multiple transmit queues. 2852 */ 2853static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2854{ 2855 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2856 2857 netif_tx_start_queue(txq); 2858} 2859 2860/** 2861 * netif_stop_subqueue - stop sending packets on subqueue 2862 * @dev: network device 2863 * @queue_index: sub queue index 2864 * 2865 * Stop individual transmit queue of a device with multiple transmit queues. 2866 */ 2867static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2868{ 2869 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2870 netif_tx_stop_queue(txq); 2871} 2872 2873/** 2874 * netif_subqueue_stopped - test status of subqueue 2875 * @dev: network device 2876 * @queue_index: sub queue index 2877 * 2878 * Check individual transmit queue of a device with multiple transmit queues. 2879 */ 2880static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2881 u16 queue_index) 2882{ 2883 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2884 2885 return netif_tx_queue_stopped(txq); 2886} 2887 2888static inline bool netif_subqueue_stopped(const struct net_device *dev, 2889 struct sk_buff *skb) 2890{ 2891 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2892} 2893 2894void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2895 2896#ifdef CONFIG_XPS 2897int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2898 u16 index); 2899#else 2900static inline int netif_set_xps_queue(struct net_device *dev, 2901 const struct cpumask *mask, 2902 u16 index) 2903{ 2904 return 0; 2905} 2906#endif 2907 2908u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2909 unsigned int num_tx_queues); 2910 2911/* 2912 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2913 * as a distribution range limit for the returned value. 2914 */ 2915static inline u16 skb_tx_hash(const struct net_device *dev, 2916 struct sk_buff *skb) 2917{ 2918 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2919} 2920 2921/** 2922 * netif_is_multiqueue - test if device has multiple transmit queues 2923 * @dev: network device 2924 * 2925 * Check if device has multiple transmit queues 2926 */ 2927static inline bool netif_is_multiqueue(const struct net_device *dev) 2928{ 2929 return dev->num_tx_queues > 1; 2930} 2931 2932int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2933 2934#ifdef CONFIG_SYSFS 2935int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2936#else 2937static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2938 unsigned int rxq) 2939{ 2940 return 0; 2941} 2942#endif 2943 2944#ifdef CONFIG_SYSFS 2945static inline unsigned int get_netdev_rx_queue_index( 2946 struct netdev_rx_queue *queue) 2947{ 2948 struct net_device *dev = queue->dev; 2949 int index = queue - dev->_rx; 2950 2951 BUG_ON(index >= dev->num_rx_queues); 2952 return index; 2953} 2954#endif 2955 2956#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2957int netif_get_num_default_rss_queues(void); 2958 2959enum skb_free_reason { 2960 SKB_REASON_CONSUMED, 2961 SKB_REASON_DROPPED, 2962}; 2963 2964void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2965void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2966 2967/* 2968 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2969 * interrupt context or with hardware interrupts being disabled. 2970 * (in_irq() || irqs_disabled()) 2971 * 2972 * We provide four helpers that can be used in following contexts : 2973 * 2974 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2975 * replacing kfree_skb(skb) 2976 * 2977 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2978 * Typically used in place of consume_skb(skb) in TX completion path 2979 * 2980 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2981 * replacing kfree_skb(skb) 2982 * 2983 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2984 * and consumed a packet. Used in place of consume_skb(skb) 2985 */ 2986static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2987{ 2988 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2989} 2990 2991static inline void dev_consume_skb_irq(struct sk_buff *skb) 2992{ 2993 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2994} 2995 2996static inline void dev_kfree_skb_any(struct sk_buff *skb) 2997{ 2998 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2999} 3000 3001static inline void dev_consume_skb_any(struct sk_buff *skb) 3002{ 3003 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3004} 3005 3006int netif_rx(struct sk_buff *skb); 3007int netif_rx_ni(struct sk_buff *skb); 3008int netif_receive_skb(struct sk_buff *skb); 3009gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3010void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3011struct sk_buff *napi_get_frags(struct napi_struct *napi); 3012gro_result_t napi_gro_frags(struct napi_struct *napi); 3013struct packet_offload *gro_find_receive_by_type(__be16 type); 3014struct packet_offload *gro_find_complete_by_type(__be16 type); 3015 3016static inline void napi_free_frags(struct napi_struct *napi) 3017{ 3018 kfree_skb(napi->skb); 3019 napi->skb = NULL; 3020} 3021 3022int netdev_rx_handler_register(struct net_device *dev, 3023 rx_handler_func_t *rx_handler, 3024 void *rx_handler_data); 3025void netdev_rx_handler_unregister(struct net_device *dev); 3026 3027bool dev_valid_name(const char *name); 3028int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3029int dev_ethtool(struct net *net, struct ifreq *); 3030unsigned int dev_get_flags(const struct net_device *); 3031int __dev_change_flags(struct net_device *, unsigned int flags); 3032int dev_change_flags(struct net_device *, unsigned int); 3033void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3034 unsigned int gchanges); 3035int dev_change_name(struct net_device *, const char *); 3036int dev_set_alias(struct net_device *, const char *, size_t); 3037int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3038int dev_set_mtu(struct net_device *, int); 3039void dev_set_group(struct net_device *, int); 3040int dev_set_mac_address(struct net_device *, struct sockaddr *); 3041int dev_change_carrier(struct net_device *, bool new_carrier); 3042int dev_get_phys_port_id(struct net_device *dev, 3043 struct netdev_phys_item_id *ppid); 3044int dev_get_phys_port_name(struct net_device *dev, 3045 char *name, size_t len); 3046int dev_change_proto_down(struct net_device *dev, bool proto_down); 3047struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3048struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3049 struct netdev_queue *txq, int *ret); 3050int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3051int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3052bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 3053 3054extern int netdev_budget; 3055 3056/* Called by rtnetlink.c:rtnl_unlock() */ 3057void netdev_run_todo(void); 3058 3059/** 3060 * dev_put - release reference to device 3061 * @dev: network device 3062 * 3063 * Release reference to device to allow it to be freed. 3064 */ 3065static inline void dev_put(struct net_device *dev) 3066{ 3067 this_cpu_dec(*dev->pcpu_refcnt); 3068} 3069 3070/** 3071 * dev_hold - get reference to device 3072 * @dev: network device 3073 * 3074 * Hold reference to device to keep it from being freed. 3075 */ 3076static inline void dev_hold(struct net_device *dev) 3077{ 3078 this_cpu_inc(*dev->pcpu_refcnt); 3079} 3080 3081/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3082 * and _off may be called from IRQ context, but it is caller 3083 * who is responsible for serialization of these calls. 3084 * 3085 * The name carrier is inappropriate, these functions should really be 3086 * called netif_lowerlayer_*() because they represent the state of any 3087 * kind of lower layer not just hardware media. 3088 */ 3089 3090void linkwatch_init_dev(struct net_device *dev); 3091void linkwatch_fire_event(struct net_device *dev); 3092void linkwatch_forget_dev(struct net_device *dev); 3093 3094/** 3095 * netif_carrier_ok - test if carrier present 3096 * @dev: network device 3097 * 3098 * Check if carrier is present on device 3099 */ 3100static inline bool netif_carrier_ok(const struct net_device *dev) 3101{ 3102 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3103} 3104 3105unsigned long dev_trans_start(struct net_device *dev); 3106 3107void __netdev_watchdog_up(struct net_device *dev); 3108 3109void netif_carrier_on(struct net_device *dev); 3110 3111void netif_carrier_off(struct net_device *dev); 3112 3113/** 3114 * netif_dormant_on - mark device as dormant. 3115 * @dev: network device 3116 * 3117 * Mark device as dormant (as per RFC2863). 3118 * 3119 * The dormant state indicates that the relevant interface is not 3120 * actually in a condition to pass packets (i.e., it is not 'up') but is 3121 * in a "pending" state, waiting for some external event. For "on- 3122 * demand" interfaces, this new state identifies the situation where the 3123 * interface is waiting for events to place it in the up state. 3124 * 3125 */ 3126static inline void netif_dormant_on(struct net_device *dev) 3127{ 3128 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3129 linkwatch_fire_event(dev); 3130} 3131 3132/** 3133 * netif_dormant_off - set device as not dormant. 3134 * @dev: network device 3135 * 3136 * Device is not in dormant state. 3137 */ 3138static inline void netif_dormant_off(struct net_device *dev) 3139{ 3140 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3141 linkwatch_fire_event(dev); 3142} 3143 3144/** 3145 * netif_dormant - test if carrier present 3146 * @dev: network device 3147 * 3148 * Check if carrier is present on device 3149 */ 3150static inline bool netif_dormant(const struct net_device *dev) 3151{ 3152 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3153} 3154 3155 3156/** 3157 * netif_oper_up - test if device is operational 3158 * @dev: network device 3159 * 3160 * Check if carrier is operational 3161 */ 3162static inline bool netif_oper_up(const struct net_device *dev) 3163{ 3164 return (dev->operstate == IF_OPER_UP || 3165 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3166} 3167 3168/** 3169 * netif_device_present - is device available or removed 3170 * @dev: network device 3171 * 3172 * Check if device has not been removed from system. 3173 */ 3174static inline bool netif_device_present(struct net_device *dev) 3175{ 3176 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3177} 3178 3179void netif_device_detach(struct net_device *dev); 3180 3181void netif_device_attach(struct net_device *dev); 3182 3183/* 3184 * Network interface message level settings 3185 */ 3186 3187enum { 3188 NETIF_MSG_DRV = 0x0001, 3189 NETIF_MSG_PROBE = 0x0002, 3190 NETIF_MSG_LINK = 0x0004, 3191 NETIF_MSG_TIMER = 0x0008, 3192 NETIF_MSG_IFDOWN = 0x0010, 3193 NETIF_MSG_IFUP = 0x0020, 3194 NETIF_MSG_RX_ERR = 0x0040, 3195 NETIF_MSG_TX_ERR = 0x0080, 3196 NETIF_MSG_TX_QUEUED = 0x0100, 3197 NETIF_MSG_INTR = 0x0200, 3198 NETIF_MSG_TX_DONE = 0x0400, 3199 NETIF_MSG_RX_STATUS = 0x0800, 3200 NETIF_MSG_PKTDATA = 0x1000, 3201 NETIF_MSG_HW = 0x2000, 3202 NETIF_MSG_WOL = 0x4000, 3203}; 3204 3205#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3206#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3207#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3208#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3209#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3210#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3211#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3212#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3213#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3214#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3215#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3216#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3217#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3218#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3219#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3220 3221static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3222{ 3223 /* use default */ 3224 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3225 return default_msg_enable_bits; 3226 if (debug_value == 0) /* no output */ 3227 return 0; 3228 /* set low N bits */ 3229 return (1 << debug_value) - 1; 3230} 3231 3232static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3233{ 3234 spin_lock(&txq->_xmit_lock); 3235 txq->xmit_lock_owner = cpu; 3236} 3237 3238static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3239{ 3240 spin_lock_bh(&txq->_xmit_lock); 3241 txq->xmit_lock_owner = smp_processor_id(); 3242} 3243 3244static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3245{ 3246 bool ok = spin_trylock(&txq->_xmit_lock); 3247 if (likely(ok)) 3248 txq->xmit_lock_owner = smp_processor_id(); 3249 return ok; 3250} 3251 3252static inline void __netif_tx_unlock(struct netdev_queue *txq) 3253{ 3254 txq->xmit_lock_owner = -1; 3255 spin_unlock(&txq->_xmit_lock); 3256} 3257 3258static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3259{ 3260 txq->xmit_lock_owner = -1; 3261 spin_unlock_bh(&txq->_xmit_lock); 3262} 3263 3264static inline void txq_trans_update(struct netdev_queue *txq) 3265{ 3266 if (txq->xmit_lock_owner != -1) 3267 txq->trans_start = jiffies; 3268} 3269 3270/** 3271 * netif_tx_lock - grab network device transmit lock 3272 * @dev: network device 3273 * 3274 * Get network device transmit lock 3275 */ 3276static inline void netif_tx_lock(struct net_device *dev) 3277{ 3278 unsigned int i; 3279 int cpu; 3280 3281 spin_lock(&dev->tx_global_lock); 3282 cpu = smp_processor_id(); 3283 for (i = 0; i < dev->num_tx_queues; i++) { 3284 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3285 3286 /* We are the only thread of execution doing a 3287 * freeze, but we have to grab the _xmit_lock in 3288 * order to synchronize with threads which are in 3289 * the ->hard_start_xmit() handler and already 3290 * checked the frozen bit. 3291 */ 3292 __netif_tx_lock(txq, cpu); 3293 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3294 __netif_tx_unlock(txq); 3295 } 3296} 3297 3298static inline void netif_tx_lock_bh(struct net_device *dev) 3299{ 3300 local_bh_disable(); 3301 netif_tx_lock(dev); 3302} 3303 3304static inline void netif_tx_unlock(struct net_device *dev) 3305{ 3306 unsigned int i; 3307 3308 for (i = 0; i < dev->num_tx_queues; i++) { 3309 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3310 3311 /* No need to grab the _xmit_lock here. If the 3312 * queue is not stopped for another reason, we 3313 * force a schedule. 3314 */ 3315 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3316 netif_schedule_queue(txq); 3317 } 3318 spin_unlock(&dev->tx_global_lock); 3319} 3320 3321static inline void netif_tx_unlock_bh(struct net_device *dev) 3322{ 3323 netif_tx_unlock(dev); 3324 local_bh_enable(); 3325} 3326 3327#define HARD_TX_LOCK(dev, txq, cpu) { \ 3328 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3329 __netif_tx_lock(txq, cpu); \ 3330 } \ 3331} 3332 3333#define HARD_TX_TRYLOCK(dev, txq) \ 3334 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3335 __netif_tx_trylock(txq) : \ 3336 true ) 3337 3338#define HARD_TX_UNLOCK(dev, txq) { \ 3339 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3340 __netif_tx_unlock(txq); \ 3341 } \ 3342} 3343 3344static inline void netif_tx_disable(struct net_device *dev) 3345{ 3346 unsigned int i; 3347 int cpu; 3348 3349 local_bh_disable(); 3350 cpu = smp_processor_id(); 3351 for (i = 0; i < dev->num_tx_queues; i++) { 3352 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3353 3354 __netif_tx_lock(txq, cpu); 3355 netif_tx_stop_queue(txq); 3356 __netif_tx_unlock(txq); 3357 } 3358 local_bh_enable(); 3359} 3360 3361static inline void netif_addr_lock(struct net_device *dev) 3362{ 3363 spin_lock(&dev->addr_list_lock); 3364} 3365 3366static inline void netif_addr_lock_nested(struct net_device *dev) 3367{ 3368 int subclass = SINGLE_DEPTH_NESTING; 3369 3370 if (dev->netdev_ops->ndo_get_lock_subclass) 3371 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3372 3373 spin_lock_nested(&dev->addr_list_lock, subclass); 3374} 3375 3376static inline void netif_addr_lock_bh(struct net_device *dev) 3377{ 3378 spin_lock_bh(&dev->addr_list_lock); 3379} 3380 3381static inline void netif_addr_unlock(struct net_device *dev) 3382{ 3383 spin_unlock(&dev->addr_list_lock); 3384} 3385 3386static inline void netif_addr_unlock_bh(struct net_device *dev) 3387{ 3388 spin_unlock_bh(&dev->addr_list_lock); 3389} 3390 3391/* 3392 * dev_addrs walker. Should be used only for read access. Call with 3393 * rcu_read_lock held. 3394 */ 3395#define for_each_dev_addr(dev, ha) \ 3396 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3397 3398/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3399 3400void ether_setup(struct net_device *dev); 3401 3402/* Support for loadable net-drivers */ 3403struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3404 unsigned char name_assign_type, 3405 void (*setup)(struct net_device *), 3406 unsigned int txqs, unsigned int rxqs); 3407#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3408 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3409 3410#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3411 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3412 count) 3413 3414int register_netdev(struct net_device *dev); 3415void unregister_netdev(struct net_device *dev); 3416 3417/* General hardware address lists handling functions */ 3418int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3419 struct netdev_hw_addr_list *from_list, int addr_len); 3420void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3421 struct netdev_hw_addr_list *from_list, int addr_len); 3422int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3423 struct net_device *dev, 3424 int (*sync)(struct net_device *, const unsigned char *), 3425 int (*unsync)(struct net_device *, 3426 const unsigned char *)); 3427void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3428 struct net_device *dev, 3429 int (*unsync)(struct net_device *, 3430 const unsigned char *)); 3431void __hw_addr_init(struct netdev_hw_addr_list *list); 3432 3433/* Functions used for device addresses handling */ 3434int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3435 unsigned char addr_type); 3436int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3437 unsigned char addr_type); 3438void dev_addr_flush(struct net_device *dev); 3439int dev_addr_init(struct net_device *dev); 3440 3441/* Functions used for unicast addresses handling */ 3442int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3443int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3444int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3445int dev_uc_sync(struct net_device *to, struct net_device *from); 3446int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3447void dev_uc_unsync(struct net_device *to, struct net_device *from); 3448void dev_uc_flush(struct net_device *dev); 3449void dev_uc_init(struct net_device *dev); 3450 3451/** 3452 * __dev_uc_sync - Synchonize device's unicast list 3453 * @dev: device to sync 3454 * @sync: function to call if address should be added 3455 * @unsync: function to call if address should be removed 3456 * 3457 * Add newly added addresses to the interface, and release 3458 * addresses that have been deleted. 3459 **/ 3460static inline int __dev_uc_sync(struct net_device *dev, 3461 int (*sync)(struct net_device *, 3462 const unsigned char *), 3463 int (*unsync)(struct net_device *, 3464 const unsigned char *)) 3465{ 3466 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3467} 3468 3469/** 3470 * __dev_uc_unsync - Remove synchronized addresses from device 3471 * @dev: device to sync 3472 * @unsync: function to call if address should be removed 3473 * 3474 * Remove all addresses that were added to the device by dev_uc_sync(). 3475 **/ 3476static inline void __dev_uc_unsync(struct net_device *dev, 3477 int (*unsync)(struct net_device *, 3478 const unsigned char *)) 3479{ 3480 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3481} 3482 3483/* Functions used for multicast addresses handling */ 3484int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3485int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3486int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3487int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3488int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3489int dev_mc_sync(struct net_device *to, struct net_device *from); 3490int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3491void dev_mc_unsync(struct net_device *to, struct net_device *from); 3492void dev_mc_flush(struct net_device *dev); 3493void dev_mc_init(struct net_device *dev); 3494 3495/** 3496 * __dev_mc_sync - Synchonize device's multicast list 3497 * @dev: device to sync 3498 * @sync: function to call if address should be added 3499 * @unsync: function to call if address should be removed 3500 * 3501 * Add newly added addresses to the interface, and release 3502 * addresses that have been deleted. 3503 **/ 3504static inline int __dev_mc_sync(struct net_device *dev, 3505 int (*sync)(struct net_device *, 3506 const unsigned char *), 3507 int (*unsync)(struct net_device *, 3508 const unsigned char *)) 3509{ 3510 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3511} 3512 3513/** 3514 * __dev_mc_unsync - Remove synchronized addresses from device 3515 * @dev: device to sync 3516 * @unsync: function to call if address should be removed 3517 * 3518 * Remove all addresses that were added to the device by dev_mc_sync(). 3519 **/ 3520static inline void __dev_mc_unsync(struct net_device *dev, 3521 int (*unsync)(struct net_device *, 3522 const unsigned char *)) 3523{ 3524 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3525} 3526 3527/* Functions used for secondary unicast and multicast support */ 3528void dev_set_rx_mode(struct net_device *dev); 3529void __dev_set_rx_mode(struct net_device *dev); 3530int dev_set_promiscuity(struct net_device *dev, int inc); 3531int dev_set_allmulti(struct net_device *dev, int inc); 3532void netdev_state_change(struct net_device *dev); 3533void netdev_notify_peers(struct net_device *dev); 3534void netdev_features_change(struct net_device *dev); 3535/* Load a device via the kmod */ 3536void dev_load(struct net *net, const char *name); 3537struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3538 struct rtnl_link_stats64 *storage); 3539void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3540 const struct net_device_stats *netdev_stats); 3541 3542extern int netdev_max_backlog; 3543extern int netdev_tstamp_prequeue; 3544extern int weight_p; 3545extern int bpf_jit_enable; 3546 3547bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3548struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3549 struct list_head **iter); 3550struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3551 struct list_head **iter); 3552 3553/* iterate through upper list, must be called under RCU read lock */ 3554#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3555 for (iter = &(dev)->adj_list.upper, \ 3556 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3557 updev; \ 3558 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3559 3560/* iterate through upper list, must be called under RCU read lock */ 3561#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3562 for (iter = &(dev)->all_adj_list.upper, \ 3563 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3564 updev; \ 3565 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3566 3567void *netdev_lower_get_next_private(struct net_device *dev, 3568 struct list_head **iter); 3569void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3570 struct list_head **iter); 3571 3572#define netdev_for_each_lower_private(dev, priv, iter) \ 3573 for (iter = (dev)->adj_list.lower.next, \ 3574 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3575 priv; \ 3576 priv = netdev_lower_get_next_private(dev, &(iter))) 3577 3578#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3579 for (iter = &(dev)->adj_list.lower, \ 3580 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3581 priv; \ 3582 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3583 3584void *netdev_lower_get_next(struct net_device *dev, 3585 struct list_head **iter); 3586#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3587 for (iter = &(dev)->adj_list.lower, \ 3588 ldev = netdev_lower_get_next(dev, &(iter)); \ 3589 ldev; \ 3590 ldev = netdev_lower_get_next(dev, &(iter))) 3591 3592void *netdev_adjacent_get_private(struct list_head *adj_list); 3593void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3594struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3595struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3596int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3597int netdev_master_upper_dev_link(struct net_device *dev, 3598 struct net_device *upper_dev); 3599int netdev_master_upper_dev_link_private(struct net_device *dev, 3600 struct net_device *upper_dev, 3601 void *private); 3602void netdev_upper_dev_unlink(struct net_device *dev, 3603 struct net_device *upper_dev); 3604void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3605void *netdev_lower_dev_get_private(struct net_device *dev, 3606 struct net_device *lower_dev); 3607 3608/* RSS keys are 40 or 52 bytes long */ 3609#define NETDEV_RSS_KEY_LEN 52 3610extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3611void netdev_rss_key_fill(void *buffer, size_t len); 3612 3613int dev_get_nest_level(struct net_device *dev, 3614 bool (*type_check)(struct net_device *dev)); 3615int skb_checksum_help(struct sk_buff *skb); 3616struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3617 netdev_features_t features, bool tx_path); 3618struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3619 netdev_features_t features); 3620 3621struct netdev_bonding_info { 3622 ifslave slave; 3623 ifbond master; 3624}; 3625 3626struct netdev_notifier_bonding_info { 3627 struct netdev_notifier_info info; /* must be first */ 3628 struct netdev_bonding_info bonding_info; 3629}; 3630 3631void netdev_bonding_info_change(struct net_device *dev, 3632 struct netdev_bonding_info *bonding_info); 3633 3634static inline 3635struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3636{ 3637 return __skb_gso_segment(skb, features, true); 3638} 3639__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3640 3641static inline bool can_checksum_protocol(netdev_features_t features, 3642 __be16 protocol) 3643{ 3644 return ((features & NETIF_F_GEN_CSUM) || 3645 ((features & NETIF_F_V4_CSUM) && 3646 protocol == htons(ETH_P_IP)) || 3647 ((features & NETIF_F_V6_CSUM) && 3648 protocol == htons(ETH_P_IPV6)) || 3649 ((features & NETIF_F_FCOE_CRC) && 3650 protocol == htons(ETH_P_FCOE))); 3651} 3652 3653#ifdef CONFIG_BUG 3654void netdev_rx_csum_fault(struct net_device *dev); 3655#else 3656static inline void netdev_rx_csum_fault(struct net_device *dev) 3657{ 3658} 3659#endif 3660/* rx skb timestamps */ 3661void net_enable_timestamp(void); 3662void net_disable_timestamp(void); 3663 3664#ifdef CONFIG_PROC_FS 3665int __init dev_proc_init(void); 3666#else 3667#define dev_proc_init() 0 3668#endif 3669 3670static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3671 struct sk_buff *skb, struct net_device *dev, 3672 bool more) 3673{ 3674 skb->xmit_more = more ? 1 : 0; 3675 return ops->ndo_start_xmit(skb, dev); 3676} 3677 3678static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3679 struct netdev_queue *txq, bool more) 3680{ 3681 const struct net_device_ops *ops = dev->netdev_ops; 3682 int rc; 3683 3684 rc = __netdev_start_xmit(ops, skb, dev, more); 3685 if (rc == NETDEV_TX_OK) 3686 txq_trans_update(txq); 3687 3688 return rc; 3689} 3690 3691int netdev_class_create_file_ns(struct class_attribute *class_attr, 3692 const void *ns); 3693void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3694 const void *ns); 3695 3696static inline int netdev_class_create_file(struct class_attribute *class_attr) 3697{ 3698 return netdev_class_create_file_ns(class_attr, NULL); 3699} 3700 3701static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3702{ 3703 netdev_class_remove_file_ns(class_attr, NULL); 3704} 3705 3706extern struct kobj_ns_type_operations net_ns_type_operations; 3707 3708const char *netdev_drivername(const struct net_device *dev); 3709 3710void linkwatch_run_queue(void); 3711 3712static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3713 netdev_features_t f2) 3714{ 3715 if (f1 & NETIF_F_GEN_CSUM) 3716 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3717 if (f2 & NETIF_F_GEN_CSUM) 3718 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3719 f1 &= f2; 3720 if (f1 & NETIF_F_GEN_CSUM) 3721 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3722 3723 return f1; 3724} 3725 3726static inline netdev_features_t netdev_get_wanted_features( 3727 struct net_device *dev) 3728{ 3729 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3730} 3731netdev_features_t netdev_increment_features(netdev_features_t all, 3732 netdev_features_t one, netdev_features_t mask); 3733 3734/* Allow TSO being used on stacked device : 3735 * Performing the GSO segmentation before last device 3736 * is a performance improvement. 3737 */ 3738static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3739 netdev_features_t mask) 3740{ 3741 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3742} 3743 3744int __netdev_update_features(struct net_device *dev); 3745void netdev_update_features(struct net_device *dev); 3746void netdev_change_features(struct net_device *dev); 3747 3748void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3749 struct net_device *dev); 3750 3751netdev_features_t passthru_features_check(struct sk_buff *skb, 3752 struct net_device *dev, 3753 netdev_features_t features); 3754netdev_features_t netif_skb_features(struct sk_buff *skb); 3755 3756static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3757{ 3758 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3759 3760 /* check flags correspondence */ 3761 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3762 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3763 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3764 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3765 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3766 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3767 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3768 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3769 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3770 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3771 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3772 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3773 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3774 3775 return (features & feature) == feature; 3776} 3777 3778static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3779{ 3780 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3781 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3782} 3783 3784static inline bool netif_needs_gso(struct sk_buff *skb, 3785 netdev_features_t features) 3786{ 3787 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3788 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3789 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3790} 3791 3792static inline void netif_set_gso_max_size(struct net_device *dev, 3793 unsigned int size) 3794{ 3795 dev->gso_max_size = size; 3796} 3797 3798static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3799 int pulled_hlen, u16 mac_offset, 3800 int mac_len) 3801{ 3802 skb->protocol = protocol; 3803 skb->encapsulation = 1; 3804 skb_push(skb, pulled_hlen); 3805 skb_reset_transport_header(skb); 3806 skb->mac_header = mac_offset; 3807 skb->network_header = skb->mac_header + mac_len; 3808 skb->mac_len = mac_len; 3809} 3810 3811static inline bool netif_is_macvlan(struct net_device *dev) 3812{ 3813 return dev->priv_flags & IFF_MACVLAN; 3814} 3815 3816static inline bool netif_is_macvlan_port(struct net_device *dev) 3817{ 3818 return dev->priv_flags & IFF_MACVLAN_PORT; 3819} 3820 3821static inline bool netif_is_ipvlan(struct net_device *dev) 3822{ 3823 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3824} 3825 3826static inline bool netif_is_ipvlan_port(struct net_device *dev) 3827{ 3828 return dev->priv_flags & IFF_IPVLAN_MASTER; 3829} 3830 3831static inline bool netif_is_bond_master(struct net_device *dev) 3832{ 3833 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3834} 3835 3836static inline bool netif_is_bond_slave(struct net_device *dev) 3837{ 3838 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3839} 3840 3841static inline bool netif_supports_nofcs(struct net_device *dev) 3842{ 3843 return dev->priv_flags & IFF_SUPP_NOFCS; 3844} 3845 3846static inline bool netif_is_l3_master(const struct net_device *dev) 3847{ 3848 return dev->priv_flags & IFF_L3MDEV_MASTER; 3849} 3850 3851static inline bool netif_is_l3_slave(const struct net_device *dev) 3852{ 3853 return dev->priv_flags & IFF_L3MDEV_SLAVE; 3854} 3855 3856static inline bool netif_is_bridge_master(const struct net_device *dev) 3857{ 3858 return dev->priv_flags & IFF_EBRIDGE; 3859} 3860 3861static inline bool netif_is_bridge_port(const struct net_device *dev) 3862{ 3863 return dev->priv_flags & IFF_BRIDGE_PORT; 3864} 3865 3866static inline bool netif_is_ovs_master(const struct net_device *dev) 3867{ 3868 return dev->priv_flags & IFF_OPENVSWITCH; 3869} 3870 3871/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3872static inline void netif_keep_dst(struct net_device *dev) 3873{ 3874 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3875} 3876 3877extern struct pernet_operations __net_initdata loopback_net_ops; 3878 3879/* Logging, debugging and troubleshooting/diagnostic helpers. */ 3880 3881/* netdev_printk helpers, similar to dev_printk */ 3882 3883static inline const char *netdev_name(const struct net_device *dev) 3884{ 3885 if (!dev->name[0] || strchr(dev->name, '%')) 3886 return "(unnamed net_device)"; 3887 return dev->name; 3888} 3889 3890static inline const char *netdev_reg_state(const struct net_device *dev) 3891{ 3892 switch (dev->reg_state) { 3893 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3894 case NETREG_REGISTERED: return ""; 3895 case NETREG_UNREGISTERING: return " (unregistering)"; 3896 case NETREG_UNREGISTERED: return " (unregistered)"; 3897 case NETREG_RELEASED: return " (released)"; 3898 case NETREG_DUMMY: return " (dummy)"; 3899 } 3900 3901 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3902 return " (unknown)"; 3903} 3904 3905__printf(3, 4) 3906void netdev_printk(const char *level, const struct net_device *dev, 3907 const char *format, ...); 3908__printf(2, 3) 3909void netdev_emerg(const struct net_device *dev, const char *format, ...); 3910__printf(2, 3) 3911void netdev_alert(const struct net_device *dev, const char *format, ...); 3912__printf(2, 3) 3913void netdev_crit(const struct net_device *dev, const char *format, ...); 3914__printf(2, 3) 3915void netdev_err(const struct net_device *dev, const char *format, ...); 3916__printf(2, 3) 3917void netdev_warn(const struct net_device *dev, const char *format, ...); 3918__printf(2, 3) 3919void netdev_notice(const struct net_device *dev, const char *format, ...); 3920__printf(2, 3) 3921void netdev_info(const struct net_device *dev, const char *format, ...); 3922 3923#define MODULE_ALIAS_NETDEV(device) \ 3924 MODULE_ALIAS("netdev-" device) 3925 3926#if defined(CONFIG_DYNAMIC_DEBUG) 3927#define netdev_dbg(__dev, format, args...) \ 3928do { \ 3929 dynamic_netdev_dbg(__dev, format, ##args); \ 3930} while (0) 3931#elif defined(DEBUG) 3932#define netdev_dbg(__dev, format, args...) \ 3933 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3934#else 3935#define netdev_dbg(__dev, format, args...) \ 3936({ \ 3937 if (0) \ 3938 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3939}) 3940#endif 3941 3942#if defined(VERBOSE_DEBUG) 3943#define netdev_vdbg netdev_dbg 3944#else 3945 3946#define netdev_vdbg(dev, format, args...) \ 3947({ \ 3948 if (0) \ 3949 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3950 0; \ 3951}) 3952#endif 3953 3954/* 3955 * netdev_WARN() acts like dev_printk(), but with the key difference 3956 * of using a WARN/WARN_ON to get the message out, including the 3957 * file/line information and a backtrace. 3958 */ 3959#define netdev_WARN(dev, format, args...) \ 3960 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3961 netdev_reg_state(dev), ##args) 3962 3963/* netif printk helpers, similar to netdev_printk */ 3964 3965#define netif_printk(priv, type, level, dev, fmt, args...) \ 3966do { \ 3967 if (netif_msg_##type(priv)) \ 3968 netdev_printk(level, (dev), fmt, ##args); \ 3969} while (0) 3970 3971#define netif_level(level, priv, type, dev, fmt, args...) \ 3972do { \ 3973 if (netif_msg_##type(priv)) \ 3974 netdev_##level(dev, fmt, ##args); \ 3975} while (0) 3976 3977#define netif_emerg(priv, type, dev, fmt, args...) \ 3978 netif_level(emerg, priv, type, dev, fmt, ##args) 3979#define netif_alert(priv, type, dev, fmt, args...) \ 3980 netif_level(alert, priv, type, dev, fmt, ##args) 3981#define netif_crit(priv, type, dev, fmt, args...) \ 3982 netif_level(crit, priv, type, dev, fmt, ##args) 3983#define netif_err(priv, type, dev, fmt, args...) \ 3984 netif_level(err, priv, type, dev, fmt, ##args) 3985#define netif_warn(priv, type, dev, fmt, args...) \ 3986 netif_level(warn, priv, type, dev, fmt, ##args) 3987#define netif_notice(priv, type, dev, fmt, args...) \ 3988 netif_level(notice, priv, type, dev, fmt, ##args) 3989#define netif_info(priv, type, dev, fmt, args...) \ 3990 netif_level(info, priv, type, dev, fmt, ##args) 3991 3992#if defined(CONFIG_DYNAMIC_DEBUG) 3993#define netif_dbg(priv, type, netdev, format, args...) \ 3994do { \ 3995 if (netif_msg_##type(priv)) \ 3996 dynamic_netdev_dbg(netdev, format, ##args); \ 3997} while (0) 3998#elif defined(DEBUG) 3999#define netif_dbg(priv, type, dev, format, args...) \ 4000 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4001#else 4002#define netif_dbg(priv, type, dev, format, args...) \ 4003({ \ 4004 if (0) \ 4005 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4006 0; \ 4007}) 4008#endif 4009 4010#if defined(VERBOSE_DEBUG) 4011#define netif_vdbg netif_dbg 4012#else 4013#define netif_vdbg(priv, type, dev, format, args...) \ 4014({ \ 4015 if (0) \ 4016 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4017 0; \ 4018}) 4019#endif 4020 4021/* 4022 * The list of packet types we will receive (as opposed to discard) 4023 * and the routines to invoke. 4024 * 4025 * Why 16. Because with 16 the only overlap we get on a hash of the 4026 * low nibble of the protocol value is RARP/SNAP/X.25. 4027 * 4028 * NOTE: That is no longer true with the addition of VLAN tags. Not 4029 * sure which should go first, but I bet it won't make much 4030 * difference if we are running VLANs. The good news is that 4031 * this protocol won't be in the list unless compiled in, so 4032 * the average user (w/out VLANs) will not be adversely affected. 4033 * --BLG 4034 * 4035 * 0800 IP 4036 * 8100 802.1Q VLAN 4037 * 0001 802.3 4038 * 0002 AX.25 4039 * 0004 802.2 4040 * 8035 RARP 4041 * 0005 SNAP 4042 * 0805 X.25 4043 * 0806 ARP 4044 * 8137 IPX 4045 * 0009 Localtalk 4046 * 86DD IPv6 4047 */ 4048#define PTYPE_HASH_SIZE (16) 4049#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4050 4051#endif /* _LINUX_NETDEVICE_H */