at v4.4-rc3 5912 lines 164 kB view raw
1/* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31#include <linux/cgroup.h> 32#include <linux/cred.h> 33#include <linux/ctype.h> 34#include <linux/errno.h> 35#include <linux/init_task.h> 36#include <linux/kernel.h> 37#include <linux/list.h> 38#include <linux/magic.h> 39#include <linux/mm.h> 40#include <linux/mutex.h> 41#include <linux/mount.h> 42#include <linux/pagemap.h> 43#include <linux/proc_fs.h> 44#include <linux/rcupdate.h> 45#include <linux/sched.h> 46#include <linux/slab.h> 47#include <linux/spinlock.h> 48#include <linux/percpu-rwsem.h> 49#include <linux/string.h> 50#include <linux/sort.h> 51#include <linux/kmod.h> 52#include <linux/delayacct.h> 53#include <linux/cgroupstats.h> 54#include <linux/hashtable.h> 55#include <linux/pid_namespace.h> 56#include <linux/idr.h> 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ 58#include <linux/kthread.h> 59#include <linux/delay.h> 60 61#include <linux/atomic.h> 62 63/* 64 * pidlists linger the following amount before being destroyed. The goal 65 * is avoiding frequent destruction in the middle of consecutive read calls 66 * Expiring in the middle is a performance problem not a correctness one. 67 * 1 sec should be enough. 68 */ 69#define CGROUP_PIDLIST_DESTROY_DELAY HZ 70 71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 72 MAX_CFTYPE_NAME + 2) 73 74/* 75 * cgroup_mutex is the master lock. Any modification to cgroup or its 76 * hierarchy must be performed while holding it. 77 * 78 * css_set_lock protects task->cgroups pointer, the list of css_set 79 * objects, and the chain of tasks off each css_set. 80 * 81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 82 * cgroup.h can use them for lockdep annotations. 83 */ 84#ifdef CONFIG_PROVE_RCU 85DEFINE_MUTEX(cgroup_mutex); 86DEFINE_SPINLOCK(css_set_lock); 87EXPORT_SYMBOL_GPL(cgroup_mutex); 88EXPORT_SYMBOL_GPL(css_set_lock); 89#else 90static DEFINE_MUTEX(cgroup_mutex); 91static DEFINE_SPINLOCK(css_set_lock); 92#endif 93 94/* 95 * Protects cgroup_idr and css_idr so that IDs can be released without 96 * grabbing cgroup_mutex. 97 */ 98static DEFINE_SPINLOCK(cgroup_idr_lock); 99 100/* 101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires 102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. 103 */ 104static DEFINE_SPINLOCK(release_agent_path_lock); 105 106struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 107 108#define cgroup_assert_mutex_or_rcu_locked() \ 109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 110 !lockdep_is_held(&cgroup_mutex), \ 111 "cgroup_mutex or RCU read lock required"); 112 113/* 114 * cgroup destruction makes heavy use of work items and there can be a lot 115 * of concurrent destructions. Use a separate workqueue so that cgroup 116 * destruction work items don't end up filling up max_active of system_wq 117 * which may lead to deadlock. 118 */ 119static struct workqueue_struct *cgroup_destroy_wq; 120 121/* 122 * pidlist destructions need to be flushed on cgroup destruction. Use a 123 * separate workqueue as flush domain. 124 */ 125static struct workqueue_struct *cgroup_pidlist_destroy_wq; 126 127/* generate an array of cgroup subsystem pointers */ 128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 129static struct cgroup_subsys *cgroup_subsys[] = { 130#include <linux/cgroup_subsys.h> 131}; 132#undef SUBSYS 133 134/* array of cgroup subsystem names */ 135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 136static const char *cgroup_subsys_name[] = { 137#include <linux/cgroup_subsys.h> 138}; 139#undef SUBSYS 140 141/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 142#define SUBSYS(_x) \ 143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 147#include <linux/cgroup_subsys.h> 148#undef SUBSYS 149 150#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 151static struct static_key_true *cgroup_subsys_enabled_key[] = { 152#include <linux/cgroup_subsys.h> 153}; 154#undef SUBSYS 155 156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 157static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 158#include <linux/cgroup_subsys.h> 159}; 160#undef SUBSYS 161 162/* 163 * The default hierarchy, reserved for the subsystems that are otherwise 164 * unattached - it never has more than a single cgroup, and all tasks are 165 * part of that cgroup. 166 */ 167struct cgroup_root cgrp_dfl_root; 168EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170/* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174static bool cgrp_dfl_root_visible; 175 176/* some controllers are not supported in the default hierarchy */ 177static unsigned long cgrp_dfl_root_inhibit_ss_mask; 178 179/* The list of hierarchy roots */ 180 181static LIST_HEAD(cgroup_roots); 182static int cgroup_root_count; 183 184/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 185static DEFINE_IDR(cgroup_hierarchy_idr); 186 187/* 188 * Assign a monotonically increasing serial number to csses. It guarantees 189 * cgroups with bigger numbers are newer than those with smaller numbers. 190 * Also, as csses are always appended to the parent's ->children list, it 191 * guarantees that sibling csses are always sorted in the ascending serial 192 * number order on the list. Protected by cgroup_mutex. 193 */ 194static u64 css_serial_nr_next = 1; 195 196/* 197 * These bitmask flags indicate whether tasks in the fork and exit paths have 198 * fork/exit handlers to call. This avoids us having to do extra work in the 199 * fork/exit path to check which subsystems have fork/exit callbacks. 200 */ 201static unsigned long have_fork_callback __read_mostly; 202static unsigned long have_exit_callback __read_mostly; 203static unsigned long have_free_callback __read_mostly; 204 205/* Ditto for the can_fork callback. */ 206static unsigned long have_canfork_callback __read_mostly; 207 208static struct cftype cgroup_dfl_base_files[]; 209static struct cftype cgroup_legacy_base_files[]; 210 211static int rebind_subsystems(struct cgroup_root *dst_root, 212 unsigned long ss_mask); 213static void css_task_iter_advance(struct css_task_iter *it); 214static int cgroup_destroy_locked(struct cgroup *cgrp); 215static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss, 216 bool visible); 217static void css_release(struct percpu_ref *ref); 218static void kill_css(struct cgroup_subsys_state *css); 219static int cgroup_addrm_files(struct cgroup_subsys_state *css, 220 struct cgroup *cgrp, struct cftype cfts[], 221 bool is_add); 222 223/** 224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 225 * @ssid: subsys ID of interest 226 * 227 * cgroup_subsys_enabled() can only be used with literal subsys names which 228 * is fine for individual subsystems but unsuitable for cgroup core. This 229 * is slower static_key_enabled() based test indexed by @ssid. 230 */ 231static bool cgroup_ssid_enabled(int ssid) 232{ 233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 234} 235 236/** 237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 238 * @cgrp: the cgroup of interest 239 * 240 * The default hierarchy is the v2 interface of cgroup and this function 241 * can be used to test whether a cgroup is on the default hierarchy for 242 * cases where a subsystem should behave differnetly depending on the 243 * interface version. 244 * 245 * The set of behaviors which change on the default hierarchy are still 246 * being determined and the mount option is prefixed with __DEVEL__. 247 * 248 * List of changed behaviors: 249 * 250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 251 * and "name" are disallowed. 252 * 253 * - When mounting an existing superblock, mount options should match. 254 * 255 * - Remount is disallowed. 256 * 257 * - rename(2) is disallowed. 258 * 259 * - "tasks" is removed. Everything should be at process granularity. Use 260 * "cgroup.procs" instead. 261 * 262 * - "cgroup.procs" is not sorted. pids will be unique unless they got 263 * recycled inbetween reads. 264 * 265 * - "release_agent" and "notify_on_release" are removed. Replacement 266 * notification mechanism will be implemented. 267 * 268 * - "cgroup.clone_children" is removed. 269 * 270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 271 * and its descendants contain no task; otherwise, 1. The file also 272 * generates kernfs notification which can be monitored through poll and 273 * [di]notify when the value of the file changes. 274 * 275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 276 * take masks of ancestors with non-empty cpus/mems, instead of being 277 * moved to an ancestor. 278 * 279 * - cpuset: a task can be moved into an empty cpuset, and again it takes 280 * masks of ancestors. 281 * 282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 283 * is not created. 284 * 285 * - blkcg: blk-throttle becomes properly hierarchical. 286 * 287 * - debug: disallowed on the default hierarchy. 288 */ 289static bool cgroup_on_dfl(const struct cgroup *cgrp) 290{ 291 return cgrp->root == &cgrp_dfl_root; 292} 293 294/* IDR wrappers which synchronize using cgroup_idr_lock */ 295static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 296 gfp_t gfp_mask) 297{ 298 int ret; 299 300 idr_preload(gfp_mask); 301 spin_lock_bh(&cgroup_idr_lock); 302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 303 spin_unlock_bh(&cgroup_idr_lock); 304 idr_preload_end(); 305 return ret; 306} 307 308static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 309{ 310 void *ret; 311 312 spin_lock_bh(&cgroup_idr_lock); 313 ret = idr_replace(idr, ptr, id); 314 spin_unlock_bh(&cgroup_idr_lock); 315 return ret; 316} 317 318static void cgroup_idr_remove(struct idr *idr, int id) 319{ 320 spin_lock_bh(&cgroup_idr_lock); 321 idr_remove(idr, id); 322 spin_unlock_bh(&cgroup_idr_lock); 323} 324 325static struct cgroup *cgroup_parent(struct cgroup *cgrp) 326{ 327 struct cgroup_subsys_state *parent_css = cgrp->self.parent; 328 329 if (parent_css) 330 return container_of(parent_css, struct cgroup, self); 331 return NULL; 332} 333 334/** 335 * cgroup_css - obtain a cgroup's css for the specified subsystem 336 * @cgrp: the cgroup of interest 337 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 338 * 339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 340 * function must be called either under cgroup_mutex or rcu_read_lock() and 341 * the caller is responsible for pinning the returned css if it wants to 342 * keep accessing it outside the said locks. This function may return 343 * %NULL if @cgrp doesn't have @subsys_id enabled. 344 */ 345static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 346 struct cgroup_subsys *ss) 347{ 348 if (ss) 349 return rcu_dereference_check(cgrp->subsys[ss->id], 350 lockdep_is_held(&cgroup_mutex)); 351 else 352 return &cgrp->self; 353} 354 355/** 356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 357 * @cgrp: the cgroup of interest 358 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 359 * 360 * Similar to cgroup_css() but returns the effective css, which is defined 361 * as the matching css of the nearest ancestor including self which has @ss 362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 363 * function is guaranteed to return non-NULL css. 364 */ 365static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 366 struct cgroup_subsys *ss) 367{ 368 lockdep_assert_held(&cgroup_mutex); 369 370 if (!ss) 371 return &cgrp->self; 372 373 if (!(cgrp->root->subsys_mask & (1 << ss->id))) 374 return NULL; 375 376 /* 377 * This function is used while updating css associations and thus 378 * can't test the csses directly. Use ->child_subsys_mask. 379 */ 380 while (cgroup_parent(cgrp) && 381 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id))) 382 cgrp = cgroup_parent(cgrp); 383 384 return cgroup_css(cgrp, ss); 385} 386 387/** 388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 389 * @cgrp: the cgroup of interest 390 * @ss: the subsystem of interest 391 * 392 * Find and get the effective css of @cgrp for @ss. The effective css is 393 * defined as the matching css of the nearest ancestor including self which 394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 395 * the root css is returned, so this function always returns a valid css. 396 * The returned css must be put using css_put(). 397 */ 398struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 399 struct cgroup_subsys *ss) 400{ 401 struct cgroup_subsys_state *css; 402 403 rcu_read_lock(); 404 405 do { 406 css = cgroup_css(cgrp, ss); 407 408 if (css && css_tryget_online(css)) 409 goto out_unlock; 410 cgrp = cgroup_parent(cgrp); 411 } while (cgrp); 412 413 css = init_css_set.subsys[ss->id]; 414 css_get(css); 415out_unlock: 416 rcu_read_unlock(); 417 return css; 418} 419 420/* convenient tests for these bits */ 421static inline bool cgroup_is_dead(const struct cgroup *cgrp) 422{ 423 return !(cgrp->self.flags & CSS_ONLINE); 424} 425 426static void cgroup_get(struct cgroup *cgrp) 427{ 428 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 429 css_get(&cgrp->self); 430} 431 432static bool cgroup_tryget(struct cgroup *cgrp) 433{ 434 return css_tryget(&cgrp->self); 435} 436 437static void cgroup_put(struct cgroup *cgrp) 438{ 439 css_put(&cgrp->self); 440} 441 442struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 443{ 444 struct cgroup *cgrp = of->kn->parent->priv; 445 struct cftype *cft = of_cft(of); 446 447 /* 448 * This is open and unprotected implementation of cgroup_css(). 449 * seq_css() is only called from a kernfs file operation which has 450 * an active reference on the file. Because all the subsystem 451 * files are drained before a css is disassociated with a cgroup, 452 * the matching css from the cgroup's subsys table is guaranteed to 453 * be and stay valid until the enclosing operation is complete. 454 */ 455 if (cft->ss) 456 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 457 else 458 return &cgrp->self; 459} 460EXPORT_SYMBOL_GPL(of_css); 461 462/** 463 * cgroup_is_descendant - test ancestry 464 * @cgrp: the cgroup to be tested 465 * @ancestor: possible ancestor of @cgrp 466 * 467 * Test whether @cgrp is a descendant of @ancestor. It also returns %true 468 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp 469 * and @ancestor are accessible. 470 */ 471bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor) 472{ 473 while (cgrp) { 474 if (cgrp == ancestor) 475 return true; 476 cgrp = cgroup_parent(cgrp); 477 } 478 return false; 479} 480 481static int notify_on_release(const struct cgroup *cgrp) 482{ 483 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 484} 485 486/** 487 * for_each_css - iterate all css's of a cgroup 488 * @css: the iteration cursor 489 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 490 * @cgrp: the target cgroup to iterate css's of 491 * 492 * Should be called under cgroup_[tree_]mutex. 493 */ 494#define for_each_css(css, ssid, cgrp) \ 495 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 496 if (!((css) = rcu_dereference_check( \ 497 (cgrp)->subsys[(ssid)], \ 498 lockdep_is_held(&cgroup_mutex)))) { } \ 499 else 500 501/** 502 * for_each_e_css - iterate all effective css's of a cgroup 503 * @css: the iteration cursor 504 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 505 * @cgrp: the target cgroup to iterate css's of 506 * 507 * Should be called under cgroup_[tree_]mutex. 508 */ 509#define for_each_e_css(css, ssid, cgrp) \ 510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 511 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 512 ; \ 513 else 514 515/** 516 * for_each_subsys - iterate all enabled cgroup subsystems 517 * @ss: the iteration cursor 518 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 519 */ 520#define for_each_subsys(ss, ssid) \ 521 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ 522 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) 523 524/** 525 * for_each_subsys_which - filter for_each_subsys with a bitmask 526 * @ss: the iteration cursor 527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 528 * @ss_maskp: a pointer to the bitmask 529 * 530 * The block will only run for cases where the ssid-th bit (1 << ssid) of 531 * mask is set to 1. 532 */ 533#define for_each_subsys_which(ss, ssid, ss_maskp) \ 534 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \ 535 (ssid) = 0; \ 536 else \ 537 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \ 538 if (((ss) = cgroup_subsys[ssid]) && false) \ 539 break; \ 540 else 541 542/* iterate across the hierarchies */ 543#define for_each_root(root) \ 544 list_for_each_entry((root), &cgroup_roots, root_list) 545 546/* iterate over child cgrps, lock should be held throughout iteration */ 547#define cgroup_for_each_live_child(child, cgrp) \ 548 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 549 if (({ lockdep_assert_held(&cgroup_mutex); \ 550 cgroup_is_dead(child); })) \ 551 ; \ 552 else 553 554static void cgroup_release_agent(struct work_struct *work); 555static void check_for_release(struct cgroup *cgrp); 556 557/* 558 * A cgroup can be associated with multiple css_sets as different tasks may 559 * belong to different cgroups on different hierarchies. In the other 560 * direction, a css_set is naturally associated with multiple cgroups. 561 * This M:N relationship is represented by the following link structure 562 * which exists for each association and allows traversing the associations 563 * from both sides. 564 */ 565struct cgrp_cset_link { 566 /* the cgroup and css_set this link associates */ 567 struct cgroup *cgrp; 568 struct css_set *cset; 569 570 /* list of cgrp_cset_links anchored at cgrp->cset_links */ 571 struct list_head cset_link; 572 573 /* list of cgrp_cset_links anchored at css_set->cgrp_links */ 574 struct list_head cgrp_link; 575}; 576 577/* 578 * The default css_set - used by init and its children prior to any 579 * hierarchies being mounted. It contains a pointer to the root state 580 * for each subsystem. Also used to anchor the list of css_sets. Not 581 * reference-counted, to improve performance when child cgroups 582 * haven't been created. 583 */ 584struct css_set init_css_set = { 585 .refcount = ATOMIC_INIT(1), 586 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 587 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 588 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 589 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 590 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 591 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 592}; 593 594static int css_set_count = 1; /* 1 for init_css_set */ 595 596/** 597 * css_set_populated - does a css_set contain any tasks? 598 * @cset: target css_set 599 */ 600static bool css_set_populated(struct css_set *cset) 601{ 602 lockdep_assert_held(&css_set_lock); 603 604 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 605} 606 607/** 608 * cgroup_update_populated - updated populated count of a cgroup 609 * @cgrp: the target cgroup 610 * @populated: inc or dec populated count 611 * 612 * One of the css_sets associated with @cgrp is either getting its first 613 * task or losing the last. Update @cgrp->populated_cnt accordingly. The 614 * count is propagated towards root so that a given cgroup's populated_cnt 615 * is zero iff the cgroup and all its descendants don't contain any tasks. 616 * 617 * @cgrp's interface file "cgroup.populated" is zero if 618 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt 619 * changes from or to zero, userland is notified that the content of the 620 * interface file has changed. This can be used to detect when @cgrp and 621 * its descendants become populated or empty. 622 */ 623static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 624{ 625 lockdep_assert_held(&css_set_lock); 626 627 do { 628 bool trigger; 629 630 if (populated) 631 trigger = !cgrp->populated_cnt++; 632 else 633 trigger = !--cgrp->populated_cnt; 634 635 if (!trigger) 636 break; 637 638 check_for_release(cgrp); 639 cgroup_file_notify(&cgrp->events_file); 640 641 cgrp = cgroup_parent(cgrp); 642 } while (cgrp); 643} 644 645/** 646 * css_set_update_populated - update populated state of a css_set 647 * @cset: target css_set 648 * @populated: whether @cset is populated or depopulated 649 * 650 * @cset is either getting the first task or losing the last. Update the 651 * ->populated_cnt of all associated cgroups accordingly. 652 */ 653static void css_set_update_populated(struct css_set *cset, bool populated) 654{ 655 struct cgrp_cset_link *link; 656 657 lockdep_assert_held(&css_set_lock); 658 659 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 660 cgroup_update_populated(link->cgrp, populated); 661} 662 663/** 664 * css_set_move_task - move a task from one css_set to another 665 * @task: task being moved 666 * @from_cset: css_set @task currently belongs to (may be NULL) 667 * @to_cset: new css_set @task is being moved to (may be NULL) 668 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 669 * 670 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 671 * css_set, @from_cset can be NULL. If @task is being disassociated 672 * instead of moved, @to_cset can be NULL. 673 * 674 * This function automatically handles populated_cnt updates and 675 * css_task_iter adjustments but the caller is responsible for managing 676 * @from_cset and @to_cset's reference counts. 677 */ 678static void css_set_move_task(struct task_struct *task, 679 struct css_set *from_cset, struct css_set *to_cset, 680 bool use_mg_tasks) 681{ 682 lockdep_assert_held(&css_set_lock); 683 684 if (from_cset) { 685 struct css_task_iter *it, *pos; 686 687 WARN_ON_ONCE(list_empty(&task->cg_list)); 688 689 /* 690 * @task is leaving, advance task iterators which are 691 * pointing to it so that they can resume at the next 692 * position. Advancing an iterator might remove it from 693 * the list, use safe walk. See css_task_iter_advance*() 694 * for details. 695 */ 696 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 697 iters_node) 698 if (it->task_pos == &task->cg_list) 699 css_task_iter_advance(it); 700 701 list_del_init(&task->cg_list); 702 if (!css_set_populated(from_cset)) 703 css_set_update_populated(from_cset, false); 704 } else { 705 WARN_ON_ONCE(!list_empty(&task->cg_list)); 706 } 707 708 if (to_cset) { 709 /* 710 * We are synchronized through cgroup_threadgroup_rwsem 711 * against PF_EXITING setting such that we can't race 712 * against cgroup_exit() changing the css_set to 713 * init_css_set and dropping the old one. 714 */ 715 WARN_ON_ONCE(task->flags & PF_EXITING); 716 717 if (!css_set_populated(to_cset)) 718 css_set_update_populated(to_cset, true); 719 rcu_assign_pointer(task->cgroups, to_cset); 720 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 721 &to_cset->tasks); 722 } 723} 724 725/* 726 * hash table for cgroup groups. This improves the performance to find 727 * an existing css_set. This hash doesn't (currently) take into 728 * account cgroups in empty hierarchies. 729 */ 730#define CSS_SET_HASH_BITS 7 731static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 732 733static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 734{ 735 unsigned long key = 0UL; 736 struct cgroup_subsys *ss; 737 int i; 738 739 for_each_subsys(ss, i) 740 key += (unsigned long)css[i]; 741 key = (key >> 16) ^ key; 742 743 return key; 744} 745 746static void put_css_set_locked(struct css_set *cset) 747{ 748 struct cgrp_cset_link *link, *tmp_link; 749 struct cgroup_subsys *ss; 750 int ssid; 751 752 lockdep_assert_held(&css_set_lock); 753 754 if (!atomic_dec_and_test(&cset->refcount)) 755 return; 756 757 /* This css_set is dead. unlink it and release cgroup refcounts */ 758 for_each_subsys(ss, ssid) 759 list_del(&cset->e_cset_node[ssid]); 760 hash_del(&cset->hlist); 761 css_set_count--; 762 763 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 764 list_del(&link->cset_link); 765 list_del(&link->cgrp_link); 766 if (cgroup_parent(link->cgrp)) 767 cgroup_put(link->cgrp); 768 kfree(link); 769 } 770 771 kfree_rcu(cset, rcu_head); 772} 773 774static void put_css_set(struct css_set *cset) 775{ 776 /* 777 * Ensure that the refcount doesn't hit zero while any readers 778 * can see it. Similar to atomic_dec_and_lock(), but for an 779 * rwlock 780 */ 781 if (atomic_add_unless(&cset->refcount, -1, 1)) 782 return; 783 784 spin_lock_bh(&css_set_lock); 785 put_css_set_locked(cset); 786 spin_unlock_bh(&css_set_lock); 787} 788 789/* 790 * refcounted get/put for css_set objects 791 */ 792static inline void get_css_set(struct css_set *cset) 793{ 794 atomic_inc(&cset->refcount); 795} 796 797/** 798 * compare_css_sets - helper function for find_existing_css_set(). 799 * @cset: candidate css_set being tested 800 * @old_cset: existing css_set for a task 801 * @new_cgrp: cgroup that's being entered by the task 802 * @template: desired set of css pointers in css_set (pre-calculated) 803 * 804 * Returns true if "cset" matches "old_cset" except for the hierarchy 805 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 806 */ 807static bool compare_css_sets(struct css_set *cset, 808 struct css_set *old_cset, 809 struct cgroup *new_cgrp, 810 struct cgroup_subsys_state *template[]) 811{ 812 struct list_head *l1, *l2; 813 814 /* 815 * On the default hierarchy, there can be csets which are 816 * associated with the same set of cgroups but different csses. 817 * Let's first ensure that csses match. 818 */ 819 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 820 return false; 821 822 /* 823 * Compare cgroup pointers in order to distinguish between 824 * different cgroups in hierarchies. As different cgroups may 825 * share the same effective css, this comparison is always 826 * necessary. 827 */ 828 l1 = &cset->cgrp_links; 829 l2 = &old_cset->cgrp_links; 830 while (1) { 831 struct cgrp_cset_link *link1, *link2; 832 struct cgroup *cgrp1, *cgrp2; 833 834 l1 = l1->next; 835 l2 = l2->next; 836 /* See if we reached the end - both lists are equal length. */ 837 if (l1 == &cset->cgrp_links) { 838 BUG_ON(l2 != &old_cset->cgrp_links); 839 break; 840 } else { 841 BUG_ON(l2 == &old_cset->cgrp_links); 842 } 843 /* Locate the cgroups associated with these links. */ 844 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 845 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 846 cgrp1 = link1->cgrp; 847 cgrp2 = link2->cgrp; 848 /* Hierarchies should be linked in the same order. */ 849 BUG_ON(cgrp1->root != cgrp2->root); 850 851 /* 852 * If this hierarchy is the hierarchy of the cgroup 853 * that's changing, then we need to check that this 854 * css_set points to the new cgroup; if it's any other 855 * hierarchy, then this css_set should point to the 856 * same cgroup as the old css_set. 857 */ 858 if (cgrp1->root == new_cgrp->root) { 859 if (cgrp1 != new_cgrp) 860 return false; 861 } else { 862 if (cgrp1 != cgrp2) 863 return false; 864 } 865 } 866 return true; 867} 868 869/** 870 * find_existing_css_set - init css array and find the matching css_set 871 * @old_cset: the css_set that we're using before the cgroup transition 872 * @cgrp: the cgroup that we're moving into 873 * @template: out param for the new set of csses, should be clear on entry 874 */ 875static struct css_set *find_existing_css_set(struct css_set *old_cset, 876 struct cgroup *cgrp, 877 struct cgroup_subsys_state *template[]) 878{ 879 struct cgroup_root *root = cgrp->root; 880 struct cgroup_subsys *ss; 881 struct css_set *cset; 882 unsigned long key; 883 int i; 884 885 /* 886 * Build the set of subsystem state objects that we want to see in the 887 * new css_set. while subsystems can change globally, the entries here 888 * won't change, so no need for locking. 889 */ 890 for_each_subsys(ss, i) { 891 if (root->subsys_mask & (1UL << i)) { 892 /* 893 * @ss is in this hierarchy, so we want the 894 * effective css from @cgrp. 895 */ 896 template[i] = cgroup_e_css(cgrp, ss); 897 } else { 898 /* 899 * @ss is not in this hierarchy, so we don't want 900 * to change the css. 901 */ 902 template[i] = old_cset->subsys[i]; 903 } 904 } 905 906 key = css_set_hash(template); 907 hash_for_each_possible(css_set_table, cset, hlist, key) { 908 if (!compare_css_sets(cset, old_cset, cgrp, template)) 909 continue; 910 911 /* This css_set matches what we need */ 912 return cset; 913 } 914 915 /* No existing cgroup group matched */ 916 return NULL; 917} 918 919static void free_cgrp_cset_links(struct list_head *links_to_free) 920{ 921 struct cgrp_cset_link *link, *tmp_link; 922 923 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 924 list_del(&link->cset_link); 925 kfree(link); 926 } 927} 928 929/** 930 * allocate_cgrp_cset_links - allocate cgrp_cset_links 931 * @count: the number of links to allocate 932 * @tmp_links: list_head the allocated links are put on 933 * 934 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 935 * through ->cset_link. Returns 0 on success or -errno. 936 */ 937static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 938{ 939 struct cgrp_cset_link *link; 940 int i; 941 942 INIT_LIST_HEAD(tmp_links); 943 944 for (i = 0; i < count; i++) { 945 link = kzalloc(sizeof(*link), GFP_KERNEL); 946 if (!link) { 947 free_cgrp_cset_links(tmp_links); 948 return -ENOMEM; 949 } 950 list_add(&link->cset_link, tmp_links); 951 } 952 return 0; 953} 954 955/** 956 * link_css_set - a helper function to link a css_set to a cgroup 957 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 958 * @cset: the css_set to be linked 959 * @cgrp: the destination cgroup 960 */ 961static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 962 struct cgroup *cgrp) 963{ 964 struct cgrp_cset_link *link; 965 966 BUG_ON(list_empty(tmp_links)); 967 968 if (cgroup_on_dfl(cgrp)) 969 cset->dfl_cgrp = cgrp; 970 971 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 972 link->cset = cset; 973 link->cgrp = cgrp; 974 975 /* 976 * Always add links to the tail of the lists so that the lists are 977 * in choronological order. 978 */ 979 list_move_tail(&link->cset_link, &cgrp->cset_links); 980 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 981 982 if (cgroup_parent(cgrp)) 983 cgroup_get(cgrp); 984} 985 986/** 987 * find_css_set - return a new css_set with one cgroup updated 988 * @old_cset: the baseline css_set 989 * @cgrp: the cgroup to be updated 990 * 991 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 992 * substituted into the appropriate hierarchy. 993 */ 994static struct css_set *find_css_set(struct css_set *old_cset, 995 struct cgroup *cgrp) 996{ 997 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 998 struct css_set *cset; 999 struct list_head tmp_links; 1000 struct cgrp_cset_link *link; 1001 struct cgroup_subsys *ss; 1002 unsigned long key; 1003 int ssid; 1004 1005 lockdep_assert_held(&cgroup_mutex); 1006 1007 /* First see if we already have a cgroup group that matches 1008 * the desired set */ 1009 spin_lock_bh(&css_set_lock); 1010 cset = find_existing_css_set(old_cset, cgrp, template); 1011 if (cset) 1012 get_css_set(cset); 1013 spin_unlock_bh(&css_set_lock); 1014 1015 if (cset) 1016 return cset; 1017 1018 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1019 if (!cset) 1020 return NULL; 1021 1022 /* Allocate all the cgrp_cset_link objects that we'll need */ 1023 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1024 kfree(cset); 1025 return NULL; 1026 } 1027 1028 atomic_set(&cset->refcount, 1); 1029 INIT_LIST_HEAD(&cset->cgrp_links); 1030 INIT_LIST_HEAD(&cset->tasks); 1031 INIT_LIST_HEAD(&cset->mg_tasks); 1032 INIT_LIST_HEAD(&cset->mg_preload_node); 1033 INIT_LIST_HEAD(&cset->mg_node); 1034 INIT_LIST_HEAD(&cset->task_iters); 1035 INIT_HLIST_NODE(&cset->hlist); 1036 1037 /* Copy the set of subsystem state objects generated in 1038 * find_existing_css_set() */ 1039 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1040 1041 spin_lock_bh(&css_set_lock); 1042 /* Add reference counts and links from the new css_set. */ 1043 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1044 struct cgroup *c = link->cgrp; 1045 1046 if (c->root == cgrp->root) 1047 c = cgrp; 1048 link_css_set(&tmp_links, cset, c); 1049 } 1050 1051 BUG_ON(!list_empty(&tmp_links)); 1052 1053 css_set_count++; 1054 1055 /* Add @cset to the hash table */ 1056 key = css_set_hash(cset->subsys); 1057 hash_add(css_set_table, &cset->hlist, key); 1058 1059 for_each_subsys(ss, ssid) 1060 list_add_tail(&cset->e_cset_node[ssid], 1061 &cset->subsys[ssid]->cgroup->e_csets[ssid]); 1062 1063 spin_unlock_bh(&css_set_lock); 1064 1065 return cset; 1066} 1067 1068static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1069{ 1070 struct cgroup *root_cgrp = kf_root->kn->priv; 1071 1072 return root_cgrp->root; 1073} 1074 1075static int cgroup_init_root_id(struct cgroup_root *root) 1076{ 1077 int id; 1078 1079 lockdep_assert_held(&cgroup_mutex); 1080 1081 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1082 if (id < 0) 1083 return id; 1084 1085 root->hierarchy_id = id; 1086 return 0; 1087} 1088 1089static void cgroup_exit_root_id(struct cgroup_root *root) 1090{ 1091 lockdep_assert_held(&cgroup_mutex); 1092 1093 if (root->hierarchy_id) { 1094 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1095 root->hierarchy_id = 0; 1096 } 1097} 1098 1099static void cgroup_free_root(struct cgroup_root *root) 1100{ 1101 if (root) { 1102 /* hierarchy ID should already have been released */ 1103 WARN_ON_ONCE(root->hierarchy_id); 1104 1105 idr_destroy(&root->cgroup_idr); 1106 kfree(root); 1107 } 1108} 1109 1110static void cgroup_destroy_root(struct cgroup_root *root) 1111{ 1112 struct cgroup *cgrp = &root->cgrp; 1113 struct cgrp_cset_link *link, *tmp_link; 1114 1115 mutex_lock(&cgroup_mutex); 1116 1117 BUG_ON(atomic_read(&root->nr_cgrps)); 1118 BUG_ON(!list_empty(&cgrp->self.children)); 1119 1120 /* Rebind all subsystems back to the default hierarchy */ 1121 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask); 1122 1123 /* 1124 * Release all the links from cset_links to this hierarchy's 1125 * root cgroup 1126 */ 1127 spin_lock_bh(&css_set_lock); 1128 1129 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1130 list_del(&link->cset_link); 1131 list_del(&link->cgrp_link); 1132 kfree(link); 1133 } 1134 1135 spin_unlock_bh(&css_set_lock); 1136 1137 if (!list_empty(&root->root_list)) { 1138 list_del(&root->root_list); 1139 cgroup_root_count--; 1140 } 1141 1142 cgroup_exit_root_id(root); 1143 1144 mutex_unlock(&cgroup_mutex); 1145 1146 kernfs_destroy_root(root->kf_root); 1147 cgroup_free_root(root); 1148} 1149 1150/* look up cgroup associated with given css_set on the specified hierarchy */ 1151static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1152 struct cgroup_root *root) 1153{ 1154 struct cgroup *res = NULL; 1155 1156 lockdep_assert_held(&cgroup_mutex); 1157 lockdep_assert_held(&css_set_lock); 1158 1159 if (cset == &init_css_set) { 1160 res = &root->cgrp; 1161 } else { 1162 struct cgrp_cset_link *link; 1163 1164 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1165 struct cgroup *c = link->cgrp; 1166 1167 if (c->root == root) { 1168 res = c; 1169 break; 1170 } 1171 } 1172 } 1173 1174 BUG_ON(!res); 1175 return res; 1176} 1177 1178/* 1179 * Return the cgroup for "task" from the given hierarchy. Must be 1180 * called with cgroup_mutex and css_set_lock held. 1181 */ 1182static struct cgroup *task_cgroup_from_root(struct task_struct *task, 1183 struct cgroup_root *root) 1184{ 1185 /* 1186 * No need to lock the task - since we hold cgroup_mutex the 1187 * task can't change groups, so the only thing that can happen 1188 * is that it exits and its css is set back to init_css_set. 1189 */ 1190 return cset_cgroup_from_root(task_css_set(task), root); 1191} 1192 1193/* 1194 * A task must hold cgroup_mutex to modify cgroups. 1195 * 1196 * Any task can increment and decrement the count field without lock. 1197 * So in general, code holding cgroup_mutex can't rely on the count 1198 * field not changing. However, if the count goes to zero, then only 1199 * cgroup_attach_task() can increment it again. Because a count of zero 1200 * means that no tasks are currently attached, therefore there is no 1201 * way a task attached to that cgroup can fork (the other way to 1202 * increment the count). So code holding cgroup_mutex can safely 1203 * assume that if the count is zero, it will stay zero. Similarly, if 1204 * a task holds cgroup_mutex on a cgroup with zero count, it 1205 * knows that the cgroup won't be removed, as cgroup_rmdir() 1206 * needs that mutex. 1207 * 1208 * A cgroup can only be deleted if both its 'count' of using tasks 1209 * is zero, and its list of 'children' cgroups is empty. Since all 1210 * tasks in the system use _some_ cgroup, and since there is always at 1211 * least one task in the system (init, pid == 1), therefore, root cgroup 1212 * always has either children cgroups and/or using tasks. So we don't 1213 * need a special hack to ensure that root cgroup cannot be deleted. 1214 * 1215 * P.S. One more locking exception. RCU is used to guard the 1216 * update of a tasks cgroup pointer by cgroup_attach_task() 1217 */ 1218 1219static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1220static const struct file_operations proc_cgroupstats_operations; 1221 1222static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1223 char *buf) 1224{ 1225 struct cgroup_subsys *ss = cft->ss; 1226 1227 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1228 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1229 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1230 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1231 cft->name); 1232 else 1233 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1234 return buf; 1235} 1236 1237/** 1238 * cgroup_file_mode - deduce file mode of a control file 1239 * @cft: the control file in question 1240 * 1241 * S_IRUGO for read, S_IWUSR for write. 1242 */ 1243static umode_t cgroup_file_mode(const struct cftype *cft) 1244{ 1245 umode_t mode = 0; 1246 1247 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1248 mode |= S_IRUGO; 1249 1250 if (cft->write_u64 || cft->write_s64 || cft->write) { 1251 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1252 mode |= S_IWUGO; 1253 else 1254 mode |= S_IWUSR; 1255 } 1256 1257 return mode; 1258} 1259 1260/** 1261 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask 1262 * @cgrp: the target cgroup 1263 * @subtree_control: the new subtree_control mask to consider 1264 * 1265 * On the default hierarchy, a subsystem may request other subsystems to be 1266 * enabled together through its ->depends_on mask. In such cases, more 1267 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1268 * 1269 * This function calculates which subsystems need to be enabled if 1270 * @subtree_control is to be applied to @cgrp. The returned mask is always 1271 * a superset of @subtree_control and follows the usual hierarchy rules. 1272 */ 1273static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp, 1274 unsigned long subtree_control) 1275{ 1276 struct cgroup *parent = cgroup_parent(cgrp); 1277 unsigned long cur_ss_mask = subtree_control; 1278 struct cgroup_subsys *ss; 1279 int ssid; 1280 1281 lockdep_assert_held(&cgroup_mutex); 1282 1283 if (!cgroup_on_dfl(cgrp)) 1284 return cur_ss_mask; 1285 1286 while (true) { 1287 unsigned long new_ss_mask = cur_ss_mask; 1288 1289 for_each_subsys_which(ss, ssid, &cur_ss_mask) 1290 new_ss_mask |= ss->depends_on; 1291 1292 /* 1293 * Mask out subsystems which aren't available. This can 1294 * happen only if some depended-upon subsystems were bound 1295 * to non-default hierarchies. 1296 */ 1297 if (parent) 1298 new_ss_mask &= parent->child_subsys_mask; 1299 else 1300 new_ss_mask &= cgrp->root->subsys_mask; 1301 1302 if (new_ss_mask == cur_ss_mask) 1303 break; 1304 cur_ss_mask = new_ss_mask; 1305 } 1306 1307 return cur_ss_mask; 1308} 1309 1310/** 1311 * cgroup_refresh_child_subsys_mask - update child_subsys_mask 1312 * @cgrp: the target cgroup 1313 * 1314 * Update @cgrp->child_subsys_mask according to the current 1315 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask(). 1316 */ 1317static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp) 1318{ 1319 cgrp->child_subsys_mask = 1320 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control); 1321} 1322 1323/** 1324 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1325 * @kn: the kernfs_node being serviced 1326 * 1327 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1328 * the method finishes if locking succeeded. Note that once this function 1329 * returns the cgroup returned by cgroup_kn_lock_live() may become 1330 * inaccessible any time. If the caller intends to continue to access the 1331 * cgroup, it should pin it before invoking this function. 1332 */ 1333static void cgroup_kn_unlock(struct kernfs_node *kn) 1334{ 1335 struct cgroup *cgrp; 1336 1337 if (kernfs_type(kn) == KERNFS_DIR) 1338 cgrp = kn->priv; 1339 else 1340 cgrp = kn->parent->priv; 1341 1342 mutex_unlock(&cgroup_mutex); 1343 1344 kernfs_unbreak_active_protection(kn); 1345 cgroup_put(cgrp); 1346} 1347 1348/** 1349 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1350 * @kn: the kernfs_node being serviced 1351 * 1352 * This helper is to be used by a cgroup kernfs method currently servicing 1353 * @kn. It breaks the active protection, performs cgroup locking and 1354 * verifies that the associated cgroup is alive. Returns the cgroup if 1355 * alive; otherwise, %NULL. A successful return should be undone by a 1356 * matching cgroup_kn_unlock() invocation. 1357 * 1358 * Any cgroup kernfs method implementation which requires locking the 1359 * associated cgroup should use this helper. It avoids nesting cgroup 1360 * locking under kernfs active protection and allows all kernfs operations 1361 * including self-removal. 1362 */ 1363static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn) 1364{ 1365 struct cgroup *cgrp; 1366 1367 if (kernfs_type(kn) == KERNFS_DIR) 1368 cgrp = kn->priv; 1369 else 1370 cgrp = kn->parent->priv; 1371 1372 /* 1373 * We're gonna grab cgroup_mutex which nests outside kernfs 1374 * active_ref. cgroup liveliness check alone provides enough 1375 * protection against removal. Ensure @cgrp stays accessible and 1376 * break the active_ref protection. 1377 */ 1378 if (!cgroup_tryget(cgrp)) 1379 return NULL; 1380 kernfs_break_active_protection(kn); 1381 1382 mutex_lock(&cgroup_mutex); 1383 1384 if (!cgroup_is_dead(cgrp)) 1385 return cgrp; 1386 1387 cgroup_kn_unlock(kn); 1388 return NULL; 1389} 1390 1391static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1392{ 1393 char name[CGROUP_FILE_NAME_MAX]; 1394 1395 lockdep_assert_held(&cgroup_mutex); 1396 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1397} 1398 1399/** 1400 * css_clear_dir - remove subsys files in a cgroup directory 1401 * @css: taget css 1402 * @cgrp_override: specify if target cgroup is different from css->cgroup 1403 */ 1404static void css_clear_dir(struct cgroup_subsys_state *css, 1405 struct cgroup *cgrp_override) 1406{ 1407 struct cgroup *cgrp = cgrp_override ?: css->cgroup; 1408 struct cftype *cfts; 1409 1410 list_for_each_entry(cfts, &css->ss->cfts, node) 1411 cgroup_addrm_files(css, cgrp, cfts, false); 1412} 1413 1414/** 1415 * css_populate_dir - create subsys files in a cgroup directory 1416 * @css: target css 1417 * @cgrp_overried: specify if target cgroup is different from css->cgroup 1418 * 1419 * On failure, no file is added. 1420 */ 1421static int css_populate_dir(struct cgroup_subsys_state *css, 1422 struct cgroup *cgrp_override) 1423{ 1424 struct cgroup *cgrp = cgrp_override ?: css->cgroup; 1425 struct cftype *cfts, *failed_cfts; 1426 int ret; 1427 1428 if (!css->ss) { 1429 if (cgroup_on_dfl(cgrp)) 1430 cfts = cgroup_dfl_base_files; 1431 else 1432 cfts = cgroup_legacy_base_files; 1433 1434 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1435 } 1436 1437 list_for_each_entry(cfts, &css->ss->cfts, node) { 1438 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1439 if (ret < 0) { 1440 failed_cfts = cfts; 1441 goto err; 1442 } 1443 } 1444 return 0; 1445err: 1446 list_for_each_entry(cfts, &css->ss->cfts, node) { 1447 if (cfts == failed_cfts) 1448 break; 1449 cgroup_addrm_files(css, cgrp, cfts, false); 1450 } 1451 return ret; 1452} 1453 1454static int rebind_subsystems(struct cgroup_root *dst_root, 1455 unsigned long ss_mask) 1456{ 1457 struct cgroup *dcgrp = &dst_root->cgrp; 1458 struct cgroup_subsys *ss; 1459 unsigned long tmp_ss_mask; 1460 int ssid, i, ret; 1461 1462 lockdep_assert_held(&cgroup_mutex); 1463 1464 for_each_subsys_which(ss, ssid, &ss_mask) { 1465 /* if @ss has non-root csses attached to it, can't move */ 1466 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss))) 1467 return -EBUSY; 1468 1469 /* can't move between two non-dummy roots either */ 1470 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1471 return -EBUSY; 1472 } 1473 1474 /* skip creating root files on dfl_root for inhibited subsystems */ 1475 tmp_ss_mask = ss_mask; 1476 if (dst_root == &cgrp_dfl_root) 1477 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask; 1478 1479 for_each_subsys_which(ss, ssid, &tmp_ss_mask) { 1480 struct cgroup *scgrp = &ss->root->cgrp; 1481 int tssid; 1482 1483 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp); 1484 if (!ret) 1485 continue; 1486 1487 /* 1488 * Rebinding back to the default root is not allowed to 1489 * fail. Using both default and non-default roots should 1490 * be rare. Moving subsystems back and forth even more so. 1491 * Just warn about it and continue. 1492 */ 1493 if (dst_root == &cgrp_dfl_root) { 1494 if (cgrp_dfl_root_visible) { 1495 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n", 1496 ret, ss_mask); 1497 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n"); 1498 } 1499 continue; 1500 } 1501 1502 for_each_subsys_which(ss, tssid, &tmp_ss_mask) { 1503 if (tssid == ssid) 1504 break; 1505 css_clear_dir(cgroup_css(scgrp, ss), dcgrp); 1506 } 1507 return ret; 1508 } 1509 1510 /* 1511 * Nothing can fail from this point on. Remove files for the 1512 * removed subsystems and rebind each subsystem. 1513 */ 1514 for_each_subsys_which(ss, ssid, &ss_mask) { 1515 struct cgroup_root *src_root = ss->root; 1516 struct cgroup *scgrp = &src_root->cgrp; 1517 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1518 struct css_set *cset; 1519 1520 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1521 1522 css_clear_dir(css, NULL); 1523 1524 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1525 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1526 ss->root = dst_root; 1527 css->cgroup = dcgrp; 1528 1529 spin_lock_bh(&css_set_lock); 1530 hash_for_each(css_set_table, i, cset, hlist) 1531 list_move_tail(&cset->e_cset_node[ss->id], 1532 &dcgrp->e_csets[ss->id]); 1533 spin_unlock_bh(&css_set_lock); 1534 1535 src_root->subsys_mask &= ~(1 << ssid); 1536 scgrp->subtree_control &= ~(1 << ssid); 1537 cgroup_refresh_child_subsys_mask(scgrp); 1538 1539 /* default hierarchy doesn't enable controllers by default */ 1540 dst_root->subsys_mask |= 1 << ssid; 1541 if (dst_root == &cgrp_dfl_root) { 1542 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1543 } else { 1544 dcgrp->subtree_control |= 1 << ssid; 1545 cgroup_refresh_child_subsys_mask(dcgrp); 1546 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1547 } 1548 1549 if (ss->bind) 1550 ss->bind(css); 1551 } 1552 1553 kernfs_activate(dcgrp->kn); 1554 return 0; 1555} 1556 1557static int cgroup_show_options(struct seq_file *seq, 1558 struct kernfs_root *kf_root) 1559{ 1560 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1561 struct cgroup_subsys *ss; 1562 int ssid; 1563 1564 if (root != &cgrp_dfl_root) 1565 for_each_subsys(ss, ssid) 1566 if (root->subsys_mask & (1 << ssid)) 1567 seq_show_option(seq, ss->legacy_name, NULL); 1568 if (root->flags & CGRP_ROOT_NOPREFIX) 1569 seq_puts(seq, ",noprefix"); 1570 if (root->flags & CGRP_ROOT_XATTR) 1571 seq_puts(seq, ",xattr"); 1572 1573 spin_lock(&release_agent_path_lock); 1574 if (strlen(root->release_agent_path)) 1575 seq_show_option(seq, "release_agent", 1576 root->release_agent_path); 1577 spin_unlock(&release_agent_path_lock); 1578 1579 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) 1580 seq_puts(seq, ",clone_children"); 1581 if (strlen(root->name)) 1582 seq_show_option(seq, "name", root->name); 1583 return 0; 1584} 1585 1586struct cgroup_sb_opts { 1587 unsigned long subsys_mask; 1588 unsigned int flags; 1589 char *release_agent; 1590 bool cpuset_clone_children; 1591 char *name; 1592 /* User explicitly requested empty subsystem */ 1593 bool none; 1594}; 1595 1596static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) 1597{ 1598 char *token, *o = data; 1599 bool all_ss = false, one_ss = false; 1600 unsigned long mask = -1UL; 1601 struct cgroup_subsys *ss; 1602 int nr_opts = 0; 1603 int i; 1604 1605#ifdef CONFIG_CPUSETS 1606 mask = ~(1U << cpuset_cgrp_id); 1607#endif 1608 1609 memset(opts, 0, sizeof(*opts)); 1610 1611 while ((token = strsep(&o, ",")) != NULL) { 1612 nr_opts++; 1613 1614 if (!*token) 1615 return -EINVAL; 1616 if (!strcmp(token, "none")) { 1617 /* Explicitly have no subsystems */ 1618 opts->none = true; 1619 continue; 1620 } 1621 if (!strcmp(token, "all")) { 1622 /* Mutually exclusive option 'all' + subsystem name */ 1623 if (one_ss) 1624 return -EINVAL; 1625 all_ss = true; 1626 continue; 1627 } 1628 if (!strcmp(token, "__DEVEL__sane_behavior")) { 1629 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR; 1630 continue; 1631 } 1632 if (!strcmp(token, "noprefix")) { 1633 opts->flags |= CGRP_ROOT_NOPREFIX; 1634 continue; 1635 } 1636 if (!strcmp(token, "clone_children")) { 1637 opts->cpuset_clone_children = true; 1638 continue; 1639 } 1640 if (!strcmp(token, "xattr")) { 1641 opts->flags |= CGRP_ROOT_XATTR; 1642 continue; 1643 } 1644 if (!strncmp(token, "release_agent=", 14)) { 1645 /* Specifying two release agents is forbidden */ 1646 if (opts->release_agent) 1647 return -EINVAL; 1648 opts->release_agent = 1649 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); 1650 if (!opts->release_agent) 1651 return -ENOMEM; 1652 continue; 1653 } 1654 if (!strncmp(token, "name=", 5)) { 1655 const char *name = token + 5; 1656 /* Can't specify an empty name */ 1657 if (!strlen(name)) 1658 return -EINVAL; 1659 /* Must match [\w.-]+ */ 1660 for (i = 0; i < strlen(name); i++) { 1661 char c = name[i]; 1662 if (isalnum(c)) 1663 continue; 1664 if ((c == '.') || (c == '-') || (c == '_')) 1665 continue; 1666 return -EINVAL; 1667 } 1668 /* Specifying two names is forbidden */ 1669 if (opts->name) 1670 return -EINVAL; 1671 opts->name = kstrndup(name, 1672 MAX_CGROUP_ROOT_NAMELEN - 1, 1673 GFP_KERNEL); 1674 if (!opts->name) 1675 return -ENOMEM; 1676 1677 continue; 1678 } 1679 1680 for_each_subsys(ss, i) { 1681 if (strcmp(token, ss->legacy_name)) 1682 continue; 1683 if (!cgroup_ssid_enabled(i)) 1684 continue; 1685 1686 /* Mutually exclusive option 'all' + subsystem name */ 1687 if (all_ss) 1688 return -EINVAL; 1689 opts->subsys_mask |= (1 << i); 1690 one_ss = true; 1691 1692 break; 1693 } 1694 if (i == CGROUP_SUBSYS_COUNT) 1695 return -ENOENT; 1696 } 1697 1698 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { 1699 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); 1700 if (nr_opts != 1) { 1701 pr_err("sane_behavior: no other mount options allowed\n"); 1702 return -EINVAL; 1703 } 1704 return 0; 1705 } 1706 1707 /* 1708 * If the 'all' option was specified select all the subsystems, 1709 * otherwise if 'none', 'name=' and a subsystem name options were 1710 * not specified, let's default to 'all' 1711 */ 1712 if (all_ss || (!one_ss && !opts->none && !opts->name)) 1713 for_each_subsys(ss, i) 1714 if (cgroup_ssid_enabled(i)) 1715 opts->subsys_mask |= (1 << i); 1716 1717 /* 1718 * We either have to specify by name or by subsystems. (So all 1719 * empty hierarchies must have a name). 1720 */ 1721 if (!opts->subsys_mask && !opts->name) 1722 return -EINVAL; 1723 1724 /* 1725 * Option noprefix was introduced just for backward compatibility 1726 * with the old cpuset, so we allow noprefix only if mounting just 1727 * the cpuset subsystem. 1728 */ 1729 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) 1730 return -EINVAL; 1731 1732 /* Can't specify "none" and some subsystems */ 1733 if (opts->subsys_mask && opts->none) 1734 return -EINVAL; 1735 1736 return 0; 1737} 1738 1739static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1740{ 1741 int ret = 0; 1742 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 1743 struct cgroup_sb_opts opts; 1744 unsigned long added_mask, removed_mask; 1745 1746 if (root == &cgrp_dfl_root) { 1747 pr_err("remount is not allowed\n"); 1748 return -EINVAL; 1749 } 1750 1751 mutex_lock(&cgroup_mutex); 1752 1753 /* See what subsystems are wanted */ 1754 ret = parse_cgroupfs_options(data, &opts); 1755 if (ret) 1756 goto out_unlock; 1757 1758 if (opts.subsys_mask != root->subsys_mask || opts.release_agent) 1759 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", 1760 task_tgid_nr(current), current->comm); 1761 1762 added_mask = opts.subsys_mask & ~root->subsys_mask; 1763 removed_mask = root->subsys_mask & ~opts.subsys_mask; 1764 1765 /* Don't allow flags or name to change at remount */ 1766 if ((opts.flags ^ root->flags) || 1767 (opts.name && strcmp(opts.name, root->name))) { 1768 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", 1769 opts.flags, opts.name ?: "", root->flags, root->name); 1770 ret = -EINVAL; 1771 goto out_unlock; 1772 } 1773 1774 /* remounting is not allowed for populated hierarchies */ 1775 if (!list_empty(&root->cgrp.self.children)) { 1776 ret = -EBUSY; 1777 goto out_unlock; 1778 } 1779 1780 ret = rebind_subsystems(root, added_mask); 1781 if (ret) 1782 goto out_unlock; 1783 1784 rebind_subsystems(&cgrp_dfl_root, removed_mask); 1785 1786 if (opts.release_agent) { 1787 spin_lock(&release_agent_path_lock); 1788 strcpy(root->release_agent_path, opts.release_agent); 1789 spin_unlock(&release_agent_path_lock); 1790 } 1791 out_unlock: 1792 kfree(opts.release_agent); 1793 kfree(opts.name); 1794 mutex_unlock(&cgroup_mutex); 1795 return ret; 1796} 1797 1798/* 1799 * To reduce the fork() overhead for systems that are not actually using 1800 * their cgroups capability, we don't maintain the lists running through 1801 * each css_set to its tasks until we see the list actually used - in other 1802 * words after the first mount. 1803 */ 1804static bool use_task_css_set_links __read_mostly; 1805 1806static void cgroup_enable_task_cg_lists(void) 1807{ 1808 struct task_struct *p, *g; 1809 1810 spin_lock_bh(&css_set_lock); 1811 1812 if (use_task_css_set_links) 1813 goto out_unlock; 1814 1815 use_task_css_set_links = true; 1816 1817 /* 1818 * We need tasklist_lock because RCU is not safe against 1819 * while_each_thread(). Besides, a forking task that has passed 1820 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1821 * is not guaranteed to have its child immediately visible in the 1822 * tasklist if we walk through it with RCU. 1823 */ 1824 read_lock(&tasklist_lock); 1825 do_each_thread(g, p) { 1826 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1827 task_css_set(p) != &init_css_set); 1828 1829 /* 1830 * We should check if the process is exiting, otherwise 1831 * it will race with cgroup_exit() in that the list 1832 * entry won't be deleted though the process has exited. 1833 * Do it while holding siglock so that we don't end up 1834 * racing against cgroup_exit(). 1835 */ 1836 spin_lock_irq(&p->sighand->siglock); 1837 if (!(p->flags & PF_EXITING)) { 1838 struct css_set *cset = task_css_set(p); 1839 1840 if (!css_set_populated(cset)) 1841 css_set_update_populated(cset, true); 1842 list_add_tail(&p->cg_list, &cset->tasks); 1843 get_css_set(cset); 1844 } 1845 spin_unlock_irq(&p->sighand->siglock); 1846 } while_each_thread(g, p); 1847 read_unlock(&tasklist_lock); 1848out_unlock: 1849 spin_unlock_bh(&css_set_lock); 1850} 1851 1852static void init_cgroup_housekeeping(struct cgroup *cgrp) 1853{ 1854 struct cgroup_subsys *ss; 1855 int ssid; 1856 1857 INIT_LIST_HEAD(&cgrp->self.sibling); 1858 INIT_LIST_HEAD(&cgrp->self.children); 1859 INIT_LIST_HEAD(&cgrp->self.files); 1860 INIT_LIST_HEAD(&cgrp->cset_links); 1861 INIT_LIST_HEAD(&cgrp->pidlists); 1862 mutex_init(&cgrp->pidlist_mutex); 1863 cgrp->self.cgroup = cgrp; 1864 cgrp->self.flags |= CSS_ONLINE; 1865 1866 for_each_subsys(ss, ssid) 1867 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1868 1869 init_waitqueue_head(&cgrp->offline_waitq); 1870 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent); 1871} 1872 1873static void init_cgroup_root(struct cgroup_root *root, 1874 struct cgroup_sb_opts *opts) 1875{ 1876 struct cgroup *cgrp = &root->cgrp; 1877 1878 INIT_LIST_HEAD(&root->root_list); 1879 atomic_set(&root->nr_cgrps, 1); 1880 cgrp->root = root; 1881 init_cgroup_housekeeping(cgrp); 1882 idr_init(&root->cgroup_idr); 1883 1884 root->flags = opts->flags; 1885 if (opts->release_agent) 1886 strcpy(root->release_agent_path, opts->release_agent); 1887 if (opts->name) 1888 strcpy(root->name, opts->name); 1889 if (opts->cpuset_clone_children) 1890 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1891} 1892 1893static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask) 1894{ 1895 LIST_HEAD(tmp_links); 1896 struct cgroup *root_cgrp = &root->cgrp; 1897 struct css_set *cset; 1898 int i, ret; 1899 1900 lockdep_assert_held(&cgroup_mutex); 1901 1902 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1903 if (ret < 0) 1904 goto out; 1905 root_cgrp->id = ret; 1906 1907 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, 1908 GFP_KERNEL); 1909 if (ret) 1910 goto out; 1911 1912 /* 1913 * We're accessing css_set_count without locking css_set_lock here, 1914 * but that's OK - it can only be increased by someone holding 1915 * cgroup_lock, and that's us. The worst that can happen is that we 1916 * have some link structures left over 1917 */ 1918 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); 1919 if (ret) 1920 goto cancel_ref; 1921 1922 ret = cgroup_init_root_id(root); 1923 if (ret) 1924 goto cancel_ref; 1925 1926 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, 1927 KERNFS_ROOT_CREATE_DEACTIVATED, 1928 root_cgrp); 1929 if (IS_ERR(root->kf_root)) { 1930 ret = PTR_ERR(root->kf_root); 1931 goto exit_root_id; 1932 } 1933 root_cgrp->kn = root->kf_root->kn; 1934 1935 ret = css_populate_dir(&root_cgrp->self, NULL); 1936 if (ret) 1937 goto destroy_root; 1938 1939 ret = rebind_subsystems(root, ss_mask); 1940 if (ret) 1941 goto destroy_root; 1942 1943 /* 1944 * There must be no failure case after here, since rebinding takes 1945 * care of subsystems' refcounts, which are explicitly dropped in 1946 * the failure exit path. 1947 */ 1948 list_add(&root->root_list, &cgroup_roots); 1949 cgroup_root_count++; 1950 1951 /* 1952 * Link the root cgroup in this hierarchy into all the css_set 1953 * objects. 1954 */ 1955 spin_lock_bh(&css_set_lock); 1956 hash_for_each(css_set_table, i, cset, hlist) { 1957 link_css_set(&tmp_links, cset, root_cgrp); 1958 if (css_set_populated(cset)) 1959 cgroup_update_populated(root_cgrp, true); 1960 } 1961 spin_unlock_bh(&css_set_lock); 1962 1963 BUG_ON(!list_empty(&root_cgrp->self.children)); 1964 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1965 1966 kernfs_activate(root_cgrp->kn); 1967 ret = 0; 1968 goto out; 1969 1970destroy_root: 1971 kernfs_destroy_root(root->kf_root); 1972 root->kf_root = NULL; 1973exit_root_id: 1974 cgroup_exit_root_id(root); 1975cancel_ref: 1976 percpu_ref_exit(&root_cgrp->self.refcnt); 1977out: 1978 free_cgrp_cset_links(&tmp_links); 1979 return ret; 1980} 1981 1982static struct dentry *cgroup_mount(struct file_system_type *fs_type, 1983 int flags, const char *unused_dev_name, 1984 void *data) 1985{ 1986 struct super_block *pinned_sb = NULL; 1987 struct cgroup_subsys *ss; 1988 struct cgroup_root *root; 1989 struct cgroup_sb_opts opts; 1990 struct dentry *dentry; 1991 int ret; 1992 int i; 1993 bool new_sb; 1994 1995 /* 1996 * The first time anyone tries to mount a cgroup, enable the list 1997 * linking each css_set to its tasks and fix up all existing tasks. 1998 */ 1999 if (!use_task_css_set_links) 2000 cgroup_enable_task_cg_lists(); 2001 2002 mutex_lock(&cgroup_mutex); 2003 2004 /* First find the desired set of subsystems */ 2005 ret = parse_cgroupfs_options(data, &opts); 2006 if (ret) 2007 goto out_unlock; 2008 2009 /* look for a matching existing root */ 2010 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) { 2011 cgrp_dfl_root_visible = true; 2012 root = &cgrp_dfl_root; 2013 cgroup_get(&root->cgrp); 2014 ret = 0; 2015 goto out_unlock; 2016 } 2017 2018 /* 2019 * Destruction of cgroup root is asynchronous, so subsystems may 2020 * still be dying after the previous unmount. Let's drain the 2021 * dying subsystems. We just need to ensure that the ones 2022 * unmounted previously finish dying and don't care about new ones 2023 * starting. Testing ref liveliness is good enough. 2024 */ 2025 for_each_subsys(ss, i) { 2026 if (!(opts.subsys_mask & (1 << i)) || 2027 ss->root == &cgrp_dfl_root) 2028 continue; 2029 2030 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { 2031 mutex_unlock(&cgroup_mutex); 2032 msleep(10); 2033 ret = restart_syscall(); 2034 goto out_free; 2035 } 2036 cgroup_put(&ss->root->cgrp); 2037 } 2038 2039 for_each_root(root) { 2040 bool name_match = false; 2041 2042 if (root == &cgrp_dfl_root) 2043 continue; 2044 2045 /* 2046 * If we asked for a name then it must match. Also, if 2047 * name matches but sybsys_mask doesn't, we should fail. 2048 * Remember whether name matched. 2049 */ 2050 if (opts.name) { 2051 if (strcmp(opts.name, root->name)) 2052 continue; 2053 name_match = true; 2054 } 2055 2056 /* 2057 * If we asked for subsystems (or explicitly for no 2058 * subsystems) then they must match. 2059 */ 2060 if ((opts.subsys_mask || opts.none) && 2061 (opts.subsys_mask != root->subsys_mask)) { 2062 if (!name_match) 2063 continue; 2064 ret = -EBUSY; 2065 goto out_unlock; 2066 } 2067 2068 if (root->flags ^ opts.flags) 2069 pr_warn("new mount options do not match the existing superblock, will be ignored\n"); 2070 2071 /* 2072 * We want to reuse @root whose lifetime is governed by its 2073 * ->cgrp. Let's check whether @root is alive and keep it 2074 * that way. As cgroup_kill_sb() can happen anytime, we 2075 * want to block it by pinning the sb so that @root doesn't 2076 * get killed before mount is complete. 2077 * 2078 * With the sb pinned, tryget_live can reliably indicate 2079 * whether @root can be reused. If it's being killed, 2080 * drain it. We can use wait_queue for the wait but this 2081 * path is super cold. Let's just sleep a bit and retry. 2082 */ 2083 pinned_sb = kernfs_pin_sb(root->kf_root, NULL); 2084 if (IS_ERR(pinned_sb) || 2085 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { 2086 mutex_unlock(&cgroup_mutex); 2087 if (!IS_ERR_OR_NULL(pinned_sb)) 2088 deactivate_super(pinned_sb); 2089 msleep(10); 2090 ret = restart_syscall(); 2091 goto out_free; 2092 } 2093 2094 ret = 0; 2095 goto out_unlock; 2096 } 2097 2098 /* 2099 * No such thing, create a new one. name= matching without subsys 2100 * specification is allowed for already existing hierarchies but we 2101 * can't create new one without subsys specification. 2102 */ 2103 if (!opts.subsys_mask && !opts.none) { 2104 ret = -EINVAL; 2105 goto out_unlock; 2106 } 2107 2108 root = kzalloc(sizeof(*root), GFP_KERNEL); 2109 if (!root) { 2110 ret = -ENOMEM; 2111 goto out_unlock; 2112 } 2113 2114 init_cgroup_root(root, &opts); 2115 2116 ret = cgroup_setup_root(root, opts.subsys_mask); 2117 if (ret) 2118 cgroup_free_root(root); 2119 2120out_unlock: 2121 mutex_unlock(&cgroup_mutex); 2122out_free: 2123 kfree(opts.release_agent); 2124 kfree(opts.name); 2125 2126 if (ret) 2127 return ERR_PTR(ret); 2128 2129 dentry = kernfs_mount(fs_type, flags, root->kf_root, 2130 CGROUP_SUPER_MAGIC, &new_sb); 2131 if (IS_ERR(dentry) || !new_sb) 2132 cgroup_put(&root->cgrp); 2133 2134 /* 2135 * If @pinned_sb, we're reusing an existing root and holding an 2136 * extra ref on its sb. Mount is complete. Put the extra ref. 2137 */ 2138 if (pinned_sb) { 2139 WARN_ON(new_sb); 2140 deactivate_super(pinned_sb); 2141 } 2142 2143 return dentry; 2144} 2145 2146static void cgroup_kill_sb(struct super_block *sb) 2147{ 2148 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2149 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2150 2151 /* 2152 * If @root doesn't have any mounts or children, start killing it. 2153 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2154 * cgroup_mount() may wait for @root's release. 2155 * 2156 * And don't kill the default root. 2157 */ 2158 if (!list_empty(&root->cgrp.self.children) || 2159 root == &cgrp_dfl_root) 2160 cgroup_put(&root->cgrp); 2161 else 2162 percpu_ref_kill(&root->cgrp.self.refcnt); 2163 2164 kernfs_kill_sb(sb); 2165} 2166 2167static struct file_system_type cgroup_fs_type = { 2168 .name = "cgroup", 2169 .mount = cgroup_mount, 2170 .kill_sb = cgroup_kill_sb, 2171}; 2172 2173/** 2174 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2175 * @task: target task 2176 * @buf: the buffer to write the path into 2177 * @buflen: the length of the buffer 2178 * 2179 * Determine @task's cgroup on the first (the one with the lowest non-zero 2180 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2181 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2182 * cgroup controller callbacks. 2183 * 2184 * Return value is the same as kernfs_path(). 2185 */ 2186char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2187{ 2188 struct cgroup_root *root; 2189 struct cgroup *cgrp; 2190 int hierarchy_id = 1; 2191 char *path = NULL; 2192 2193 mutex_lock(&cgroup_mutex); 2194 spin_lock_bh(&css_set_lock); 2195 2196 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2197 2198 if (root) { 2199 cgrp = task_cgroup_from_root(task, root); 2200 path = cgroup_path(cgrp, buf, buflen); 2201 } else { 2202 /* if no hierarchy exists, everyone is in "/" */ 2203 if (strlcpy(buf, "/", buflen) < buflen) 2204 path = buf; 2205 } 2206 2207 spin_unlock_bh(&css_set_lock); 2208 mutex_unlock(&cgroup_mutex); 2209 return path; 2210} 2211EXPORT_SYMBOL_GPL(task_cgroup_path); 2212 2213/* used to track tasks and other necessary states during migration */ 2214struct cgroup_taskset { 2215 /* the src and dst cset list running through cset->mg_node */ 2216 struct list_head src_csets; 2217 struct list_head dst_csets; 2218 2219 /* 2220 * Fields for cgroup_taskset_*() iteration. 2221 * 2222 * Before migration is committed, the target migration tasks are on 2223 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of 2224 * the csets on ->dst_csets. ->csets point to either ->src_csets 2225 * or ->dst_csets depending on whether migration is committed. 2226 * 2227 * ->cur_csets and ->cur_task point to the current task position 2228 * during iteration. 2229 */ 2230 struct list_head *csets; 2231 struct css_set *cur_cset; 2232 struct task_struct *cur_task; 2233}; 2234 2235#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \ 2236 .src_csets = LIST_HEAD_INIT(tset.src_csets), \ 2237 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ 2238 .csets = &tset.src_csets, \ 2239} 2240 2241/** 2242 * cgroup_taskset_add - try to add a migration target task to a taskset 2243 * @task: target task 2244 * @tset: target taskset 2245 * 2246 * Add @task, which is a migration target, to @tset. This function becomes 2247 * noop if @task doesn't need to be migrated. @task's css_set should have 2248 * been added as a migration source and @task->cg_list will be moved from 2249 * the css_set's tasks list to mg_tasks one. 2250 */ 2251static void cgroup_taskset_add(struct task_struct *task, 2252 struct cgroup_taskset *tset) 2253{ 2254 struct css_set *cset; 2255 2256 lockdep_assert_held(&css_set_lock); 2257 2258 /* @task either already exited or can't exit until the end */ 2259 if (task->flags & PF_EXITING) 2260 return; 2261 2262 /* leave @task alone if post_fork() hasn't linked it yet */ 2263 if (list_empty(&task->cg_list)) 2264 return; 2265 2266 cset = task_css_set(task); 2267 if (!cset->mg_src_cgrp) 2268 return; 2269 2270 list_move_tail(&task->cg_list, &cset->mg_tasks); 2271 if (list_empty(&cset->mg_node)) 2272 list_add_tail(&cset->mg_node, &tset->src_csets); 2273 if (list_empty(&cset->mg_dst_cset->mg_node)) 2274 list_move_tail(&cset->mg_dst_cset->mg_node, 2275 &tset->dst_csets); 2276} 2277 2278/** 2279 * cgroup_taskset_first - reset taskset and return the first task 2280 * @tset: taskset of interest 2281 * 2282 * @tset iteration is initialized and the first task is returned. 2283 */ 2284struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) 2285{ 2286 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2287 tset->cur_task = NULL; 2288 2289 return cgroup_taskset_next(tset); 2290} 2291 2292/** 2293 * cgroup_taskset_next - iterate to the next task in taskset 2294 * @tset: taskset of interest 2295 * 2296 * Return the next task in @tset. Iteration must have been initialized 2297 * with cgroup_taskset_first(). 2298 */ 2299struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) 2300{ 2301 struct css_set *cset = tset->cur_cset; 2302 struct task_struct *task = tset->cur_task; 2303 2304 while (&cset->mg_node != tset->csets) { 2305 if (!task) 2306 task = list_first_entry(&cset->mg_tasks, 2307 struct task_struct, cg_list); 2308 else 2309 task = list_next_entry(task, cg_list); 2310 2311 if (&task->cg_list != &cset->mg_tasks) { 2312 tset->cur_cset = cset; 2313 tset->cur_task = task; 2314 return task; 2315 } 2316 2317 cset = list_next_entry(cset, mg_node); 2318 task = NULL; 2319 } 2320 2321 return NULL; 2322} 2323 2324/** 2325 * cgroup_taskset_migrate - migrate a taskset to a cgroup 2326 * @tset: taget taskset 2327 * @dst_cgrp: destination cgroup 2328 * 2329 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the 2330 * ->can_attach callbacks fails and guarantees that either all or none of 2331 * the tasks in @tset are migrated. @tset is consumed regardless of 2332 * success. 2333 */ 2334static int cgroup_taskset_migrate(struct cgroup_taskset *tset, 2335 struct cgroup *dst_cgrp) 2336{ 2337 struct cgroup_subsys_state *css, *failed_css = NULL; 2338 struct task_struct *task, *tmp_task; 2339 struct css_set *cset, *tmp_cset; 2340 int i, ret; 2341 2342 /* methods shouldn't be called if no task is actually migrating */ 2343 if (list_empty(&tset->src_csets)) 2344 return 0; 2345 2346 /* check that we can legitimately attach to the cgroup */ 2347 for_each_e_css(css, i, dst_cgrp) { 2348 if (css->ss->can_attach) { 2349 ret = css->ss->can_attach(css, tset); 2350 if (ret) { 2351 failed_css = css; 2352 goto out_cancel_attach; 2353 } 2354 } 2355 } 2356 2357 /* 2358 * Now that we're guaranteed success, proceed to move all tasks to 2359 * the new cgroup. There are no failure cases after here, so this 2360 * is the commit point. 2361 */ 2362 spin_lock_bh(&css_set_lock); 2363 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2364 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2365 struct css_set *from_cset = task_css_set(task); 2366 struct css_set *to_cset = cset->mg_dst_cset; 2367 2368 get_css_set(to_cset); 2369 css_set_move_task(task, from_cset, to_cset, true); 2370 put_css_set_locked(from_cset); 2371 } 2372 } 2373 spin_unlock_bh(&css_set_lock); 2374 2375 /* 2376 * Migration is committed, all target tasks are now on dst_csets. 2377 * Nothing is sensitive to fork() after this point. Notify 2378 * controllers that migration is complete. 2379 */ 2380 tset->csets = &tset->dst_csets; 2381 2382 for_each_e_css(css, i, dst_cgrp) 2383 if (css->ss->attach) 2384 css->ss->attach(css, tset); 2385 2386 ret = 0; 2387 goto out_release_tset; 2388 2389out_cancel_attach: 2390 for_each_e_css(css, i, dst_cgrp) { 2391 if (css == failed_css) 2392 break; 2393 if (css->ss->cancel_attach) 2394 css->ss->cancel_attach(css, tset); 2395 } 2396out_release_tset: 2397 spin_lock_bh(&css_set_lock); 2398 list_splice_init(&tset->dst_csets, &tset->src_csets); 2399 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2400 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2401 list_del_init(&cset->mg_node); 2402 } 2403 spin_unlock_bh(&css_set_lock); 2404 return ret; 2405} 2406 2407/** 2408 * cgroup_migrate_finish - cleanup after attach 2409 * @preloaded_csets: list of preloaded css_sets 2410 * 2411 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2412 * those functions for details. 2413 */ 2414static void cgroup_migrate_finish(struct list_head *preloaded_csets) 2415{ 2416 struct css_set *cset, *tmp_cset; 2417 2418 lockdep_assert_held(&cgroup_mutex); 2419 2420 spin_lock_bh(&css_set_lock); 2421 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) { 2422 cset->mg_src_cgrp = NULL; 2423 cset->mg_dst_cset = NULL; 2424 list_del_init(&cset->mg_preload_node); 2425 put_css_set_locked(cset); 2426 } 2427 spin_unlock_bh(&css_set_lock); 2428} 2429 2430/** 2431 * cgroup_migrate_add_src - add a migration source css_set 2432 * @src_cset: the source css_set to add 2433 * @dst_cgrp: the destination cgroup 2434 * @preloaded_csets: list of preloaded css_sets 2435 * 2436 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2437 * @src_cset and add it to @preloaded_csets, which should later be cleaned 2438 * up by cgroup_migrate_finish(). 2439 * 2440 * This function may be called without holding cgroup_threadgroup_rwsem 2441 * even if the target is a process. Threads may be created and destroyed 2442 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2443 * into play and the preloaded css_sets are guaranteed to cover all 2444 * migrations. 2445 */ 2446static void cgroup_migrate_add_src(struct css_set *src_cset, 2447 struct cgroup *dst_cgrp, 2448 struct list_head *preloaded_csets) 2449{ 2450 struct cgroup *src_cgrp; 2451 2452 lockdep_assert_held(&cgroup_mutex); 2453 lockdep_assert_held(&css_set_lock); 2454 2455 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2456 2457 if (!list_empty(&src_cset->mg_preload_node)) 2458 return; 2459 2460 WARN_ON(src_cset->mg_src_cgrp); 2461 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2462 WARN_ON(!list_empty(&src_cset->mg_node)); 2463 2464 src_cset->mg_src_cgrp = src_cgrp; 2465 get_css_set(src_cset); 2466 list_add(&src_cset->mg_preload_node, preloaded_csets); 2467} 2468 2469/** 2470 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2471 * @dst_cgrp: the destination cgroup (may be %NULL) 2472 * @preloaded_csets: list of preloaded source css_sets 2473 * 2474 * Tasks are about to be moved to @dst_cgrp and all the source css_sets 2475 * have been preloaded to @preloaded_csets. This function looks up and 2476 * pins all destination css_sets, links each to its source, and append them 2477 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each 2478 * source css_set is assumed to be its cgroup on the default hierarchy. 2479 * 2480 * This function must be called after cgroup_migrate_add_src() has been 2481 * called on each migration source css_set. After migration is performed 2482 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2483 * @preloaded_csets. 2484 */ 2485static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp, 2486 struct list_head *preloaded_csets) 2487{ 2488 LIST_HEAD(csets); 2489 struct css_set *src_cset, *tmp_cset; 2490 2491 lockdep_assert_held(&cgroup_mutex); 2492 2493 /* 2494 * Except for the root, child_subsys_mask must be zero for a cgroup 2495 * with tasks so that child cgroups don't compete against tasks. 2496 */ 2497 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) && 2498 dst_cgrp->child_subsys_mask) 2499 return -EBUSY; 2500 2501 /* look up the dst cset for each src cset and link it to src */ 2502 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) { 2503 struct css_set *dst_cset; 2504 2505 dst_cset = find_css_set(src_cset, 2506 dst_cgrp ?: src_cset->dfl_cgrp); 2507 if (!dst_cset) 2508 goto err; 2509 2510 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2511 2512 /* 2513 * If src cset equals dst, it's noop. Drop the src. 2514 * cgroup_migrate() will skip the cset too. Note that we 2515 * can't handle src == dst as some nodes are used by both. 2516 */ 2517 if (src_cset == dst_cset) { 2518 src_cset->mg_src_cgrp = NULL; 2519 list_del_init(&src_cset->mg_preload_node); 2520 put_css_set(src_cset); 2521 put_css_set(dst_cset); 2522 continue; 2523 } 2524 2525 src_cset->mg_dst_cset = dst_cset; 2526 2527 if (list_empty(&dst_cset->mg_preload_node)) 2528 list_add(&dst_cset->mg_preload_node, &csets); 2529 else 2530 put_css_set(dst_cset); 2531 } 2532 2533 list_splice_tail(&csets, preloaded_csets); 2534 return 0; 2535err: 2536 cgroup_migrate_finish(&csets); 2537 return -ENOMEM; 2538} 2539 2540/** 2541 * cgroup_migrate - migrate a process or task to a cgroup 2542 * @leader: the leader of the process or the task to migrate 2543 * @threadgroup: whether @leader points to the whole process or a single task 2544 * @cgrp: the destination cgroup 2545 * 2546 * Migrate a process or task denoted by @leader to @cgrp. If migrating a 2547 * process, the caller must be holding cgroup_threadgroup_rwsem. The 2548 * caller is also responsible for invoking cgroup_migrate_add_src() and 2549 * cgroup_migrate_prepare_dst() on the targets before invoking this 2550 * function and following up with cgroup_migrate_finish(). 2551 * 2552 * As long as a controller's ->can_attach() doesn't fail, this function is 2553 * guaranteed to succeed. This means that, excluding ->can_attach() 2554 * failure, when migrating multiple targets, the success or failure can be 2555 * decided for all targets by invoking group_migrate_prepare_dst() before 2556 * actually starting migrating. 2557 */ 2558static int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2559 struct cgroup *cgrp) 2560{ 2561 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); 2562 struct task_struct *task; 2563 2564 /* 2565 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2566 * already PF_EXITING could be freed from underneath us unless we 2567 * take an rcu_read_lock. 2568 */ 2569 spin_lock_bh(&css_set_lock); 2570 rcu_read_lock(); 2571 task = leader; 2572 do { 2573 cgroup_taskset_add(task, &tset); 2574 if (!threadgroup) 2575 break; 2576 } while_each_thread(leader, task); 2577 rcu_read_unlock(); 2578 spin_unlock_bh(&css_set_lock); 2579 2580 return cgroup_taskset_migrate(&tset, cgrp); 2581} 2582 2583/** 2584 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2585 * @dst_cgrp: the cgroup to attach to 2586 * @leader: the task or the leader of the threadgroup to be attached 2587 * @threadgroup: attach the whole threadgroup? 2588 * 2589 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2590 */ 2591static int cgroup_attach_task(struct cgroup *dst_cgrp, 2592 struct task_struct *leader, bool threadgroup) 2593{ 2594 LIST_HEAD(preloaded_csets); 2595 struct task_struct *task; 2596 int ret; 2597 2598 /* look up all src csets */ 2599 spin_lock_bh(&css_set_lock); 2600 rcu_read_lock(); 2601 task = leader; 2602 do { 2603 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, 2604 &preloaded_csets); 2605 if (!threadgroup) 2606 break; 2607 } while_each_thread(leader, task); 2608 rcu_read_unlock(); 2609 spin_unlock_bh(&css_set_lock); 2610 2611 /* prepare dst csets and commit */ 2612 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets); 2613 if (!ret) 2614 ret = cgroup_migrate(leader, threadgroup, dst_cgrp); 2615 2616 cgroup_migrate_finish(&preloaded_csets); 2617 return ret; 2618} 2619 2620static int cgroup_procs_write_permission(struct task_struct *task, 2621 struct cgroup *dst_cgrp, 2622 struct kernfs_open_file *of) 2623{ 2624 const struct cred *cred = current_cred(); 2625 const struct cred *tcred = get_task_cred(task); 2626 int ret = 0; 2627 2628 /* 2629 * even if we're attaching all tasks in the thread group, we only 2630 * need to check permissions on one of them. 2631 */ 2632 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 2633 !uid_eq(cred->euid, tcred->uid) && 2634 !uid_eq(cred->euid, tcred->suid)) 2635 ret = -EACCES; 2636 2637 if (!ret && cgroup_on_dfl(dst_cgrp)) { 2638 struct super_block *sb = of->file->f_path.dentry->d_sb; 2639 struct cgroup *cgrp; 2640 struct inode *inode; 2641 2642 spin_lock_bh(&css_set_lock); 2643 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 2644 spin_unlock_bh(&css_set_lock); 2645 2646 while (!cgroup_is_descendant(dst_cgrp, cgrp)) 2647 cgrp = cgroup_parent(cgrp); 2648 2649 ret = -ENOMEM; 2650 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 2651 if (inode) { 2652 ret = inode_permission(inode, MAY_WRITE); 2653 iput(inode); 2654 } 2655 } 2656 2657 put_cred(tcred); 2658 return ret; 2659} 2660 2661/* 2662 * Find the task_struct of the task to attach by vpid and pass it along to the 2663 * function to attach either it or all tasks in its threadgroup. Will lock 2664 * cgroup_mutex and threadgroup. 2665 */ 2666static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 2667 size_t nbytes, loff_t off, bool threadgroup) 2668{ 2669 struct task_struct *tsk; 2670 struct cgroup *cgrp; 2671 pid_t pid; 2672 int ret; 2673 2674 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2675 return -EINVAL; 2676 2677 cgrp = cgroup_kn_lock_live(of->kn); 2678 if (!cgrp) 2679 return -ENODEV; 2680 2681 percpu_down_write(&cgroup_threadgroup_rwsem); 2682 rcu_read_lock(); 2683 if (pid) { 2684 tsk = find_task_by_vpid(pid); 2685 if (!tsk) { 2686 ret = -ESRCH; 2687 goto out_unlock_rcu; 2688 } 2689 } else { 2690 tsk = current; 2691 } 2692 2693 if (threadgroup) 2694 tsk = tsk->group_leader; 2695 2696 /* 2697 * Workqueue threads may acquire PF_NO_SETAFFINITY and become 2698 * trapped in a cpuset, or RT worker may be born in a cgroup 2699 * with no rt_runtime allocated. Just say no. 2700 */ 2701 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { 2702 ret = -EINVAL; 2703 goto out_unlock_rcu; 2704 } 2705 2706 get_task_struct(tsk); 2707 rcu_read_unlock(); 2708 2709 ret = cgroup_procs_write_permission(tsk, cgrp, of); 2710 if (!ret) 2711 ret = cgroup_attach_task(cgrp, tsk, threadgroup); 2712 2713 put_task_struct(tsk); 2714 goto out_unlock_threadgroup; 2715 2716out_unlock_rcu: 2717 rcu_read_unlock(); 2718out_unlock_threadgroup: 2719 percpu_up_write(&cgroup_threadgroup_rwsem); 2720 cgroup_kn_unlock(of->kn); 2721 return ret ?: nbytes; 2722} 2723 2724/** 2725 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' 2726 * @from: attach to all cgroups of a given task 2727 * @tsk: the task to be attached 2728 */ 2729int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) 2730{ 2731 struct cgroup_root *root; 2732 int retval = 0; 2733 2734 mutex_lock(&cgroup_mutex); 2735 for_each_root(root) { 2736 struct cgroup *from_cgrp; 2737 2738 if (root == &cgrp_dfl_root) 2739 continue; 2740 2741 spin_lock_bh(&css_set_lock); 2742 from_cgrp = task_cgroup_from_root(from, root); 2743 spin_unlock_bh(&css_set_lock); 2744 2745 retval = cgroup_attach_task(from_cgrp, tsk, false); 2746 if (retval) 2747 break; 2748 } 2749 mutex_unlock(&cgroup_mutex); 2750 2751 return retval; 2752} 2753EXPORT_SYMBOL_GPL(cgroup_attach_task_all); 2754 2755static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, 2756 char *buf, size_t nbytes, loff_t off) 2757{ 2758 return __cgroup_procs_write(of, buf, nbytes, off, false); 2759} 2760 2761static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 2762 char *buf, size_t nbytes, loff_t off) 2763{ 2764 return __cgroup_procs_write(of, buf, nbytes, off, true); 2765} 2766 2767static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, 2768 char *buf, size_t nbytes, loff_t off) 2769{ 2770 struct cgroup *cgrp; 2771 2772 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); 2773 2774 cgrp = cgroup_kn_lock_live(of->kn); 2775 if (!cgrp) 2776 return -ENODEV; 2777 spin_lock(&release_agent_path_lock); 2778 strlcpy(cgrp->root->release_agent_path, strstrip(buf), 2779 sizeof(cgrp->root->release_agent_path)); 2780 spin_unlock(&release_agent_path_lock); 2781 cgroup_kn_unlock(of->kn); 2782 return nbytes; 2783} 2784 2785static int cgroup_release_agent_show(struct seq_file *seq, void *v) 2786{ 2787 struct cgroup *cgrp = seq_css(seq)->cgroup; 2788 2789 spin_lock(&release_agent_path_lock); 2790 seq_puts(seq, cgrp->root->release_agent_path); 2791 spin_unlock(&release_agent_path_lock); 2792 seq_putc(seq, '\n'); 2793 return 0; 2794} 2795 2796static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) 2797{ 2798 seq_puts(seq, "0\n"); 2799 return 0; 2800} 2801 2802static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask) 2803{ 2804 struct cgroup_subsys *ss; 2805 bool printed = false; 2806 int ssid; 2807 2808 for_each_subsys_which(ss, ssid, &ss_mask) { 2809 if (printed) 2810 seq_putc(seq, ' '); 2811 seq_printf(seq, "%s", ss->name); 2812 printed = true; 2813 } 2814 if (printed) 2815 seq_putc(seq, '\n'); 2816} 2817 2818/* show controllers which are currently attached to the default hierarchy */ 2819static int cgroup_root_controllers_show(struct seq_file *seq, void *v) 2820{ 2821 struct cgroup *cgrp = seq_css(seq)->cgroup; 2822 2823 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask & 2824 ~cgrp_dfl_root_inhibit_ss_mask); 2825 return 0; 2826} 2827 2828/* show controllers which are enabled from the parent */ 2829static int cgroup_controllers_show(struct seq_file *seq, void *v) 2830{ 2831 struct cgroup *cgrp = seq_css(seq)->cgroup; 2832 2833 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control); 2834 return 0; 2835} 2836 2837/* show controllers which are enabled for a given cgroup's children */ 2838static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2839{ 2840 struct cgroup *cgrp = seq_css(seq)->cgroup; 2841 2842 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2843 return 0; 2844} 2845 2846/** 2847 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2848 * @cgrp: root of the subtree to update csses for 2849 * 2850 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded) 2851 * css associations need to be updated accordingly. This function looks up 2852 * all css_sets which are attached to the subtree, creates the matching 2853 * updated css_sets and migrates the tasks to the new ones. 2854 */ 2855static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2856{ 2857 LIST_HEAD(preloaded_csets); 2858 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); 2859 struct cgroup_subsys_state *css; 2860 struct css_set *src_cset; 2861 int ret; 2862 2863 lockdep_assert_held(&cgroup_mutex); 2864 2865 percpu_down_write(&cgroup_threadgroup_rwsem); 2866 2867 /* look up all csses currently attached to @cgrp's subtree */ 2868 spin_lock_bh(&css_set_lock); 2869 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) { 2870 struct cgrp_cset_link *link; 2871 2872 /* self is not affected by child_subsys_mask change */ 2873 if (css->cgroup == cgrp) 2874 continue; 2875 2876 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) 2877 cgroup_migrate_add_src(link->cset, cgrp, 2878 &preloaded_csets); 2879 } 2880 spin_unlock_bh(&css_set_lock); 2881 2882 /* NULL dst indicates self on default hierarchy */ 2883 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets); 2884 if (ret) 2885 goto out_finish; 2886 2887 spin_lock_bh(&css_set_lock); 2888 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) { 2889 struct task_struct *task, *ntask; 2890 2891 /* src_csets precede dst_csets, break on the first dst_cset */ 2892 if (!src_cset->mg_src_cgrp) 2893 break; 2894 2895 /* all tasks in src_csets need to be migrated */ 2896 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2897 cgroup_taskset_add(task, &tset); 2898 } 2899 spin_unlock_bh(&css_set_lock); 2900 2901 ret = cgroup_taskset_migrate(&tset, cgrp); 2902out_finish: 2903 cgroup_migrate_finish(&preloaded_csets); 2904 percpu_up_write(&cgroup_threadgroup_rwsem); 2905 return ret; 2906} 2907 2908/* change the enabled child controllers for a cgroup in the default hierarchy */ 2909static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 2910 char *buf, size_t nbytes, 2911 loff_t off) 2912{ 2913 unsigned long enable = 0, disable = 0; 2914 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss; 2915 struct cgroup *cgrp, *child; 2916 struct cgroup_subsys *ss; 2917 char *tok; 2918 int ssid, ret; 2919 2920 /* 2921 * Parse input - space separated list of subsystem names prefixed 2922 * with either + or -. 2923 */ 2924 buf = strstrip(buf); 2925 while ((tok = strsep(&buf, " "))) { 2926 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask; 2927 2928 if (tok[0] == '\0') 2929 continue; 2930 for_each_subsys_which(ss, ssid, &tmp_ss_mask) { 2931 if (!cgroup_ssid_enabled(ssid) || 2932 strcmp(tok + 1, ss->name)) 2933 continue; 2934 2935 if (*tok == '+') { 2936 enable |= 1 << ssid; 2937 disable &= ~(1 << ssid); 2938 } else if (*tok == '-') { 2939 disable |= 1 << ssid; 2940 enable &= ~(1 << ssid); 2941 } else { 2942 return -EINVAL; 2943 } 2944 break; 2945 } 2946 if (ssid == CGROUP_SUBSYS_COUNT) 2947 return -EINVAL; 2948 } 2949 2950 cgrp = cgroup_kn_lock_live(of->kn); 2951 if (!cgrp) 2952 return -ENODEV; 2953 2954 for_each_subsys(ss, ssid) { 2955 if (enable & (1 << ssid)) { 2956 if (cgrp->subtree_control & (1 << ssid)) { 2957 enable &= ~(1 << ssid); 2958 continue; 2959 } 2960 2961 /* unavailable or not enabled on the parent? */ 2962 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) || 2963 (cgroup_parent(cgrp) && 2964 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) { 2965 ret = -ENOENT; 2966 goto out_unlock; 2967 } 2968 } else if (disable & (1 << ssid)) { 2969 if (!(cgrp->subtree_control & (1 << ssid))) { 2970 disable &= ~(1 << ssid); 2971 continue; 2972 } 2973 2974 /* a child has it enabled? */ 2975 cgroup_for_each_live_child(child, cgrp) { 2976 if (child->subtree_control & (1 << ssid)) { 2977 ret = -EBUSY; 2978 goto out_unlock; 2979 } 2980 } 2981 } 2982 } 2983 2984 if (!enable && !disable) { 2985 ret = 0; 2986 goto out_unlock; 2987 } 2988 2989 /* 2990 * Except for the root, subtree_control must be zero for a cgroup 2991 * with tasks so that child cgroups don't compete against tasks. 2992 */ 2993 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) { 2994 ret = -EBUSY; 2995 goto out_unlock; 2996 } 2997 2998 /* 2999 * Update subsys masks and calculate what needs to be done. More 3000 * subsystems than specified may need to be enabled or disabled 3001 * depending on subsystem dependencies. 3002 */ 3003 old_sc = cgrp->subtree_control; 3004 old_ss = cgrp->child_subsys_mask; 3005 new_sc = (old_sc | enable) & ~disable; 3006 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc); 3007 3008 css_enable = ~old_ss & new_ss; 3009 css_disable = old_ss & ~new_ss; 3010 enable |= css_enable; 3011 disable |= css_disable; 3012 3013 /* 3014 * Because css offlining is asynchronous, userland might try to 3015 * re-enable the same controller while the previous instance is 3016 * still around. In such cases, wait till it's gone using 3017 * offline_waitq. 3018 */ 3019 for_each_subsys_which(ss, ssid, &css_enable) { 3020 cgroup_for_each_live_child(child, cgrp) { 3021 DEFINE_WAIT(wait); 3022 3023 if (!cgroup_css(child, ss)) 3024 continue; 3025 3026 cgroup_get(child); 3027 prepare_to_wait(&child->offline_waitq, &wait, 3028 TASK_UNINTERRUPTIBLE); 3029 cgroup_kn_unlock(of->kn); 3030 schedule(); 3031 finish_wait(&child->offline_waitq, &wait); 3032 cgroup_put(child); 3033 3034 return restart_syscall(); 3035 } 3036 } 3037 3038 cgrp->subtree_control = new_sc; 3039 cgrp->child_subsys_mask = new_ss; 3040 3041 /* 3042 * Create new csses or make the existing ones visible. A css is 3043 * created invisible if it's being implicitly enabled through 3044 * dependency. An invisible css is made visible when the userland 3045 * explicitly enables it. 3046 */ 3047 for_each_subsys(ss, ssid) { 3048 if (!(enable & (1 << ssid))) 3049 continue; 3050 3051 cgroup_for_each_live_child(child, cgrp) { 3052 if (css_enable & (1 << ssid)) 3053 ret = create_css(child, ss, 3054 cgrp->subtree_control & (1 << ssid)); 3055 else 3056 ret = css_populate_dir(cgroup_css(child, ss), 3057 NULL); 3058 if (ret) 3059 goto err_undo_css; 3060 } 3061 } 3062 3063 /* 3064 * At this point, cgroup_e_css() results reflect the new csses 3065 * making the following cgroup_update_dfl_csses() properly update 3066 * css associations of all tasks in the subtree. 3067 */ 3068 ret = cgroup_update_dfl_csses(cgrp); 3069 if (ret) 3070 goto err_undo_css; 3071 3072 /* 3073 * All tasks are migrated out of disabled csses. Kill or hide 3074 * them. A css is hidden when the userland requests it to be 3075 * disabled while other subsystems are still depending on it. The 3076 * css must not actively control resources and be in the vanilla 3077 * state if it's made visible again later. Controllers which may 3078 * be depended upon should provide ->css_reset() for this purpose. 3079 */ 3080 for_each_subsys(ss, ssid) { 3081 if (!(disable & (1 << ssid))) 3082 continue; 3083 3084 cgroup_for_each_live_child(child, cgrp) { 3085 struct cgroup_subsys_state *css = cgroup_css(child, ss); 3086 3087 if (css_disable & (1 << ssid)) { 3088 kill_css(css); 3089 } else { 3090 css_clear_dir(css, NULL); 3091 if (ss->css_reset) 3092 ss->css_reset(css); 3093 } 3094 } 3095 } 3096 3097 /* 3098 * The effective csses of all the descendants (excluding @cgrp) may 3099 * have changed. Subsystems can optionally subscribe to this event 3100 * by implementing ->css_e_css_changed() which is invoked if any of 3101 * the effective csses seen from the css's cgroup may have changed. 3102 */ 3103 for_each_subsys(ss, ssid) { 3104 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss); 3105 struct cgroup_subsys_state *css; 3106 3107 if (!ss->css_e_css_changed || !this_css) 3108 continue; 3109 3110 css_for_each_descendant_pre(css, this_css) 3111 if (css != this_css) 3112 ss->css_e_css_changed(css); 3113 } 3114 3115 kernfs_activate(cgrp->kn); 3116 ret = 0; 3117out_unlock: 3118 cgroup_kn_unlock(of->kn); 3119 return ret ?: nbytes; 3120 3121err_undo_css: 3122 cgrp->subtree_control = old_sc; 3123 cgrp->child_subsys_mask = old_ss; 3124 3125 for_each_subsys(ss, ssid) { 3126 if (!(enable & (1 << ssid))) 3127 continue; 3128 3129 cgroup_for_each_live_child(child, cgrp) { 3130 struct cgroup_subsys_state *css = cgroup_css(child, ss); 3131 3132 if (!css) 3133 continue; 3134 3135 if (css_enable & (1 << ssid)) 3136 kill_css(css); 3137 else 3138 css_clear_dir(css, NULL); 3139 } 3140 } 3141 goto out_unlock; 3142} 3143 3144static int cgroup_events_show(struct seq_file *seq, void *v) 3145{ 3146 seq_printf(seq, "populated %d\n", 3147 cgroup_is_populated(seq_css(seq)->cgroup)); 3148 return 0; 3149} 3150 3151static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3152 size_t nbytes, loff_t off) 3153{ 3154 struct cgroup *cgrp = of->kn->parent->priv; 3155 struct cftype *cft = of->kn->priv; 3156 struct cgroup_subsys_state *css; 3157 int ret; 3158 3159 if (cft->write) 3160 return cft->write(of, buf, nbytes, off); 3161 3162 /* 3163 * kernfs guarantees that a file isn't deleted with operations in 3164 * flight, which means that the matching css is and stays alive and 3165 * doesn't need to be pinned. The RCU locking is not necessary 3166 * either. It's just for the convenience of using cgroup_css(). 3167 */ 3168 rcu_read_lock(); 3169 css = cgroup_css(cgrp, cft->ss); 3170 rcu_read_unlock(); 3171 3172 if (cft->write_u64) { 3173 unsigned long long v; 3174 ret = kstrtoull(buf, 0, &v); 3175 if (!ret) 3176 ret = cft->write_u64(css, cft, v); 3177 } else if (cft->write_s64) { 3178 long long v; 3179 ret = kstrtoll(buf, 0, &v); 3180 if (!ret) 3181 ret = cft->write_s64(css, cft, v); 3182 } else { 3183 ret = -EINVAL; 3184 } 3185 3186 return ret ?: nbytes; 3187} 3188 3189static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3190{ 3191 return seq_cft(seq)->seq_start(seq, ppos); 3192} 3193 3194static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3195{ 3196 return seq_cft(seq)->seq_next(seq, v, ppos); 3197} 3198 3199static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3200{ 3201 seq_cft(seq)->seq_stop(seq, v); 3202} 3203 3204static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3205{ 3206 struct cftype *cft = seq_cft(m); 3207 struct cgroup_subsys_state *css = seq_css(m); 3208 3209 if (cft->seq_show) 3210 return cft->seq_show(m, arg); 3211 3212 if (cft->read_u64) 3213 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3214 else if (cft->read_s64) 3215 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3216 else 3217 return -EINVAL; 3218 return 0; 3219} 3220 3221static struct kernfs_ops cgroup_kf_single_ops = { 3222 .atomic_write_len = PAGE_SIZE, 3223 .write = cgroup_file_write, 3224 .seq_show = cgroup_seqfile_show, 3225}; 3226 3227static struct kernfs_ops cgroup_kf_ops = { 3228 .atomic_write_len = PAGE_SIZE, 3229 .write = cgroup_file_write, 3230 .seq_start = cgroup_seqfile_start, 3231 .seq_next = cgroup_seqfile_next, 3232 .seq_stop = cgroup_seqfile_stop, 3233 .seq_show = cgroup_seqfile_show, 3234}; 3235 3236/* 3237 * cgroup_rename - Only allow simple rename of directories in place. 3238 */ 3239static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, 3240 const char *new_name_str) 3241{ 3242 struct cgroup *cgrp = kn->priv; 3243 int ret; 3244 3245 if (kernfs_type(kn) != KERNFS_DIR) 3246 return -ENOTDIR; 3247 if (kn->parent != new_parent) 3248 return -EIO; 3249 3250 /* 3251 * This isn't a proper migration and its usefulness is very 3252 * limited. Disallow on the default hierarchy. 3253 */ 3254 if (cgroup_on_dfl(cgrp)) 3255 return -EPERM; 3256 3257 /* 3258 * We're gonna grab cgroup_mutex which nests outside kernfs 3259 * active_ref. kernfs_rename() doesn't require active_ref 3260 * protection. Break them before grabbing cgroup_mutex. 3261 */ 3262 kernfs_break_active_protection(new_parent); 3263 kernfs_break_active_protection(kn); 3264 3265 mutex_lock(&cgroup_mutex); 3266 3267 ret = kernfs_rename(kn, new_parent, new_name_str); 3268 3269 mutex_unlock(&cgroup_mutex); 3270 3271 kernfs_unbreak_active_protection(kn); 3272 kernfs_unbreak_active_protection(new_parent); 3273 return ret; 3274} 3275 3276/* set uid and gid of cgroup dirs and files to that of the creator */ 3277static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3278{ 3279 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3280 .ia_uid = current_fsuid(), 3281 .ia_gid = current_fsgid(), }; 3282 3283 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3284 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3285 return 0; 3286 3287 return kernfs_setattr(kn, &iattr); 3288} 3289 3290static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3291 struct cftype *cft) 3292{ 3293 char name[CGROUP_FILE_NAME_MAX]; 3294 struct kernfs_node *kn; 3295 struct lock_class_key *key = NULL; 3296 int ret; 3297 3298#ifdef CONFIG_DEBUG_LOCK_ALLOC 3299 key = &cft->lockdep_key; 3300#endif 3301 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3302 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3303 NULL, key); 3304 if (IS_ERR(kn)) 3305 return PTR_ERR(kn); 3306 3307 ret = cgroup_kn_set_ugid(kn); 3308 if (ret) { 3309 kernfs_remove(kn); 3310 return ret; 3311 } 3312 3313 if (cft->file_offset) { 3314 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3315 3316 kernfs_get(kn); 3317 cfile->kn = kn; 3318 list_add(&cfile->node, &css->files); 3319 } 3320 3321 return 0; 3322} 3323 3324/** 3325 * cgroup_addrm_files - add or remove files to a cgroup directory 3326 * @css: the target css 3327 * @cgrp: the target cgroup (usually css->cgroup) 3328 * @cfts: array of cftypes to be added 3329 * @is_add: whether to add or remove 3330 * 3331 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3332 * For removals, this function never fails. 3333 */ 3334static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3335 struct cgroup *cgrp, struct cftype cfts[], 3336 bool is_add) 3337{ 3338 struct cftype *cft, *cft_end = NULL; 3339 int ret; 3340 3341 lockdep_assert_held(&cgroup_mutex); 3342 3343restart: 3344 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3345 /* does cft->flags tell us to skip this file on @cgrp? */ 3346 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3347 continue; 3348 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3349 continue; 3350 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3351 continue; 3352 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3353 continue; 3354 3355 if (is_add) { 3356 ret = cgroup_add_file(css, cgrp, cft); 3357 if (ret) { 3358 pr_warn("%s: failed to add %s, err=%d\n", 3359 __func__, cft->name, ret); 3360 cft_end = cft; 3361 is_add = false; 3362 goto restart; 3363 } 3364 } else { 3365 cgroup_rm_file(cgrp, cft); 3366 } 3367 } 3368 return 0; 3369} 3370 3371static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3372{ 3373 LIST_HEAD(pending); 3374 struct cgroup_subsys *ss = cfts[0].ss; 3375 struct cgroup *root = &ss->root->cgrp; 3376 struct cgroup_subsys_state *css; 3377 int ret = 0; 3378 3379 lockdep_assert_held(&cgroup_mutex); 3380 3381 /* add/rm files for all cgroups created before */ 3382 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3383 struct cgroup *cgrp = css->cgroup; 3384 3385 if (cgroup_is_dead(cgrp)) 3386 continue; 3387 3388 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3389 if (ret) 3390 break; 3391 } 3392 3393 if (is_add && !ret) 3394 kernfs_activate(root->kn); 3395 return ret; 3396} 3397 3398static void cgroup_exit_cftypes(struct cftype *cfts) 3399{ 3400 struct cftype *cft; 3401 3402 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3403 /* free copy for custom atomic_write_len, see init_cftypes() */ 3404 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3405 kfree(cft->kf_ops); 3406 cft->kf_ops = NULL; 3407 cft->ss = NULL; 3408 3409 /* revert flags set by cgroup core while adding @cfts */ 3410 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3411 } 3412} 3413 3414static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3415{ 3416 struct cftype *cft; 3417 3418 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3419 struct kernfs_ops *kf_ops; 3420 3421 WARN_ON(cft->ss || cft->kf_ops); 3422 3423 if (cft->seq_start) 3424 kf_ops = &cgroup_kf_ops; 3425 else 3426 kf_ops = &cgroup_kf_single_ops; 3427 3428 /* 3429 * Ugh... if @cft wants a custom max_write_len, we need to 3430 * make a copy of kf_ops to set its atomic_write_len. 3431 */ 3432 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3433 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3434 if (!kf_ops) { 3435 cgroup_exit_cftypes(cfts); 3436 return -ENOMEM; 3437 } 3438 kf_ops->atomic_write_len = cft->max_write_len; 3439 } 3440 3441 cft->kf_ops = kf_ops; 3442 cft->ss = ss; 3443 } 3444 3445 return 0; 3446} 3447 3448static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3449{ 3450 lockdep_assert_held(&cgroup_mutex); 3451 3452 if (!cfts || !cfts[0].ss) 3453 return -ENOENT; 3454 3455 list_del(&cfts->node); 3456 cgroup_apply_cftypes(cfts, false); 3457 cgroup_exit_cftypes(cfts); 3458 return 0; 3459} 3460 3461/** 3462 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3463 * @cfts: zero-length name terminated array of cftypes 3464 * 3465 * Unregister @cfts. Files described by @cfts are removed from all 3466 * existing cgroups and all future cgroups won't have them either. This 3467 * function can be called anytime whether @cfts' subsys is attached or not. 3468 * 3469 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3470 * registered. 3471 */ 3472int cgroup_rm_cftypes(struct cftype *cfts) 3473{ 3474 int ret; 3475 3476 mutex_lock(&cgroup_mutex); 3477 ret = cgroup_rm_cftypes_locked(cfts); 3478 mutex_unlock(&cgroup_mutex); 3479 return ret; 3480} 3481 3482/** 3483 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3484 * @ss: target cgroup subsystem 3485 * @cfts: zero-length name terminated array of cftypes 3486 * 3487 * Register @cfts to @ss. Files described by @cfts are created for all 3488 * existing cgroups to which @ss is attached and all future cgroups will 3489 * have them too. This function can be called anytime whether @ss is 3490 * attached or not. 3491 * 3492 * Returns 0 on successful registration, -errno on failure. Note that this 3493 * function currently returns 0 as long as @cfts registration is successful 3494 * even if some file creation attempts on existing cgroups fail. 3495 */ 3496static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3497{ 3498 int ret; 3499 3500 if (!cgroup_ssid_enabled(ss->id)) 3501 return 0; 3502 3503 if (!cfts || cfts[0].name[0] == '\0') 3504 return 0; 3505 3506 ret = cgroup_init_cftypes(ss, cfts); 3507 if (ret) 3508 return ret; 3509 3510 mutex_lock(&cgroup_mutex); 3511 3512 list_add_tail(&cfts->node, &ss->cfts); 3513 ret = cgroup_apply_cftypes(cfts, true); 3514 if (ret) 3515 cgroup_rm_cftypes_locked(cfts); 3516 3517 mutex_unlock(&cgroup_mutex); 3518 return ret; 3519} 3520 3521/** 3522 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3523 * @ss: target cgroup subsystem 3524 * @cfts: zero-length name terminated array of cftypes 3525 * 3526 * Similar to cgroup_add_cftypes() but the added files are only used for 3527 * the default hierarchy. 3528 */ 3529int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3530{ 3531 struct cftype *cft; 3532 3533 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3534 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3535 return cgroup_add_cftypes(ss, cfts); 3536} 3537 3538/** 3539 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3540 * @ss: target cgroup subsystem 3541 * @cfts: zero-length name terminated array of cftypes 3542 * 3543 * Similar to cgroup_add_cftypes() but the added files are only used for 3544 * the legacy hierarchies. 3545 */ 3546int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3547{ 3548 struct cftype *cft; 3549 3550 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3551 cft->flags |= __CFTYPE_NOT_ON_DFL; 3552 return cgroup_add_cftypes(ss, cfts); 3553} 3554 3555/** 3556 * cgroup_task_count - count the number of tasks in a cgroup. 3557 * @cgrp: the cgroup in question 3558 * 3559 * Return the number of tasks in the cgroup. 3560 */ 3561static int cgroup_task_count(const struct cgroup *cgrp) 3562{ 3563 int count = 0; 3564 struct cgrp_cset_link *link; 3565 3566 spin_lock_bh(&css_set_lock); 3567 list_for_each_entry(link, &cgrp->cset_links, cset_link) 3568 count += atomic_read(&link->cset->refcount); 3569 spin_unlock_bh(&css_set_lock); 3570 return count; 3571} 3572 3573/** 3574 * css_next_child - find the next child of a given css 3575 * @pos: the current position (%NULL to initiate traversal) 3576 * @parent: css whose children to walk 3577 * 3578 * This function returns the next child of @parent and should be called 3579 * under either cgroup_mutex or RCU read lock. The only requirement is 3580 * that @parent and @pos are accessible. The next sibling is guaranteed to 3581 * be returned regardless of their states. 3582 * 3583 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3584 * css which finished ->css_online() is guaranteed to be visible in the 3585 * future iterations and will stay visible until the last reference is put. 3586 * A css which hasn't finished ->css_online() or already finished 3587 * ->css_offline() may show up during traversal. It's each subsystem's 3588 * responsibility to synchronize against on/offlining. 3589 */ 3590struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3591 struct cgroup_subsys_state *parent) 3592{ 3593 struct cgroup_subsys_state *next; 3594 3595 cgroup_assert_mutex_or_rcu_locked(); 3596 3597 /* 3598 * @pos could already have been unlinked from the sibling list. 3599 * Once a cgroup is removed, its ->sibling.next is no longer 3600 * updated when its next sibling changes. CSS_RELEASED is set when 3601 * @pos is taken off list, at which time its next pointer is valid, 3602 * and, as releases are serialized, the one pointed to by the next 3603 * pointer is guaranteed to not have started release yet. This 3604 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3605 * critical section, the one pointed to by its next pointer is 3606 * guaranteed to not have finished its RCU grace period even if we 3607 * have dropped rcu_read_lock() inbetween iterations. 3608 * 3609 * If @pos has CSS_RELEASED set, its next pointer can't be 3610 * dereferenced; however, as each css is given a monotonically 3611 * increasing unique serial number and always appended to the 3612 * sibling list, the next one can be found by walking the parent's 3613 * children until the first css with higher serial number than 3614 * @pos's. While this path can be slower, it happens iff iteration 3615 * races against release and the race window is very small. 3616 */ 3617 if (!pos) { 3618 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3619 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3620 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3621 } else { 3622 list_for_each_entry_rcu(next, &parent->children, sibling) 3623 if (next->serial_nr > pos->serial_nr) 3624 break; 3625 } 3626 3627 /* 3628 * @next, if not pointing to the head, can be dereferenced and is 3629 * the next sibling. 3630 */ 3631 if (&next->sibling != &parent->children) 3632 return next; 3633 return NULL; 3634} 3635 3636/** 3637 * css_next_descendant_pre - find the next descendant for pre-order walk 3638 * @pos: the current position (%NULL to initiate traversal) 3639 * @root: css whose descendants to walk 3640 * 3641 * To be used by css_for_each_descendant_pre(). Find the next descendant 3642 * to visit for pre-order traversal of @root's descendants. @root is 3643 * included in the iteration and the first node to be visited. 3644 * 3645 * While this function requires cgroup_mutex or RCU read locking, it 3646 * doesn't require the whole traversal to be contained in a single critical 3647 * section. This function will return the correct next descendant as long 3648 * as both @pos and @root are accessible and @pos is a descendant of @root. 3649 * 3650 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3651 * css which finished ->css_online() is guaranteed to be visible in the 3652 * future iterations and will stay visible until the last reference is put. 3653 * A css which hasn't finished ->css_online() or already finished 3654 * ->css_offline() may show up during traversal. It's each subsystem's 3655 * responsibility to synchronize against on/offlining. 3656 */ 3657struct cgroup_subsys_state * 3658css_next_descendant_pre(struct cgroup_subsys_state *pos, 3659 struct cgroup_subsys_state *root) 3660{ 3661 struct cgroup_subsys_state *next; 3662 3663 cgroup_assert_mutex_or_rcu_locked(); 3664 3665 /* if first iteration, visit @root */ 3666 if (!pos) 3667 return root; 3668 3669 /* visit the first child if exists */ 3670 next = css_next_child(NULL, pos); 3671 if (next) 3672 return next; 3673 3674 /* no child, visit my or the closest ancestor's next sibling */ 3675 while (pos != root) { 3676 next = css_next_child(pos, pos->parent); 3677 if (next) 3678 return next; 3679 pos = pos->parent; 3680 } 3681 3682 return NULL; 3683} 3684 3685/** 3686 * css_rightmost_descendant - return the rightmost descendant of a css 3687 * @pos: css of interest 3688 * 3689 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3690 * is returned. This can be used during pre-order traversal to skip 3691 * subtree of @pos. 3692 * 3693 * While this function requires cgroup_mutex or RCU read locking, it 3694 * doesn't require the whole traversal to be contained in a single critical 3695 * section. This function will return the correct rightmost descendant as 3696 * long as @pos is accessible. 3697 */ 3698struct cgroup_subsys_state * 3699css_rightmost_descendant(struct cgroup_subsys_state *pos) 3700{ 3701 struct cgroup_subsys_state *last, *tmp; 3702 3703 cgroup_assert_mutex_or_rcu_locked(); 3704 3705 do { 3706 last = pos; 3707 /* ->prev isn't RCU safe, walk ->next till the end */ 3708 pos = NULL; 3709 css_for_each_child(tmp, last) 3710 pos = tmp; 3711 } while (pos); 3712 3713 return last; 3714} 3715 3716static struct cgroup_subsys_state * 3717css_leftmost_descendant(struct cgroup_subsys_state *pos) 3718{ 3719 struct cgroup_subsys_state *last; 3720 3721 do { 3722 last = pos; 3723 pos = css_next_child(NULL, pos); 3724 } while (pos); 3725 3726 return last; 3727} 3728 3729/** 3730 * css_next_descendant_post - find the next descendant for post-order walk 3731 * @pos: the current position (%NULL to initiate traversal) 3732 * @root: css whose descendants to walk 3733 * 3734 * To be used by css_for_each_descendant_post(). Find the next descendant 3735 * to visit for post-order traversal of @root's descendants. @root is 3736 * included in the iteration and the last node to be visited. 3737 * 3738 * While this function requires cgroup_mutex or RCU read locking, it 3739 * doesn't require the whole traversal to be contained in a single critical 3740 * section. This function will return the correct next descendant as long 3741 * as both @pos and @cgroup are accessible and @pos is a descendant of 3742 * @cgroup. 3743 * 3744 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3745 * css which finished ->css_online() is guaranteed to be visible in the 3746 * future iterations and will stay visible until the last reference is put. 3747 * A css which hasn't finished ->css_online() or already finished 3748 * ->css_offline() may show up during traversal. It's each subsystem's 3749 * responsibility to synchronize against on/offlining. 3750 */ 3751struct cgroup_subsys_state * 3752css_next_descendant_post(struct cgroup_subsys_state *pos, 3753 struct cgroup_subsys_state *root) 3754{ 3755 struct cgroup_subsys_state *next; 3756 3757 cgroup_assert_mutex_or_rcu_locked(); 3758 3759 /* if first iteration, visit leftmost descendant which may be @root */ 3760 if (!pos) 3761 return css_leftmost_descendant(root); 3762 3763 /* if we visited @root, we're done */ 3764 if (pos == root) 3765 return NULL; 3766 3767 /* if there's an unvisited sibling, visit its leftmost descendant */ 3768 next = css_next_child(pos, pos->parent); 3769 if (next) 3770 return css_leftmost_descendant(next); 3771 3772 /* no sibling left, visit parent */ 3773 return pos->parent; 3774} 3775 3776/** 3777 * css_has_online_children - does a css have online children 3778 * @css: the target css 3779 * 3780 * Returns %true if @css has any online children; otherwise, %false. This 3781 * function can be called from any context but the caller is responsible 3782 * for synchronizing against on/offlining as necessary. 3783 */ 3784bool css_has_online_children(struct cgroup_subsys_state *css) 3785{ 3786 struct cgroup_subsys_state *child; 3787 bool ret = false; 3788 3789 rcu_read_lock(); 3790 css_for_each_child(child, css) { 3791 if (child->flags & CSS_ONLINE) { 3792 ret = true; 3793 break; 3794 } 3795 } 3796 rcu_read_unlock(); 3797 return ret; 3798} 3799 3800/** 3801 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 3802 * @it: the iterator to advance 3803 * 3804 * Advance @it to the next css_set to walk. 3805 */ 3806static void css_task_iter_advance_css_set(struct css_task_iter *it) 3807{ 3808 struct list_head *l = it->cset_pos; 3809 struct cgrp_cset_link *link; 3810 struct css_set *cset; 3811 3812 lockdep_assert_held(&css_set_lock); 3813 3814 /* Advance to the next non-empty css_set */ 3815 do { 3816 l = l->next; 3817 if (l == it->cset_head) { 3818 it->cset_pos = NULL; 3819 it->task_pos = NULL; 3820 return; 3821 } 3822 3823 if (it->ss) { 3824 cset = container_of(l, struct css_set, 3825 e_cset_node[it->ss->id]); 3826 } else { 3827 link = list_entry(l, struct cgrp_cset_link, cset_link); 3828 cset = link->cset; 3829 } 3830 } while (!css_set_populated(cset)); 3831 3832 it->cset_pos = l; 3833 3834 if (!list_empty(&cset->tasks)) 3835 it->task_pos = cset->tasks.next; 3836 else 3837 it->task_pos = cset->mg_tasks.next; 3838 3839 it->tasks_head = &cset->tasks; 3840 it->mg_tasks_head = &cset->mg_tasks; 3841 3842 /* 3843 * We don't keep css_sets locked across iteration steps and thus 3844 * need to take steps to ensure that iteration can be resumed after 3845 * the lock is re-acquired. Iteration is performed at two levels - 3846 * css_sets and tasks in them. 3847 * 3848 * Once created, a css_set never leaves its cgroup lists, so a 3849 * pinned css_set is guaranteed to stay put and we can resume 3850 * iteration afterwards. 3851 * 3852 * Tasks may leave @cset across iteration steps. This is resolved 3853 * by registering each iterator with the css_set currently being 3854 * walked and making css_set_move_task() advance iterators whose 3855 * next task is leaving. 3856 */ 3857 if (it->cur_cset) { 3858 list_del(&it->iters_node); 3859 put_css_set_locked(it->cur_cset); 3860 } 3861 get_css_set(cset); 3862 it->cur_cset = cset; 3863 list_add(&it->iters_node, &cset->task_iters); 3864} 3865 3866static void css_task_iter_advance(struct css_task_iter *it) 3867{ 3868 struct list_head *l = it->task_pos; 3869 3870 lockdep_assert_held(&css_set_lock); 3871 WARN_ON_ONCE(!l); 3872 3873 /* 3874 * Advance iterator to find next entry. cset->tasks is consumed 3875 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 3876 * next cset. 3877 */ 3878 l = l->next; 3879 3880 if (l == it->tasks_head) 3881 l = it->mg_tasks_head->next; 3882 3883 if (l == it->mg_tasks_head) 3884 css_task_iter_advance_css_set(it); 3885 else 3886 it->task_pos = l; 3887} 3888 3889/** 3890 * css_task_iter_start - initiate task iteration 3891 * @css: the css to walk tasks of 3892 * @it: the task iterator to use 3893 * 3894 * Initiate iteration through the tasks of @css. The caller can call 3895 * css_task_iter_next() to walk through the tasks until the function 3896 * returns NULL. On completion of iteration, css_task_iter_end() must be 3897 * called. 3898 */ 3899void css_task_iter_start(struct cgroup_subsys_state *css, 3900 struct css_task_iter *it) 3901{ 3902 /* no one should try to iterate before mounting cgroups */ 3903 WARN_ON_ONCE(!use_task_css_set_links); 3904 3905 memset(it, 0, sizeof(*it)); 3906 3907 spin_lock_bh(&css_set_lock); 3908 3909 it->ss = css->ss; 3910 3911 if (it->ss) 3912 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 3913 else 3914 it->cset_pos = &css->cgroup->cset_links; 3915 3916 it->cset_head = it->cset_pos; 3917 3918 css_task_iter_advance_css_set(it); 3919 3920 spin_unlock_bh(&css_set_lock); 3921} 3922 3923/** 3924 * css_task_iter_next - return the next task for the iterator 3925 * @it: the task iterator being iterated 3926 * 3927 * The "next" function for task iteration. @it should have been 3928 * initialized via css_task_iter_start(). Returns NULL when the iteration 3929 * reaches the end. 3930 */ 3931struct task_struct *css_task_iter_next(struct css_task_iter *it) 3932{ 3933 if (it->cur_task) { 3934 put_task_struct(it->cur_task); 3935 it->cur_task = NULL; 3936 } 3937 3938 spin_lock_bh(&css_set_lock); 3939 3940 if (it->task_pos) { 3941 it->cur_task = list_entry(it->task_pos, struct task_struct, 3942 cg_list); 3943 get_task_struct(it->cur_task); 3944 css_task_iter_advance(it); 3945 } 3946 3947 spin_unlock_bh(&css_set_lock); 3948 3949 return it->cur_task; 3950} 3951 3952/** 3953 * css_task_iter_end - finish task iteration 3954 * @it: the task iterator to finish 3955 * 3956 * Finish task iteration started by css_task_iter_start(). 3957 */ 3958void css_task_iter_end(struct css_task_iter *it) 3959{ 3960 if (it->cur_cset) { 3961 spin_lock_bh(&css_set_lock); 3962 list_del(&it->iters_node); 3963 put_css_set_locked(it->cur_cset); 3964 spin_unlock_bh(&css_set_lock); 3965 } 3966 3967 if (it->cur_task) 3968 put_task_struct(it->cur_task); 3969} 3970 3971/** 3972 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another 3973 * @to: cgroup to which the tasks will be moved 3974 * @from: cgroup in which the tasks currently reside 3975 * 3976 * Locking rules between cgroup_post_fork() and the migration path 3977 * guarantee that, if a task is forking while being migrated, the new child 3978 * is guaranteed to be either visible in the source cgroup after the 3979 * parent's migration is complete or put into the target cgroup. No task 3980 * can slip out of migration through forking. 3981 */ 3982int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) 3983{ 3984 LIST_HEAD(preloaded_csets); 3985 struct cgrp_cset_link *link; 3986 struct css_task_iter it; 3987 struct task_struct *task; 3988 int ret; 3989 3990 mutex_lock(&cgroup_mutex); 3991 3992 /* all tasks in @from are being moved, all csets are source */ 3993 spin_lock_bh(&css_set_lock); 3994 list_for_each_entry(link, &from->cset_links, cset_link) 3995 cgroup_migrate_add_src(link->cset, to, &preloaded_csets); 3996 spin_unlock_bh(&css_set_lock); 3997 3998 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets); 3999 if (ret) 4000 goto out_err; 4001 4002 /* 4003 * Migrate tasks one-by-one until @form is empty. This fails iff 4004 * ->can_attach() fails. 4005 */ 4006 do { 4007 css_task_iter_start(&from->self, &it); 4008 task = css_task_iter_next(&it); 4009 if (task) 4010 get_task_struct(task); 4011 css_task_iter_end(&it); 4012 4013 if (task) { 4014 ret = cgroup_migrate(task, false, to); 4015 put_task_struct(task); 4016 } 4017 } while (task && !ret); 4018out_err: 4019 cgroup_migrate_finish(&preloaded_csets); 4020 mutex_unlock(&cgroup_mutex); 4021 return ret; 4022} 4023 4024/* 4025 * Stuff for reading the 'tasks'/'procs' files. 4026 * 4027 * Reading this file can return large amounts of data if a cgroup has 4028 * *lots* of attached tasks. So it may need several calls to read(), 4029 * but we cannot guarantee that the information we produce is correct 4030 * unless we produce it entirely atomically. 4031 * 4032 */ 4033 4034/* which pidlist file are we talking about? */ 4035enum cgroup_filetype { 4036 CGROUP_FILE_PROCS, 4037 CGROUP_FILE_TASKS, 4038}; 4039 4040/* 4041 * A pidlist is a list of pids that virtually represents the contents of one 4042 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, 4043 * a pair (one each for procs, tasks) for each pid namespace that's relevant 4044 * to the cgroup. 4045 */ 4046struct cgroup_pidlist { 4047 /* 4048 * used to find which pidlist is wanted. doesn't change as long as 4049 * this particular list stays in the list. 4050 */ 4051 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; 4052 /* array of xids */ 4053 pid_t *list; 4054 /* how many elements the above list has */ 4055 int length; 4056 /* each of these stored in a list by its cgroup */ 4057 struct list_head links; 4058 /* pointer to the cgroup we belong to, for list removal purposes */ 4059 struct cgroup *owner; 4060 /* for delayed destruction */ 4061 struct delayed_work destroy_dwork; 4062}; 4063 4064/* 4065 * The following two functions "fix" the issue where there are more pids 4066 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. 4067 * TODO: replace with a kernel-wide solution to this problem 4068 */ 4069#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) 4070static void *pidlist_allocate(int count) 4071{ 4072 if (PIDLIST_TOO_LARGE(count)) 4073 return vmalloc(count * sizeof(pid_t)); 4074 else 4075 return kmalloc(count * sizeof(pid_t), GFP_KERNEL); 4076} 4077 4078static void pidlist_free(void *p) 4079{ 4080 kvfree(p); 4081} 4082 4083/* 4084 * Used to destroy all pidlists lingering waiting for destroy timer. None 4085 * should be left afterwards. 4086 */ 4087static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) 4088{ 4089 struct cgroup_pidlist *l, *tmp_l; 4090 4091 mutex_lock(&cgrp->pidlist_mutex); 4092 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) 4093 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); 4094 mutex_unlock(&cgrp->pidlist_mutex); 4095 4096 flush_workqueue(cgroup_pidlist_destroy_wq); 4097 BUG_ON(!list_empty(&cgrp->pidlists)); 4098} 4099 4100static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) 4101{ 4102 struct delayed_work *dwork = to_delayed_work(work); 4103 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, 4104 destroy_dwork); 4105 struct cgroup_pidlist *tofree = NULL; 4106 4107 mutex_lock(&l->owner->pidlist_mutex); 4108 4109 /* 4110 * Destroy iff we didn't get queued again. The state won't change 4111 * as destroy_dwork can only be queued while locked. 4112 */ 4113 if (!delayed_work_pending(dwork)) { 4114 list_del(&l->links); 4115 pidlist_free(l->list); 4116 put_pid_ns(l->key.ns); 4117 tofree = l; 4118 } 4119 4120 mutex_unlock(&l->owner->pidlist_mutex); 4121 kfree(tofree); 4122} 4123 4124/* 4125 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries 4126 * Returns the number of unique elements. 4127 */ 4128static int pidlist_uniq(pid_t *list, int length) 4129{ 4130 int src, dest = 1; 4131 4132 /* 4133 * we presume the 0th element is unique, so i starts at 1. trivial 4134 * edge cases first; no work needs to be done for either 4135 */ 4136 if (length == 0 || length == 1) 4137 return length; 4138 /* src and dest walk down the list; dest counts unique elements */ 4139 for (src = 1; src < length; src++) { 4140 /* find next unique element */ 4141 while (list[src] == list[src-1]) { 4142 src++; 4143 if (src == length) 4144 goto after; 4145 } 4146 /* dest always points to where the next unique element goes */ 4147 list[dest] = list[src]; 4148 dest++; 4149 } 4150after: 4151 return dest; 4152} 4153 4154/* 4155 * The two pid files - task and cgroup.procs - guaranteed that the result 4156 * is sorted, which forced this whole pidlist fiasco. As pid order is 4157 * different per namespace, each namespace needs differently sorted list, 4158 * making it impossible to use, for example, single rbtree of member tasks 4159 * sorted by task pointer. As pidlists can be fairly large, allocating one 4160 * per open file is dangerous, so cgroup had to implement shared pool of 4161 * pidlists keyed by cgroup and namespace. 4162 * 4163 * All this extra complexity was caused by the original implementation 4164 * committing to an entirely unnecessary property. In the long term, we 4165 * want to do away with it. Explicitly scramble sort order if on the 4166 * default hierarchy so that no such expectation exists in the new 4167 * interface. 4168 * 4169 * Scrambling is done by swapping every two consecutive bits, which is 4170 * non-identity one-to-one mapping which disturbs sort order sufficiently. 4171 */ 4172static pid_t pid_fry(pid_t pid) 4173{ 4174 unsigned a = pid & 0x55555555; 4175 unsigned b = pid & 0xAAAAAAAA; 4176 4177 return (a << 1) | (b >> 1); 4178} 4179 4180static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) 4181{ 4182 if (cgroup_on_dfl(cgrp)) 4183 return pid_fry(pid); 4184 else 4185 return pid; 4186} 4187 4188static int cmppid(const void *a, const void *b) 4189{ 4190 return *(pid_t *)a - *(pid_t *)b; 4191} 4192 4193static int fried_cmppid(const void *a, const void *b) 4194{ 4195 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); 4196} 4197 4198static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, 4199 enum cgroup_filetype type) 4200{ 4201 struct cgroup_pidlist *l; 4202 /* don't need task_nsproxy() if we're looking at ourself */ 4203 struct pid_namespace *ns = task_active_pid_ns(current); 4204 4205 lockdep_assert_held(&cgrp->pidlist_mutex); 4206 4207 list_for_each_entry(l, &cgrp->pidlists, links) 4208 if (l->key.type == type && l->key.ns == ns) 4209 return l; 4210 return NULL; 4211} 4212 4213/* 4214 * find the appropriate pidlist for our purpose (given procs vs tasks) 4215 * returns with the lock on that pidlist already held, and takes care 4216 * of the use count, or returns NULL with no locks held if we're out of 4217 * memory. 4218 */ 4219static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, 4220 enum cgroup_filetype type) 4221{ 4222 struct cgroup_pidlist *l; 4223 4224 lockdep_assert_held(&cgrp->pidlist_mutex); 4225 4226 l = cgroup_pidlist_find(cgrp, type); 4227 if (l) 4228 return l; 4229 4230 /* entry not found; create a new one */ 4231 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); 4232 if (!l) 4233 return l; 4234 4235 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); 4236 l->key.type = type; 4237 /* don't need task_nsproxy() if we're looking at ourself */ 4238 l->key.ns = get_pid_ns(task_active_pid_ns(current)); 4239 l->owner = cgrp; 4240 list_add(&l->links, &cgrp->pidlists); 4241 return l; 4242} 4243 4244/* 4245 * Load a cgroup's pidarray with either procs' tgids or tasks' pids 4246 */ 4247static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, 4248 struct cgroup_pidlist **lp) 4249{ 4250 pid_t *array; 4251 int length; 4252 int pid, n = 0; /* used for populating the array */ 4253 struct css_task_iter it; 4254 struct task_struct *tsk; 4255 struct cgroup_pidlist *l; 4256 4257 lockdep_assert_held(&cgrp->pidlist_mutex); 4258 4259 /* 4260 * If cgroup gets more users after we read count, we won't have 4261 * enough space - tough. This race is indistinguishable to the 4262 * caller from the case that the additional cgroup users didn't 4263 * show up until sometime later on. 4264 */ 4265 length = cgroup_task_count(cgrp); 4266 array = pidlist_allocate(length); 4267 if (!array) 4268 return -ENOMEM; 4269 /* now, populate the array */ 4270 css_task_iter_start(&cgrp->self, &it); 4271 while ((tsk = css_task_iter_next(&it))) { 4272 if (unlikely(n == length)) 4273 break; 4274 /* get tgid or pid for procs or tasks file respectively */ 4275 if (type == CGROUP_FILE_PROCS) 4276 pid = task_tgid_vnr(tsk); 4277 else 4278 pid = task_pid_vnr(tsk); 4279 if (pid > 0) /* make sure to only use valid results */ 4280 array[n++] = pid; 4281 } 4282 css_task_iter_end(&it); 4283 length = n; 4284 /* now sort & (if procs) strip out duplicates */ 4285 if (cgroup_on_dfl(cgrp)) 4286 sort(array, length, sizeof(pid_t), fried_cmppid, NULL); 4287 else 4288 sort(array, length, sizeof(pid_t), cmppid, NULL); 4289 if (type == CGROUP_FILE_PROCS) 4290 length = pidlist_uniq(array, length); 4291 4292 l = cgroup_pidlist_find_create(cgrp, type); 4293 if (!l) { 4294 pidlist_free(array); 4295 return -ENOMEM; 4296 } 4297 4298 /* store array, freeing old if necessary */ 4299 pidlist_free(l->list); 4300 l->list = array; 4301 l->length = length; 4302 *lp = l; 4303 return 0; 4304} 4305 4306/** 4307 * cgroupstats_build - build and fill cgroupstats 4308 * @stats: cgroupstats to fill information into 4309 * @dentry: A dentry entry belonging to the cgroup for which stats have 4310 * been requested. 4311 * 4312 * Build and fill cgroupstats so that taskstats can export it to user 4313 * space. 4314 */ 4315int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) 4316{ 4317 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 4318 struct cgroup *cgrp; 4319 struct css_task_iter it; 4320 struct task_struct *tsk; 4321 4322 /* it should be kernfs_node belonging to cgroupfs and is a directory */ 4323 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 4324 kernfs_type(kn) != KERNFS_DIR) 4325 return -EINVAL; 4326 4327 mutex_lock(&cgroup_mutex); 4328 4329 /* 4330 * We aren't being called from kernfs and there's no guarantee on 4331 * @kn->priv's validity. For this and css_tryget_online_from_dir(), 4332 * @kn->priv is RCU safe. Let's do the RCU dancing. 4333 */ 4334 rcu_read_lock(); 4335 cgrp = rcu_dereference(kn->priv); 4336 if (!cgrp || cgroup_is_dead(cgrp)) { 4337 rcu_read_unlock(); 4338 mutex_unlock(&cgroup_mutex); 4339 return -ENOENT; 4340 } 4341 rcu_read_unlock(); 4342 4343 css_task_iter_start(&cgrp->self, &it); 4344 while ((tsk = css_task_iter_next(&it))) { 4345 switch (tsk->state) { 4346 case TASK_RUNNING: 4347 stats->nr_running++; 4348 break; 4349 case TASK_INTERRUPTIBLE: 4350 stats->nr_sleeping++; 4351 break; 4352 case TASK_UNINTERRUPTIBLE: 4353 stats->nr_uninterruptible++; 4354 break; 4355 case TASK_STOPPED: 4356 stats->nr_stopped++; 4357 break; 4358 default: 4359 if (delayacct_is_task_waiting_on_io(tsk)) 4360 stats->nr_io_wait++; 4361 break; 4362 } 4363 } 4364 css_task_iter_end(&it); 4365 4366 mutex_unlock(&cgroup_mutex); 4367 return 0; 4368} 4369 4370 4371/* 4372 * seq_file methods for the tasks/procs files. The seq_file position is the 4373 * next pid to display; the seq_file iterator is a pointer to the pid 4374 * in the cgroup->l->list array. 4375 */ 4376 4377static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) 4378{ 4379 /* 4380 * Initially we receive a position value that corresponds to 4381 * one more than the last pid shown (or 0 on the first call or 4382 * after a seek to the start). Use a binary-search to find the 4383 * next pid to display, if any 4384 */ 4385 struct kernfs_open_file *of = s->private; 4386 struct cgroup *cgrp = seq_css(s)->cgroup; 4387 struct cgroup_pidlist *l; 4388 enum cgroup_filetype type = seq_cft(s)->private; 4389 int index = 0, pid = *pos; 4390 int *iter, ret; 4391 4392 mutex_lock(&cgrp->pidlist_mutex); 4393 4394 /* 4395 * !NULL @of->priv indicates that this isn't the first start() 4396 * after open. If the matching pidlist is around, we can use that. 4397 * Look for it. Note that @of->priv can't be used directly. It 4398 * could already have been destroyed. 4399 */ 4400 if (of->priv) 4401 of->priv = cgroup_pidlist_find(cgrp, type); 4402 4403 /* 4404 * Either this is the first start() after open or the matching 4405 * pidlist has been destroyed inbetween. Create a new one. 4406 */ 4407 if (!of->priv) { 4408 ret = pidlist_array_load(cgrp, type, 4409 (struct cgroup_pidlist **)&of->priv); 4410 if (ret) 4411 return ERR_PTR(ret); 4412 } 4413 l = of->priv; 4414 4415 if (pid) { 4416 int end = l->length; 4417 4418 while (index < end) { 4419 int mid = (index + end) / 2; 4420 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { 4421 index = mid; 4422 break; 4423 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) 4424 index = mid + 1; 4425 else 4426 end = mid; 4427 } 4428 } 4429 /* If we're off the end of the array, we're done */ 4430 if (index >= l->length) 4431 return NULL; 4432 /* Update the abstract position to be the actual pid that we found */ 4433 iter = l->list + index; 4434 *pos = cgroup_pid_fry(cgrp, *iter); 4435 return iter; 4436} 4437 4438static void cgroup_pidlist_stop(struct seq_file *s, void *v) 4439{ 4440 struct kernfs_open_file *of = s->private; 4441 struct cgroup_pidlist *l = of->priv; 4442 4443 if (l) 4444 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 4445 CGROUP_PIDLIST_DESTROY_DELAY); 4446 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); 4447} 4448 4449static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) 4450{ 4451 struct kernfs_open_file *of = s->private; 4452 struct cgroup_pidlist *l = of->priv; 4453 pid_t *p = v; 4454 pid_t *end = l->list + l->length; 4455 /* 4456 * Advance to the next pid in the array. If this goes off the 4457 * end, we're done 4458 */ 4459 p++; 4460 if (p >= end) { 4461 return NULL; 4462 } else { 4463 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); 4464 return p; 4465 } 4466} 4467 4468static int cgroup_pidlist_show(struct seq_file *s, void *v) 4469{ 4470 seq_printf(s, "%d\n", *(int *)v); 4471 4472 return 0; 4473} 4474 4475static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, 4476 struct cftype *cft) 4477{ 4478 return notify_on_release(css->cgroup); 4479} 4480 4481static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, 4482 struct cftype *cft, u64 val) 4483{ 4484 if (val) 4485 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 4486 else 4487 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); 4488 return 0; 4489} 4490 4491static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, 4492 struct cftype *cft) 4493{ 4494 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 4495} 4496 4497static int cgroup_clone_children_write(struct cgroup_subsys_state *css, 4498 struct cftype *cft, u64 val) 4499{ 4500 if (val) 4501 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 4502 else 4503 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); 4504 return 0; 4505} 4506 4507/* cgroup core interface files for the default hierarchy */ 4508static struct cftype cgroup_dfl_base_files[] = { 4509 { 4510 .name = "cgroup.procs", 4511 .file_offset = offsetof(struct cgroup, procs_file), 4512 .seq_start = cgroup_pidlist_start, 4513 .seq_next = cgroup_pidlist_next, 4514 .seq_stop = cgroup_pidlist_stop, 4515 .seq_show = cgroup_pidlist_show, 4516 .private = CGROUP_FILE_PROCS, 4517 .write = cgroup_procs_write, 4518 }, 4519 { 4520 .name = "cgroup.controllers", 4521 .flags = CFTYPE_ONLY_ON_ROOT, 4522 .seq_show = cgroup_root_controllers_show, 4523 }, 4524 { 4525 .name = "cgroup.controllers", 4526 .flags = CFTYPE_NOT_ON_ROOT, 4527 .seq_show = cgroup_controllers_show, 4528 }, 4529 { 4530 .name = "cgroup.subtree_control", 4531 .seq_show = cgroup_subtree_control_show, 4532 .write = cgroup_subtree_control_write, 4533 }, 4534 { 4535 .name = "cgroup.events", 4536 .flags = CFTYPE_NOT_ON_ROOT, 4537 .file_offset = offsetof(struct cgroup, events_file), 4538 .seq_show = cgroup_events_show, 4539 }, 4540 { } /* terminate */ 4541}; 4542 4543/* cgroup core interface files for the legacy hierarchies */ 4544static struct cftype cgroup_legacy_base_files[] = { 4545 { 4546 .name = "cgroup.procs", 4547 .seq_start = cgroup_pidlist_start, 4548 .seq_next = cgroup_pidlist_next, 4549 .seq_stop = cgroup_pidlist_stop, 4550 .seq_show = cgroup_pidlist_show, 4551 .private = CGROUP_FILE_PROCS, 4552 .write = cgroup_procs_write, 4553 }, 4554 { 4555 .name = "cgroup.clone_children", 4556 .read_u64 = cgroup_clone_children_read, 4557 .write_u64 = cgroup_clone_children_write, 4558 }, 4559 { 4560 .name = "cgroup.sane_behavior", 4561 .flags = CFTYPE_ONLY_ON_ROOT, 4562 .seq_show = cgroup_sane_behavior_show, 4563 }, 4564 { 4565 .name = "tasks", 4566 .seq_start = cgroup_pidlist_start, 4567 .seq_next = cgroup_pidlist_next, 4568 .seq_stop = cgroup_pidlist_stop, 4569 .seq_show = cgroup_pidlist_show, 4570 .private = CGROUP_FILE_TASKS, 4571 .write = cgroup_tasks_write, 4572 }, 4573 { 4574 .name = "notify_on_release", 4575 .read_u64 = cgroup_read_notify_on_release, 4576 .write_u64 = cgroup_write_notify_on_release, 4577 }, 4578 { 4579 .name = "release_agent", 4580 .flags = CFTYPE_ONLY_ON_ROOT, 4581 .seq_show = cgroup_release_agent_show, 4582 .write = cgroup_release_agent_write, 4583 .max_write_len = PATH_MAX - 1, 4584 }, 4585 { } /* terminate */ 4586}; 4587 4588/* 4589 * css destruction is four-stage process. 4590 * 4591 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4592 * Implemented in kill_css(). 4593 * 4594 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4595 * and thus css_tryget_online() is guaranteed to fail, the css can be 4596 * offlined by invoking offline_css(). After offlining, the base ref is 4597 * put. Implemented in css_killed_work_fn(). 4598 * 4599 * 3. When the percpu_ref reaches zero, the only possible remaining 4600 * accessors are inside RCU read sections. css_release() schedules the 4601 * RCU callback. 4602 * 4603 * 4. After the grace period, the css can be freed. Implemented in 4604 * css_free_work_fn(). 4605 * 4606 * It is actually hairier because both step 2 and 4 require process context 4607 * and thus involve punting to css->destroy_work adding two additional 4608 * steps to the already complex sequence. 4609 */ 4610static void css_free_work_fn(struct work_struct *work) 4611{ 4612 struct cgroup_subsys_state *css = 4613 container_of(work, struct cgroup_subsys_state, destroy_work); 4614 struct cgroup_subsys *ss = css->ss; 4615 struct cgroup *cgrp = css->cgroup; 4616 struct cgroup_file *cfile; 4617 4618 percpu_ref_exit(&css->refcnt); 4619 4620 list_for_each_entry(cfile, &css->files, node) 4621 kernfs_put(cfile->kn); 4622 4623 if (ss) { 4624 /* css free path */ 4625 int id = css->id; 4626 4627 if (css->parent) 4628 css_put(css->parent); 4629 4630 ss->css_free(css); 4631 cgroup_idr_remove(&ss->css_idr, id); 4632 cgroup_put(cgrp); 4633 } else { 4634 /* cgroup free path */ 4635 atomic_dec(&cgrp->root->nr_cgrps); 4636 cgroup_pidlist_destroy_all(cgrp); 4637 cancel_work_sync(&cgrp->release_agent_work); 4638 4639 if (cgroup_parent(cgrp)) { 4640 /* 4641 * We get a ref to the parent, and put the ref when 4642 * this cgroup is being freed, so it's guaranteed 4643 * that the parent won't be destroyed before its 4644 * children. 4645 */ 4646 cgroup_put(cgroup_parent(cgrp)); 4647 kernfs_put(cgrp->kn); 4648 kfree(cgrp); 4649 } else { 4650 /* 4651 * This is root cgroup's refcnt reaching zero, 4652 * which indicates that the root should be 4653 * released. 4654 */ 4655 cgroup_destroy_root(cgrp->root); 4656 } 4657 } 4658} 4659 4660static void css_free_rcu_fn(struct rcu_head *rcu_head) 4661{ 4662 struct cgroup_subsys_state *css = 4663 container_of(rcu_head, struct cgroup_subsys_state, rcu_head); 4664 4665 INIT_WORK(&css->destroy_work, css_free_work_fn); 4666 queue_work(cgroup_destroy_wq, &css->destroy_work); 4667} 4668 4669static void css_release_work_fn(struct work_struct *work) 4670{ 4671 struct cgroup_subsys_state *css = 4672 container_of(work, struct cgroup_subsys_state, destroy_work); 4673 struct cgroup_subsys *ss = css->ss; 4674 struct cgroup *cgrp = css->cgroup; 4675 4676 mutex_lock(&cgroup_mutex); 4677 4678 css->flags |= CSS_RELEASED; 4679 list_del_rcu(&css->sibling); 4680 4681 if (ss) { 4682 /* css release path */ 4683 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4684 if (ss->css_released) 4685 ss->css_released(css); 4686 } else { 4687 /* cgroup release path */ 4688 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4689 cgrp->id = -1; 4690 4691 /* 4692 * There are two control paths which try to determine 4693 * cgroup from dentry without going through kernfs - 4694 * cgroupstats_build() and css_tryget_online_from_dir(). 4695 * Those are supported by RCU protecting clearing of 4696 * cgrp->kn->priv backpointer. 4697 */ 4698 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); 4699 } 4700 4701 mutex_unlock(&cgroup_mutex); 4702 4703 call_rcu(&css->rcu_head, css_free_rcu_fn); 4704} 4705 4706static void css_release(struct percpu_ref *ref) 4707{ 4708 struct cgroup_subsys_state *css = 4709 container_of(ref, struct cgroup_subsys_state, refcnt); 4710 4711 INIT_WORK(&css->destroy_work, css_release_work_fn); 4712 queue_work(cgroup_destroy_wq, &css->destroy_work); 4713} 4714 4715static void init_and_link_css(struct cgroup_subsys_state *css, 4716 struct cgroup_subsys *ss, struct cgroup *cgrp) 4717{ 4718 lockdep_assert_held(&cgroup_mutex); 4719 4720 cgroup_get(cgrp); 4721 4722 memset(css, 0, sizeof(*css)); 4723 css->cgroup = cgrp; 4724 css->ss = ss; 4725 INIT_LIST_HEAD(&css->sibling); 4726 INIT_LIST_HEAD(&css->children); 4727 INIT_LIST_HEAD(&css->files); 4728 css->serial_nr = css_serial_nr_next++; 4729 4730 if (cgroup_parent(cgrp)) { 4731 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4732 css_get(css->parent); 4733 } 4734 4735 BUG_ON(cgroup_css(cgrp, ss)); 4736} 4737 4738/* invoke ->css_online() on a new CSS and mark it online if successful */ 4739static int online_css(struct cgroup_subsys_state *css) 4740{ 4741 struct cgroup_subsys *ss = css->ss; 4742 int ret = 0; 4743 4744 lockdep_assert_held(&cgroup_mutex); 4745 4746 if (ss->css_online) 4747 ret = ss->css_online(css); 4748 if (!ret) { 4749 css->flags |= CSS_ONLINE; 4750 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4751 } 4752 return ret; 4753} 4754 4755/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4756static void offline_css(struct cgroup_subsys_state *css) 4757{ 4758 struct cgroup_subsys *ss = css->ss; 4759 4760 lockdep_assert_held(&cgroup_mutex); 4761 4762 if (!(css->flags & CSS_ONLINE)) 4763 return; 4764 4765 if (ss->css_offline) 4766 ss->css_offline(css); 4767 4768 css->flags &= ~CSS_ONLINE; 4769 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4770 4771 wake_up_all(&css->cgroup->offline_waitq); 4772} 4773 4774/** 4775 * create_css - create a cgroup_subsys_state 4776 * @cgrp: the cgroup new css will be associated with 4777 * @ss: the subsys of new css 4778 * @visible: whether to create control knobs for the new css or not 4779 * 4780 * Create a new css associated with @cgrp - @ss pair. On success, the new 4781 * css is online and installed in @cgrp with all interface files created if 4782 * @visible. Returns 0 on success, -errno on failure. 4783 */ 4784static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss, 4785 bool visible) 4786{ 4787 struct cgroup *parent = cgroup_parent(cgrp); 4788 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4789 struct cgroup_subsys_state *css; 4790 int err; 4791 4792 lockdep_assert_held(&cgroup_mutex); 4793 4794 css = ss->css_alloc(parent_css); 4795 if (IS_ERR(css)) 4796 return PTR_ERR(css); 4797 4798 init_and_link_css(css, ss, cgrp); 4799 4800 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4801 if (err) 4802 goto err_free_css; 4803 4804 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4805 if (err < 0) 4806 goto err_free_percpu_ref; 4807 css->id = err; 4808 4809 if (visible) { 4810 err = css_populate_dir(css, NULL); 4811 if (err) 4812 goto err_free_id; 4813 } 4814 4815 /* @css is ready to be brought online now, make it visible */ 4816 list_add_tail_rcu(&css->sibling, &parent_css->children); 4817 cgroup_idr_replace(&ss->css_idr, css, css->id); 4818 4819 err = online_css(css); 4820 if (err) 4821 goto err_list_del; 4822 4823 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4824 cgroup_parent(parent)) { 4825 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4826 current->comm, current->pid, ss->name); 4827 if (!strcmp(ss->name, "memory")) 4828 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4829 ss->warned_broken_hierarchy = true; 4830 } 4831 4832 return 0; 4833 4834err_list_del: 4835 list_del_rcu(&css->sibling); 4836 css_clear_dir(css, NULL); 4837err_free_id: 4838 cgroup_idr_remove(&ss->css_idr, css->id); 4839err_free_percpu_ref: 4840 percpu_ref_exit(&css->refcnt); 4841err_free_css: 4842 call_rcu(&css->rcu_head, css_free_rcu_fn); 4843 return err; 4844} 4845 4846static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 4847 umode_t mode) 4848{ 4849 struct cgroup *parent, *cgrp; 4850 struct cgroup_root *root; 4851 struct cgroup_subsys *ss; 4852 struct kernfs_node *kn; 4853 int ssid, ret; 4854 4855 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable. 4856 */ 4857 if (strchr(name, '\n')) 4858 return -EINVAL; 4859 4860 parent = cgroup_kn_lock_live(parent_kn); 4861 if (!parent) 4862 return -ENODEV; 4863 root = parent->root; 4864 4865 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4866 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); 4867 if (!cgrp) { 4868 ret = -ENOMEM; 4869 goto out_unlock; 4870 } 4871 4872 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4873 if (ret) 4874 goto out_free_cgrp; 4875 4876 /* 4877 * Temporarily set the pointer to NULL, so idr_find() won't return 4878 * a half-baked cgroup. 4879 */ 4880 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4881 if (cgrp->id < 0) { 4882 ret = -ENOMEM; 4883 goto out_cancel_ref; 4884 } 4885 4886 init_cgroup_housekeeping(cgrp); 4887 4888 cgrp->self.parent = &parent->self; 4889 cgrp->root = root; 4890 4891 if (notify_on_release(parent)) 4892 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4893 4894 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4895 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4896 4897 /* create the directory */ 4898 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4899 if (IS_ERR(kn)) { 4900 ret = PTR_ERR(kn); 4901 goto out_free_id; 4902 } 4903 cgrp->kn = kn; 4904 4905 /* 4906 * This extra ref will be put in cgroup_free_fn() and guarantees 4907 * that @cgrp->kn is always accessible. 4908 */ 4909 kernfs_get(kn); 4910 4911 cgrp->self.serial_nr = css_serial_nr_next++; 4912 4913 /* allocation complete, commit to creation */ 4914 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4915 atomic_inc(&root->nr_cgrps); 4916 cgroup_get(parent); 4917 4918 /* 4919 * @cgrp is now fully operational. If something fails after this 4920 * point, it'll be released via the normal destruction path. 4921 */ 4922 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4923 4924 ret = cgroup_kn_set_ugid(kn); 4925 if (ret) 4926 goto out_destroy; 4927 4928 ret = css_populate_dir(&cgrp->self, NULL); 4929 if (ret) 4930 goto out_destroy; 4931 4932 /* let's create and online css's */ 4933 for_each_subsys(ss, ssid) { 4934 if (parent->child_subsys_mask & (1 << ssid)) { 4935 ret = create_css(cgrp, ss, 4936 parent->subtree_control & (1 << ssid)); 4937 if (ret) 4938 goto out_destroy; 4939 } 4940 } 4941 4942 /* 4943 * On the default hierarchy, a child doesn't automatically inherit 4944 * subtree_control from the parent. Each is configured manually. 4945 */ 4946 if (!cgroup_on_dfl(cgrp)) { 4947 cgrp->subtree_control = parent->subtree_control; 4948 cgroup_refresh_child_subsys_mask(cgrp); 4949 } 4950 4951 kernfs_activate(kn); 4952 4953 ret = 0; 4954 goto out_unlock; 4955 4956out_free_id: 4957 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4958out_cancel_ref: 4959 percpu_ref_exit(&cgrp->self.refcnt); 4960out_free_cgrp: 4961 kfree(cgrp); 4962out_unlock: 4963 cgroup_kn_unlock(parent_kn); 4964 return ret; 4965 4966out_destroy: 4967 cgroup_destroy_locked(cgrp); 4968 goto out_unlock; 4969} 4970 4971/* 4972 * This is called when the refcnt of a css is confirmed to be killed. 4973 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4974 * initate destruction and put the css ref from kill_css(). 4975 */ 4976static void css_killed_work_fn(struct work_struct *work) 4977{ 4978 struct cgroup_subsys_state *css = 4979 container_of(work, struct cgroup_subsys_state, destroy_work); 4980 4981 mutex_lock(&cgroup_mutex); 4982 offline_css(css); 4983 mutex_unlock(&cgroup_mutex); 4984 4985 css_put(css); 4986} 4987 4988/* css kill confirmation processing requires process context, bounce */ 4989static void css_killed_ref_fn(struct percpu_ref *ref) 4990{ 4991 struct cgroup_subsys_state *css = 4992 container_of(ref, struct cgroup_subsys_state, refcnt); 4993 4994 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4995 queue_work(cgroup_destroy_wq, &css->destroy_work); 4996} 4997 4998/** 4999 * kill_css - destroy a css 5000 * @css: css to destroy 5001 * 5002 * This function initiates destruction of @css by removing cgroup interface 5003 * files and putting its base reference. ->css_offline() will be invoked 5004 * asynchronously once css_tryget_online() is guaranteed to fail and when 5005 * the reference count reaches zero, @css will be released. 5006 */ 5007static void kill_css(struct cgroup_subsys_state *css) 5008{ 5009 lockdep_assert_held(&cgroup_mutex); 5010 5011 /* 5012 * This must happen before css is disassociated with its cgroup. 5013 * See seq_css() for details. 5014 */ 5015 css_clear_dir(css, NULL); 5016 5017 /* 5018 * Killing would put the base ref, but we need to keep it alive 5019 * until after ->css_offline(). 5020 */ 5021 css_get(css); 5022 5023 /* 5024 * cgroup core guarantees that, by the time ->css_offline() is 5025 * invoked, no new css reference will be given out via 5026 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5027 * proceed to offlining css's because percpu_ref_kill() doesn't 5028 * guarantee that the ref is seen as killed on all CPUs on return. 5029 * 5030 * Use percpu_ref_kill_and_confirm() to get notifications as each 5031 * css is confirmed to be seen as killed on all CPUs. 5032 */ 5033 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5034} 5035 5036/** 5037 * cgroup_destroy_locked - the first stage of cgroup destruction 5038 * @cgrp: cgroup to be destroyed 5039 * 5040 * css's make use of percpu refcnts whose killing latency shouldn't be 5041 * exposed to userland and are RCU protected. Also, cgroup core needs to 5042 * guarantee that css_tryget_online() won't succeed by the time 5043 * ->css_offline() is invoked. To satisfy all the requirements, 5044 * destruction is implemented in the following two steps. 5045 * 5046 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5047 * userland visible parts and start killing the percpu refcnts of 5048 * css's. Set up so that the next stage will be kicked off once all 5049 * the percpu refcnts are confirmed to be killed. 5050 * 5051 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5052 * rest of destruction. Once all cgroup references are gone, the 5053 * cgroup is RCU-freed. 5054 * 5055 * This function implements s1. After this step, @cgrp is gone as far as 5056 * the userland is concerned and a new cgroup with the same name may be 5057 * created. As cgroup doesn't care about the names internally, this 5058 * doesn't cause any problem. 5059 */ 5060static int cgroup_destroy_locked(struct cgroup *cgrp) 5061 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5062{ 5063 struct cgroup_subsys_state *css; 5064 int ssid; 5065 5066 lockdep_assert_held(&cgroup_mutex); 5067 5068 /* 5069 * Only migration can raise populated from zero and we're already 5070 * holding cgroup_mutex. 5071 */ 5072 if (cgroup_is_populated(cgrp)) 5073 return -EBUSY; 5074 5075 /* 5076 * Make sure there's no live children. We can't test emptiness of 5077 * ->self.children as dead children linger on it while being 5078 * drained; otherwise, "rmdir parent/child parent" may fail. 5079 */ 5080 if (css_has_online_children(&cgrp->self)) 5081 return -EBUSY; 5082 5083 /* 5084 * Mark @cgrp dead. This prevents further task migration and child 5085 * creation by disabling cgroup_lock_live_group(). 5086 */ 5087 cgrp->self.flags &= ~CSS_ONLINE; 5088 5089 /* initiate massacre of all css's */ 5090 for_each_css(css, ssid, cgrp) 5091 kill_css(css); 5092 5093 /* 5094 * Remove @cgrp directory along with the base files. @cgrp has an 5095 * extra ref on its kn. 5096 */ 5097 kernfs_remove(cgrp->kn); 5098 5099 check_for_release(cgroup_parent(cgrp)); 5100 5101 /* put the base reference */ 5102 percpu_ref_kill(&cgrp->self.refcnt); 5103 5104 return 0; 5105}; 5106 5107static int cgroup_rmdir(struct kernfs_node *kn) 5108{ 5109 struct cgroup *cgrp; 5110 int ret = 0; 5111 5112 cgrp = cgroup_kn_lock_live(kn); 5113 if (!cgrp) 5114 return 0; 5115 5116 ret = cgroup_destroy_locked(cgrp); 5117 5118 cgroup_kn_unlock(kn); 5119 return ret; 5120} 5121 5122static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5123 .remount_fs = cgroup_remount, 5124 .show_options = cgroup_show_options, 5125 .mkdir = cgroup_mkdir, 5126 .rmdir = cgroup_rmdir, 5127 .rename = cgroup_rename, 5128}; 5129 5130static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5131{ 5132 struct cgroup_subsys_state *css; 5133 5134 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); 5135 5136 mutex_lock(&cgroup_mutex); 5137 5138 idr_init(&ss->css_idr); 5139 INIT_LIST_HEAD(&ss->cfts); 5140 5141 /* Create the root cgroup state for this subsystem */ 5142 ss->root = &cgrp_dfl_root; 5143 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5144 /* We don't handle early failures gracefully */ 5145 BUG_ON(IS_ERR(css)); 5146 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5147 5148 /* 5149 * Root csses are never destroyed and we can't initialize 5150 * percpu_ref during early init. Disable refcnting. 5151 */ 5152 css->flags |= CSS_NO_REF; 5153 5154 if (early) { 5155 /* allocation can't be done safely during early init */ 5156 css->id = 1; 5157 } else { 5158 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5159 BUG_ON(css->id < 0); 5160 } 5161 5162 /* Update the init_css_set to contain a subsys 5163 * pointer to this state - since the subsystem is 5164 * newly registered, all tasks and hence the 5165 * init_css_set is in the subsystem's root cgroup. */ 5166 init_css_set.subsys[ss->id] = css; 5167 5168 have_fork_callback |= (bool)ss->fork << ss->id; 5169 have_exit_callback |= (bool)ss->exit << ss->id; 5170 have_free_callback |= (bool)ss->free << ss->id; 5171 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5172 5173 /* At system boot, before all subsystems have been 5174 * registered, no tasks have been forked, so we don't 5175 * need to invoke fork callbacks here. */ 5176 BUG_ON(!list_empty(&init_task.tasks)); 5177 5178 BUG_ON(online_css(css)); 5179 5180 mutex_unlock(&cgroup_mutex); 5181} 5182 5183/** 5184 * cgroup_init_early - cgroup initialization at system boot 5185 * 5186 * Initialize cgroups at system boot, and initialize any 5187 * subsystems that request early init. 5188 */ 5189int __init cgroup_init_early(void) 5190{ 5191 static struct cgroup_sb_opts __initdata opts; 5192 struct cgroup_subsys *ss; 5193 int i; 5194 5195 init_cgroup_root(&cgrp_dfl_root, &opts); 5196 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5197 5198 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5199 5200 for_each_subsys(ss, i) { 5201 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5202 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n", 5203 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5204 ss->id, ss->name); 5205 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5206 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5207 5208 ss->id = i; 5209 ss->name = cgroup_subsys_name[i]; 5210 if (!ss->legacy_name) 5211 ss->legacy_name = cgroup_subsys_name[i]; 5212 5213 if (ss->early_init) 5214 cgroup_init_subsys(ss, true); 5215 } 5216 return 0; 5217} 5218 5219static unsigned long cgroup_disable_mask __initdata; 5220 5221/** 5222 * cgroup_init - cgroup initialization 5223 * 5224 * Register cgroup filesystem and /proc file, and initialize 5225 * any subsystems that didn't request early init. 5226 */ 5227int __init cgroup_init(void) 5228{ 5229 struct cgroup_subsys *ss; 5230 unsigned long key; 5231 int ssid; 5232 5233 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5234 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files)); 5235 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files)); 5236 5237 mutex_lock(&cgroup_mutex); 5238 5239 /* Add init_css_set to the hash table */ 5240 key = css_set_hash(init_css_set.subsys); 5241 hash_add(css_set_table, &init_css_set.hlist, key); 5242 5243 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5244 5245 mutex_unlock(&cgroup_mutex); 5246 5247 for_each_subsys(ss, ssid) { 5248 if (ss->early_init) { 5249 struct cgroup_subsys_state *css = 5250 init_css_set.subsys[ss->id]; 5251 5252 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5253 GFP_KERNEL); 5254 BUG_ON(css->id < 0); 5255 } else { 5256 cgroup_init_subsys(ss, false); 5257 } 5258 5259 list_add_tail(&init_css_set.e_cset_node[ssid], 5260 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5261 5262 /* 5263 * Setting dfl_root subsys_mask needs to consider the 5264 * disabled flag and cftype registration needs kmalloc, 5265 * both of which aren't available during early_init. 5266 */ 5267 if (cgroup_disable_mask & (1 << ssid)) { 5268 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5269 printk(KERN_INFO "Disabling %s control group subsystem\n", 5270 ss->name); 5271 continue; 5272 } 5273 5274 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5275 5276 if (!ss->dfl_cftypes) 5277 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id; 5278 5279 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5280 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5281 } else { 5282 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5283 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5284 } 5285 5286 if (ss->bind) 5287 ss->bind(init_css_set.subsys[ssid]); 5288 } 5289 5290 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5291 WARN_ON(register_filesystem(&cgroup_fs_type)); 5292 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 5293 5294 return 0; 5295} 5296 5297static int __init cgroup_wq_init(void) 5298{ 5299 /* 5300 * There isn't much point in executing destruction path in 5301 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5302 * Use 1 for @max_active. 5303 * 5304 * We would prefer to do this in cgroup_init() above, but that 5305 * is called before init_workqueues(): so leave this until after. 5306 */ 5307 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5308 BUG_ON(!cgroup_destroy_wq); 5309 5310 /* 5311 * Used to destroy pidlists and separate to serve as flush domain. 5312 * Cap @max_active to 1 too. 5313 */ 5314 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", 5315 0, 1); 5316 BUG_ON(!cgroup_pidlist_destroy_wq); 5317 5318 return 0; 5319} 5320core_initcall(cgroup_wq_init); 5321 5322/* 5323 * proc_cgroup_show() 5324 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5325 * - Used for /proc/<pid>/cgroup. 5326 */ 5327int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5328 struct pid *pid, struct task_struct *tsk) 5329{ 5330 char *buf, *path; 5331 int retval; 5332 struct cgroup_root *root; 5333 5334 retval = -ENOMEM; 5335 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5336 if (!buf) 5337 goto out; 5338 5339 mutex_lock(&cgroup_mutex); 5340 spin_lock_bh(&css_set_lock); 5341 5342 for_each_root(root) { 5343 struct cgroup_subsys *ss; 5344 struct cgroup *cgrp; 5345 int ssid, count = 0; 5346 5347 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible) 5348 continue; 5349 5350 seq_printf(m, "%d:", root->hierarchy_id); 5351 if (root != &cgrp_dfl_root) 5352 for_each_subsys(ss, ssid) 5353 if (root->subsys_mask & (1 << ssid)) 5354 seq_printf(m, "%s%s", count++ ? "," : "", 5355 ss->legacy_name); 5356 if (strlen(root->name)) 5357 seq_printf(m, "%sname=%s", count ? "," : "", 5358 root->name); 5359 seq_putc(m, ':'); 5360 5361 cgrp = task_cgroup_from_root(tsk, root); 5362 5363 /* 5364 * On traditional hierarchies, all zombie tasks show up as 5365 * belonging to the root cgroup. On the default hierarchy, 5366 * while a zombie doesn't show up in "cgroup.procs" and 5367 * thus can't be migrated, its /proc/PID/cgroup keeps 5368 * reporting the cgroup it belonged to before exiting. If 5369 * the cgroup is removed before the zombie is reaped, 5370 * " (deleted)" is appended to the cgroup path. 5371 */ 5372 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5373 path = cgroup_path(cgrp, buf, PATH_MAX); 5374 if (!path) { 5375 retval = -ENAMETOOLONG; 5376 goto out_unlock; 5377 } 5378 } else { 5379 path = "/"; 5380 } 5381 5382 seq_puts(m, path); 5383 5384 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5385 seq_puts(m, " (deleted)\n"); 5386 else 5387 seq_putc(m, '\n'); 5388 } 5389 5390 retval = 0; 5391out_unlock: 5392 spin_unlock_bh(&css_set_lock); 5393 mutex_unlock(&cgroup_mutex); 5394 kfree(buf); 5395out: 5396 return retval; 5397} 5398 5399/* Display information about each subsystem and each hierarchy */ 5400static int proc_cgroupstats_show(struct seq_file *m, void *v) 5401{ 5402 struct cgroup_subsys *ss; 5403 int i; 5404 5405 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); 5406 /* 5407 * ideally we don't want subsystems moving around while we do this. 5408 * cgroup_mutex is also necessary to guarantee an atomic snapshot of 5409 * subsys/hierarchy state. 5410 */ 5411 mutex_lock(&cgroup_mutex); 5412 5413 for_each_subsys(ss, i) 5414 seq_printf(m, "%s\t%d\t%d\t%d\n", 5415 ss->legacy_name, ss->root->hierarchy_id, 5416 atomic_read(&ss->root->nr_cgrps), 5417 cgroup_ssid_enabled(i)); 5418 5419 mutex_unlock(&cgroup_mutex); 5420 return 0; 5421} 5422 5423static int cgroupstats_open(struct inode *inode, struct file *file) 5424{ 5425 return single_open(file, proc_cgroupstats_show, NULL); 5426} 5427 5428static const struct file_operations proc_cgroupstats_operations = { 5429 .open = cgroupstats_open, 5430 .read = seq_read, 5431 .llseek = seq_lseek, 5432 .release = single_release, 5433}; 5434 5435static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i) 5436{ 5437 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END) 5438 return &ss_priv[i - CGROUP_CANFORK_START]; 5439 return NULL; 5440} 5441 5442static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i) 5443{ 5444 void **private = subsys_canfork_priv_p(ss_priv, i); 5445 return private ? *private : NULL; 5446} 5447 5448/** 5449 * cgroup_fork - initialize cgroup related fields during copy_process() 5450 * @child: pointer to task_struct of forking parent process. 5451 * 5452 * A task is associated with the init_css_set until cgroup_post_fork() 5453 * attaches it to the parent's css_set. Empty cg_list indicates that 5454 * @child isn't holding reference to its css_set. 5455 */ 5456void cgroup_fork(struct task_struct *child) 5457{ 5458 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5459 INIT_LIST_HEAD(&child->cg_list); 5460} 5461 5462/** 5463 * cgroup_can_fork - called on a new task before the process is exposed 5464 * @child: the task in question. 5465 * 5466 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5467 * returns an error, the fork aborts with that error code. This allows for 5468 * a cgroup subsystem to conditionally allow or deny new forks. 5469 */ 5470int cgroup_can_fork(struct task_struct *child, 5471 void *ss_priv[CGROUP_CANFORK_COUNT]) 5472{ 5473 struct cgroup_subsys *ss; 5474 int i, j, ret; 5475 5476 for_each_subsys_which(ss, i, &have_canfork_callback) { 5477 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i)); 5478 if (ret) 5479 goto out_revert; 5480 } 5481 5482 return 0; 5483 5484out_revert: 5485 for_each_subsys(ss, j) { 5486 if (j >= i) 5487 break; 5488 if (ss->cancel_fork) 5489 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j)); 5490 } 5491 5492 return ret; 5493} 5494 5495/** 5496 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5497 * @child: the task in question 5498 * 5499 * This calls the cancel_fork() callbacks if a fork failed *after* 5500 * cgroup_can_fork() succeded. 5501 */ 5502void cgroup_cancel_fork(struct task_struct *child, 5503 void *ss_priv[CGROUP_CANFORK_COUNT]) 5504{ 5505 struct cgroup_subsys *ss; 5506 int i; 5507 5508 for_each_subsys(ss, i) 5509 if (ss->cancel_fork) 5510 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i)); 5511} 5512 5513/** 5514 * cgroup_post_fork - called on a new task after adding it to the task list 5515 * @child: the task in question 5516 * 5517 * Adds the task to the list running through its css_set if necessary and 5518 * call the subsystem fork() callbacks. Has to be after the task is 5519 * visible on the task list in case we race with the first call to 5520 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5521 * list. 5522 */ 5523void cgroup_post_fork(struct task_struct *child, 5524 void *old_ss_priv[CGROUP_CANFORK_COUNT]) 5525{ 5526 struct cgroup_subsys *ss; 5527 int i; 5528 5529 /* 5530 * This may race against cgroup_enable_task_cg_lists(). As that 5531 * function sets use_task_css_set_links before grabbing 5532 * tasklist_lock and we just went through tasklist_lock to add 5533 * @child, it's guaranteed that either we see the set 5534 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5535 * @child during its iteration. 5536 * 5537 * If we won the race, @child is associated with %current's 5538 * css_set. Grabbing css_set_lock guarantees both that the 5539 * association is stable, and, on completion of the parent's 5540 * migration, @child is visible in the source of migration or 5541 * already in the destination cgroup. This guarantee is necessary 5542 * when implementing operations which need to migrate all tasks of 5543 * a cgroup to another. 5544 * 5545 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5546 * will remain in init_css_set. This is safe because all tasks are 5547 * in the init_css_set before cg_links is enabled and there's no 5548 * operation which transfers all tasks out of init_css_set. 5549 */ 5550 if (use_task_css_set_links) { 5551 struct css_set *cset; 5552 5553 spin_lock_bh(&css_set_lock); 5554 cset = task_css_set(current); 5555 if (list_empty(&child->cg_list)) { 5556 get_css_set(cset); 5557 css_set_move_task(child, NULL, cset, false); 5558 } 5559 spin_unlock_bh(&css_set_lock); 5560 } 5561 5562 /* 5563 * Call ss->fork(). This must happen after @child is linked on 5564 * css_set; otherwise, @child might change state between ->fork() 5565 * and addition to css_set. 5566 */ 5567 for_each_subsys_which(ss, i, &have_fork_callback) 5568 ss->fork(child, subsys_canfork_priv(old_ss_priv, i)); 5569} 5570 5571/** 5572 * cgroup_exit - detach cgroup from exiting task 5573 * @tsk: pointer to task_struct of exiting process 5574 * 5575 * Description: Detach cgroup from @tsk and release it. 5576 * 5577 * Note that cgroups marked notify_on_release force every task in 5578 * them to take the global cgroup_mutex mutex when exiting. 5579 * This could impact scaling on very large systems. Be reluctant to 5580 * use notify_on_release cgroups where very high task exit scaling 5581 * is required on large systems. 5582 * 5583 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5584 * call cgroup_exit() while the task is still competent to handle 5585 * notify_on_release(), then leave the task attached to the root cgroup in 5586 * each hierarchy for the remainder of its exit. No need to bother with 5587 * init_css_set refcnting. init_css_set never goes away and we can't race 5588 * with migration path - PF_EXITING is visible to migration path. 5589 */ 5590void cgroup_exit(struct task_struct *tsk) 5591{ 5592 struct cgroup_subsys *ss; 5593 struct css_set *cset; 5594 int i; 5595 5596 /* 5597 * Unlink from @tsk from its css_set. As migration path can't race 5598 * with us, we can check css_set and cg_list without synchronization. 5599 */ 5600 cset = task_css_set(tsk); 5601 5602 if (!list_empty(&tsk->cg_list)) { 5603 spin_lock_bh(&css_set_lock); 5604 css_set_move_task(tsk, cset, NULL, false); 5605 spin_unlock_bh(&css_set_lock); 5606 } else { 5607 get_css_set(cset); 5608 } 5609 5610 /* see cgroup_post_fork() for details */ 5611 for_each_subsys_which(ss, i, &have_exit_callback) 5612 ss->exit(tsk); 5613} 5614 5615void cgroup_free(struct task_struct *task) 5616{ 5617 struct css_set *cset = task_css_set(task); 5618 struct cgroup_subsys *ss; 5619 int ssid; 5620 5621 for_each_subsys_which(ss, ssid, &have_free_callback) 5622 ss->free(task); 5623 5624 put_css_set(cset); 5625} 5626 5627static void check_for_release(struct cgroup *cgrp) 5628{ 5629 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && 5630 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) 5631 schedule_work(&cgrp->release_agent_work); 5632} 5633 5634/* 5635 * Notify userspace when a cgroup is released, by running the 5636 * configured release agent with the name of the cgroup (path 5637 * relative to the root of cgroup file system) as the argument. 5638 * 5639 * Most likely, this user command will try to rmdir this cgroup. 5640 * 5641 * This races with the possibility that some other task will be 5642 * attached to this cgroup before it is removed, or that some other 5643 * user task will 'mkdir' a child cgroup of this cgroup. That's ok. 5644 * The presumed 'rmdir' will fail quietly if this cgroup is no longer 5645 * unused, and this cgroup will be reprieved from its death sentence, 5646 * to continue to serve a useful existence. Next time it's released, 5647 * we will get notified again, if it still has 'notify_on_release' set. 5648 * 5649 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which 5650 * means only wait until the task is successfully execve()'d. The 5651 * separate release agent task is forked by call_usermodehelper(), 5652 * then control in this thread returns here, without waiting for the 5653 * release agent task. We don't bother to wait because the caller of 5654 * this routine has no use for the exit status of the release agent 5655 * task, so no sense holding our caller up for that. 5656 */ 5657static void cgroup_release_agent(struct work_struct *work) 5658{ 5659 struct cgroup *cgrp = 5660 container_of(work, struct cgroup, release_agent_work); 5661 char *pathbuf = NULL, *agentbuf = NULL, *path; 5662 char *argv[3], *envp[3]; 5663 5664 mutex_lock(&cgroup_mutex); 5665 5666 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); 5667 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); 5668 if (!pathbuf || !agentbuf) 5669 goto out; 5670 5671 path = cgroup_path(cgrp, pathbuf, PATH_MAX); 5672 if (!path) 5673 goto out; 5674 5675 argv[0] = agentbuf; 5676 argv[1] = path; 5677 argv[2] = NULL; 5678 5679 /* minimal command environment */ 5680 envp[0] = "HOME=/"; 5681 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 5682 envp[2] = NULL; 5683 5684 mutex_unlock(&cgroup_mutex); 5685 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); 5686 goto out_free; 5687out: 5688 mutex_unlock(&cgroup_mutex); 5689out_free: 5690 kfree(agentbuf); 5691 kfree(pathbuf); 5692} 5693 5694static int __init cgroup_disable(char *str) 5695{ 5696 struct cgroup_subsys *ss; 5697 char *token; 5698 int i; 5699 5700 while ((token = strsep(&str, ",")) != NULL) { 5701 if (!*token) 5702 continue; 5703 5704 for_each_subsys(ss, i) { 5705 if (strcmp(token, ss->name) && 5706 strcmp(token, ss->legacy_name)) 5707 continue; 5708 cgroup_disable_mask |= 1 << i; 5709 } 5710 } 5711 return 1; 5712} 5713__setup("cgroup_disable=", cgroup_disable); 5714 5715/** 5716 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5717 * @dentry: directory dentry of interest 5718 * @ss: subsystem of interest 5719 * 5720 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5721 * to get the corresponding css and return it. If such css doesn't exist 5722 * or can't be pinned, an ERR_PTR value is returned. 5723 */ 5724struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5725 struct cgroup_subsys *ss) 5726{ 5727 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5728 struct cgroup_subsys_state *css = NULL; 5729 struct cgroup *cgrp; 5730 5731 /* is @dentry a cgroup dir? */ 5732 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || 5733 kernfs_type(kn) != KERNFS_DIR) 5734 return ERR_PTR(-EBADF); 5735 5736 rcu_read_lock(); 5737 5738 /* 5739 * This path doesn't originate from kernfs and @kn could already 5740 * have been or be removed at any point. @kn->priv is RCU 5741 * protected for this access. See css_release_work_fn() for details. 5742 */ 5743 cgrp = rcu_dereference(kn->priv); 5744 if (cgrp) 5745 css = cgroup_css(cgrp, ss); 5746 5747 if (!css || !css_tryget_online(css)) 5748 css = ERR_PTR(-ENOENT); 5749 5750 rcu_read_unlock(); 5751 return css; 5752} 5753 5754/** 5755 * css_from_id - lookup css by id 5756 * @id: the cgroup id 5757 * @ss: cgroup subsys to be looked into 5758 * 5759 * Returns the css if there's valid one with @id, otherwise returns NULL. 5760 * Should be called under rcu_read_lock(). 5761 */ 5762struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5763{ 5764 WARN_ON_ONCE(!rcu_read_lock_held()); 5765 return id > 0 ? idr_find(&ss->css_idr, id) : NULL; 5766} 5767 5768#ifdef CONFIG_CGROUP_DEBUG 5769static struct cgroup_subsys_state * 5770debug_css_alloc(struct cgroup_subsys_state *parent_css) 5771{ 5772 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); 5773 5774 if (!css) 5775 return ERR_PTR(-ENOMEM); 5776 5777 return css; 5778} 5779 5780static void debug_css_free(struct cgroup_subsys_state *css) 5781{ 5782 kfree(css); 5783} 5784 5785static u64 debug_taskcount_read(struct cgroup_subsys_state *css, 5786 struct cftype *cft) 5787{ 5788 return cgroup_task_count(css->cgroup); 5789} 5790 5791static u64 current_css_set_read(struct cgroup_subsys_state *css, 5792 struct cftype *cft) 5793{ 5794 return (u64)(unsigned long)current->cgroups; 5795} 5796 5797static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, 5798 struct cftype *cft) 5799{ 5800 u64 count; 5801 5802 rcu_read_lock(); 5803 count = atomic_read(&task_css_set(current)->refcount); 5804 rcu_read_unlock(); 5805 return count; 5806} 5807 5808static int current_css_set_cg_links_read(struct seq_file *seq, void *v) 5809{ 5810 struct cgrp_cset_link *link; 5811 struct css_set *cset; 5812 char *name_buf; 5813 5814 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); 5815 if (!name_buf) 5816 return -ENOMEM; 5817 5818 spin_lock_bh(&css_set_lock); 5819 rcu_read_lock(); 5820 cset = rcu_dereference(current->cgroups); 5821 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 5822 struct cgroup *c = link->cgrp; 5823 5824 cgroup_name(c, name_buf, NAME_MAX + 1); 5825 seq_printf(seq, "Root %d group %s\n", 5826 c->root->hierarchy_id, name_buf); 5827 } 5828 rcu_read_unlock(); 5829 spin_unlock_bh(&css_set_lock); 5830 kfree(name_buf); 5831 return 0; 5832} 5833 5834#define MAX_TASKS_SHOWN_PER_CSS 25 5835static int cgroup_css_links_read(struct seq_file *seq, void *v) 5836{ 5837 struct cgroup_subsys_state *css = seq_css(seq); 5838 struct cgrp_cset_link *link; 5839 5840 spin_lock_bh(&css_set_lock); 5841 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { 5842 struct css_set *cset = link->cset; 5843 struct task_struct *task; 5844 int count = 0; 5845 5846 seq_printf(seq, "css_set %p\n", cset); 5847 5848 list_for_each_entry(task, &cset->tasks, cg_list) { 5849 if (count++ > MAX_TASKS_SHOWN_PER_CSS) 5850 goto overflow; 5851 seq_printf(seq, " task %d\n", task_pid_vnr(task)); 5852 } 5853 5854 list_for_each_entry(task, &cset->mg_tasks, cg_list) { 5855 if (count++ > MAX_TASKS_SHOWN_PER_CSS) 5856 goto overflow; 5857 seq_printf(seq, " task %d\n", task_pid_vnr(task)); 5858 } 5859 continue; 5860 overflow: 5861 seq_puts(seq, " ...\n"); 5862 } 5863 spin_unlock_bh(&css_set_lock); 5864 return 0; 5865} 5866 5867static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) 5868{ 5869 return (!cgroup_is_populated(css->cgroup) && 5870 !css_has_online_children(&css->cgroup->self)); 5871} 5872 5873static struct cftype debug_files[] = { 5874 { 5875 .name = "taskcount", 5876 .read_u64 = debug_taskcount_read, 5877 }, 5878 5879 { 5880 .name = "current_css_set", 5881 .read_u64 = current_css_set_read, 5882 }, 5883 5884 { 5885 .name = "current_css_set_refcount", 5886 .read_u64 = current_css_set_refcount_read, 5887 }, 5888 5889 { 5890 .name = "current_css_set_cg_links", 5891 .seq_show = current_css_set_cg_links_read, 5892 }, 5893 5894 { 5895 .name = "cgroup_css_links", 5896 .seq_show = cgroup_css_links_read, 5897 }, 5898 5899 { 5900 .name = "releasable", 5901 .read_u64 = releasable_read, 5902 }, 5903 5904 { } /* terminate */ 5905}; 5906 5907struct cgroup_subsys debug_cgrp_subsys = { 5908 .css_alloc = debug_css_alloc, 5909 .css_free = debug_css_free, 5910 .legacy_cftypes = debug_files, 5911}; 5912#endif /* CONFIG_CGROUP_DEBUG */