at v4.4 17 kB view raw
1#ifndef _LINUX_MM_TYPES_H 2#define _LINUX_MM_TYPES_H 3 4#include <linux/auxvec.h> 5#include <linux/types.h> 6#include <linux/threads.h> 7#include <linux/list.h> 8#include <linux/spinlock.h> 9#include <linux/rbtree.h> 10#include <linux/rwsem.h> 11#include <linux/completion.h> 12#include <linux/cpumask.h> 13#include <linux/uprobes.h> 14#include <linux/page-flags-layout.h> 15#include <asm/page.h> 16#include <asm/mmu.h> 17 18#ifndef AT_VECTOR_SIZE_ARCH 19#define AT_VECTOR_SIZE_ARCH 0 20#endif 21#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 22 23struct address_space; 24struct mem_cgroup; 25 26#define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS) 27#define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \ 28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) 29#define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) 30 31/* 32 * Each physical page in the system has a struct page associated with 33 * it to keep track of whatever it is we are using the page for at the 34 * moment. Note that we have no way to track which tasks are using 35 * a page, though if it is a pagecache page, rmap structures can tell us 36 * who is mapping it. 37 * 38 * The objects in struct page are organized in double word blocks in 39 * order to allows us to use atomic double word operations on portions 40 * of struct page. That is currently only used by slub but the arrangement 41 * allows the use of atomic double word operations on the flags/mapping 42 * and lru list pointers also. 43 */ 44struct page { 45 /* First double word block */ 46 unsigned long flags; /* Atomic flags, some possibly 47 * updated asynchronously */ 48 union { 49 struct address_space *mapping; /* If low bit clear, points to 50 * inode address_space, or NULL. 51 * If page mapped as anonymous 52 * memory, low bit is set, and 53 * it points to anon_vma object: 54 * see PAGE_MAPPING_ANON below. 55 */ 56 void *s_mem; /* slab first object */ 57 }; 58 59 /* Second double word */ 60 struct { 61 union { 62 pgoff_t index; /* Our offset within mapping. */ 63 void *freelist; /* sl[aou]b first free object */ 64 }; 65 66 union { 67#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 68 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 69 /* Used for cmpxchg_double in slub */ 70 unsigned long counters; 71#else 72 /* 73 * Keep _count separate from slub cmpxchg_double data. 74 * As the rest of the double word is protected by 75 * slab_lock but _count is not. 76 */ 77 unsigned counters; 78#endif 79 80 struct { 81 82 union { 83 /* 84 * Count of ptes mapped in 85 * mms, to show when page is 86 * mapped & limit reverse map 87 * searches. 88 * 89 * Used also for tail pages 90 * refcounting instead of 91 * _count. Tail pages cannot 92 * be mapped and keeping the 93 * tail page _count zero at 94 * all times guarantees 95 * get_page_unless_zero() will 96 * never succeed on tail 97 * pages. 98 */ 99 atomic_t _mapcount; 100 101 struct { /* SLUB */ 102 unsigned inuse:16; 103 unsigned objects:15; 104 unsigned frozen:1; 105 }; 106 int units; /* SLOB */ 107 }; 108 atomic_t _count; /* Usage count, see below. */ 109 }; 110 unsigned int active; /* SLAB */ 111 }; 112 }; 113 114 /* 115 * Third double word block 116 * 117 * WARNING: bit 0 of the first word encode PageTail(). That means 118 * the rest users of the storage space MUST NOT use the bit to 119 * avoid collision and false-positive PageTail(). 120 */ 121 union { 122 struct list_head lru; /* Pageout list, eg. active_list 123 * protected by zone->lru_lock ! 124 * Can be used as a generic list 125 * by the page owner. 126 */ 127 struct { /* slub per cpu partial pages */ 128 struct page *next; /* Next partial slab */ 129#ifdef CONFIG_64BIT 130 int pages; /* Nr of partial slabs left */ 131 int pobjects; /* Approximate # of objects */ 132#else 133 short int pages; 134 short int pobjects; 135#endif 136 }; 137 138 struct rcu_head rcu_head; /* Used by SLAB 139 * when destroying via RCU 140 */ 141 /* Tail pages of compound page */ 142 struct { 143 unsigned long compound_head; /* If bit zero is set */ 144 145 /* First tail page only */ 146#ifdef CONFIG_64BIT 147 /* 148 * On 64 bit system we have enough space in struct page 149 * to encode compound_dtor and compound_order with 150 * unsigned int. It can help compiler generate better or 151 * smaller code on some archtectures. 152 */ 153 unsigned int compound_dtor; 154 unsigned int compound_order; 155#else 156 unsigned short int compound_dtor; 157 unsigned short int compound_order; 158#endif 159 }; 160 161#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 162 struct { 163 unsigned long __pad; /* do not overlay pmd_huge_pte 164 * with compound_head to avoid 165 * possible bit 0 collision. 166 */ 167 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 168 }; 169#endif 170 }; 171 172 /* Remainder is not double word aligned */ 173 union { 174 unsigned long private; /* Mapping-private opaque data: 175 * usually used for buffer_heads 176 * if PagePrivate set; used for 177 * swp_entry_t if PageSwapCache; 178 * indicates order in the buddy 179 * system if PG_buddy is set. 180 */ 181#if USE_SPLIT_PTE_PTLOCKS 182#if ALLOC_SPLIT_PTLOCKS 183 spinlock_t *ptl; 184#else 185 spinlock_t ptl; 186#endif 187#endif 188 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 189 }; 190 191#ifdef CONFIG_MEMCG 192 struct mem_cgroup *mem_cgroup; 193#endif 194 195 /* 196 * On machines where all RAM is mapped into kernel address space, 197 * we can simply calculate the virtual address. On machines with 198 * highmem some memory is mapped into kernel virtual memory 199 * dynamically, so we need a place to store that address. 200 * Note that this field could be 16 bits on x86 ... ;) 201 * 202 * Architectures with slow multiplication can define 203 * WANT_PAGE_VIRTUAL in asm/page.h 204 */ 205#if defined(WANT_PAGE_VIRTUAL) 206 void *virtual; /* Kernel virtual address (NULL if 207 not kmapped, ie. highmem) */ 208#endif /* WANT_PAGE_VIRTUAL */ 209 210#ifdef CONFIG_KMEMCHECK 211 /* 212 * kmemcheck wants to track the status of each byte in a page; this 213 * is a pointer to such a status block. NULL if not tracked. 214 */ 215 void *shadow; 216#endif 217 218#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 219 int _last_cpupid; 220#endif 221} 222/* 223 * The struct page can be forced to be double word aligned so that atomic ops 224 * on double words work. The SLUB allocator can make use of such a feature. 225 */ 226#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 227 __aligned(2 * sizeof(unsigned long)) 228#endif 229; 230 231struct page_frag { 232 struct page *page; 233#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 234 __u32 offset; 235 __u32 size; 236#else 237 __u16 offset; 238 __u16 size; 239#endif 240}; 241 242#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 243#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 244 245struct page_frag_cache { 246 void * va; 247#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 248 __u16 offset; 249 __u16 size; 250#else 251 __u32 offset; 252#endif 253 /* we maintain a pagecount bias, so that we dont dirty cache line 254 * containing page->_count every time we allocate a fragment. 255 */ 256 unsigned int pagecnt_bias; 257 bool pfmemalloc; 258}; 259 260typedef unsigned long vm_flags_t; 261 262/* 263 * A region containing a mapping of a non-memory backed file under NOMMU 264 * conditions. These are held in a global tree and are pinned by the VMAs that 265 * map parts of them. 266 */ 267struct vm_region { 268 struct rb_node vm_rb; /* link in global region tree */ 269 vm_flags_t vm_flags; /* VMA vm_flags */ 270 unsigned long vm_start; /* start address of region */ 271 unsigned long vm_end; /* region initialised to here */ 272 unsigned long vm_top; /* region allocated to here */ 273 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 274 struct file *vm_file; /* the backing file or NULL */ 275 276 int vm_usage; /* region usage count (access under nommu_region_sem) */ 277 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 278 * this region */ 279}; 280 281#ifdef CONFIG_USERFAULTFD 282#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 283struct vm_userfaultfd_ctx { 284 struct userfaultfd_ctx *ctx; 285}; 286#else /* CONFIG_USERFAULTFD */ 287#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 288struct vm_userfaultfd_ctx {}; 289#endif /* CONFIG_USERFAULTFD */ 290 291/* 292 * This struct defines a memory VMM memory area. There is one of these 293 * per VM-area/task. A VM area is any part of the process virtual memory 294 * space that has a special rule for the page-fault handlers (ie a shared 295 * library, the executable area etc). 296 */ 297struct vm_area_struct { 298 /* The first cache line has the info for VMA tree walking. */ 299 300 unsigned long vm_start; /* Our start address within vm_mm. */ 301 unsigned long vm_end; /* The first byte after our end address 302 within vm_mm. */ 303 304 /* linked list of VM areas per task, sorted by address */ 305 struct vm_area_struct *vm_next, *vm_prev; 306 307 struct rb_node vm_rb; 308 309 /* 310 * Largest free memory gap in bytes to the left of this VMA. 311 * Either between this VMA and vma->vm_prev, or between one of the 312 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 313 * get_unmapped_area find a free area of the right size. 314 */ 315 unsigned long rb_subtree_gap; 316 317 /* Second cache line starts here. */ 318 319 struct mm_struct *vm_mm; /* The address space we belong to. */ 320 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 321 unsigned long vm_flags; /* Flags, see mm.h. */ 322 323 /* 324 * For areas with an address space and backing store, 325 * linkage into the address_space->i_mmap interval tree. 326 */ 327 struct { 328 struct rb_node rb; 329 unsigned long rb_subtree_last; 330 } shared; 331 332 /* 333 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 334 * list, after a COW of one of the file pages. A MAP_SHARED vma 335 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 336 * or brk vma (with NULL file) can only be in an anon_vma list. 337 */ 338 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 339 * page_table_lock */ 340 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 341 342 /* Function pointers to deal with this struct. */ 343 const struct vm_operations_struct *vm_ops; 344 345 /* Information about our backing store: */ 346 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 347 units, *not* PAGE_CACHE_SIZE */ 348 struct file * vm_file; /* File we map to (can be NULL). */ 349 void * vm_private_data; /* was vm_pte (shared mem) */ 350 351#ifndef CONFIG_MMU 352 struct vm_region *vm_region; /* NOMMU mapping region */ 353#endif 354#ifdef CONFIG_NUMA 355 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 356#endif 357 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 358}; 359 360struct core_thread { 361 struct task_struct *task; 362 struct core_thread *next; 363}; 364 365struct core_state { 366 atomic_t nr_threads; 367 struct core_thread dumper; 368 struct completion startup; 369}; 370 371enum { 372 MM_FILEPAGES, 373 MM_ANONPAGES, 374 MM_SWAPENTS, 375 NR_MM_COUNTERS 376}; 377 378#if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU) 379#define SPLIT_RSS_COUNTING 380/* per-thread cached information, */ 381struct task_rss_stat { 382 int events; /* for synchronization threshold */ 383 int count[NR_MM_COUNTERS]; 384}; 385#endif /* USE_SPLIT_PTE_PTLOCKS */ 386 387struct mm_rss_stat { 388 atomic_long_t count[NR_MM_COUNTERS]; 389}; 390 391struct kioctx_table; 392struct mm_struct { 393 struct vm_area_struct *mmap; /* list of VMAs */ 394 struct rb_root mm_rb; 395 u32 vmacache_seqnum; /* per-thread vmacache */ 396#ifdef CONFIG_MMU 397 unsigned long (*get_unmapped_area) (struct file *filp, 398 unsigned long addr, unsigned long len, 399 unsigned long pgoff, unsigned long flags); 400#endif 401 unsigned long mmap_base; /* base of mmap area */ 402 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 403 unsigned long task_size; /* size of task vm space */ 404 unsigned long highest_vm_end; /* highest vma end address */ 405 pgd_t * pgd; 406 atomic_t mm_users; /* How many users with user space? */ 407 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 408 atomic_long_t nr_ptes; /* PTE page table pages */ 409#if CONFIG_PGTABLE_LEVELS > 2 410 atomic_long_t nr_pmds; /* PMD page table pages */ 411#endif 412 int map_count; /* number of VMAs */ 413 414 spinlock_t page_table_lock; /* Protects page tables and some counters */ 415 struct rw_semaphore mmap_sem; 416 417 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 418 * together off init_mm.mmlist, and are protected 419 * by mmlist_lock 420 */ 421 422 423 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 424 unsigned long hiwater_vm; /* High-water virtual memory usage */ 425 426 unsigned long total_vm; /* Total pages mapped */ 427 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 428 unsigned long pinned_vm; /* Refcount permanently increased */ 429 unsigned long shared_vm; /* Shared pages (files) */ 430 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */ 431 unsigned long stack_vm; /* VM_GROWSUP/DOWN */ 432 unsigned long def_flags; 433 unsigned long start_code, end_code, start_data, end_data; 434 unsigned long start_brk, brk, start_stack; 435 unsigned long arg_start, arg_end, env_start, env_end; 436 437 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 438 439 /* 440 * Special counters, in some configurations protected by the 441 * page_table_lock, in other configurations by being atomic. 442 */ 443 struct mm_rss_stat rss_stat; 444 445 struct linux_binfmt *binfmt; 446 447 cpumask_var_t cpu_vm_mask_var; 448 449 /* Architecture-specific MM context */ 450 mm_context_t context; 451 452 unsigned long flags; /* Must use atomic bitops to access the bits */ 453 454 struct core_state *core_state; /* coredumping support */ 455#ifdef CONFIG_AIO 456 spinlock_t ioctx_lock; 457 struct kioctx_table __rcu *ioctx_table; 458#endif 459#ifdef CONFIG_MEMCG 460 /* 461 * "owner" points to a task that is regarded as the canonical 462 * user/owner of this mm. All of the following must be true in 463 * order for it to be changed: 464 * 465 * current == mm->owner 466 * current->mm != mm 467 * new_owner->mm == mm 468 * new_owner->alloc_lock is held 469 */ 470 struct task_struct __rcu *owner; 471#endif 472 473 /* store ref to file /proc/<pid>/exe symlink points to */ 474 struct file __rcu *exe_file; 475#ifdef CONFIG_MMU_NOTIFIER 476 struct mmu_notifier_mm *mmu_notifier_mm; 477#endif 478#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 479 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 480#endif 481#ifdef CONFIG_CPUMASK_OFFSTACK 482 struct cpumask cpumask_allocation; 483#endif 484#ifdef CONFIG_NUMA_BALANCING 485 /* 486 * numa_next_scan is the next time that the PTEs will be marked 487 * pte_numa. NUMA hinting faults will gather statistics and migrate 488 * pages to new nodes if necessary. 489 */ 490 unsigned long numa_next_scan; 491 492 /* Restart point for scanning and setting pte_numa */ 493 unsigned long numa_scan_offset; 494 495 /* numa_scan_seq prevents two threads setting pte_numa */ 496 int numa_scan_seq; 497#endif 498#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 499 /* 500 * An operation with batched TLB flushing is going on. Anything that 501 * can move process memory needs to flush the TLB when moving a 502 * PROT_NONE or PROT_NUMA mapped page. 503 */ 504 bool tlb_flush_pending; 505#endif 506 struct uprobes_state uprobes_state; 507#ifdef CONFIG_X86_INTEL_MPX 508 /* address of the bounds directory */ 509 void __user *bd_addr; 510#endif 511#ifdef CONFIG_HUGETLB_PAGE 512 atomic_long_t hugetlb_usage; 513#endif 514}; 515 516static inline void mm_init_cpumask(struct mm_struct *mm) 517{ 518#ifdef CONFIG_CPUMASK_OFFSTACK 519 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 520#endif 521 cpumask_clear(mm->cpu_vm_mask_var); 522} 523 524/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 525static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 526{ 527 return mm->cpu_vm_mask_var; 528} 529 530#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION) 531/* 532 * Memory barriers to keep this state in sync are graciously provided by 533 * the page table locks, outside of which no page table modifications happen. 534 * The barriers below prevent the compiler from re-ordering the instructions 535 * around the memory barriers that are already present in the code. 536 */ 537static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 538{ 539 barrier(); 540 return mm->tlb_flush_pending; 541} 542static inline void set_tlb_flush_pending(struct mm_struct *mm) 543{ 544 mm->tlb_flush_pending = true; 545 546 /* 547 * Guarantee that the tlb_flush_pending store does not leak into the 548 * critical section updating the page tables 549 */ 550 smp_mb__before_spinlock(); 551} 552/* Clearing is done after a TLB flush, which also provides a barrier. */ 553static inline void clear_tlb_flush_pending(struct mm_struct *mm) 554{ 555 barrier(); 556 mm->tlb_flush_pending = false; 557} 558#else 559static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 560{ 561 return false; 562} 563static inline void set_tlb_flush_pending(struct mm_struct *mm) 564{ 565} 566static inline void clear_tlb_flush_pending(struct mm_struct *mm) 567{ 568} 569#endif 570 571struct vm_special_mapping 572{ 573 const char *name; 574 struct page **pages; 575}; 576 577enum tlb_flush_reason { 578 TLB_FLUSH_ON_TASK_SWITCH, 579 TLB_REMOTE_SHOOTDOWN, 580 TLB_LOCAL_SHOOTDOWN, 581 TLB_LOCAL_MM_SHOOTDOWN, 582 TLB_REMOTE_SEND_IPI, 583 NR_TLB_FLUSH_REASONS, 584}; 585 586 /* 587 * A swap entry has to fit into a "unsigned long", as the entry is hidden 588 * in the "index" field of the swapper address space. 589 */ 590typedef struct { 591 unsigned long val; 592} swp_entry_t; 593 594#endif /* _LINUX_MM_TYPES_H */