at v4.4 22 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9#include <linux/errno.h> 10 11#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \ 12 CONFIG_PGTABLE_LEVELS 13#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED 14#endif 15 16/* 17 * On almost all architectures and configurations, 0 can be used as the 18 * upper ceiling to free_pgtables(): on many architectures it has the same 19 * effect as using TASK_SIZE. However, there is one configuration which 20 * must impose a more careful limit, to avoid freeing kernel pgtables. 21 */ 22#ifndef USER_PGTABLES_CEILING 23#define USER_PGTABLES_CEILING 0UL 24#endif 25 26#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 27extern int ptep_set_access_flags(struct vm_area_struct *vma, 28 unsigned long address, pte_t *ptep, 29 pte_t entry, int dirty); 30#endif 31 32#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 33#ifdef CONFIG_TRANSPARENT_HUGEPAGE 34extern int pmdp_set_access_flags(struct vm_area_struct *vma, 35 unsigned long address, pmd_t *pmdp, 36 pmd_t entry, int dirty); 37#else 38static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 39 unsigned long address, pmd_t *pmdp, 40 pmd_t entry, int dirty) 41{ 42 BUILD_BUG(); 43 return 0; 44} 45#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 46#endif 47 48#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 49static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 50 unsigned long address, 51 pte_t *ptep) 52{ 53 pte_t pte = *ptep; 54 int r = 1; 55 if (!pte_young(pte)) 56 r = 0; 57 else 58 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 59 return r; 60} 61#endif 62 63#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 64#ifdef CONFIG_TRANSPARENT_HUGEPAGE 65static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 66 unsigned long address, 67 pmd_t *pmdp) 68{ 69 pmd_t pmd = *pmdp; 70 int r = 1; 71 if (!pmd_young(pmd)) 72 r = 0; 73 else 74 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 75 return r; 76} 77#else 78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 79 unsigned long address, 80 pmd_t *pmdp) 81{ 82 BUILD_BUG(); 83 return 0; 84} 85#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 86#endif 87 88#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 89int ptep_clear_flush_young(struct vm_area_struct *vma, 90 unsigned long address, pte_t *ptep); 91#endif 92 93#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE 95extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 96 unsigned long address, pmd_t *pmdp); 97#else 98/* 99 * Despite relevant to THP only, this API is called from generic rmap code 100 * under PageTransHuge(), hence needs a dummy implementation for !THP 101 */ 102static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 103 unsigned long address, pmd_t *pmdp) 104{ 105 BUILD_BUG(); 106 return 0; 107} 108#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 109#endif 110 111#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 112static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 113 unsigned long address, 114 pte_t *ptep) 115{ 116 pte_t pte = *ptep; 117 pte_clear(mm, address, ptep); 118 return pte; 119} 120#endif 121 122#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 123#ifdef CONFIG_TRANSPARENT_HUGEPAGE 124static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 125 unsigned long address, 126 pmd_t *pmdp) 127{ 128 pmd_t pmd = *pmdp; 129 pmd_clear(pmdp); 130 return pmd; 131} 132#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 133#endif 134 135#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 136#ifdef CONFIG_TRANSPARENT_HUGEPAGE 137static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 138 unsigned long address, pmd_t *pmdp, 139 int full) 140{ 141 return pmdp_huge_get_and_clear(mm, address, pmdp); 142} 143#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 144#endif 145 146#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 147static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 148 unsigned long address, pte_t *ptep, 149 int full) 150{ 151 pte_t pte; 152 pte = ptep_get_and_clear(mm, address, ptep); 153 return pte; 154} 155#endif 156 157/* 158 * Some architectures may be able to avoid expensive synchronization 159 * primitives when modifications are made to PTE's which are already 160 * not present, or in the process of an address space destruction. 161 */ 162#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 163static inline void pte_clear_not_present_full(struct mm_struct *mm, 164 unsigned long address, 165 pte_t *ptep, 166 int full) 167{ 168 pte_clear(mm, address, ptep); 169} 170#endif 171 172#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 173extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 174 unsigned long address, 175 pte_t *ptep); 176#endif 177 178#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 179extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 180 unsigned long address, 181 pmd_t *pmdp); 182#endif 183 184#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 185struct mm_struct; 186static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 187{ 188 pte_t old_pte = *ptep; 189 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 190} 191#endif 192 193#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 194#ifdef CONFIG_TRANSPARENT_HUGEPAGE 195static inline void pmdp_set_wrprotect(struct mm_struct *mm, 196 unsigned long address, pmd_t *pmdp) 197{ 198 pmd_t old_pmd = *pmdp; 199 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 200} 201#else 202static inline void pmdp_set_wrprotect(struct mm_struct *mm, 203 unsigned long address, pmd_t *pmdp) 204{ 205 BUILD_BUG(); 206} 207#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 208#endif 209 210#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 211extern void pmdp_splitting_flush(struct vm_area_struct *vma, 212 unsigned long address, pmd_t *pmdp); 213#endif 214 215#ifndef pmdp_collapse_flush 216#ifdef CONFIG_TRANSPARENT_HUGEPAGE 217extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 218 unsigned long address, pmd_t *pmdp); 219#else 220static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 221 unsigned long address, 222 pmd_t *pmdp) 223{ 224 BUILD_BUG(); 225 return *pmdp; 226} 227#define pmdp_collapse_flush pmdp_collapse_flush 228#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 229#endif 230 231#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 232extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 233 pgtable_t pgtable); 234#endif 235 236#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 237extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 238#endif 239 240#ifndef __HAVE_ARCH_PMDP_INVALIDATE 241extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 242 pmd_t *pmdp); 243#endif 244 245#ifndef __HAVE_ARCH_PTE_SAME 246static inline int pte_same(pte_t pte_a, pte_t pte_b) 247{ 248 return pte_val(pte_a) == pte_val(pte_b); 249} 250#endif 251 252#ifndef __HAVE_ARCH_PTE_UNUSED 253/* 254 * Some architectures provide facilities to virtualization guests 255 * so that they can flag allocated pages as unused. This allows the 256 * host to transparently reclaim unused pages. This function returns 257 * whether the pte's page is unused. 258 */ 259static inline int pte_unused(pte_t pte) 260{ 261 return 0; 262} 263#endif 264 265#ifndef __HAVE_ARCH_PMD_SAME 266#ifdef CONFIG_TRANSPARENT_HUGEPAGE 267static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 268{ 269 return pmd_val(pmd_a) == pmd_val(pmd_b); 270} 271#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 272static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 273{ 274 BUILD_BUG(); 275 return 0; 276} 277#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 278#endif 279 280#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 281#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 282#endif 283 284#ifndef __HAVE_ARCH_MOVE_PTE 285#define move_pte(pte, prot, old_addr, new_addr) (pte) 286#endif 287 288#ifndef pte_accessible 289# define pte_accessible(mm, pte) ((void)(pte), 1) 290#endif 291 292#ifndef flush_tlb_fix_spurious_fault 293#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 294#endif 295 296#ifndef pgprot_noncached 297#define pgprot_noncached(prot) (prot) 298#endif 299 300#ifndef pgprot_writecombine 301#define pgprot_writecombine pgprot_noncached 302#endif 303 304#ifndef pgprot_writethrough 305#define pgprot_writethrough pgprot_noncached 306#endif 307 308#ifndef pgprot_device 309#define pgprot_device pgprot_noncached 310#endif 311 312#ifndef pgprot_modify 313#define pgprot_modify pgprot_modify 314static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 315{ 316 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 317 newprot = pgprot_noncached(newprot); 318 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 319 newprot = pgprot_writecombine(newprot); 320 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 321 newprot = pgprot_device(newprot); 322 return newprot; 323} 324#endif 325 326/* 327 * When walking page tables, get the address of the next boundary, 328 * or the end address of the range if that comes earlier. Although no 329 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 330 */ 331 332#define pgd_addr_end(addr, end) \ 333({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 334 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 335}) 336 337#ifndef pud_addr_end 338#define pud_addr_end(addr, end) \ 339({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 340 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 341}) 342#endif 343 344#ifndef pmd_addr_end 345#define pmd_addr_end(addr, end) \ 346({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 347 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 348}) 349#endif 350 351/* 352 * When walking page tables, we usually want to skip any p?d_none entries; 353 * and any p?d_bad entries - reporting the error before resetting to none. 354 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 355 */ 356void pgd_clear_bad(pgd_t *); 357void pud_clear_bad(pud_t *); 358void pmd_clear_bad(pmd_t *); 359 360static inline int pgd_none_or_clear_bad(pgd_t *pgd) 361{ 362 if (pgd_none(*pgd)) 363 return 1; 364 if (unlikely(pgd_bad(*pgd))) { 365 pgd_clear_bad(pgd); 366 return 1; 367 } 368 return 0; 369} 370 371static inline int pud_none_or_clear_bad(pud_t *pud) 372{ 373 if (pud_none(*pud)) 374 return 1; 375 if (unlikely(pud_bad(*pud))) { 376 pud_clear_bad(pud); 377 return 1; 378 } 379 return 0; 380} 381 382static inline int pmd_none_or_clear_bad(pmd_t *pmd) 383{ 384 if (pmd_none(*pmd)) 385 return 1; 386 if (unlikely(pmd_bad(*pmd))) { 387 pmd_clear_bad(pmd); 388 return 1; 389 } 390 return 0; 391} 392 393static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 394 unsigned long addr, 395 pte_t *ptep) 396{ 397 /* 398 * Get the current pte state, but zero it out to make it 399 * non-present, preventing the hardware from asynchronously 400 * updating it. 401 */ 402 return ptep_get_and_clear(mm, addr, ptep); 403} 404 405static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 406 unsigned long addr, 407 pte_t *ptep, pte_t pte) 408{ 409 /* 410 * The pte is non-present, so there's no hardware state to 411 * preserve. 412 */ 413 set_pte_at(mm, addr, ptep, pte); 414} 415 416#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 417/* 418 * Start a pte protection read-modify-write transaction, which 419 * protects against asynchronous hardware modifications to the pte. 420 * The intention is not to prevent the hardware from making pte 421 * updates, but to prevent any updates it may make from being lost. 422 * 423 * This does not protect against other software modifications of the 424 * pte; the appropriate pte lock must be held over the transation. 425 * 426 * Note that this interface is intended to be batchable, meaning that 427 * ptep_modify_prot_commit may not actually update the pte, but merely 428 * queue the update to be done at some later time. The update must be 429 * actually committed before the pte lock is released, however. 430 */ 431static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 432 unsigned long addr, 433 pte_t *ptep) 434{ 435 return __ptep_modify_prot_start(mm, addr, ptep); 436} 437 438/* 439 * Commit an update to a pte, leaving any hardware-controlled bits in 440 * the PTE unmodified. 441 */ 442static inline void ptep_modify_prot_commit(struct mm_struct *mm, 443 unsigned long addr, 444 pte_t *ptep, pte_t pte) 445{ 446 __ptep_modify_prot_commit(mm, addr, ptep, pte); 447} 448#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 449#endif /* CONFIG_MMU */ 450 451/* 452 * A facility to provide lazy MMU batching. This allows PTE updates and 453 * page invalidations to be delayed until a call to leave lazy MMU mode 454 * is issued. Some architectures may benefit from doing this, and it is 455 * beneficial for both shadow and direct mode hypervisors, which may batch 456 * the PTE updates which happen during this window. Note that using this 457 * interface requires that read hazards be removed from the code. A read 458 * hazard could result in the direct mode hypervisor case, since the actual 459 * write to the page tables may not yet have taken place, so reads though 460 * a raw PTE pointer after it has been modified are not guaranteed to be 461 * up to date. This mode can only be entered and left under the protection of 462 * the page table locks for all page tables which may be modified. In the UP 463 * case, this is required so that preemption is disabled, and in the SMP case, 464 * it must synchronize the delayed page table writes properly on other CPUs. 465 */ 466#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 467#define arch_enter_lazy_mmu_mode() do {} while (0) 468#define arch_leave_lazy_mmu_mode() do {} while (0) 469#define arch_flush_lazy_mmu_mode() do {} while (0) 470#endif 471 472/* 473 * A facility to provide batching of the reload of page tables and 474 * other process state with the actual context switch code for 475 * paravirtualized guests. By convention, only one of the batched 476 * update (lazy) modes (CPU, MMU) should be active at any given time, 477 * entry should never be nested, and entry and exits should always be 478 * paired. This is for sanity of maintaining and reasoning about the 479 * kernel code. In this case, the exit (end of the context switch) is 480 * in architecture-specific code, and so doesn't need a generic 481 * definition. 482 */ 483#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 484#define arch_start_context_switch(prev) do {} while (0) 485#endif 486 487#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY 488static inline int pte_soft_dirty(pte_t pte) 489{ 490 return 0; 491} 492 493static inline int pmd_soft_dirty(pmd_t pmd) 494{ 495 return 0; 496} 497 498static inline pte_t pte_mksoft_dirty(pte_t pte) 499{ 500 return pte; 501} 502 503static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 504{ 505 return pmd; 506} 507 508static inline pte_t pte_clear_soft_dirty(pte_t pte) 509{ 510 return pte; 511} 512 513static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 514{ 515 return pmd; 516} 517 518static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 519{ 520 return pte; 521} 522 523static inline int pte_swp_soft_dirty(pte_t pte) 524{ 525 return 0; 526} 527 528static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 529{ 530 return pte; 531} 532#endif 533 534#ifndef __HAVE_PFNMAP_TRACKING 535/* 536 * Interfaces that can be used by architecture code to keep track of 537 * memory type of pfn mappings specified by the remap_pfn_range, 538 * vm_insert_pfn. 539 */ 540 541/* 542 * track_pfn_remap is called when a _new_ pfn mapping is being established 543 * by remap_pfn_range() for physical range indicated by pfn and size. 544 */ 545static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 546 unsigned long pfn, unsigned long addr, 547 unsigned long size) 548{ 549 return 0; 550} 551 552/* 553 * track_pfn_insert is called when a _new_ single pfn is established 554 * by vm_insert_pfn(). 555 */ 556static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 557 unsigned long pfn) 558{ 559 return 0; 560} 561 562/* 563 * track_pfn_copy is called when vma that is covering the pfnmap gets 564 * copied through copy_page_range(). 565 */ 566static inline int track_pfn_copy(struct vm_area_struct *vma) 567{ 568 return 0; 569} 570 571/* 572 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 573 * untrack can be called for a specific region indicated by pfn and size or 574 * can be for the entire vma (in which case pfn, size are zero). 575 */ 576static inline void untrack_pfn(struct vm_area_struct *vma, 577 unsigned long pfn, unsigned long size) 578{ 579} 580#else 581extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 582 unsigned long pfn, unsigned long addr, 583 unsigned long size); 584extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 585 unsigned long pfn); 586extern int track_pfn_copy(struct vm_area_struct *vma); 587extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 588 unsigned long size); 589#endif 590 591#ifdef __HAVE_COLOR_ZERO_PAGE 592static inline int is_zero_pfn(unsigned long pfn) 593{ 594 extern unsigned long zero_pfn; 595 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 596 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 597} 598 599#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 600 601#else 602static inline int is_zero_pfn(unsigned long pfn) 603{ 604 extern unsigned long zero_pfn; 605 return pfn == zero_pfn; 606} 607 608static inline unsigned long my_zero_pfn(unsigned long addr) 609{ 610 extern unsigned long zero_pfn; 611 return zero_pfn; 612} 613#endif 614 615#ifdef CONFIG_MMU 616 617#ifndef CONFIG_TRANSPARENT_HUGEPAGE 618static inline int pmd_trans_huge(pmd_t pmd) 619{ 620 return 0; 621} 622static inline int pmd_trans_splitting(pmd_t pmd) 623{ 624 return 0; 625} 626#ifndef __HAVE_ARCH_PMD_WRITE 627static inline int pmd_write(pmd_t pmd) 628{ 629 BUG(); 630 return 0; 631} 632#endif /* __HAVE_ARCH_PMD_WRITE */ 633#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 634 635#ifndef pmd_read_atomic 636static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 637{ 638 /* 639 * Depend on compiler for an atomic pmd read. NOTE: this is 640 * only going to work, if the pmdval_t isn't larger than 641 * an unsigned long. 642 */ 643 return *pmdp; 644} 645#endif 646 647#ifndef pmd_move_must_withdraw 648static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 649 spinlock_t *old_pmd_ptl) 650{ 651 /* 652 * With split pmd lock we also need to move preallocated 653 * PTE page table if new_pmd is on different PMD page table. 654 */ 655 return new_pmd_ptl != old_pmd_ptl; 656} 657#endif 658 659/* 660 * This function is meant to be used by sites walking pagetables with 661 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 662 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 663 * into a null pmd and the transhuge page fault can convert a null pmd 664 * into an hugepmd or into a regular pmd (if the hugepage allocation 665 * fails). While holding the mmap_sem in read mode the pmd becomes 666 * stable and stops changing under us only if it's not null and not a 667 * transhuge pmd. When those races occurs and this function makes a 668 * difference vs the standard pmd_none_or_clear_bad, the result is 669 * undefined so behaving like if the pmd was none is safe (because it 670 * can return none anyway). The compiler level barrier() is critically 671 * important to compute the two checks atomically on the same pmdval. 672 * 673 * For 32bit kernels with a 64bit large pmd_t this automatically takes 674 * care of reading the pmd atomically to avoid SMP race conditions 675 * against pmd_populate() when the mmap_sem is hold for reading by the 676 * caller (a special atomic read not done by "gcc" as in the generic 677 * version above, is also needed when THP is disabled because the page 678 * fault can populate the pmd from under us). 679 */ 680static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 681{ 682 pmd_t pmdval = pmd_read_atomic(pmd); 683 /* 684 * The barrier will stabilize the pmdval in a register or on 685 * the stack so that it will stop changing under the code. 686 * 687 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 688 * pmd_read_atomic is allowed to return a not atomic pmdval 689 * (for example pointing to an hugepage that has never been 690 * mapped in the pmd). The below checks will only care about 691 * the low part of the pmd with 32bit PAE x86 anyway, with the 692 * exception of pmd_none(). So the important thing is that if 693 * the low part of the pmd is found null, the high part will 694 * be also null or the pmd_none() check below would be 695 * confused. 696 */ 697#ifdef CONFIG_TRANSPARENT_HUGEPAGE 698 barrier(); 699#endif 700 if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) 701 return 1; 702 if (unlikely(pmd_bad(pmdval))) { 703 pmd_clear_bad(pmd); 704 return 1; 705 } 706 return 0; 707} 708 709/* 710 * This is a noop if Transparent Hugepage Support is not built into 711 * the kernel. Otherwise it is equivalent to 712 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 713 * places that already verified the pmd is not none and they want to 714 * walk ptes while holding the mmap sem in read mode (write mode don't 715 * need this). If THP is not enabled, the pmd can't go away under the 716 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 717 * run a pmd_trans_unstable before walking the ptes after 718 * split_huge_page_pmd returns (because it may have run when the pmd 719 * become null, but then a page fault can map in a THP and not a 720 * regular page). 721 */ 722static inline int pmd_trans_unstable(pmd_t *pmd) 723{ 724#ifdef CONFIG_TRANSPARENT_HUGEPAGE 725 return pmd_none_or_trans_huge_or_clear_bad(pmd); 726#else 727 return 0; 728#endif 729} 730 731#ifndef CONFIG_NUMA_BALANCING 732/* 733 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 734 * the only case the kernel cares is for NUMA balancing and is only ever set 735 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 736 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 737 * is the responsibility of the caller to distinguish between PROT_NONE 738 * protections and NUMA hinting fault protections. 739 */ 740static inline int pte_protnone(pte_t pte) 741{ 742 return 0; 743} 744 745static inline int pmd_protnone(pmd_t pmd) 746{ 747 return 0; 748} 749#endif /* CONFIG_NUMA_BALANCING */ 750 751#endif /* CONFIG_MMU */ 752 753#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 754int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 755int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 756int pud_clear_huge(pud_t *pud); 757int pmd_clear_huge(pmd_t *pmd); 758#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 759static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 760{ 761 return 0; 762} 763static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 764{ 765 return 0; 766} 767static inline int pud_clear_huge(pud_t *pud) 768{ 769 return 0; 770} 771static inline int pmd_clear_huge(pmd_t *pmd) 772{ 773 return 0; 774} 775#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 776 777#endif /* !__ASSEMBLY__ */ 778 779#ifndef io_remap_pfn_range 780#define io_remap_pfn_range remap_pfn_range 781#endif 782 783#endif /* _ASM_GENERIC_PGTABLE_H */