at v4.4 73 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24 25struct mempolicy; 26struct anon_vma; 27struct anon_vma_chain; 28struct file_ra_state; 29struct user_struct; 30struct writeback_control; 31struct bdi_writeback; 32 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 34extern unsigned long max_mapnr; 35 36static inline void set_max_mapnr(unsigned long limit) 37{ 38 max_mapnr = limit; 39} 40#else 41static inline void set_max_mapnr(unsigned long limit) { } 42#endif 43 44extern unsigned long totalram_pages; 45extern void * high_memory; 46extern int page_cluster; 47 48#ifdef CONFIG_SYSCTL 49extern int sysctl_legacy_va_layout; 50#else 51#define sysctl_legacy_va_layout 0 52#endif 53 54#include <asm/page.h> 55#include <asm/pgtable.h> 56#include <asm/processor.h> 57 58#ifndef __pa_symbol 59#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 60#endif 61 62/* 63 * To prevent common memory management code establishing 64 * a zero page mapping on a read fault. 65 * This macro should be defined within <asm/pgtable.h>. 66 * s390 does this to prevent multiplexing of hardware bits 67 * related to the physical page in case of virtualization. 68 */ 69#ifndef mm_forbids_zeropage 70#define mm_forbids_zeropage(X) (0) 71#endif 72 73extern unsigned long sysctl_user_reserve_kbytes; 74extern unsigned long sysctl_admin_reserve_kbytes; 75 76extern int sysctl_overcommit_memory; 77extern int sysctl_overcommit_ratio; 78extern unsigned long sysctl_overcommit_kbytes; 79 80extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 83 size_t *, loff_t *); 84 85#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 86 87/* to align the pointer to the (next) page boundary */ 88#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 89 90/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 91#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 92 93/* 94 * Linux kernel virtual memory manager primitives. 95 * The idea being to have a "virtual" mm in the same way 96 * we have a virtual fs - giving a cleaner interface to the 97 * mm details, and allowing different kinds of memory mappings 98 * (from shared memory to executable loading to arbitrary 99 * mmap() functions). 100 */ 101 102extern struct kmem_cache *vm_area_cachep; 103 104#ifndef CONFIG_MMU 105extern struct rb_root nommu_region_tree; 106extern struct rw_semaphore nommu_region_sem; 107 108extern unsigned int kobjsize(const void *objp); 109#endif 110 111/* 112 * vm_flags in vm_area_struct, see mm_types.h. 113 */ 114#define VM_NONE 0x00000000 115 116#define VM_READ 0x00000001 /* currently active flags */ 117#define VM_WRITE 0x00000002 118#define VM_EXEC 0x00000004 119#define VM_SHARED 0x00000008 120 121/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 122#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 123#define VM_MAYWRITE 0x00000020 124#define VM_MAYEXEC 0x00000040 125#define VM_MAYSHARE 0x00000080 126 127#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 128#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 129#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 130#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 131#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 132 133#define VM_LOCKED 0x00002000 134#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 135 136 /* Used by sys_madvise() */ 137#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 138#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 139 140#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 141#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 142#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 143#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 144#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 145#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 146#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 147#define VM_ARCH_2 0x02000000 148#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 149 150#ifdef CONFIG_MEM_SOFT_DIRTY 151# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 152#else 153# define VM_SOFTDIRTY 0 154#endif 155 156#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 157#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 158#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 159#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 160 161#if defined(CONFIG_X86) 162# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 163#elif defined(CONFIG_PPC) 164# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 165#elif defined(CONFIG_PARISC) 166# define VM_GROWSUP VM_ARCH_1 167#elif defined(CONFIG_METAG) 168# define VM_GROWSUP VM_ARCH_1 169#elif defined(CONFIG_IA64) 170# define VM_GROWSUP VM_ARCH_1 171#elif !defined(CONFIG_MMU) 172# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 173#endif 174 175#if defined(CONFIG_X86) 176/* MPX specific bounds table or bounds directory */ 177# define VM_MPX VM_ARCH_2 178#endif 179 180#ifndef VM_GROWSUP 181# define VM_GROWSUP VM_NONE 182#endif 183 184/* Bits set in the VMA until the stack is in its final location */ 185#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 186 187#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 188#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 189#endif 190 191#ifdef CONFIG_STACK_GROWSUP 192#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 193#else 194#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 195#endif 196 197/* 198 * Special vmas that are non-mergable, non-mlock()able. 199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 200 */ 201#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 202 203/* This mask defines which mm->def_flags a process can inherit its parent */ 204#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 205 206/* This mask is used to clear all the VMA flags used by mlock */ 207#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 208 209/* 210 * mapping from the currently active vm_flags protection bits (the 211 * low four bits) to a page protection mask.. 212 */ 213extern pgprot_t protection_map[16]; 214 215#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 216#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 217#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 218#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 219#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 220#define FAULT_FLAG_TRIED 0x20 /* Second try */ 221#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 222 223/* 224 * vm_fault is filled by the the pagefault handler and passed to the vma's 225 * ->fault function. The vma's ->fault is responsible for returning a bitmask 226 * of VM_FAULT_xxx flags that give details about how the fault was handled. 227 * 228 * pgoff should be used in favour of virtual_address, if possible. 229 */ 230struct vm_fault { 231 unsigned int flags; /* FAULT_FLAG_xxx flags */ 232 pgoff_t pgoff; /* Logical page offset based on vma */ 233 void __user *virtual_address; /* Faulting virtual address */ 234 235 struct page *cow_page; /* Handler may choose to COW */ 236 struct page *page; /* ->fault handlers should return a 237 * page here, unless VM_FAULT_NOPAGE 238 * is set (which is also implied by 239 * VM_FAULT_ERROR). 240 */ 241 /* for ->map_pages() only */ 242 pgoff_t max_pgoff; /* map pages for offset from pgoff till 243 * max_pgoff inclusive */ 244 pte_t *pte; /* pte entry associated with ->pgoff */ 245}; 246 247/* 248 * These are the virtual MM functions - opening of an area, closing and 249 * unmapping it (needed to keep files on disk up-to-date etc), pointer 250 * to the functions called when a no-page or a wp-page exception occurs. 251 */ 252struct vm_operations_struct { 253 void (*open)(struct vm_area_struct * area); 254 void (*close)(struct vm_area_struct * area); 255 int (*mremap)(struct vm_area_struct * area); 256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 258 pmd_t *, unsigned int flags); 259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 260 261 /* notification that a previously read-only page is about to become 262 * writable, if an error is returned it will cause a SIGBUS */ 263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 264 265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 267 268 /* called by access_process_vm when get_user_pages() fails, typically 269 * for use by special VMAs that can switch between memory and hardware 270 */ 271 int (*access)(struct vm_area_struct *vma, unsigned long addr, 272 void *buf, int len, int write); 273 274 /* Called by the /proc/PID/maps code to ask the vma whether it 275 * has a special name. Returning non-NULL will also cause this 276 * vma to be dumped unconditionally. */ 277 const char *(*name)(struct vm_area_struct *vma); 278 279#ifdef CONFIG_NUMA 280 /* 281 * set_policy() op must add a reference to any non-NULL @new mempolicy 282 * to hold the policy upon return. Caller should pass NULL @new to 283 * remove a policy and fall back to surrounding context--i.e. do not 284 * install a MPOL_DEFAULT policy, nor the task or system default 285 * mempolicy. 286 */ 287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 288 289 /* 290 * get_policy() op must add reference [mpol_get()] to any policy at 291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 292 * in mm/mempolicy.c will do this automatically. 293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 296 * must return NULL--i.e., do not "fallback" to task or system default 297 * policy. 298 */ 299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 300 unsigned long addr); 301#endif 302 /* 303 * Called by vm_normal_page() for special PTEs to find the 304 * page for @addr. This is useful if the default behavior 305 * (using pte_page()) would not find the correct page. 306 */ 307 struct page *(*find_special_page)(struct vm_area_struct *vma, 308 unsigned long addr); 309}; 310 311struct mmu_gather; 312struct inode; 313 314#define page_private(page) ((page)->private) 315#define set_page_private(page, v) ((page)->private = (v)) 316 317/* 318 * FIXME: take this include out, include page-flags.h in 319 * files which need it (119 of them) 320 */ 321#include <linux/page-flags.h> 322#include <linux/huge_mm.h> 323 324/* 325 * Methods to modify the page usage count. 326 * 327 * What counts for a page usage: 328 * - cache mapping (page->mapping) 329 * - private data (page->private) 330 * - page mapped in a task's page tables, each mapping 331 * is counted separately 332 * 333 * Also, many kernel routines increase the page count before a critical 334 * routine so they can be sure the page doesn't go away from under them. 335 */ 336 337/* 338 * Drop a ref, return true if the refcount fell to zero (the page has no users) 339 */ 340static inline int put_page_testzero(struct page *page) 341{ 342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 343 return atomic_dec_and_test(&page->_count); 344} 345 346/* 347 * Try to grab a ref unless the page has a refcount of zero, return false if 348 * that is the case. 349 * This can be called when MMU is off so it must not access 350 * any of the virtual mappings. 351 */ 352static inline int get_page_unless_zero(struct page *page) 353{ 354 return atomic_inc_not_zero(&page->_count); 355} 356 357extern int page_is_ram(unsigned long pfn); 358 359enum { 360 REGION_INTERSECTS, 361 REGION_DISJOINT, 362 REGION_MIXED, 363}; 364 365int region_intersects(resource_size_t offset, size_t size, const char *type); 366 367/* Support for virtually mapped pages */ 368struct page *vmalloc_to_page(const void *addr); 369unsigned long vmalloc_to_pfn(const void *addr); 370 371/* 372 * Determine if an address is within the vmalloc range 373 * 374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 375 * is no special casing required. 376 */ 377static inline int is_vmalloc_addr(const void *x) 378{ 379#ifdef CONFIG_MMU 380 unsigned long addr = (unsigned long)x; 381 382 return addr >= VMALLOC_START && addr < VMALLOC_END; 383#else 384 return 0; 385#endif 386} 387#ifdef CONFIG_MMU 388extern int is_vmalloc_or_module_addr(const void *x); 389#else 390static inline int is_vmalloc_or_module_addr(const void *x) 391{ 392 return 0; 393} 394#endif 395 396extern void kvfree(const void *addr); 397 398static inline void compound_lock(struct page *page) 399{ 400#ifdef CONFIG_TRANSPARENT_HUGEPAGE 401 VM_BUG_ON_PAGE(PageSlab(page), page); 402 bit_spin_lock(PG_compound_lock, &page->flags); 403#endif 404} 405 406static inline void compound_unlock(struct page *page) 407{ 408#ifdef CONFIG_TRANSPARENT_HUGEPAGE 409 VM_BUG_ON_PAGE(PageSlab(page), page); 410 bit_spin_unlock(PG_compound_lock, &page->flags); 411#endif 412} 413 414static inline unsigned long compound_lock_irqsave(struct page *page) 415{ 416 unsigned long uninitialized_var(flags); 417#ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 local_irq_save(flags); 419 compound_lock(page); 420#endif 421 return flags; 422} 423 424static inline void compound_unlock_irqrestore(struct page *page, 425 unsigned long flags) 426{ 427#ifdef CONFIG_TRANSPARENT_HUGEPAGE 428 compound_unlock(page); 429 local_irq_restore(flags); 430#endif 431} 432 433/* 434 * The atomic page->_mapcount, starts from -1: so that transitions 435 * both from it and to it can be tracked, using atomic_inc_and_test 436 * and atomic_add_negative(-1). 437 */ 438static inline void page_mapcount_reset(struct page *page) 439{ 440 atomic_set(&(page)->_mapcount, -1); 441} 442 443static inline int page_mapcount(struct page *page) 444{ 445 VM_BUG_ON_PAGE(PageSlab(page), page); 446 return atomic_read(&page->_mapcount) + 1; 447} 448 449static inline int page_count(struct page *page) 450{ 451 return atomic_read(&compound_head(page)->_count); 452} 453 454static inline bool __compound_tail_refcounted(struct page *page) 455{ 456 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 457} 458 459/* 460 * This takes a head page as parameter and tells if the 461 * tail page reference counting can be skipped. 462 * 463 * For this to be safe, PageSlab and PageHeadHuge must remain true on 464 * any given page where they return true here, until all tail pins 465 * have been released. 466 */ 467static inline bool compound_tail_refcounted(struct page *page) 468{ 469 VM_BUG_ON_PAGE(!PageHead(page), page); 470 return __compound_tail_refcounted(page); 471} 472 473static inline void get_huge_page_tail(struct page *page) 474{ 475 /* 476 * __split_huge_page_refcount() cannot run from under us. 477 */ 478 VM_BUG_ON_PAGE(!PageTail(page), page); 479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 481 if (compound_tail_refcounted(compound_head(page))) 482 atomic_inc(&page->_mapcount); 483} 484 485extern bool __get_page_tail(struct page *page); 486 487static inline void get_page(struct page *page) 488{ 489 if (unlikely(PageTail(page))) 490 if (likely(__get_page_tail(page))) 491 return; 492 /* 493 * Getting a normal page or the head of a compound page 494 * requires to already have an elevated page->_count. 495 */ 496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 497 atomic_inc(&page->_count); 498} 499 500static inline struct page *virt_to_head_page(const void *x) 501{ 502 struct page *page = virt_to_page(x); 503 504 return compound_head(page); 505} 506 507/* 508 * Setup the page count before being freed into the page allocator for 509 * the first time (boot or memory hotplug) 510 */ 511static inline void init_page_count(struct page *page) 512{ 513 atomic_set(&page->_count, 1); 514} 515 516void put_page(struct page *page); 517void put_pages_list(struct list_head *pages); 518 519void split_page(struct page *page, unsigned int order); 520int split_free_page(struct page *page); 521 522/* 523 * Compound pages have a destructor function. Provide a 524 * prototype for that function and accessor functions. 525 * These are _only_ valid on the head of a compound page. 526 */ 527typedef void compound_page_dtor(struct page *); 528 529/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 530enum compound_dtor_id { 531 NULL_COMPOUND_DTOR, 532 COMPOUND_PAGE_DTOR, 533#ifdef CONFIG_HUGETLB_PAGE 534 HUGETLB_PAGE_DTOR, 535#endif 536 NR_COMPOUND_DTORS, 537}; 538extern compound_page_dtor * const compound_page_dtors[]; 539 540static inline void set_compound_page_dtor(struct page *page, 541 enum compound_dtor_id compound_dtor) 542{ 543 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 544 page[1].compound_dtor = compound_dtor; 545} 546 547static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 548{ 549 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 550 return compound_page_dtors[page[1].compound_dtor]; 551} 552 553static inline unsigned int compound_order(struct page *page) 554{ 555 if (!PageHead(page)) 556 return 0; 557 return page[1].compound_order; 558} 559 560static inline void set_compound_order(struct page *page, unsigned int order) 561{ 562 page[1].compound_order = order; 563} 564 565#ifdef CONFIG_MMU 566/* 567 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 568 * servicing faults for write access. In the normal case, do always want 569 * pte_mkwrite. But get_user_pages can cause write faults for mappings 570 * that do not have writing enabled, when used by access_process_vm. 571 */ 572static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 573{ 574 if (likely(vma->vm_flags & VM_WRITE)) 575 pte = pte_mkwrite(pte); 576 return pte; 577} 578 579void do_set_pte(struct vm_area_struct *vma, unsigned long address, 580 struct page *page, pte_t *pte, bool write, bool anon); 581#endif 582 583/* 584 * Multiple processes may "see" the same page. E.g. for untouched 585 * mappings of /dev/null, all processes see the same page full of 586 * zeroes, and text pages of executables and shared libraries have 587 * only one copy in memory, at most, normally. 588 * 589 * For the non-reserved pages, page_count(page) denotes a reference count. 590 * page_count() == 0 means the page is free. page->lru is then used for 591 * freelist management in the buddy allocator. 592 * page_count() > 0 means the page has been allocated. 593 * 594 * Pages are allocated by the slab allocator in order to provide memory 595 * to kmalloc and kmem_cache_alloc. In this case, the management of the 596 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 597 * unless a particular usage is carefully commented. (the responsibility of 598 * freeing the kmalloc memory is the caller's, of course). 599 * 600 * A page may be used by anyone else who does a __get_free_page(). 601 * In this case, page_count still tracks the references, and should only 602 * be used through the normal accessor functions. The top bits of page->flags 603 * and page->virtual store page management information, but all other fields 604 * are unused and could be used privately, carefully. The management of this 605 * page is the responsibility of the one who allocated it, and those who have 606 * subsequently been given references to it. 607 * 608 * The other pages (we may call them "pagecache pages") are completely 609 * managed by the Linux memory manager: I/O, buffers, swapping etc. 610 * The following discussion applies only to them. 611 * 612 * A pagecache page contains an opaque `private' member, which belongs to the 613 * page's address_space. Usually, this is the address of a circular list of 614 * the page's disk buffers. PG_private must be set to tell the VM to call 615 * into the filesystem to release these pages. 616 * 617 * A page may belong to an inode's memory mapping. In this case, page->mapping 618 * is the pointer to the inode, and page->index is the file offset of the page, 619 * in units of PAGE_CACHE_SIZE. 620 * 621 * If pagecache pages are not associated with an inode, they are said to be 622 * anonymous pages. These may become associated with the swapcache, and in that 623 * case PG_swapcache is set, and page->private is an offset into the swapcache. 624 * 625 * In either case (swapcache or inode backed), the pagecache itself holds one 626 * reference to the page. Setting PG_private should also increment the 627 * refcount. The each user mapping also has a reference to the page. 628 * 629 * The pagecache pages are stored in a per-mapping radix tree, which is 630 * rooted at mapping->page_tree, and indexed by offset. 631 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 632 * lists, we instead now tag pages as dirty/writeback in the radix tree. 633 * 634 * All pagecache pages may be subject to I/O: 635 * - inode pages may need to be read from disk, 636 * - inode pages which have been modified and are MAP_SHARED may need 637 * to be written back to the inode on disk, 638 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 639 * modified may need to be swapped out to swap space and (later) to be read 640 * back into memory. 641 */ 642 643/* 644 * The zone field is never updated after free_area_init_core() 645 * sets it, so none of the operations on it need to be atomic. 646 */ 647 648/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 649#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 650#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 651#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 652#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 653 654/* 655 * Define the bit shifts to access each section. For non-existent 656 * sections we define the shift as 0; that plus a 0 mask ensures 657 * the compiler will optimise away reference to them. 658 */ 659#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 660#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 661#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 662#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 663 664/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 665#ifdef NODE_NOT_IN_PAGE_FLAGS 666#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 667#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 668 SECTIONS_PGOFF : ZONES_PGOFF) 669#else 670#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 671#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 672 NODES_PGOFF : ZONES_PGOFF) 673#endif 674 675#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 676 677#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 678#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 679#endif 680 681#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 682#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 683#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 684#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 685#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 686 687static inline enum zone_type page_zonenum(const struct page *page) 688{ 689 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 690} 691 692#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 693#define SECTION_IN_PAGE_FLAGS 694#endif 695 696/* 697 * The identification function is mainly used by the buddy allocator for 698 * determining if two pages could be buddies. We are not really identifying 699 * the zone since we could be using the section number id if we do not have 700 * node id available in page flags. 701 * We only guarantee that it will return the same value for two combinable 702 * pages in a zone. 703 */ 704static inline int page_zone_id(struct page *page) 705{ 706 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 707} 708 709static inline int zone_to_nid(struct zone *zone) 710{ 711#ifdef CONFIG_NUMA 712 return zone->node; 713#else 714 return 0; 715#endif 716} 717 718#ifdef NODE_NOT_IN_PAGE_FLAGS 719extern int page_to_nid(const struct page *page); 720#else 721static inline int page_to_nid(const struct page *page) 722{ 723 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 724} 725#endif 726 727#ifdef CONFIG_NUMA_BALANCING 728static inline int cpu_pid_to_cpupid(int cpu, int pid) 729{ 730 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 731} 732 733static inline int cpupid_to_pid(int cpupid) 734{ 735 return cpupid & LAST__PID_MASK; 736} 737 738static inline int cpupid_to_cpu(int cpupid) 739{ 740 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 741} 742 743static inline int cpupid_to_nid(int cpupid) 744{ 745 return cpu_to_node(cpupid_to_cpu(cpupid)); 746} 747 748static inline bool cpupid_pid_unset(int cpupid) 749{ 750 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 751} 752 753static inline bool cpupid_cpu_unset(int cpupid) 754{ 755 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 756} 757 758static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 759{ 760 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 761} 762 763#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 764#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 765static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 766{ 767 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 768} 769 770static inline int page_cpupid_last(struct page *page) 771{ 772 return page->_last_cpupid; 773} 774static inline void page_cpupid_reset_last(struct page *page) 775{ 776 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 777} 778#else 779static inline int page_cpupid_last(struct page *page) 780{ 781 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 782} 783 784extern int page_cpupid_xchg_last(struct page *page, int cpupid); 785 786static inline void page_cpupid_reset_last(struct page *page) 787{ 788 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 789 790 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 791 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 792} 793#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 794#else /* !CONFIG_NUMA_BALANCING */ 795static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 796{ 797 return page_to_nid(page); /* XXX */ 798} 799 800static inline int page_cpupid_last(struct page *page) 801{ 802 return page_to_nid(page); /* XXX */ 803} 804 805static inline int cpupid_to_nid(int cpupid) 806{ 807 return -1; 808} 809 810static inline int cpupid_to_pid(int cpupid) 811{ 812 return -1; 813} 814 815static inline int cpupid_to_cpu(int cpupid) 816{ 817 return -1; 818} 819 820static inline int cpu_pid_to_cpupid(int nid, int pid) 821{ 822 return -1; 823} 824 825static inline bool cpupid_pid_unset(int cpupid) 826{ 827 return 1; 828} 829 830static inline void page_cpupid_reset_last(struct page *page) 831{ 832} 833 834static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 835{ 836 return false; 837} 838#endif /* CONFIG_NUMA_BALANCING */ 839 840static inline struct zone *page_zone(const struct page *page) 841{ 842 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 843} 844 845#ifdef SECTION_IN_PAGE_FLAGS 846static inline void set_page_section(struct page *page, unsigned long section) 847{ 848 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 849 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 850} 851 852static inline unsigned long page_to_section(const struct page *page) 853{ 854 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 855} 856#endif 857 858static inline void set_page_zone(struct page *page, enum zone_type zone) 859{ 860 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 861 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 862} 863 864static inline void set_page_node(struct page *page, unsigned long node) 865{ 866 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 867 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 868} 869 870static inline void set_page_links(struct page *page, enum zone_type zone, 871 unsigned long node, unsigned long pfn) 872{ 873 set_page_zone(page, zone); 874 set_page_node(page, node); 875#ifdef SECTION_IN_PAGE_FLAGS 876 set_page_section(page, pfn_to_section_nr(pfn)); 877#endif 878} 879 880#ifdef CONFIG_MEMCG 881static inline struct mem_cgroup *page_memcg(struct page *page) 882{ 883 return page->mem_cgroup; 884} 885 886static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 887{ 888 page->mem_cgroup = memcg; 889} 890#else 891static inline struct mem_cgroup *page_memcg(struct page *page) 892{ 893 return NULL; 894} 895 896static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 897{ 898} 899#endif 900 901/* 902 * Some inline functions in vmstat.h depend on page_zone() 903 */ 904#include <linux/vmstat.h> 905 906static __always_inline void *lowmem_page_address(const struct page *page) 907{ 908 return __va(PFN_PHYS(page_to_pfn(page))); 909} 910 911#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 912#define HASHED_PAGE_VIRTUAL 913#endif 914 915#if defined(WANT_PAGE_VIRTUAL) 916static inline void *page_address(const struct page *page) 917{ 918 return page->virtual; 919} 920static inline void set_page_address(struct page *page, void *address) 921{ 922 page->virtual = address; 923} 924#define page_address_init() do { } while(0) 925#endif 926 927#if defined(HASHED_PAGE_VIRTUAL) 928void *page_address(const struct page *page); 929void set_page_address(struct page *page, void *virtual); 930void page_address_init(void); 931#endif 932 933#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 934#define page_address(page) lowmem_page_address(page) 935#define set_page_address(page, address) do { } while(0) 936#define page_address_init() do { } while(0) 937#endif 938 939extern void *page_rmapping(struct page *page); 940extern struct anon_vma *page_anon_vma(struct page *page); 941extern struct address_space *page_mapping(struct page *page); 942 943extern struct address_space *__page_file_mapping(struct page *); 944 945static inline 946struct address_space *page_file_mapping(struct page *page) 947{ 948 if (unlikely(PageSwapCache(page))) 949 return __page_file_mapping(page); 950 951 return page->mapping; 952} 953 954/* 955 * Return the pagecache index of the passed page. Regular pagecache pages 956 * use ->index whereas swapcache pages use ->private 957 */ 958static inline pgoff_t page_index(struct page *page) 959{ 960 if (unlikely(PageSwapCache(page))) 961 return page_private(page); 962 return page->index; 963} 964 965extern pgoff_t __page_file_index(struct page *page); 966 967/* 968 * Return the file index of the page. Regular pagecache pages use ->index 969 * whereas swapcache pages use swp_offset(->private) 970 */ 971static inline pgoff_t page_file_index(struct page *page) 972{ 973 if (unlikely(PageSwapCache(page))) 974 return __page_file_index(page); 975 976 return page->index; 977} 978 979/* 980 * Return true if this page is mapped into pagetables. 981 */ 982static inline int page_mapped(struct page *page) 983{ 984 return atomic_read(&(page)->_mapcount) >= 0; 985} 986 987/* 988 * Return true only if the page has been allocated with 989 * ALLOC_NO_WATERMARKS and the low watermark was not 990 * met implying that the system is under some pressure. 991 */ 992static inline bool page_is_pfmemalloc(struct page *page) 993{ 994 /* 995 * Page index cannot be this large so this must be 996 * a pfmemalloc page. 997 */ 998 return page->index == -1UL; 999} 1000 1001/* 1002 * Only to be called by the page allocator on a freshly allocated 1003 * page. 1004 */ 1005static inline void set_page_pfmemalloc(struct page *page) 1006{ 1007 page->index = -1UL; 1008} 1009 1010static inline void clear_page_pfmemalloc(struct page *page) 1011{ 1012 page->index = 0; 1013} 1014 1015/* 1016 * Different kinds of faults, as returned by handle_mm_fault(). 1017 * Used to decide whether a process gets delivered SIGBUS or 1018 * just gets major/minor fault counters bumped up. 1019 */ 1020 1021#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1022 1023#define VM_FAULT_OOM 0x0001 1024#define VM_FAULT_SIGBUS 0x0002 1025#define VM_FAULT_MAJOR 0x0004 1026#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1027#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1028#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1029#define VM_FAULT_SIGSEGV 0x0040 1030 1031#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1032#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1033#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1034#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1035 1036#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1037 1038#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1039 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1040 VM_FAULT_FALLBACK) 1041 1042/* Encode hstate index for a hwpoisoned large page */ 1043#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1044#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1045 1046/* 1047 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1048 */ 1049extern void pagefault_out_of_memory(void); 1050 1051#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1052 1053/* 1054 * Flags passed to show_mem() and show_free_areas() to suppress output in 1055 * various contexts. 1056 */ 1057#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1058 1059extern void show_free_areas(unsigned int flags); 1060extern bool skip_free_areas_node(unsigned int flags, int nid); 1061 1062int shmem_zero_setup(struct vm_area_struct *); 1063#ifdef CONFIG_SHMEM 1064bool shmem_mapping(struct address_space *mapping); 1065#else 1066static inline bool shmem_mapping(struct address_space *mapping) 1067{ 1068 return false; 1069} 1070#endif 1071 1072extern int can_do_mlock(void); 1073extern int user_shm_lock(size_t, struct user_struct *); 1074extern void user_shm_unlock(size_t, struct user_struct *); 1075 1076/* 1077 * Parameter block passed down to zap_pte_range in exceptional cases. 1078 */ 1079struct zap_details { 1080 struct address_space *check_mapping; /* Check page->mapping if set */ 1081 pgoff_t first_index; /* Lowest page->index to unmap */ 1082 pgoff_t last_index; /* Highest page->index to unmap */ 1083}; 1084 1085struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1086 pte_t pte); 1087 1088int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1089 unsigned long size); 1090void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1091 unsigned long size, struct zap_details *); 1092void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1093 unsigned long start, unsigned long end); 1094 1095/** 1096 * mm_walk - callbacks for walk_page_range 1097 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1098 * this handler is required to be able to handle 1099 * pmd_trans_huge() pmds. They may simply choose to 1100 * split_huge_page() instead of handling it explicitly. 1101 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1102 * @pte_hole: if set, called for each hole at all levels 1103 * @hugetlb_entry: if set, called for each hugetlb entry 1104 * @test_walk: caller specific callback function to determine whether 1105 * we walk over the current vma or not. A positive returned 1106 * value means "do page table walk over the current vma," 1107 * and a negative one means "abort current page table walk 1108 * right now." 0 means "skip the current vma." 1109 * @mm: mm_struct representing the target process of page table walk 1110 * @vma: vma currently walked (NULL if walking outside vmas) 1111 * @private: private data for callbacks' usage 1112 * 1113 * (see the comment on walk_page_range() for more details) 1114 */ 1115struct mm_walk { 1116 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1117 unsigned long next, struct mm_walk *walk); 1118 int (*pte_entry)(pte_t *pte, unsigned long addr, 1119 unsigned long next, struct mm_walk *walk); 1120 int (*pte_hole)(unsigned long addr, unsigned long next, 1121 struct mm_walk *walk); 1122 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1123 unsigned long addr, unsigned long next, 1124 struct mm_walk *walk); 1125 int (*test_walk)(unsigned long addr, unsigned long next, 1126 struct mm_walk *walk); 1127 struct mm_struct *mm; 1128 struct vm_area_struct *vma; 1129 void *private; 1130}; 1131 1132int walk_page_range(unsigned long addr, unsigned long end, 1133 struct mm_walk *walk); 1134int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1135void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1136 unsigned long end, unsigned long floor, unsigned long ceiling); 1137int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1138 struct vm_area_struct *vma); 1139void unmap_mapping_range(struct address_space *mapping, 1140 loff_t const holebegin, loff_t const holelen, int even_cows); 1141int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1142 unsigned long *pfn); 1143int follow_phys(struct vm_area_struct *vma, unsigned long address, 1144 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1145int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1146 void *buf, int len, int write); 1147 1148static inline void unmap_shared_mapping_range(struct address_space *mapping, 1149 loff_t const holebegin, loff_t const holelen) 1150{ 1151 unmap_mapping_range(mapping, holebegin, holelen, 0); 1152} 1153 1154extern void truncate_pagecache(struct inode *inode, loff_t new); 1155extern void truncate_setsize(struct inode *inode, loff_t newsize); 1156void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1157void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1158int truncate_inode_page(struct address_space *mapping, struct page *page); 1159int generic_error_remove_page(struct address_space *mapping, struct page *page); 1160int invalidate_inode_page(struct page *page); 1161 1162#ifdef CONFIG_MMU 1163extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1164 unsigned long address, unsigned int flags); 1165extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1166 unsigned long address, unsigned int fault_flags); 1167#else 1168static inline int handle_mm_fault(struct mm_struct *mm, 1169 struct vm_area_struct *vma, unsigned long address, 1170 unsigned int flags) 1171{ 1172 /* should never happen if there's no MMU */ 1173 BUG(); 1174 return VM_FAULT_SIGBUS; 1175} 1176static inline int fixup_user_fault(struct task_struct *tsk, 1177 struct mm_struct *mm, unsigned long address, 1178 unsigned int fault_flags) 1179{ 1180 /* should never happen if there's no MMU */ 1181 BUG(); 1182 return -EFAULT; 1183} 1184#endif 1185 1186extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1187extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1188 void *buf, int len, int write); 1189 1190long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1191 unsigned long start, unsigned long nr_pages, 1192 unsigned int foll_flags, struct page **pages, 1193 struct vm_area_struct **vmas, int *nonblocking); 1194long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1195 unsigned long start, unsigned long nr_pages, 1196 int write, int force, struct page **pages, 1197 struct vm_area_struct **vmas); 1198long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1199 unsigned long start, unsigned long nr_pages, 1200 int write, int force, struct page **pages, 1201 int *locked); 1202long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1203 unsigned long start, unsigned long nr_pages, 1204 int write, int force, struct page **pages, 1205 unsigned int gup_flags); 1206long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1207 unsigned long start, unsigned long nr_pages, 1208 int write, int force, struct page **pages); 1209int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1210 struct page **pages); 1211 1212/* Container for pinned pfns / pages */ 1213struct frame_vector { 1214 unsigned int nr_allocated; /* Number of frames we have space for */ 1215 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1216 bool got_ref; /* Did we pin pages by getting page ref? */ 1217 bool is_pfns; /* Does array contain pages or pfns? */ 1218 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1219 * pfns_vector_pages() or pfns_vector_pfns() 1220 * for access */ 1221}; 1222 1223struct frame_vector *frame_vector_create(unsigned int nr_frames); 1224void frame_vector_destroy(struct frame_vector *vec); 1225int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1226 bool write, bool force, struct frame_vector *vec); 1227void put_vaddr_frames(struct frame_vector *vec); 1228int frame_vector_to_pages(struct frame_vector *vec); 1229void frame_vector_to_pfns(struct frame_vector *vec); 1230 1231static inline unsigned int frame_vector_count(struct frame_vector *vec) 1232{ 1233 return vec->nr_frames; 1234} 1235 1236static inline struct page **frame_vector_pages(struct frame_vector *vec) 1237{ 1238 if (vec->is_pfns) { 1239 int err = frame_vector_to_pages(vec); 1240 1241 if (err) 1242 return ERR_PTR(err); 1243 } 1244 return (struct page **)(vec->ptrs); 1245} 1246 1247static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1248{ 1249 if (!vec->is_pfns) 1250 frame_vector_to_pfns(vec); 1251 return (unsigned long *)(vec->ptrs); 1252} 1253 1254struct kvec; 1255int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1256 struct page **pages); 1257int get_kernel_page(unsigned long start, int write, struct page **pages); 1258struct page *get_dump_page(unsigned long addr); 1259 1260extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1261extern void do_invalidatepage(struct page *page, unsigned int offset, 1262 unsigned int length); 1263 1264int __set_page_dirty_nobuffers(struct page *page); 1265int __set_page_dirty_no_writeback(struct page *page); 1266int redirty_page_for_writepage(struct writeback_control *wbc, 1267 struct page *page); 1268void account_page_dirtied(struct page *page, struct address_space *mapping, 1269 struct mem_cgroup *memcg); 1270void account_page_cleaned(struct page *page, struct address_space *mapping, 1271 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1272int set_page_dirty(struct page *page); 1273int set_page_dirty_lock(struct page *page); 1274void cancel_dirty_page(struct page *page); 1275int clear_page_dirty_for_io(struct page *page); 1276 1277int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1278 1279/* Is the vma a continuation of the stack vma above it? */ 1280static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1281{ 1282 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1283} 1284 1285static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1286{ 1287 return !vma->vm_ops; 1288} 1289 1290static inline int stack_guard_page_start(struct vm_area_struct *vma, 1291 unsigned long addr) 1292{ 1293 return (vma->vm_flags & VM_GROWSDOWN) && 1294 (vma->vm_start == addr) && 1295 !vma_growsdown(vma->vm_prev, addr); 1296} 1297 1298/* Is the vma a continuation of the stack vma below it? */ 1299static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1300{ 1301 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1302} 1303 1304static inline int stack_guard_page_end(struct vm_area_struct *vma, 1305 unsigned long addr) 1306{ 1307 return (vma->vm_flags & VM_GROWSUP) && 1308 (vma->vm_end == addr) && 1309 !vma_growsup(vma->vm_next, addr); 1310} 1311 1312extern struct task_struct *task_of_stack(struct task_struct *task, 1313 struct vm_area_struct *vma, bool in_group); 1314 1315extern unsigned long move_page_tables(struct vm_area_struct *vma, 1316 unsigned long old_addr, struct vm_area_struct *new_vma, 1317 unsigned long new_addr, unsigned long len, 1318 bool need_rmap_locks); 1319extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1320 unsigned long end, pgprot_t newprot, 1321 int dirty_accountable, int prot_numa); 1322extern int mprotect_fixup(struct vm_area_struct *vma, 1323 struct vm_area_struct **pprev, unsigned long start, 1324 unsigned long end, unsigned long newflags); 1325 1326/* 1327 * doesn't attempt to fault and will return short. 1328 */ 1329int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1330 struct page **pages); 1331/* 1332 * per-process(per-mm_struct) statistics. 1333 */ 1334static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1335{ 1336 long val = atomic_long_read(&mm->rss_stat.count[member]); 1337 1338#ifdef SPLIT_RSS_COUNTING 1339 /* 1340 * counter is updated in asynchronous manner and may go to minus. 1341 * But it's never be expected number for users. 1342 */ 1343 if (val < 0) 1344 val = 0; 1345#endif 1346 return (unsigned long)val; 1347} 1348 1349static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1350{ 1351 atomic_long_add(value, &mm->rss_stat.count[member]); 1352} 1353 1354static inline void inc_mm_counter(struct mm_struct *mm, int member) 1355{ 1356 atomic_long_inc(&mm->rss_stat.count[member]); 1357} 1358 1359static inline void dec_mm_counter(struct mm_struct *mm, int member) 1360{ 1361 atomic_long_dec(&mm->rss_stat.count[member]); 1362} 1363 1364static inline unsigned long get_mm_rss(struct mm_struct *mm) 1365{ 1366 return get_mm_counter(mm, MM_FILEPAGES) + 1367 get_mm_counter(mm, MM_ANONPAGES); 1368} 1369 1370static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1371{ 1372 return max(mm->hiwater_rss, get_mm_rss(mm)); 1373} 1374 1375static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1376{ 1377 return max(mm->hiwater_vm, mm->total_vm); 1378} 1379 1380static inline void update_hiwater_rss(struct mm_struct *mm) 1381{ 1382 unsigned long _rss = get_mm_rss(mm); 1383 1384 if ((mm)->hiwater_rss < _rss) 1385 (mm)->hiwater_rss = _rss; 1386} 1387 1388static inline void update_hiwater_vm(struct mm_struct *mm) 1389{ 1390 if (mm->hiwater_vm < mm->total_vm) 1391 mm->hiwater_vm = mm->total_vm; 1392} 1393 1394static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1395{ 1396 mm->hiwater_rss = get_mm_rss(mm); 1397} 1398 1399static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1400 struct mm_struct *mm) 1401{ 1402 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1403 1404 if (*maxrss < hiwater_rss) 1405 *maxrss = hiwater_rss; 1406} 1407 1408#if defined(SPLIT_RSS_COUNTING) 1409void sync_mm_rss(struct mm_struct *mm); 1410#else 1411static inline void sync_mm_rss(struct mm_struct *mm) 1412{ 1413} 1414#endif 1415 1416int vma_wants_writenotify(struct vm_area_struct *vma); 1417 1418extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1419 spinlock_t **ptl); 1420static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1421 spinlock_t **ptl) 1422{ 1423 pte_t *ptep; 1424 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1425 return ptep; 1426} 1427 1428#ifdef __PAGETABLE_PUD_FOLDED 1429static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1430 unsigned long address) 1431{ 1432 return 0; 1433} 1434#else 1435int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1436#endif 1437 1438#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1439static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1440 unsigned long address) 1441{ 1442 return 0; 1443} 1444 1445static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1446 1447static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1448{ 1449 return 0; 1450} 1451 1452static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1453static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1454 1455#else 1456int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1457 1458static inline void mm_nr_pmds_init(struct mm_struct *mm) 1459{ 1460 atomic_long_set(&mm->nr_pmds, 0); 1461} 1462 1463static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1464{ 1465 return atomic_long_read(&mm->nr_pmds); 1466} 1467 1468static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1469{ 1470 atomic_long_inc(&mm->nr_pmds); 1471} 1472 1473static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1474{ 1475 atomic_long_dec(&mm->nr_pmds); 1476} 1477#endif 1478 1479int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1480 pmd_t *pmd, unsigned long address); 1481int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1482 1483/* 1484 * The following ifdef needed to get the 4level-fixup.h header to work. 1485 * Remove it when 4level-fixup.h has been removed. 1486 */ 1487#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1488static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1489{ 1490 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1491 NULL: pud_offset(pgd, address); 1492} 1493 1494static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1495{ 1496 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1497 NULL: pmd_offset(pud, address); 1498} 1499#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1500 1501#if USE_SPLIT_PTE_PTLOCKS 1502#if ALLOC_SPLIT_PTLOCKS 1503void __init ptlock_cache_init(void); 1504extern bool ptlock_alloc(struct page *page); 1505extern void ptlock_free(struct page *page); 1506 1507static inline spinlock_t *ptlock_ptr(struct page *page) 1508{ 1509 return page->ptl; 1510} 1511#else /* ALLOC_SPLIT_PTLOCKS */ 1512static inline void ptlock_cache_init(void) 1513{ 1514} 1515 1516static inline bool ptlock_alloc(struct page *page) 1517{ 1518 return true; 1519} 1520 1521static inline void ptlock_free(struct page *page) 1522{ 1523} 1524 1525static inline spinlock_t *ptlock_ptr(struct page *page) 1526{ 1527 return &page->ptl; 1528} 1529#endif /* ALLOC_SPLIT_PTLOCKS */ 1530 1531static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1532{ 1533 return ptlock_ptr(pmd_page(*pmd)); 1534} 1535 1536static inline bool ptlock_init(struct page *page) 1537{ 1538 /* 1539 * prep_new_page() initialize page->private (and therefore page->ptl) 1540 * with 0. Make sure nobody took it in use in between. 1541 * 1542 * It can happen if arch try to use slab for page table allocation: 1543 * slab code uses page->slab_cache, which share storage with page->ptl. 1544 */ 1545 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1546 if (!ptlock_alloc(page)) 1547 return false; 1548 spin_lock_init(ptlock_ptr(page)); 1549 return true; 1550} 1551 1552/* Reset page->mapping so free_pages_check won't complain. */ 1553static inline void pte_lock_deinit(struct page *page) 1554{ 1555 page->mapping = NULL; 1556 ptlock_free(page); 1557} 1558 1559#else /* !USE_SPLIT_PTE_PTLOCKS */ 1560/* 1561 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1562 */ 1563static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1564{ 1565 return &mm->page_table_lock; 1566} 1567static inline void ptlock_cache_init(void) {} 1568static inline bool ptlock_init(struct page *page) { return true; } 1569static inline void pte_lock_deinit(struct page *page) {} 1570#endif /* USE_SPLIT_PTE_PTLOCKS */ 1571 1572static inline void pgtable_init(void) 1573{ 1574 ptlock_cache_init(); 1575 pgtable_cache_init(); 1576} 1577 1578static inline bool pgtable_page_ctor(struct page *page) 1579{ 1580 if (!ptlock_init(page)) 1581 return false; 1582 inc_zone_page_state(page, NR_PAGETABLE); 1583 return true; 1584} 1585 1586static inline void pgtable_page_dtor(struct page *page) 1587{ 1588 pte_lock_deinit(page); 1589 dec_zone_page_state(page, NR_PAGETABLE); 1590} 1591 1592#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1593({ \ 1594 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1595 pte_t *__pte = pte_offset_map(pmd, address); \ 1596 *(ptlp) = __ptl; \ 1597 spin_lock(__ptl); \ 1598 __pte; \ 1599}) 1600 1601#define pte_unmap_unlock(pte, ptl) do { \ 1602 spin_unlock(ptl); \ 1603 pte_unmap(pte); \ 1604} while (0) 1605 1606#define pte_alloc_map(mm, vma, pmd, address) \ 1607 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1608 pmd, address))? \ 1609 NULL: pte_offset_map(pmd, address)) 1610 1611#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1612 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1613 pmd, address))? \ 1614 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1615 1616#define pte_alloc_kernel(pmd, address) \ 1617 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1618 NULL: pte_offset_kernel(pmd, address)) 1619 1620#if USE_SPLIT_PMD_PTLOCKS 1621 1622static struct page *pmd_to_page(pmd_t *pmd) 1623{ 1624 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1625 return virt_to_page((void *)((unsigned long) pmd & mask)); 1626} 1627 1628static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1629{ 1630 return ptlock_ptr(pmd_to_page(pmd)); 1631} 1632 1633static inline bool pgtable_pmd_page_ctor(struct page *page) 1634{ 1635#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1636 page->pmd_huge_pte = NULL; 1637#endif 1638 return ptlock_init(page); 1639} 1640 1641static inline void pgtable_pmd_page_dtor(struct page *page) 1642{ 1643#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1644 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1645#endif 1646 ptlock_free(page); 1647} 1648 1649#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1650 1651#else 1652 1653static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1654{ 1655 return &mm->page_table_lock; 1656} 1657 1658static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1659static inline void pgtable_pmd_page_dtor(struct page *page) {} 1660 1661#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1662 1663#endif 1664 1665static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1666{ 1667 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1668 spin_lock(ptl); 1669 return ptl; 1670} 1671 1672extern void free_area_init(unsigned long * zones_size); 1673extern void free_area_init_node(int nid, unsigned long * zones_size, 1674 unsigned long zone_start_pfn, unsigned long *zholes_size); 1675extern void free_initmem(void); 1676 1677/* 1678 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1679 * into the buddy system. The freed pages will be poisoned with pattern 1680 * "poison" if it's within range [0, UCHAR_MAX]. 1681 * Return pages freed into the buddy system. 1682 */ 1683extern unsigned long free_reserved_area(void *start, void *end, 1684 int poison, char *s); 1685 1686#ifdef CONFIG_HIGHMEM 1687/* 1688 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1689 * and totalram_pages. 1690 */ 1691extern void free_highmem_page(struct page *page); 1692#endif 1693 1694extern void adjust_managed_page_count(struct page *page, long count); 1695extern void mem_init_print_info(const char *str); 1696 1697extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1698 1699/* Free the reserved page into the buddy system, so it gets managed. */ 1700static inline void __free_reserved_page(struct page *page) 1701{ 1702 ClearPageReserved(page); 1703 init_page_count(page); 1704 __free_page(page); 1705} 1706 1707static inline void free_reserved_page(struct page *page) 1708{ 1709 __free_reserved_page(page); 1710 adjust_managed_page_count(page, 1); 1711} 1712 1713static inline void mark_page_reserved(struct page *page) 1714{ 1715 SetPageReserved(page); 1716 adjust_managed_page_count(page, -1); 1717} 1718 1719/* 1720 * Default method to free all the __init memory into the buddy system. 1721 * The freed pages will be poisoned with pattern "poison" if it's within 1722 * range [0, UCHAR_MAX]. 1723 * Return pages freed into the buddy system. 1724 */ 1725static inline unsigned long free_initmem_default(int poison) 1726{ 1727 extern char __init_begin[], __init_end[]; 1728 1729 return free_reserved_area(&__init_begin, &__init_end, 1730 poison, "unused kernel"); 1731} 1732 1733static inline unsigned long get_num_physpages(void) 1734{ 1735 int nid; 1736 unsigned long phys_pages = 0; 1737 1738 for_each_online_node(nid) 1739 phys_pages += node_present_pages(nid); 1740 1741 return phys_pages; 1742} 1743 1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1745/* 1746 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1747 * zones, allocate the backing mem_map and account for memory holes in a more 1748 * architecture independent manner. This is a substitute for creating the 1749 * zone_sizes[] and zholes_size[] arrays and passing them to 1750 * free_area_init_node() 1751 * 1752 * An architecture is expected to register range of page frames backed by 1753 * physical memory with memblock_add[_node]() before calling 1754 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1755 * usage, an architecture is expected to do something like 1756 * 1757 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1758 * max_highmem_pfn}; 1759 * for_each_valid_physical_page_range() 1760 * memblock_add_node(base, size, nid) 1761 * free_area_init_nodes(max_zone_pfns); 1762 * 1763 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1764 * registered physical page range. Similarly 1765 * sparse_memory_present_with_active_regions() calls memory_present() for 1766 * each range when SPARSEMEM is enabled. 1767 * 1768 * See mm/page_alloc.c for more information on each function exposed by 1769 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1770 */ 1771extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1772unsigned long node_map_pfn_alignment(void); 1773unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1774 unsigned long end_pfn); 1775extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1776 unsigned long end_pfn); 1777extern void get_pfn_range_for_nid(unsigned int nid, 1778 unsigned long *start_pfn, unsigned long *end_pfn); 1779extern unsigned long find_min_pfn_with_active_regions(void); 1780extern void free_bootmem_with_active_regions(int nid, 1781 unsigned long max_low_pfn); 1782extern void sparse_memory_present_with_active_regions(int nid); 1783 1784#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1785 1786#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1787 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1788static inline int __early_pfn_to_nid(unsigned long pfn, 1789 struct mminit_pfnnid_cache *state) 1790{ 1791 return 0; 1792} 1793#else 1794/* please see mm/page_alloc.c */ 1795extern int __meminit early_pfn_to_nid(unsigned long pfn); 1796/* there is a per-arch backend function. */ 1797extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1798 struct mminit_pfnnid_cache *state); 1799#endif 1800 1801extern void set_dma_reserve(unsigned long new_dma_reserve); 1802extern void memmap_init_zone(unsigned long, int, unsigned long, 1803 unsigned long, enum memmap_context); 1804extern void setup_per_zone_wmarks(void); 1805extern int __meminit init_per_zone_wmark_min(void); 1806extern void mem_init(void); 1807extern void __init mmap_init(void); 1808extern void show_mem(unsigned int flags); 1809extern void si_meminfo(struct sysinfo * val); 1810extern void si_meminfo_node(struct sysinfo *val, int nid); 1811 1812extern __printf(3, 4) 1813void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1814 const char *fmt, ...); 1815 1816extern void setup_per_cpu_pageset(void); 1817 1818extern void zone_pcp_update(struct zone *zone); 1819extern void zone_pcp_reset(struct zone *zone); 1820 1821/* page_alloc.c */ 1822extern int min_free_kbytes; 1823 1824/* nommu.c */ 1825extern atomic_long_t mmap_pages_allocated; 1826extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1827 1828/* interval_tree.c */ 1829void vma_interval_tree_insert(struct vm_area_struct *node, 1830 struct rb_root *root); 1831void vma_interval_tree_insert_after(struct vm_area_struct *node, 1832 struct vm_area_struct *prev, 1833 struct rb_root *root); 1834void vma_interval_tree_remove(struct vm_area_struct *node, 1835 struct rb_root *root); 1836struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1837 unsigned long start, unsigned long last); 1838struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1839 unsigned long start, unsigned long last); 1840 1841#define vma_interval_tree_foreach(vma, root, start, last) \ 1842 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1843 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1844 1845void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1846 struct rb_root *root); 1847void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1848 struct rb_root *root); 1849struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1850 struct rb_root *root, unsigned long start, unsigned long last); 1851struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1852 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1853#ifdef CONFIG_DEBUG_VM_RB 1854void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1855#endif 1856 1857#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1858 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1859 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1860 1861/* mmap.c */ 1862extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1863extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1864 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1865extern struct vm_area_struct *vma_merge(struct mm_struct *, 1866 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1867 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1868 struct mempolicy *, struct vm_userfaultfd_ctx); 1869extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1870extern int split_vma(struct mm_struct *, 1871 struct vm_area_struct *, unsigned long addr, int new_below); 1872extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1873extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1874 struct rb_node **, struct rb_node *); 1875extern void unlink_file_vma(struct vm_area_struct *); 1876extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1877 unsigned long addr, unsigned long len, pgoff_t pgoff, 1878 bool *need_rmap_locks); 1879extern void exit_mmap(struct mm_struct *); 1880 1881static inline int check_data_rlimit(unsigned long rlim, 1882 unsigned long new, 1883 unsigned long start, 1884 unsigned long end_data, 1885 unsigned long start_data) 1886{ 1887 if (rlim < RLIM_INFINITY) { 1888 if (((new - start) + (end_data - start_data)) > rlim) 1889 return -ENOSPC; 1890 } 1891 1892 return 0; 1893} 1894 1895extern int mm_take_all_locks(struct mm_struct *mm); 1896extern void mm_drop_all_locks(struct mm_struct *mm); 1897 1898extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1899extern struct file *get_mm_exe_file(struct mm_struct *mm); 1900 1901extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1902extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1903 unsigned long addr, unsigned long len, 1904 unsigned long flags, 1905 const struct vm_special_mapping *spec); 1906/* This is an obsolete alternative to _install_special_mapping. */ 1907extern int install_special_mapping(struct mm_struct *mm, 1908 unsigned long addr, unsigned long len, 1909 unsigned long flags, struct page **pages); 1910 1911extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1912 1913extern unsigned long mmap_region(struct file *file, unsigned long addr, 1914 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1915extern unsigned long do_mmap(struct file *file, unsigned long addr, 1916 unsigned long len, unsigned long prot, unsigned long flags, 1917 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1918extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1919 1920static inline unsigned long 1921do_mmap_pgoff(struct file *file, unsigned long addr, 1922 unsigned long len, unsigned long prot, unsigned long flags, 1923 unsigned long pgoff, unsigned long *populate) 1924{ 1925 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1926} 1927 1928#ifdef CONFIG_MMU 1929extern int __mm_populate(unsigned long addr, unsigned long len, 1930 int ignore_errors); 1931static inline void mm_populate(unsigned long addr, unsigned long len) 1932{ 1933 /* Ignore errors */ 1934 (void) __mm_populate(addr, len, 1); 1935} 1936#else 1937static inline void mm_populate(unsigned long addr, unsigned long len) {} 1938#endif 1939 1940/* These take the mm semaphore themselves */ 1941extern unsigned long vm_brk(unsigned long, unsigned long); 1942extern int vm_munmap(unsigned long, size_t); 1943extern unsigned long vm_mmap(struct file *, unsigned long, 1944 unsigned long, unsigned long, 1945 unsigned long, unsigned long); 1946 1947struct vm_unmapped_area_info { 1948#define VM_UNMAPPED_AREA_TOPDOWN 1 1949 unsigned long flags; 1950 unsigned long length; 1951 unsigned long low_limit; 1952 unsigned long high_limit; 1953 unsigned long align_mask; 1954 unsigned long align_offset; 1955}; 1956 1957extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1958extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1959 1960/* 1961 * Search for an unmapped address range. 1962 * 1963 * We are looking for a range that: 1964 * - does not intersect with any VMA; 1965 * - is contained within the [low_limit, high_limit) interval; 1966 * - is at least the desired size. 1967 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1968 */ 1969static inline unsigned long 1970vm_unmapped_area(struct vm_unmapped_area_info *info) 1971{ 1972 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1973 return unmapped_area_topdown(info); 1974 else 1975 return unmapped_area(info); 1976} 1977 1978/* truncate.c */ 1979extern void truncate_inode_pages(struct address_space *, loff_t); 1980extern void truncate_inode_pages_range(struct address_space *, 1981 loff_t lstart, loff_t lend); 1982extern void truncate_inode_pages_final(struct address_space *); 1983 1984/* generic vm_area_ops exported for stackable file systems */ 1985extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1986extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1987extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1988 1989/* mm/page-writeback.c */ 1990int write_one_page(struct page *page, int wait); 1991void task_dirty_inc(struct task_struct *tsk); 1992 1993/* readahead.c */ 1994#define VM_MAX_READAHEAD 128 /* kbytes */ 1995#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1996 1997int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1998 pgoff_t offset, unsigned long nr_to_read); 1999 2000void page_cache_sync_readahead(struct address_space *mapping, 2001 struct file_ra_state *ra, 2002 struct file *filp, 2003 pgoff_t offset, 2004 unsigned long size); 2005 2006void page_cache_async_readahead(struct address_space *mapping, 2007 struct file_ra_state *ra, 2008 struct file *filp, 2009 struct page *pg, 2010 pgoff_t offset, 2011 unsigned long size); 2012 2013/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2014extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2015 2016/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2017extern int expand_downwards(struct vm_area_struct *vma, 2018 unsigned long address); 2019#if VM_GROWSUP 2020extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2021#else 2022 #define expand_upwards(vma, address) (0) 2023#endif 2024 2025/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2026extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2027extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2028 struct vm_area_struct **pprev); 2029 2030/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2031 NULL if none. Assume start_addr < end_addr. */ 2032static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2033{ 2034 struct vm_area_struct * vma = find_vma(mm,start_addr); 2035 2036 if (vma && end_addr <= vma->vm_start) 2037 vma = NULL; 2038 return vma; 2039} 2040 2041static inline unsigned long vma_pages(struct vm_area_struct *vma) 2042{ 2043 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2044} 2045 2046/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2047static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2048 unsigned long vm_start, unsigned long vm_end) 2049{ 2050 struct vm_area_struct *vma = find_vma(mm, vm_start); 2051 2052 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2053 vma = NULL; 2054 2055 return vma; 2056} 2057 2058#ifdef CONFIG_MMU 2059pgprot_t vm_get_page_prot(unsigned long vm_flags); 2060void vma_set_page_prot(struct vm_area_struct *vma); 2061#else 2062static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2063{ 2064 return __pgprot(0); 2065} 2066static inline void vma_set_page_prot(struct vm_area_struct *vma) 2067{ 2068 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2069} 2070#endif 2071 2072#ifdef CONFIG_NUMA_BALANCING 2073unsigned long change_prot_numa(struct vm_area_struct *vma, 2074 unsigned long start, unsigned long end); 2075#endif 2076 2077struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2078int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2079 unsigned long pfn, unsigned long size, pgprot_t); 2080int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2081int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2082 unsigned long pfn); 2083int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2084 unsigned long pfn); 2085int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2086 2087 2088struct page *follow_page_mask(struct vm_area_struct *vma, 2089 unsigned long address, unsigned int foll_flags, 2090 unsigned int *page_mask); 2091 2092static inline struct page *follow_page(struct vm_area_struct *vma, 2093 unsigned long address, unsigned int foll_flags) 2094{ 2095 unsigned int unused_page_mask; 2096 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2097} 2098 2099#define FOLL_WRITE 0x01 /* check pte is writable */ 2100#define FOLL_TOUCH 0x02 /* mark page accessed */ 2101#define FOLL_GET 0x04 /* do get_page on page */ 2102#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2103#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2104#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2105 * and return without waiting upon it */ 2106#define FOLL_POPULATE 0x40 /* fault in page */ 2107#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2108#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2109#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2110#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2111#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2112#define FOLL_MLOCK 0x1000 /* lock present pages */ 2113 2114typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2115 void *data); 2116extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2117 unsigned long size, pte_fn_t fn, void *data); 2118 2119#ifdef CONFIG_PROC_FS 2120void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2121#else 2122static inline void vm_stat_account(struct mm_struct *mm, 2123 unsigned long flags, struct file *file, long pages) 2124{ 2125 mm->total_vm += pages; 2126} 2127#endif /* CONFIG_PROC_FS */ 2128 2129#ifdef CONFIG_DEBUG_PAGEALLOC 2130extern bool _debug_pagealloc_enabled; 2131extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2132 2133static inline bool debug_pagealloc_enabled(void) 2134{ 2135 return _debug_pagealloc_enabled; 2136} 2137 2138static inline void 2139kernel_map_pages(struct page *page, int numpages, int enable) 2140{ 2141 if (!debug_pagealloc_enabled()) 2142 return; 2143 2144 __kernel_map_pages(page, numpages, enable); 2145} 2146#ifdef CONFIG_HIBERNATION 2147extern bool kernel_page_present(struct page *page); 2148#endif /* CONFIG_HIBERNATION */ 2149#else 2150static inline void 2151kernel_map_pages(struct page *page, int numpages, int enable) {} 2152#ifdef CONFIG_HIBERNATION 2153static inline bool kernel_page_present(struct page *page) { return true; } 2154#endif /* CONFIG_HIBERNATION */ 2155#endif 2156 2157#ifdef __HAVE_ARCH_GATE_AREA 2158extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2159extern int in_gate_area_no_mm(unsigned long addr); 2160extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2161#else 2162static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2163{ 2164 return NULL; 2165} 2166static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2167static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2168{ 2169 return 0; 2170} 2171#endif /* __HAVE_ARCH_GATE_AREA */ 2172 2173#ifdef CONFIG_SYSCTL 2174extern int sysctl_drop_caches; 2175int drop_caches_sysctl_handler(struct ctl_table *, int, 2176 void __user *, size_t *, loff_t *); 2177#endif 2178 2179void drop_slab(void); 2180void drop_slab_node(int nid); 2181 2182#ifndef CONFIG_MMU 2183#define randomize_va_space 0 2184#else 2185extern int randomize_va_space; 2186#endif 2187 2188const char * arch_vma_name(struct vm_area_struct *vma); 2189void print_vma_addr(char *prefix, unsigned long rip); 2190 2191void sparse_mem_maps_populate_node(struct page **map_map, 2192 unsigned long pnum_begin, 2193 unsigned long pnum_end, 2194 unsigned long map_count, 2195 int nodeid); 2196 2197struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2198pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2199pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2200pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2201pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2202void *vmemmap_alloc_block(unsigned long size, int node); 2203void *vmemmap_alloc_block_buf(unsigned long size, int node); 2204void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2205int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2206 int node); 2207int vmemmap_populate(unsigned long start, unsigned long end, int node); 2208void vmemmap_populate_print_last(void); 2209#ifdef CONFIG_MEMORY_HOTPLUG 2210void vmemmap_free(unsigned long start, unsigned long end); 2211#endif 2212void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2213 unsigned long size); 2214 2215enum mf_flags { 2216 MF_COUNT_INCREASED = 1 << 0, 2217 MF_ACTION_REQUIRED = 1 << 1, 2218 MF_MUST_KILL = 1 << 2, 2219 MF_SOFT_OFFLINE = 1 << 3, 2220}; 2221extern int memory_failure(unsigned long pfn, int trapno, int flags); 2222extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2223extern int unpoison_memory(unsigned long pfn); 2224extern int get_hwpoison_page(struct page *page); 2225extern void put_hwpoison_page(struct page *page); 2226extern int sysctl_memory_failure_early_kill; 2227extern int sysctl_memory_failure_recovery; 2228extern void shake_page(struct page *p, int access); 2229extern atomic_long_t num_poisoned_pages; 2230extern int soft_offline_page(struct page *page, int flags); 2231 2232 2233/* 2234 * Error handlers for various types of pages. 2235 */ 2236enum mf_result { 2237 MF_IGNORED, /* Error: cannot be handled */ 2238 MF_FAILED, /* Error: handling failed */ 2239 MF_DELAYED, /* Will be handled later */ 2240 MF_RECOVERED, /* Successfully recovered */ 2241}; 2242 2243enum mf_action_page_type { 2244 MF_MSG_KERNEL, 2245 MF_MSG_KERNEL_HIGH_ORDER, 2246 MF_MSG_SLAB, 2247 MF_MSG_DIFFERENT_COMPOUND, 2248 MF_MSG_POISONED_HUGE, 2249 MF_MSG_HUGE, 2250 MF_MSG_FREE_HUGE, 2251 MF_MSG_UNMAP_FAILED, 2252 MF_MSG_DIRTY_SWAPCACHE, 2253 MF_MSG_CLEAN_SWAPCACHE, 2254 MF_MSG_DIRTY_MLOCKED_LRU, 2255 MF_MSG_CLEAN_MLOCKED_LRU, 2256 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2257 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2258 MF_MSG_DIRTY_LRU, 2259 MF_MSG_CLEAN_LRU, 2260 MF_MSG_TRUNCATED_LRU, 2261 MF_MSG_BUDDY, 2262 MF_MSG_BUDDY_2ND, 2263 MF_MSG_UNKNOWN, 2264}; 2265 2266#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2267extern void clear_huge_page(struct page *page, 2268 unsigned long addr, 2269 unsigned int pages_per_huge_page); 2270extern void copy_user_huge_page(struct page *dst, struct page *src, 2271 unsigned long addr, struct vm_area_struct *vma, 2272 unsigned int pages_per_huge_page); 2273#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2274 2275extern struct page_ext_operations debug_guardpage_ops; 2276extern struct page_ext_operations page_poisoning_ops; 2277 2278#ifdef CONFIG_DEBUG_PAGEALLOC 2279extern unsigned int _debug_guardpage_minorder; 2280extern bool _debug_guardpage_enabled; 2281 2282static inline unsigned int debug_guardpage_minorder(void) 2283{ 2284 return _debug_guardpage_minorder; 2285} 2286 2287static inline bool debug_guardpage_enabled(void) 2288{ 2289 return _debug_guardpage_enabled; 2290} 2291 2292static inline bool page_is_guard(struct page *page) 2293{ 2294 struct page_ext *page_ext; 2295 2296 if (!debug_guardpage_enabled()) 2297 return false; 2298 2299 page_ext = lookup_page_ext(page); 2300 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2301} 2302#else 2303static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2304static inline bool debug_guardpage_enabled(void) { return false; } 2305static inline bool page_is_guard(struct page *page) { return false; } 2306#endif /* CONFIG_DEBUG_PAGEALLOC */ 2307 2308#if MAX_NUMNODES > 1 2309void __init setup_nr_node_ids(void); 2310#else 2311static inline void setup_nr_node_ids(void) {} 2312#endif 2313 2314#endif /* __KERNEL__ */ 2315#endif /* _LINUX_MM_H */