at v4.4 38 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66#ifdef CONFIG_CMA 67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68#else 69# define is_migrate_cma(migratetype) false 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81#define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86{ 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90} 91 92struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95}; 96 97struct pglist_data; 98 99/* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105#if defined(CONFIG_SMP) 106struct zone_padding { 107 char x[0]; 108} ____cacheline_internodealigned_in_smp; 109#define ZONE_PADDING(name) struct zone_padding name; 110#else 111#define ZONE_PADDING(name) 112#endif 113 114enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 147#ifdef CONFIG_NUMA 148 NUMA_HIT, /* allocated in intended node */ 149 NUMA_MISS, /* allocated in non intended node */ 150 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 152 NUMA_LOCAL, /* allocation from local node */ 153 NUMA_OTHER, /* allocation from other node */ 154#endif 155 WORKINGSET_REFAULT, 156 WORKINGSET_ACTIVATE, 157 WORKINGSET_NODERECLAIM, 158 NR_ANON_TRANSPARENT_HUGEPAGES, 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162/* 163 * We do arithmetic on the LRU lists in various places in the code, 164 * so it is important to keep the active lists LRU_ACTIVE higher in 165 * the array than the corresponding inactive lists, and to keep 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 167 * 168 * This has to be kept in sync with the statistics in zone_stat_item 169 * above and the descriptions in vmstat_text in mm/vmstat.c 170 */ 171#define LRU_BASE 0 172#define LRU_ACTIVE 1 173#define LRU_FILE 2 174 175enum lru_list { 176 LRU_INACTIVE_ANON = LRU_BASE, 177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 180 LRU_UNEVICTABLE, 181 NR_LRU_LISTS 182}; 183 184#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 185 186#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 187 188static inline int is_file_lru(enum lru_list lru) 189{ 190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 191} 192 193static inline int is_active_lru(enum lru_list lru) 194{ 195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 196} 197 198static inline int is_unevictable_lru(enum lru_list lru) 199{ 200 return (lru == LRU_UNEVICTABLE); 201} 202 203struct zone_reclaim_stat { 204 /* 205 * The pageout code in vmscan.c keeps track of how many of the 206 * mem/swap backed and file backed pages are referenced. 207 * The higher the rotated/scanned ratio, the more valuable 208 * that cache is. 209 * 210 * The anon LRU stats live in [0], file LRU stats in [1] 211 */ 212 unsigned long recent_rotated[2]; 213 unsigned long recent_scanned[2]; 214}; 215 216struct lruvec { 217 struct list_head lists[NR_LRU_LISTS]; 218 struct zone_reclaim_stat reclaim_stat; 219#ifdef CONFIG_MEMCG 220 struct zone *zone; 221#endif 222}; 223 224/* Mask used at gathering information at once (see memcontrol.c) */ 225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229/* Isolate clean file */ 230#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231/* Isolate unmapped file */ 232#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233/* Isolate for asynchronous migration */ 234#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235/* Isolate unevictable pages */ 236#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238/* LRU Isolation modes. */ 239typedef unsigned __bitwise__ isolate_mode_t; 240 241enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246}; 247 248#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259}; 260 261struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263#ifdef CONFIG_NUMA 264 s8 expire; 265#endif 266#ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269#endif 270}; 271 272#endif /* !__GENERATING_BOUNDS.H */ 273 274enum zone_type { 275#ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295#endif 296#ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303#endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310#ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320#endif 321 ZONE_MOVABLE, 322#ifdef CONFIG_ZONE_DEVICE 323 ZONE_DEVICE, 324#endif 325 __MAX_NR_ZONES 326 327}; 328 329#ifndef __GENERATING_BOUNDS_H 330 331struct zone { 332 /* Read-mostly fields */ 333 334 /* zone watermarks, access with *_wmark_pages(zone) macros */ 335 unsigned long watermark[NR_WMARK]; 336 337 unsigned long nr_reserved_highatomic; 338 339 /* 340 * We don't know if the memory that we're going to allocate will be 341 * freeable or/and it will be released eventually, so to avoid totally 342 * wasting several GB of ram we must reserve some of the lower zone 343 * memory (otherwise we risk to run OOM on the lower zones despite 344 * there being tons of freeable ram on the higher zones). This array is 345 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 346 * changes. 347 */ 348 long lowmem_reserve[MAX_NR_ZONES]; 349 350#ifdef CONFIG_NUMA 351 int node; 352#endif 353 354 /* 355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 356 * this zone's LRU. Maintained by the pageout code. 357 */ 358 unsigned int inactive_ratio; 359 360 struct pglist_data *zone_pgdat; 361 struct per_cpu_pageset __percpu *pageset; 362 363 /* 364 * This is a per-zone reserve of pages that should not be 365 * considered dirtyable memory. 366 */ 367 unsigned long dirty_balance_reserve; 368 369#ifndef CONFIG_SPARSEMEM 370 /* 371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 372 * In SPARSEMEM, this map is stored in struct mem_section 373 */ 374 unsigned long *pageblock_flags; 375#endif /* CONFIG_SPARSEMEM */ 376 377#ifdef CONFIG_NUMA 378 /* 379 * zone reclaim becomes active if more unmapped pages exist. 380 */ 381 unsigned long min_unmapped_pages; 382 unsigned long min_slab_pages; 383#endif /* CONFIG_NUMA */ 384 385 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 386 unsigned long zone_start_pfn; 387 388 /* 389 * spanned_pages is the total pages spanned by the zone, including 390 * holes, which is calculated as: 391 * spanned_pages = zone_end_pfn - zone_start_pfn; 392 * 393 * present_pages is physical pages existing within the zone, which 394 * is calculated as: 395 * present_pages = spanned_pages - absent_pages(pages in holes); 396 * 397 * managed_pages is present pages managed by the buddy system, which 398 * is calculated as (reserved_pages includes pages allocated by the 399 * bootmem allocator): 400 * managed_pages = present_pages - reserved_pages; 401 * 402 * So present_pages may be used by memory hotplug or memory power 403 * management logic to figure out unmanaged pages by checking 404 * (present_pages - managed_pages). And managed_pages should be used 405 * by page allocator and vm scanner to calculate all kinds of watermarks 406 * and thresholds. 407 * 408 * Locking rules: 409 * 410 * zone_start_pfn and spanned_pages are protected by span_seqlock. 411 * It is a seqlock because it has to be read outside of zone->lock, 412 * and it is done in the main allocator path. But, it is written 413 * quite infrequently. 414 * 415 * The span_seq lock is declared along with zone->lock because it is 416 * frequently read in proximity to zone->lock. It's good to 417 * give them a chance of being in the same cacheline. 418 * 419 * Write access to present_pages at runtime should be protected by 420 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 421 * present_pages should get_online_mems() to get a stable value. 422 * 423 * Read access to managed_pages should be safe because it's unsigned 424 * long. Write access to zone->managed_pages and totalram_pages are 425 * protected by managed_page_count_lock at runtime. Idealy only 426 * adjust_managed_page_count() should be used instead of directly 427 * touching zone->managed_pages and totalram_pages. 428 */ 429 unsigned long managed_pages; 430 unsigned long spanned_pages; 431 unsigned long present_pages; 432 433 const char *name; 434 435#ifdef CONFIG_MEMORY_ISOLATION 436 /* 437 * Number of isolated pageblock. It is used to solve incorrect 438 * freepage counting problem due to racy retrieving migratetype 439 * of pageblock. Protected by zone->lock. 440 */ 441 unsigned long nr_isolate_pageblock; 442#endif 443 444#ifdef CONFIG_MEMORY_HOTPLUG 445 /* see spanned/present_pages for more description */ 446 seqlock_t span_seqlock; 447#endif 448 449 /* 450 * wait_table -- the array holding the hash table 451 * wait_table_hash_nr_entries -- the size of the hash table array 452 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 453 * 454 * The purpose of all these is to keep track of the people 455 * waiting for a page to become available and make them 456 * runnable again when possible. The trouble is that this 457 * consumes a lot of space, especially when so few things 458 * wait on pages at a given time. So instead of using 459 * per-page waitqueues, we use a waitqueue hash table. 460 * 461 * The bucket discipline is to sleep on the same queue when 462 * colliding and wake all in that wait queue when removing. 463 * When something wakes, it must check to be sure its page is 464 * truly available, a la thundering herd. The cost of a 465 * collision is great, but given the expected load of the 466 * table, they should be so rare as to be outweighed by the 467 * benefits from the saved space. 468 * 469 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 470 * primary users of these fields, and in mm/page_alloc.c 471 * free_area_init_core() performs the initialization of them. 472 */ 473 wait_queue_head_t *wait_table; 474 unsigned long wait_table_hash_nr_entries; 475 unsigned long wait_table_bits; 476 477 ZONE_PADDING(_pad1_) 478 /* free areas of different sizes */ 479 struct free_area free_area[MAX_ORDER]; 480 481 /* zone flags, see below */ 482 unsigned long flags; 483 484 /* Write-intensive fields used from the page allocator */ 485 spinlock_t lock; 486 487 ZONE_PADDING(_pad2_) 488 489 /* Write-intensive fields used by page reclaim */ 490 491 /* Fields commonly accessed by the page reclaim scanner */ 492 spinlock_t lru_lock; 493 struct lruvec lruvec; 494 495 /* Evictions & activations on the inactive file list */ 496 atomic_long_t inactive_age; 497 498 /* 499 * When free pages are below this point, additional steps are taken 500 * when reading the number of free pages to avoid per-cpu counter 501 * drift allowing watermarks to be breached 502 */ 503 unsigned long percpu_drift_mark; 504 505#if defined CONFIG_COMPACTION || defined CONFIG_CMA 506 /* pfn where compaction free scanner should start */ 507 unsigned long compact_cached_free_pfn; 508 /* pfn where async and sync compaction migration scanner should start */ 509 unsigned long compact_cached_migrate_pfn[2]; 510#endif 511 512#ifdef CONFIG_COMPACTION 513 /* 514 * On compaction failure, 1<<compact_defer_shift compactions 515 * are skipped before trying again. The number attempted since 516 * last failure is tracked with compact_considered. 517 */ 518 unsigned int compact_considered; 519 unsigned int compact_defer_shift; 520 int compact_order_failed; 521#endif 522 523#if defined CONFIG_COMPACTION || defined CONFIG_CMA 524 /* Set to true when the PG_migrate_skip bits should be cleared */ 525 bool compact_blockskip_flush; 526#endif 527 528 ZONE_PADDING(_pad3_) 529 /* Zone statistics */ 530 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 531} ____cacheline_internodealigned_in_smp; 532 533enum zone_flags { 534 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 535 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 536 ZONE_CONGESTED, /* zone has many dirty pages backed by 537 * a congested BDI 538 */ 539 ZONE_DIRTY, /* reclaim scanning has recently found 540 * many dirty file pages at the tail 541 * of the LRU. 542 */ 543 ZONE_WRITEBACK, /* reclaim scanning has recently found 544 * many pages under writeback 545 */ 546 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 547}; 548 549static inline unsigned long zone_end_pfn(const struct zone *zone) 550{ 551 return zone->zone_start_pfn + zone->spanned_pages; 552} 553 554static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 555{ 556 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 557} 558 559static inline bool zone_is_initialized(struct zone *zone) 560{ 561 return !!zone->wait_table; 562} 563 564static inline bool zone_is_empty(struct zone *zone) 565{ 566 return zone->spanned_pages == 0; 567} 568 569/* 570 * The "priority" of VM scanning is how much of the queues we will scan in one 571 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 572 * queues ("queue_length >> 12") during an aging round. 573 */ 574#define DEF_PRIORITY 12 575 576/* Maximum number of zones on a zonelist */ 577#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 578 579#ifdef CONFIG_NUMA 580 581/* 582 * The NUMA zonelists are doubled because we need zonelists that restrict the 583 * allocations to a single node for __GFP_THISNODE. 584 * 585 * [0] : Zonelist with fallback 586 * [1] : No fallback (__GFP_THISNODE) 587 */ 588#define MAX_ZONELISTS 2 589#else 590#define MAX_ZONELISTS 1 591#endif 592 593/* 594 * This struct contains information about a zone in a zonelist. It is stored 595 * here to avoid dereferences into large structures and lookups of tables 596 */ 597struct zoneref { 598 struct zone *zone; /* Pointer to actual zone */ 599 int zone_idx; /* zone_idx(zoneref->zone) */ 600}; 601 602/* 603 * One allocation request operates on a zonelist. A zonelist 604 * is a list of zones, the first one is the 'goal' of the 605 * allocation, the other zones are fallback zones, in decreasing 606 * priority. 607 * 608 * To speed the reading of the zonelist, the zonerefs contain the zone index 609 * of the entry being read. Helper functions to access information given 610 * a struct zoneref are 611 * 612 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 613 * zonelist_zone_idx() - Return the index of the zone for an entry 614 * zonelist_node_idx() - Return the index of the node for an entry 615 */ 616struct zonelist { 617 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 618}; 619 620#ifndef CONFIG_DISCONTIGMEM 621/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 622extern struct page *mem_map; 623#endif 624 625/* 626 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 627 * (mostly NUMA machines?) to denote a higher-level memory zone than the 628 * zone denotes. 629 * 630 * On NUMA machines, each NUMA node would have a pg_data_t to describe 631 * it's memory layout. 632 * 633 * Memory statistics and page replacement data structures are maintained on a 634 * per-zone basis. 635 */ 636struct bootmem_data; 637typedef struct pglist_data { 638 struct zone node_zones[MAX_NR_ZONES]; 639 struct zonelist node_zonelists[MAX_ZONELISTS]; 640 int nr_zones; 641#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 642 struct page *node_mem_map; 643#ifdef CONFIG_PAGE_EXTENSION 644 struct page_ext *node_page_ext; 645#endif 646#endif 647#ifndef CONFIG_NO_BOOTMEM 648 struct bootmem_data *bdata; 649#endif 650#ifdef CONFIG_MEMORY_HOTPLUG 651 /* 652 * Must be held any time you expect node_start_pfn, node_present_pages 653 * or node_spanned_pages stay constant. Holding this will also 654 * guarantee that any pfn_valid() stays that way. 655 * 656 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 657 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 658 * 659 * Nests above zone->lock and zone->span_seqlock 660 */ 661 spinlock_t node_size_lock; 662#endif 663 unsigned long node_start_pfn; 664 unsigned long node_present_pages; /* total number of physical pages */ 665 unsigned long node_spanned_pages; /* total size of physical page 666 range, including holes */ 667 int node_id; 668 wait_queue_head_t kswapd_wait; 669 wait_queue_head_t pfmemalloc_wait; 670 struct task_struct *kswapd; /* Protected by 671 mem_hotplug_begin/end() */ 672 int kswapd_max_order; 673 enum zone_type classzone_idx; 674#ifdef CONFIG_NUMA_BALANCING 675 /* Lock serializing the migrate rate limiting window */ 676 spinlock_t numabalancing_migrate_lock; 677 678 /* Rate limiting time interval */ 679 unsigned long numabalancing_migrate_next_window; 680 681 /* Number of pages migrated during the rate limiting time interval */ 682 unsigned long numabalancing_migrate_nr_pages; 683#endif 684 685#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 686 /* 687 * If memory initialisation on large machines is deferred then this 688 * is the first PFN that needs to be initialised. 689 */ 690 unsigned long first_deferred_pfn; 691#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 692} pg_data_t; 693 694#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 695#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 696#ifdef CONFIG_FLAT_NODE_MEM_MAP 697#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 698#else 699#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 700#endif 701#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 702 703#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 704#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 705 706static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 707{ 708 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 709} 710 711static inline bool pgdat_is_empty(pg_data_t *pgdat) 712{ 713 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 714} 715 716static inline int zone_id(const struct zone *zone) 717{ 718 struct pglist_data *pgdat = zone->zone_pgdat; 719 720 return zone - pgdat->node_zones; 721} 722 723#ifdef CONFIG_ZONE_DEVICE 724static inline bool is_dev_zone(const struct zone *zone) 725{ 726 return zone_id(zone) == ZONE_DEVICE; 727} 728#else 729static inline bool is_dev_zone(const struct zone *zone) 730{ 731 return false; 732} 733#endif 734 735#include <linux/memory_hotplug.h> 736 737extern struct mutex zonelists_mutex; 738void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 739void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 740bool zone_watermark_ok(struct zone *z, unsigned int order, 741 unsigned long mark, int classzone_idx, int alloc_flags); 742bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 743 unsigned long mark, int classzone_idx); 744enum memmap_context { 745 MEMMAP_EARLY, 746 MEMMAP_HOTPLUG, 747}; 748extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 749 unsigned long size); 750 751extern void lruvec_init(struct lruvec *lruvec); 752 753static inline struct zone *lruvec_zone(struct lruvec *lruvec) 754{ 755#ifdef CONFIG_MEMCG 756 return lruvec->zone; 757#else 758 return container_of(lruvec, struct zone, lruvec); 759#endif 760} 761 762#ifdef CONFIG_HAVE_MEMORY_PRESENT 763void memory_present(int nid, unsigned long start, unsigned long end); 764#else 765static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 766#endif 767 768#ifdef CONFIG_HAVE_MEMORYLESS_NODES 769int local_memory_node(int node_id); 770#else 771static inline int local_memory_node(int node_id) { return node_id; }; 772#endif 773 774#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 775unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 776#endif 777 778/* 779 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 780 */ 781#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 782 783static inline int populated_zone(struct zone *zone) 784{ 785 return (!!zone->present_pages); 786} 787 788extern int movable_zone; 789 790#ifdef CONFIG_HIGHMEM 791static inline int zone_movable_is_highmem(void) 792{ 793#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 794 return movable_zone == ZONE_HIGHMEM; 795#else 796 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 797#endif 798} 799#endif 800 801static inline int is_highmem_idx(enum zone_type idx) 802{ 803#ifdef CONFIG_HIGHMEM 804 return (idx == ZONE_HIGHMEM || 805 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 806#else 807 return 0; 808#endif 809} 810 811/** 812 * is_highmem - helper function to quickly check if a struct zone is a 813 * highmem zone or not. This is an attempt to keep references 814 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 815 * @zone - pointer to struct zone variable 816 */ 817static inline int is_highmem(struct zone *zone) 818{ 819#ifdef CONFIG_HIGHMEM 820 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 821 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 822 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 823 zone_movable_is_highmem()); 824#else 825 return 0; 826#endif 827} 828 829/* These two functions are used to setup the per zone pages min values */ 830struct ctl_table; 831int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 832 void __user *, size_t *, loff_t *); 833extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 834int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 835 void __user *, size_t *, loff_t *); 836int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 837 void __user *, size_t *, loff_t *); 838int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 839 void __user *, size_t *, loff_t *); 840int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 841 void __user *, size_t *, loff_t *); 842 843extern int numa_zonelist_order_handler(struct ctl_table *, int, 844 void __user *, size_t *, loff_t *); 845extern char numa_zonelist_order[]; 846#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 847 848#ifndef CONFIG_NEED_MULTIPLE_NODES 849 850extern struct pglist_data contig_page_data; 851#define NODE_DATA(nid) (&contig_page_data) 852#define NODE_MEM_MAP(nid) mem_map 853 854#else /* CONFIG_NEED_MULTIPLE_NODES */ 855 856#include <asm/mmzone.h> 857 858#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 859 860extern struct pglist_data *first_online_pgdat(void); 861extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 862extern struct zone *next_zone(struct zone *zone); 863 864/** 865 * for_each_online_pgdat - helper macro to iterate over all online nodes 866 * @pgdat - pointer to a pg_data_t variable 867 */ 868#define for_each_online_pgdat(pgdat) \ 869 for (pgdat = first_online_pgdat(); \ 870 pgdat; \ 871 pgdat = next_online_pgdat(pgdat)) 872/** 873 * for_each_zone - helper macro to iterate over all memory zones 874 * @zone - pointer to struct zone variable 875 * 876 * The user only needs to declare the zone variable, for_each_zone 877 * fills it in. 878 */ 879#define for_each_zone(zone) \ 880 for (zone = (first_online_pgdat())->node_zones; \ 881 zone; \ 882 zone = next_zone(zone)) 883 884#define for_each_populated_zone(zone) \ 885 for (zone = (first_online_pgdat())->node_zones; \ 886 zone; \ 887 zone = next_zone(zone)) \ 888 if (!populated_zone(zone)) \ 889 ; /* do nothing */ \ 890 else 891 892static inline struct zone *zonelist_zone(struct zoneref *zoneref) 893{ 894 return zoneref->zone; 895} 896 897static inline int zonelist_zone_idx(struct zoneref *zoneref) 898{ 899 return zoneref->zone_idx; 900} 901 902static inline int zonelist_node_idx(struct zoneref *zoneref) 903{ 904#ifdef CONFIG_NUMA 905 /* zone_to_nid not available in this context */ 906 return zoneref->zone->node; 907#else 908 return 0; 909#endif /* CONFIG_NUMA */ 910} 911 912/** 913 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 914 * @z - The cursor used as a starting point for the search 915 * @highest_zoneidx - The zone index of the highest zone to return 916 * @nodes - An optional nodemask to filter the zonelist with 917 * 918 * This function returns the next zone at or below a given zone index that is 919 * within the allowed nodemask using a cursor as the starting point for the 920 * search. The zoneref returned is a cursor that represents the current zone 921 * being examined. It should be advanced by one before calling 922 * next_zones_zonelist again. 923 */ 924struct zoneref *next_zones_zonelist(struct zoneref *z, 925 enum zone_type highest_zoneidx, 926 nodemask_t *nodes); 927 928/** 929 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 930 * @zonelist - The zonelist to search for a suitable zone 931 * @highest_zoneidx - The zone index of the highest zone to return 932 * @nodes - An optional nodemask to filter the zonelist with 933 * @zone - The first suitable zone found is returned via this parameter 934 * 935 * This function returns the first zone at or below a given zone index that is 936 * within the allowed nodemask. The zoneref returned is a cursor that can be 937 * used to iterate the zonelist with next_zones_zonelist by advancing it by 938 * one before calling. 939 */ 940static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 941 enum zone_type highest_zoneidx, 942 nodemask_t *nodes, 943 struct zone **zone) 944{ 945 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs, 946 highest_zoneidx, nodes); 947 *zone = zonelist_zone(z); 948 return z; 949} 950 951/** 952 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 953 * @zone - The current zone in the iterator 954 * @z - The current pointer within zonelist->zones being iterated 955 * @zlist - The zonelist being iterated 956 * @highidx - The zone index of the highest zone to return 957 * @nodemask - Nodemask allowed by the allocator 958 * 959 * This iterator iterates though all zones at or below a given zone index and 960 * within a given nodemask 961 */ 962#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 963 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 964 zone; \ 965 z = next_zones_zonelist(++z, highidx, nodemask), \ 966 zone = zonelist_zone(z)) \ 967 968/** 969 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 970 * @zone - The current zone in the iterator 971 * @z - The current pointer within zonelist->zones being iterated 972 * @zlist - The zonelist being iterated 973 * @highidx - The zone index of the highest zone to return 974 * 975 * This iterator iterates though all zones at or below a given zone index. 976 */ 977#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 978 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 979 980#ifdef CONFIG_SPARSEMEM 981#include <asm/sparsemem.h> 982#endif 983 984#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 985 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 986static inline unsigned long early_pfn_to_nid(unsigned long pfn) 987{ 988 return 0; 989} 990#endif 991 992#ifdef CONFIG_FLATMEM 993#define pfn_to_nid(pfn) (0) 994#endif 995 996#ifdef CONFIG_SPARSEMEM 997 998/* 999 * SECTION_SHIFT #bits space required to store a section # 1000 * 1001 * PA_SECTION_SHIFT physical address to/from section number 1002 * PFN_SECTION_SHIFT pfn to/from section number 1003 */ 1004#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1005#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1006 1007#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1008 1009#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1010#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1011 1012#define SECTION_BLOCKFLAGS_BITS \ 1013 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1014 1015#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1016#error Allocator MAX_ORDER exceeds SECTION_SIZE 1017#endif 1018 1019#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1020#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1021 1022#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1023#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1024 1025struct page; 1026struct page_ext; 1027struct mem_section { 1028 /* 1029 * This is, logically, a pointer to an array of struct 1030 * pages. However, it is stored with some other magic. 1031 * (see sparse.c::sparse_init_one_section()) 1032 * 1033 * Additionally during early boot we encode node id of 1034 * the location of the section here to guide allocation. 1035 * (see sparse.c::memory_present()) 1036 * 1037 * Making it a UL at least makes someone do a cast 1038 * before using it wrong. 1039 */ 1040 unsigned long section_mem_map; 1041 1042 /* See declaration of similar field in struct zone */ 1043 unsigned long *pageblock_flags; 1044#ifdef CONFIG_PAGE_EXTENSION 1045 /* 1046 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1047 * section. (see page_ext.h about this.) 1048 */ 1049 struct page_ext *page_ext; 1050 unsigned long pad; 1051#endif 1052 /* 1053 * WARNING: mem_section must be a power-of-2 in size for the 1054 * calculation and use of SECTION_ROOT_MASK to make sense. 1055 */ 1056}; 1057 1058#ifdef CONFIG_SPARSEMEM_EXTREME 1059#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1060#else 1061#define SECTIONS_PER_ROOT 1 1062#endif 1063 1064#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1065#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1066#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1067 1068#ifdef CONFIG_SPARSEMEM_EXTREME 1069extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1070#else 1071extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1072#endif 1073 1074static inline struct mem_section *__nr_to_section(unsigned long nr) 1075{ 1076 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1077 return NULL; 1078 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1079} 1080extern int __section_nr(struct mem_section* ms); 1081extern unsigned long usemap_size(void); 1082 1083/* 1084 * We use the lower bits of the mem_map pointer to store 1085 * a little bit of information. There should be at least 1086 * 3 bits here due to 32-bit alignment. 1087 */ 1088#define SECTION_MARKED_PRESENT (1UL<<0) 1089#define SECTION_HAS_MEM_MAP (1UL<<1) 1090#define SECTION_MAP_LAST_BIT (1UL<<2) 1091#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1092#define SECTION_NID_SHIFT 2 1093 1094static inline struct page *__section_mem_map_addr(struct mem_section *section) 1095{ 1096 unsigned long map = section->section_mem_map; 1097 map &= SECTION_MAP_MASK; 1098 return (struct page *)map; 1099} 1100 1101static inline int present_section(struct mem_section *section) 1102{ 1103 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1104} 1105 1106static inline int present_section_nr(unsigned long nr) 1107{ 1108 return present_section(__nr_to_section(nr)); 1109} 1110 1111static inline int valid_section(struct mem_section *section) 1112{ 1113 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1114} 1115 1116static inline int valid_section_nr(unsigned long nr) 1117{ 1118 return valid_section(__nr_to_section(nr)); 1119} 1120 1121static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1122{ 1123 return __nr_to_section(pfn_to_section_nr(pfn)); 1124} 1125 1126#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1127static inline int pfn_valid(unsigned long pfn) 1128{ 1129 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1130 return 0; 1131 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1132} 1133#endif 1134 1135static inline int pfn_present(unsigned long pfn) 1136{ 1137 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1138 return 0; 1139 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1140} 1141 1142/* 1143 * These are _only_ used during initialisation, therefore they 1144 * can use __initdata ... They could have names to indicate 1145 * this restriction. 1146 */ 1147#ifdef CONFIG_NUMA 1148#define pfn_to_nid(pfn) \ 1149({ \ 1150 unsigned long __pfn_to_nid_pfn = (pfn); \ 1151 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1152}) 1153#else 1154#define pfn_to_nid(pfn) (0) 1155#endif 1156 1157#define early_pfn_valid(pfn) pfn_valid(pfn) 1158void sparse_init(void); 1159#else 1160#define sparse_init() do {} while (0) 1161#define sparse_index_init(_sec, _nid) do {} while (0) 1162#endif /* CONFIG_SPARSEMEM */ 1163 1164/* 1165 * During memory init memblocks map pfns to nids. The search is expensive and 1166 * this caches recent lookups. The implementation of __early_pfn_to_nid 1167 * may treat start/end as pfns or sections. 1168 */ 1169struct mminit_pfnnid_cache { 1170 unsigned long last_start; 1171 unsigned long last_end; 1172 int last_nid; 1173}; 1174 1175#ifndef early_pfn_valid 1176#define early_pfn_valid(pfn) (1) 1177#endif 1178 1179void memory_present(int nid, unsigned long start, unsigned long end); 1180unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1181 1182/* 1183 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1184 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1185 * pfn_valid_within() should be used in this case; we optimise this away 1186 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1187 */ 1188#ifdef CONFIG_HOLES_IN_ZONE 1189#define pfn_valid_within(pfn) pfn_valid(pfn) 1190#else 1191#define pfn_valid_within(pfn) (1) 1192#endif 1193 1194#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1195/* 1196 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1197 * associated with it or not. In FLATMEM, it is expected that holes always 1198 * have valid memmap as long as there is valid PFNs either side of the hole. 1199 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1200 * entire section. 1201 * 1202 * However, an ARM, and maybe other embedded architectures in the future 1203 * free memmap backing holes to save memory on the assumption the memmap is 1204 * never used. The page_zone linkages are then broken even though pfn_valid() 1205 * returns true. A walker of the full memmap must then do this additional 1206 * check to ensure the memmap they are looking at is sane by making sure 1207 * the zone and PFN linkages are still valid. This is expensive, but walkers 1208 * of the full memmap are extremely rare. 1209 */ 1210int memmap_valid_within(unsigned long pfn, 1211 struct page *page, struct zone *zone); 1212#else 1213static inline int memmap_valid_within(unsigned long pfn, 1214 struct page *page, struct zone *zone) 1215{ 1216 return 1; 1217} 1218#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1219 1220#endif /* !__GENERATING_BOUNDS.H */ 1221#endif /* !__ASSEMBLY__ */ 1222#endif /* _LINUX_MMZONE_H */